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Abstract. We obtain explicit formulae for the values of the 2v − j minors, j = 0, 1, 2, of D-
optimal designs of order 2v = x2 + y2, v odd, where the design is constructed using two circulant or
type 1 incidence matrices of 2−{2s2+2s+1; s2, s2; s(s−1)} supplementary difference sets (sds). This
allows us to obtain information on the growth problem for families of matrices with moderate growth.
Some of our theoretical formulae imply growth greater than 2(2s2 + 2s+ 1) but experimentation has
not yet supported this result. An open problem remains to establish whether the (1,−1) completely
pivoted (CP) incidence matrices of 2 − {2s2 + 2s + 1; s2, s2; s(s − 1)} sds which yield D-optimal
designs can have growth greater than 2v.
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1. Introduction. A D-optimal design of order n is an n×n matrix with entries
±1 having maximum determinant. In the present paper we evaluate the 2v − j, j =
0, 1, 2, minors for (1,−1) incidence matrices of certain symmetric balanced incomplete
block designs (SBIBDs) which yield D-optimal designs. For the purpose of this paper
we will define a SBIBD(v, k, λ) to be a v× v matrix, B, with entries 0 or 1, which has
exactly k entries +1 and v − k entries 0 in each row and column and for which the
inner product of any distinct pairs of rows and columns is λ. The (1,−1) incidence
matrix of B is obtained by letting A = 2B − J , where J is the v × v matrix with
entries all +1. We write I for the identity matrix of order v.

Then we have

BBT = (k − λ)I + λJ(1.1)

and

AAT = 4(k − λ)I + (v − 4(k − λ))J.(1.2)

It can be easily shown that

detB = (k − λ)
v−1
2

√
k + (v − 1)λ

and since λ(v − 1) = k2 − k

detA = 2v−1(k − λ)
v−1
2 |v − 2k|.(1.3)
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In this paper we also study the application of the computed values of the minors
to the growth problem for SBIBD (2s2 + 2s + 1, s2, 12s(s − 1)), which is Brouwer’s
design and which yields a D-optimal design.

Let A = [aij ] ∈ Rn×n. We reduce A to upper triangular form by using Gaussian

elimination with complete pivoting (GECP) [19]. Let A(k) = [a
(k)
ij ] denote the matrix

obtained after the first k pivoting operations, so A(n−1) is the final upper triangular
matrix. A diagonal entry of that final matrix will be called a pivot. Matrices with the
property that no exchanges are actually needed during GECP are called completely

pivoted (CP). Let g(n,A) = maxi,j,k |a(k)ij |/|a(0)11 | denote the growth associated with

GECP on A and g(n) = sup{ g(n,A)/A ∈ Rn×n }. The problem of determining g(n)
for various values of n is called the growth problem.

The determination of g(n) remains one of the major unsolved problems in nu-
merical analysis. See [9] for a detailed description of the problem. One of the curious
frustrations of the growth problem is that it is quite difficult to construct any ex-
amples of n× n matrices A other than Hadamard matrices for which g(n,A) is even
close to n. The equality g(n,A) = n has been proved for a certain class of n × n
Hadamard matrices [4]. It has also been observed that weighing matrices of order n
can give g(n,A) = n− 1 [12]. In [11] the pivot structure of (1,−1) incidence matrices
of SBIBD(v, k, λ) is studied. In the present paper we get values for the pivots of
2− {2s2 + 2s+ 1; s2, s2; s(s− 1)} supplementary difference sets (sds), and D-optimal
designs made from them. Calculations have given moderate values of growth for D-
optimal designs. An open problem concerning the possibility of finding (1,−1) 2v×2v
CP D-optimal designs having growth greater than 2v is posed.

Notation. Write A for a matrix of order n whose initial pivots are derived from
matrices with CP structure. Write A(j) for the absolute value of the determinant of
the j × j principal submatrix in the upper left-hand corner of the matrix A and A[j]
for the absolute value of the determinant of the (n−j)×(n−j) principal submatrix in
the bottom right-hand corner of the matrix A. Throughout this paper when we have
used i pivots we then find all possible values of the A(n − i) minors. Hence, if any
minor is CP, it must have one of these values. The magnitude of the pivots appearing
after the application of GE (Gaussian elimination) operations on a CP matrix W is
given by

pj = W (j)/W (j − 1), j = 1, 2, . . . , n, W (0) = 1.(1.4)

In particular, for a CP SBIBD(v, k, λ), A,

pv = A(v)/A(v − 1), pv−1 = A(v − 1)/A(v − 2).(1.5)

We use the notation Mj to denote the j × j minor of A.
For completeness we give the determinant simplification theorem in the appendix

as we use it extensively in this paper.

2. D-optimal designs of order 2v ≡ 2(mod 4) from SBIBDs. Let dn de-
note the maximum determinant of all n × n matrices with elements ±1. It follows
from Hadamard’s inequality that dn ≤ n

n
2 and it is easily shown that equality can

only hold if n = 1 or 2 or if n ≡ 0 (mod 4). We shall here be concerned with the case
n ≡ 2 (mod 4), n �= 2. Ehlich [6] showed that

dn ≤ (2n− 2)(n− 2)
n
2−1
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and equality can hold only if 2n− 2 = x2 + y2, where x and y are integers.
Recently two infinite series of n × n (n ≡ 2(mod 4)) matrices with elements ±1

and maximum determinant were discovered. The first series (Koukouvinos–Kounias–
Seberry or KKS) [10], exists for n = 2(q2 + q + 1) where q is a prime power. The
second series (Whiteman–Brouwer or WB) [18], exists for n = 2(2q2 + 2q + 1) where
q is an odd prime power.

For the purpose of this paper we will define two sds 2 − {v; k1, k2;λ} to be two
circulant (or type 1) v×v matrices B1 and B2, with entries 0 or 1, which have exactly
ki entries +1 and v − ki entries 0, i = 1, 2, respectively, in each row and column and
for which the inner product of any pair of rows is λ. The (1,−1) incidence matrices
of Bi, are obtained by letting Ai = 2Bi − J, i = 1, 2.

The family of SBIBD(2s2+2s+1, s2, 12s(s−1)), for s is an odd prime power, has
been found by Brouwer [3]. For s = 2, the SBIBD(13, 4, 1) comes from the projective
plane. The case for s = 4, the SBIBD(41, 16, 6) is given by Bridges, Hall, and Hayden
[2] and independently by van Trung [16]. The case for s = 6, the SBIBD(85, 36, 15) is
given as unknown by van Trung [17, p. 84] and Beth, Jungnickel, and Lenz [1, p. 625].
However, for s = 6, Gysin [8] gives the first 2−{85; 36, 36; 30} sds. For s = 8, Djokovic
[5] gives the first 2−{145; 64, 64; 56} sds. Georgiou and Koukouvinos [7] give further
results for s = 6 and s = 8. Examples of 2 − {25; 9, 9; 6} sds, 2 − {41; 16, 16; 12}
sds, 2 − {61; 25, 25; 20} sds, 2 − {113; 49, 49; 42} sds, and 2 − {181; 81, 81; 72} sds
corresponding to the cases s = 3, 4, 5, 7, 9, respectively, are given in [13]. In addition,
for s = 3, i.e., 2− {25; 9, 9; 6}, there is a type 1 solution in the group Z5 × Z5.

These 2−{2s2+2s+1; s2, s2; s(s−1)} sds have (1,−1) incidence matrices which
satisfy

A1A
T
1 +A2A

T
2 = (4s2 + 4s)I + 2J.

Let R and S be permutation matrices of order v. Then A given by

[
P P

RPS −RPS
]

or

[
A1 A2

AT
2 −AT

1

]

are D-optimal designs of order 2v ≡ 2(mod4) of the WB family. We can say the WB
family is constructed from 2 − {2s2 + 2s + 1; s2, s2; s(s − 1)} sds. Note A1 = A2 for
the WB family.

We can write

AAT = (2v − 2)I2v + 2I2 × Jv.

It is easy to use the determinant simplification theorem to see that

det A = 2v(2v − 1)(v − 1)v−1.

Since A has been constructed using the 2− {2s2 + 2s+ 1; s2, s2; s(s− 1)} sds,

det A = M2v = 2(2s+1)
2

(2s+ 1)2(s(s+ 1))2s(s+1).(2.1)

2.1. Minors of size (2v − 1). To find the (2v−1)× (2v−1) minors we remove
the first row and column of A to get B. We denote by ∆(h, i, j, k,m) the following
matrix of order 2v.
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∆(h, i, j, k,m) =


h︷ ︸︸ ︷
m 1 · · · 1

i︷ ︸︸ ︷
3 3 · · · 3

j︷ ︸︸ ︷
− − · · · −

k︷ ︸︸ ︷
1 1 · · · 1

1 m · · · 1 3 3 · · · 3 − − · · · − 1 1 · · · 1
...

...
...

...
...

...
...

...
...

...
...

...
1 1 · · · m 3 3 · · · 3 − − · · · − 1 1 · · · 1

3 3 · · · 3 m 1 · · · 1 1 1 · · · 1 − − · · · −
3 3 · · · 3 1 m · · · 1 1 1 · · · 1 − − · · · −
...

...
...

...
...

...
...

...
...

...
...

...
3 3 · · · 3 1 1 · · · m 1 1 · · · 1 − − · · · −

− − · · · − 1 1 · · · 1 m 1 · · · 1 3 3 · · · 3
− − · · · − 1 1 · · · 1 1 m · · · 1 3 3 · · · 3
...

...
...

...
...

...
...

...
...

...
...

...
− − · · · − 1 1 · · · 1 1 1 · · · m 3 3 · · · 3

1 1 · · · 1 − − · · · − 3 3 · · · 3 m 1 · · · 1
1 1 · · · 1 − − · · · − 3 3 · · · 3 1 m · · · 1
...

...
...

...
...

...
...

...
...

...
...

...
1 1 · · · 1 − − · · · − 3 3 · · · 3 1 1 · · · m




.

m = 2v = h+ i+ j + k. Then by the determinant simplification theorem

det∆(h, i, j, k,m) = (m− 1)m−4

m− 1 + h 3h −h h
3i m− 1 + i i −i
−j j m− 1 + j 3j
k −k 3k m− 1 + k

and det ∆(h, i, j, k,m) = (m − 1)(m−4)[(m − 1)4 + (m − 1)3(i + j + h + k) − 8(m −
1)2(jk + ih)− 16(m− 1)(jk(i+ h) + ih(j + k))].

Now det BBT is obtained from ∆(h, i, j, k,m) by removing a row and the corre-
sponding column. Thus det BBT is det ∆(h−1, i, j, k,m−1) or det ∆(h, i−1, j, k,m−
1) or det ∆(h, i, j − 1, k,m− 1) or det ∆(h, i, j, k − 1,m− 1).

Lemma 2.1. The (2v− 1)× (2v− 1) minors of the D-optimal designs of the WB
series are

M2v−1 = 24s(s+1) (2s+1) s2s
2+2s−1 (s+1)2s

2+2s, 24s(s+1) (2s+1) s2s
2+2s (s+1)2s

2+2s−1,

where s is an odd prime power, s = 2, 4, 6, or 8.
Proof. Here we use the (1,−1) incidence matrices of the 2−{2s2+2s+1; s2, s2; s(s−

1)} sds. By the reasoning above, with v = 2s2+2s+1, h = j = s2, i = k = s2+2s+1,
m = 4s2+4s+2, substituted into det ∆(h−1, i, j, k,m−1) = det ∆(h, i, j−1, k,m−1),
we obtain the result.

Specifically, the determinant is the square root of the determinant given by

(4s2 + 4s)4s
2+4s−3

5s2 + 4s− 1 3s2 − 3 −s2 + 1 s2 − 1
3s2 + 6s+ 3 5s2 + 6s+ 1 s2 + 2s+ 1 −s2 − 2s− 1
−s2 s2 5s2 + 4s 3s2

s2 + 2s+ 1 −s2 − 2s− 1 3s2 + 6s+ 3 5s2 + 6s+ 1

= 22(4s
2+4s)(s2+s)4s

2+4s−2(s+1)2(2s+1)2 =
[
24s

2+4ss2s
2+2s−1(s+ 1)2s

2+2s(2s+ 1)
]2
,
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det∆(h, i− 1, j, k,m− 1) = det∆(h, i, j, k − 1,m− 1)

=
[
24s

2+4ss2s
2+2s(s+ 1)2s

2+2s−1(2s+ 1)
]2

which gives the second result.

2.2. Minors of size (2v − 2). As the partitioned matrix A of the D-optimal
design is composed from 2-{v; k1, k2;λ} sds, these are in fact 2-{2s2+2s+1; s2, s2; s2−
s} sds. We will use k = k1 = k2 for all our calculations. Using the formula for the
inner product of the rows of the (1,−1) incidence matrix formed from these sds we
see that the inner product is 2v − 4(k1 + k2 − λ) = 2.

We now return to A with two rows and columns removed to find the generic
matrix. We have not included this in expanded form except for one case but moved
straight to the determinant after it has been simplified using the determinant simpli-
fication theorem of the matrix D given by




2v − 2 2u2 2u3 4u4 −2u5 0 0 2u8
2u1 2v − 2 4u3 2u4 0 −2u6 2u7 0
2u1 4u2 2v − 2 2u4 0 2u6 −2u7 0
4u1 2u2 2u3 2v − 2 2u5 0 0 −2u8
−2u1 0 0 2u4 2v − 2 2u6 2u7 4u8
0 −2u2 2u3 0 2u5 2v − 2 4u7 2u8
0 2u2 −2u3 0 2u5 4u6 2v − 2 2u8
2u1 0 0 −2u4 4u5 2u6 2u7 2v − 2



.

This gives the determinant of A with two rows and columns removed, as (4s2 +

4s)2s
2+2s−4

√
detD.

To calculate the minors of size (2v − 2) we distinguish two major cases: Case
I, where the two rows removed to form the minor came from the same part of the
D-optimal design that is they have inner product 2; Case II, where the two rows
removed to form the minor came from different parts of the D-optimal design, that
is, they have inner product zero. This leads to the following four subcases.
Case Ia. [

x y
x ȳ

], where the (1,1) and (2,1) elements have the same sign, the (1,2)

element and the (2,2) element have opposite signs, and the inner product of
row one and two with each other is 2. The inner product of the first two rows
with the next (v − i) rows is +i and the inner product of row one and two
with the v + 3− i to 2vth rows is 2− i, where i = 2 or 0.

Case Ib. [
x y
x ȳ

], where the (1,1) and (2,1) elements have the same sign, the (1,2)

element and the (2,2) element have opposite signs, and the inner product of
rows one and two with each other is +2. The inner product of rows one and
two with next v − i rows is +i and the inner product of the first two rows
with rows v + 3− i to 2v is 2− i, where i = 2 or 0.

Case IIa. [
x y
x ȳ

], where the (1,1) element and the (2,1) element have the same signs,

the (1,2) element and the (2,2) element have different signs, and the inner
product of rows one and two with each other is zero. Rows 3 to v + 1 have
inner product +2 with row one and zero with row two. Rows v+2 to 2v have
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inner product zero with row one and +2 with row two.

Case IIb. [
x y
x y

], where the (1,1) element and the (2,1) element have the same signs,

the (1,2) element and the (2,2) element also have the same sign, and the inner
product of row one and two with each other is zero. Rows 3 to v + 1 have
inner product +2 with row one and zero with row two. Rows v+2 to 2v have
inner product zero with row one and +2 with row two.
A careful study of cases leads to only the cases now listed as Case III not
being permutation equivalent to one of Cases I and II.

Case III. [
x y
x ȳ

], where one of the columns in the submatrix has two identical elements

and the other has two different elements. The inner product of rows one and
two with each other is zero. Each of row one and row two have inner product
i with v − 1 other rows and 2− i with the remainder of the rows, i = 2 or 0.

Case Ia. We have the possible 2× 2 submatrices:

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)
1 y
1 ȳ

− y
− ȳ

y 1
ȳ 1

y −
ȳ −

1 ȳ
1 y

− ȳ
1 y

ȳ 1
y 1

ȳ −
y −.

Since permutation of columns 1 and 2 has no effect on M2v−2, Cases (i) and (iii),
(v) and (vii), (ii) and (iv), and (vi) and (viii) give the same values. Cases (i) and (v)
give the same values depending on whether y = 1 or −1. This leaves the following
submatrices for Case Ia:

(i) (ii) (vi)
1 y
1 ȳ

− y
− ȳ

− ȳ
1 y

.

However, in Cases I rows 1 and 2 may be permuted without altering the value of
M2v−2, so, without loss of generality we may consider y = 1. Also, without loss of
generality, we may permute rows three to 2v of the matrix so rows three to v have
inner product +2 with rows one and two. The inner product of rows one and two
with the next v − 2 rows is 2, and the inner product of rows 1 and 2 with rows v + 1
to 2v is zero. This yields the following cases for Case Ia.

Table 1

2 × 2 Number of rows of each type Ia
submatrix u1 u2 u3 u4 u5 u6 u7 u8

1 1
1 − λ− 1 k − λ− 1 k − λ v − 2k + λ λ k − λ k − λ v − 2k + λ

− 1
− − λ k − λ k − λ− 1 v − 2k + λ− 1 λ k − λ k − λ v − 2k + λ

− −
1 1

λ k − λ− 1 k − λ− 1 v − 2k + λ λ k − λ k − λ v − 2k + λ

To illustrate the derivation of the tables such as Table 1 we give Case Ia as an
example.
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1 y − y Inner product
1 ȳ − ȳ of rows is 2
1 1 1 1
...

... λ− 1
...

... λ
1 1 1 1
1 − 1 − v − 2 rows
...

... k − λ− 1
...

... k − λ which have
1 − 1 − inner
− 1 − 1 product 2
...

... k − λ
...

... k − λ− 1 with rows
− 1 − 1 one and two
− − − −
...

... v − 2k + λ
...

... v − 2k + λ− 1
− − − −
1 1 1 1
...

... λ
...

... λ
1 1 1 1
1 − 1 − v rows
...

... k − λ
...

... k − λ which have
1 − 1 − inner
− 1 − 1 product 0
...

... k − λ
...

... k − λ with rows
− 1 − 1 one and two
− − − −
...

... v − 2k + λ
...

... v − 2k + λ
− − − −

.

Case Ib. A similar argument to that for Case Ia shows that using the permutations
of columns 1 and 2 we have only to consider the submatrices

(i) (ii)
1 y
1 y

− y
− y

for y = 1 and y = −1. These give the results for Table 2. We make the inner product
with rows three to v with the first two rows equal +2 and the product of rows v + 1
to 2v with the first two rows equal 0.

These reduce to three cases to test as the cases for

− 1
− 1

and
1 −
1 −

give permutations only of the terms to be evaluated.
Case IIa. A similar argument to that for Case Ia shows that using the permuta-

tions of columns one and two we have only to consider the submatrices
(i) (ii)
1 y
1 ȳ

− y
− ȳ

for y = 1 and y = −1. These give the results for Table 3.
These reduce to three cases to test as the cases for

− 1
− − and

1 −
1 1
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Table 2

2× 2 Number of rows of each type Ib
subsquare u1 u2 u3 u4 u5 u6 u7 u8
1 1
1 1

λ − 2 k − λ k − λ v − 2k + λ λ k − λ k − λ v − 2k + λ

− 1
− 1

λ k − λ − 2 k − λ v − 2k + λ λ k − λ k − λ v − 2k + λ

1 −
1 − λ k − λ k − λ − 2 v − 2k + λ λ k − λ k − λ v − 2k + λ

− −
− − λ k − λ k − λ v − 2k + λ − 2 λ k − λ k − λ v − 2k + λ

Table 3

2 × 2 Number of rows of each type IIa
subsquare u1 u2 u3 u4 u5 u6 u7 u8
1 1
1 − λ − 1 k − λ k − λ v − 2k + λ λ k − λ − 1 k − λ v − 2k + λ

− 1
− − λ k − λ k − λ − 1 v − 2k + λ λ k − λ k − λ v − 2k + λ − 1

1 −
1 1

λ k − λ − 1 k − λ v − 2k + λ λ − 1 k − λ k − λ v − 2k + λ

− −
− 1

λ k − λ k − λ v − 2k + λ − 1 λ k − λ k − λ − 1 v − 2k + λ

give permutations only of the terms to be evaluated.

Case IIb. A similar argument to that for Case Ia shows that using the permuta-
tions of columns 1 and 2 we have only to consider the submatrices

(i) (ii)
1 y
1 y

− y
− y

for y = 1 and y = −1. These give the results for Table 4.
These reduce to three cases to test as the cases for

− 1
− 1

and
1 −
1 −

give permutations, only of the terms to be evaluated.

Case III. We have the following 2× 2 submatrices:

(i) (ii)
x y
x ȳ

y x
ȳ x.

One column removed comes from the columns with 2k ones per column and the
other from the columns with v ones per column in the original design. This means
the generic form of these two columns is the following.
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Table 4

2 × 2 Number of rows of each type IIb
subsquare u1 u2 u3 u4 u5 u6 u7 u8
1 1
1 1

λ − 1 k − λ k − λ v − 2k + λ λ − 1 k − λ k − λ v − 2k + λ

− 1
− 1

λ k − λ k − λ − 1 v − 2k + λ λ k − λ k − λ − 1 v − 2k + λ

1 −
1 − λ k − λ − 1 k − λ v − 2k + λ λ k − λ − 1 k − λ v − 2k + λ

− −
− − λ k − λ k − λ v − 2k + λ − 1 λ k − λ k − λ v − 2k + λ − 1

1 1

1
... ρ

1 1
1 k −
...

... k − ρ
1 −
− 1
...

... k − ρ
− v − k 1
− −
...

... v − 2k + ρ
− −
1 1

1
... k − ρ

1 1
1 v − k −
...

... v − 2k + ρ
1 −
− 1
...

... ρ
− k 1
− −
...

... k − ρ
− −

Note they have inner product zero. Also note 0 ≤ ρ ≤ k. We have not proceeded
to eliminate cases for ρ except where ρ− 1 < 0. Table 5 lists the possible cases that
arise. In the case of

1 −
1 1

and
− −
− 1

the ui, i = 1, . . . , 8 were permutations of each other. This also occurred for

1 1
1 − and

− −
− 1

and for
− 1
1 1

and
1 −
− − .

Thus we have five theoretical values for Case III. Another two cases can arise by
removing a pair of orthogonal rows and columns from the original design.

Lemma 2.2. The (2v − 2)× (2v − 2) minors of the D-optimal design of the WB
series are
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Table 5

2× 2 Number of rows of each type III
subsquare u1 u2 u3 u4 u5 u6 u7 u8
1 1
1 − ρ − 1 k − ρ k − ρ v − 2k + ρ k − ρ v − 2k + ρ − 1 ρ k − ρ

1 −
1 1

ρ k − ρ − 1 k − ρ v − 2k + ρ k − ρ − 1 v − 2k + ρ ρ k − ρ

1 1
− 1

ρ − 1 k − ρ k − ρ v − 2k + ρ k − ρ v − 2k + ρ ρ − 1 k − ρ

− 1
1 1

ρ k − ρ k − ρ − 1 v − 2k + ρ k − ρ − 1 v − 2k + ρ ρ k − ρ

− −
1 − ρ k − ρ k − ρ v − 2k + ρ − 1 k − ρ v − 2k + ρ − 1 ρ k − ρ

0̂, (2s+1)(s+ 1)sT , (2s+ 1)s2T , 2s2(s+ 1)T , s(2s2 + 2s+ 1)T , 2s(s+ 1)2T ,
2s3T , s(2s+ 1)T , s(s+ 1)T , s2T ,

where s is an odd prime power, s = 2, 4, 6, or 8 and T = 24s
2+4s−1s2s

2+2s−3(s +

1)2s
2+2s−2.
Proof. Here λ = 1

2s(s − 1), k = s2, and v = 2s2 + 2s + 1. The expressions
for ui, i = 1, . . . , 8, were calculated in each case. Maple was then used to evaluate the
determinant for D giving the required result. Ia and IIa give the values 27s2(2s +
1)(s+ 1)3, 27s3(2s+ 1)(s+ 1)2, and 27s2(2s+ 1)(s+ 1)2.

Cases Ib and IIb give the value zero for the determinant.
Case III give the values 27s3(s + 1)3, 27(2s2 + 2s + 1)(s + 1)2s2, 28s2(s + 1)4,

28s4(s+ 1)2, 27s2(s+ 1)3, and 27s3(s+ 1)2.

Multiplying by (4s2 + 4s)2s
2+2s−4 gives the required result.

3. Pivot structure for WB family of D-optimal designs.
Conjecture (the growth conjecture for WB family). Let A be an 2v × 2v CP D-

optimal design of WB family which is constructed from 2−{2s2+2s+1; s2, s2; s(s−1))
sds. Reduce A by GE. Then we conjecture

(i) g(v,A) = 2s(2s+ 1), or 2(s+ 1)(2s+ 1);
(ii) the last pivot is equal to 2s(2s+ 1) or 2(s+ 1)(2s+ 1);
(iii) the second last pivot can take the values 2s(s+1) = 2v−1

2 , 2s2, 2(s+1)2, (s+

1)(2s+1), (2s+1)2s(s+1)
2

(2s2+2s+1) , s(2s+1), (s+1)
2(2s+1)
s , (s)

2(2s+1)
(s+1) , and (2s+1)2s2(s+1)

(2s2+2s+1) ;

(iv) every pivot before the last has magnitude at most 2v;
(v) the first four pivots are equal to 1, 2, 2, 4;
(vi) the fifth pivot may be 2 or 3.
We prove (ii) and (iii) in this paper. (v) and (vi) were proved for Brouwer’s

SBIBD (2s2 + 2s + 1, s2, 12s(s − 1)) in [11] and we also show they hold for the WB
family.

Theorem 3.1. Let A be the 2v× 2v D-optimal design of the WB family. Reduce
A by GECP. Then the last pivots are 2s(2s + 1) and 2(s + 1)(2s + 1). The second

last pivots are 2s(s + 1), 2s2, 2(s + 1)2, (s + 1)(2s + 1), (2s+1)2s(s+1)2

(2s2+2s+1) , s(2s + 1),
(s+1)2(2s+1)

s , (s)2(2s+1)
(s+1) , and (2s+1)2s2(s+1)

(2s2+2s+1) .

Proof. From (1.4) and Lemmas 2.1 and 2.2 we have for the D-optimal design
made using 2−{2s2+2s+1; s2, s2; s(s−1)} sds, the results in Table 6, where the first
row gives the values of M2v−1, the first column gives the values of M2v−2 appearing

in GECP and the entries are p2v = M2v

M2v−1
, p2v−1 =

M2v−1

M2v−2
.
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Table 6

M2v−1 2s2(s + 1)2(2s + 1)T 2s3(s + 1)(2s + 1)T
M2v−2

(2s + 1)(s + 1)T 2s(s + 1)∗ 2s2

(2s + 1)s2T 2(s + 1)2 2s(s + 1)
2s2(s + 1)T (s + 1)(2s + 1) s(2s + 1)

s(2s2 + 2s + 1)T 2s(s+1)2(2s+1)

(2s2+2s+1)

∗
2s2(s+1)(2s+1)

(2s2+2s+1)

2s(s + 1)2T s(2s + 1)∗ s2(2s+1)
(s+1)

2s3T (s+1)2(2s+1)
s

(s + 1)(2s + 1)

Table 7

2v s p2v p2v−1

2s(2s + 1) 2(s + 1)(2s + 1) 2s(s + 1) 2(s + 1)2 2s2 (s + 1)(2s + 1)
26 2 20 30 12 18 8 15
50 3 42 56 24 32 18 28
82 4 72 90 40 50 32 45

Table 7 (continued)

2v s p2v−1

s(2s + 1)
2s(s+1)2(2s+1)

(2s2+2s+1)

2s2(s+1)(2s+1)

(2s2+2s+1)

s2(2s+1)
(s+1)

(s+1)2(2s+1)
s

26 2 10 180
13

120
13

20
3

45
2

50 3 21 672
25

704
25

63
4

112
3

82 4 36 1800
41

1440
41

144
5

225
4

The entries marked ∗ are these obtained in experiments.

In Table 7 we give some values for the family WB.

Remark. We experimented with 2v = 26. The theoretical values for M2v−1 are
235 ·5·312 and 236 ·5·311 . In our calculations we found always p2v = 20 and p2v−1 = 12
or 10 or 180

13 . This leaves as an open problem the existence of a 26× 26 matrix having
growth equal to 30.

The next result is easy to prove using a counting argument and noting the inner
product of every pair of rows is +1 to see that the design always contains a 4 × 4
Hadamard matrix.

Proposition 3.2. Let A be the 2v × 2v (1,−1) incidence matrix of an SBIBD
of the WB family. Reduce A by GECP, then the magnitudes of the first four pivots

are 1, 2, 2, and 4; the magnitude of |a(4)55 | is 2 or 3.
Proof. Since the design always contains a 4 × 4 Hadamard matrix, this can be

moved to be the 4 × 4 principal minor without changing the CP property. Thus the
first four pivots will be 1, 2, 2, and 4 [4]. Because every entry in A(3) is of magnitude

0, 2, or 4, pivoting on a
(3)
44 will involve only adding ±1 or ±1/2 times the fourth row

of A(3) to the rows below and this will create only integer entries in A(4). It is known

(see Payne [14]) that if v ≡ 1(mod)4, v �= 1, dv ≤ (v− 1)
v−1
2

√
2v − 1, and equality

can hold only if v = 2s2 + 2s + 1, s = 1, 2, 3, . . .. Thus |a(4)55 | must be an integer
satisfying the relation

A(1 2 3 4 5) = 16|a(4)55 | ≤ 44/2
√
10− 1⇒ |a(4)55 | ≤ 3,
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Table 8
Growth factors and pivots patterns for small CP WB designs.

s 2v growth pivot pattern
2 26 20 (1, 2, 2, 4, 3, 103 ,

18
5 , 4,

18
4 , . . . , 12, 20)

2 26 20 (1, 2, 2, 4, 3, 103 ,
18
5 , 4,

44
9 , . . . , ,

180
13 , 20)

2 26 20 (1, 2, 2, 4, 3, 103 ,
18
5 , 4, 4, . . . , 10, 20)

3 50 42 (1, 2, 2, 4, 3, 103 ,
18
5 , 4, 5, . . . , 24, 42)

3 50 42 (1, 2, 2, 4, 3, 103 ,
18
5 , 4, 4, . . . , 21, 42)

4 82 72 (1, 2, 2, 4, 3, 103 ,
18
5 , 4, 4, . . . , 40, 72)

5 122 110 (1, 2, 2, 4, 3, 103 ,
18
5 , 4, 4, . . . , 60, 110)

where A(1 2 3 4 5) denotes the determinant of the 5×5 principal submatrix of A. Thus

|a(4)55 | must be 1, 2, or 3. To see that it cannot be 1 is to show that one could not have

A(4)




1
2

2
4

B


 ,

where every entry of B is zero or ±1, for, if that were true, then B would be a
normalized (v − 4)× (v − 4) matrix, and so

|detB| ≤ (v − 4)
v−4
2 .

But |detB| = (v−1)
v−1
2

√
2v−1

16 and it is easily checked that these cannot both hold
when v > 4.

By detecting the pivot structure of WB, Table 8 was computed. The first nine
pivots and the last two are presented. All the other intermediate pivots take a variety
of values. At least 837 different pivot structures were detected for 2v = 26 and 500
for 2v = 50.

4. Appendix: The determinant simplification theorem. We use the no-
tation

CCT = (k − aii)Ib1,b2,...,bz + aijJb1,b2,...,bz

for a matrix of blocks with integer multiples. For example, consider the matrix

CCT = (k − aii)Iu,v,w,x + aijJu,v,w,x,(4.1)

where

(aij) =




a b c d
b a e f
c e a g
d f g a




is the (u+ v + w + x)× (u+ v + w + x) matrix
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CCT =




u︷ ︸︸ ︷
k a · · · a

v︷ ︸︸ ︷
b b · · · b

w︷ ︸︸ ︷
c c · · · c

x︷ ︸︸ ︷
d d · · · d

a k · · · a b b · · · b c c · · · c d d · · · d
...
...

...
...
...

...
...
...

...
...
...

...
a a · · · k b b · · · b c c · · · c d d · · · d

b b · · · b k a · · · a e e · · · e f f · · · f
b b · · · b a k · · · a e e · · · e f f · · · f
...
...

...
...
...

...
...
...

...
...
...

...
b b · · · b a a · · · k e e · · · e f f · · · f

c c · · · c e e · · · e k a · · · a g g · · · g
c c · · · c e e · · · e a k · · · a g g · · · g
...
...

...
...
...

...
...
...

...
...
...

...
c c · · · c e e · · · e a a · · · k g g · · · g

d d · · · d f f · · · f g g · · · g k a · · · a
d d · · · d f f · · · f g g · · · g a k · · · a

...
...

...
...
...

...
...
...

...
...
...

...
d d · · · d f f · · · f g g · · · g a a · · · k




.

We now give a theorem proved similarly to the proof for finding the determinant
of an SBIBD in [15, Thm. 3, p. 32].

Theorem 4.1 (determinant simplification theorem). Let

CCT = (k − aii)Ib1,b2,...,bz + aijJb1,b2,...,bz ,

then

det CCT = Πz
i=1(k − aii)

bi−1det D,(4.2)

where

D =




k + (b1 − 1)a11 b2a12 b3a13 · · · bza1z
b1a21 k + (b2 − 1)a22 b3a23 · · · bza2z
...

...
...

...
b1az1 b2az2 b3az2 · · · k + (bz − 1)azz


 .

Corollary 4.2. Suppose C is the matrix of order (u + v + w + x) × (u +
v + w + x), where n = u + v + w + x, for which CCT is given above, satisfying
CCT = (k − aii)Iu,v,w,x + aijJu,v,w,x. Then

det CCT = (k − a)n−4det D,

where

D =




k + (u− 1)a vb wc xd
ub k + (v − 1)a we xf
uc ve k + (w − 1)a xg
ud vf wg k + (x− 1)a


 .(4.3)
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A FULLY ASYNCHRONOUS MULTIFRONTAL SOLVER USING
DISTRIBUTED DYNAMIC SCHEDULING∗
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Abstract. In this paper, we analyze the main features and discuss the tuning of the algorithms
for the direct solution of sparse linear systems on distributed memory computers developed in the
context of a long term European research project. The algorithms use a multifrontal approach
and are especially designed to cover a large class of problems. The problems can be symmetric
positive definite, general symmetric, or unsymmetric matrices, both possibly rank deficient, and
they can be provided by the user in several formats. The algorithms achieve high performance by
exploiting parallelism coming from the sparsity in the problem and that available for dense matrices.
The algorithms use a dynamic distributed task scheduling technique to accommodate numerical
pivoting and to allow the migration of computational tasks to lightly loaded processors. Large
computational tasks are divided into subtasks to enhance parallelism. Asynchronous communication
is used throughout the solution process to efficiently overlap communication with computation.

We illustrate our design choices by experimental results obtained on an SGI Origin 2000 and an
IBM SP2 for test matrices provided by industrial partners in the PARASOL project.

Key words. sparse linear equations, Gaussian elimination, multifrontal methods, asynchronous
parallelism, distributed memory computation, dynamic scheduling

AMS subject classifications. 65F05, 65F50

PII. S0895479899358194

1. Introduction. We consider the direct solution of large sparse linear systems
on distributed memory computers. The systems are of the form Ax = b, where A
is an n × n symmetric positive definite, general symmetric, or unsymmetric sparse
matrix that is possibly rank deficient, b is the right-hand side vector, and x is the
solution vector to be computed.

Most of the work presented in this article was performed as part of Work Pack-
age 2.1 within the PARASOL project [6]. PARASOL was an ESPRIT IV Long Term
Research project (no. 20160) for “An Integrated Environment for Parallel Sparse
Matrix Solvers.” The main goal of this project, which started in January 1996 and
finished in June 1999, was to build and test a portable library for solving large sparse
systems of equations on distributed memory systems. The library is now in the public
domain (www.pallas.de/parasol) and contains routines for both direct and iterative
solutions of symmetric positive definite, symmetric general, and unsymmetric systems.

The direct solver that we produced for the PARASOL project is a MUltifrontal
Massively Parallel Solver for which we use the acronym MUMPS. We continue to develop
MUMPS and updated versions of the code are available.1 Several aspects of the algo-

∗Received by the editors July 7, 1999; accepted for publication (in revised form) by E. Ng Novem-
ber 19, 2000; published electronically April 18, 2001. This work was partially supported by the
PARASOL Project (EU ESPRIT IV LTR Project 20160).
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†ENSEEIHT-IRIT, 2 rue Camichel, 31071 Toulouse cedex, France (amestoy@enseeiht.fr).
‡Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX England, and CERFACS,

Toulouse, France (I.Duff@rl.ac.uk).
§NAG Ltd., Wilkinson House, Jordan Hill Road, Oxford, OX2 8DR England (excelle@

enseeiht.fr).
¶Parallab, University of Bergen, 5020 Bergen, Norway (jak@ii.uib.no).
1Information on how to obtain updated copies of MUMPS can be obtained from the web page

http://www.enseeiht.fr/apo/MUMPS/ or by sending email to mumps@cerfacs.fr.
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rithms used in MUMPS combine to give us an approach which is unique among sparse
direct solvers. These include

• partial threshold pivoting during numerical factorization requiring the use of
dynamic data structures,
• the ability to automatically adapt to computer load variations during the
numerical phase,
• high performance, by exploiting the independence of computations due to
sparsity and that available for dense matrices, and
• the capability of solving a wide range of problems, including symmetric pos-
itive definite, symmetric general, unsymmetric, and rank-deficient systems
using either LU or LDLT factorization.

To address all these factors, we have designed a fully asynchronous algorithm based
on a multifrontal approach with distributed dynamic scheduling of tasks. The current
version of our package provides a large range of options, including the possibility of
inputting the matrix in assembled format either on a single processor or distributed
over the processors. Additionally, the matrix can be input in elemental format (cur-
rently only on one processor). MUMPS can also determine the rank and a null-space
basis for rank-deficient matrices, and can return a Schur complement matrix. It con-
tains classical pre- and postprocessing facilities; for example, matrix scaling, iterative
refinement, and error analysis.

To control the growth in the factors, partial threshold pivoting has been used to
handle both unsymmetric and general symmetric matrices. To preserve the symmetry
of general symmetric matrices, pivoting is restricted to the diagonal in that case. For
symmetric positive definite matrices, there is no need for numerical pivoting and a
quite different approach based on a static mapping of the tasks and the data could have
been used for the factorization phase (see, for example, [8, 28, 29, 30]). We have not
chosen this option in our algorithms. Instead, we use the same (dynamic) approach for
all classes of matrices. When the user indicates that the matrix is symmetric positive
definite, the main differences with respect to the general symmetric case lie in the
numerical pivoting and the (parallel) dense matrix kernels that are involved. These
differences will be further discussed in sections 4.3 and 4.5, once the main features of
our parallel algorithms have been introduced.

Among the other work on distributed memory sparse direct solvers of which we
are aware [8, 11, 15, 16, 26, 28, 29, 30, 32, 36, 37, 40], we do not know of any with the
same capabilities as the MUMPS solver. To our knowledge, only SPOOLES2 [9] handles
numerical pivoting and offers comparable functionalities in a distributed memory en-
vironment. Because of the difficulty of handling dynamic data structures efficiently,
most distributed memory approaches do not perform numerical pivoting during the
factorization phase. Instead, they are based on a static mapping of the tasks and data
and do not allow task migration during numerical factorization. Numerical pivoting
can clearly be avoided for symmetric positive definite matrices. For unsymmetric
matrices, Duff and Koster [22, 23] have designed algorithms to permute large entries
onto the diagonal and have shown that this can significantly reduce numerical piv-
oting. Demmel and Li [16] have shown that, if one preprocesses the matrix using
the code of Duff and Koster, static pivoting (with possibly modified diagonal values)
followed by iterative refinement can normally provide reasonably accurate solutions.

2Developed by the Mathematics and Engineering Analysis Unit of Boeing Phantom Works and
supported by DARPA contract DABT63-95-C-0122 and the DoD High Performance Computing
Modernization Program Common HPC Software Support Initiative.
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They have observed that this preprocessing, in combination with an appropriate scal-
ing of the input matrix, is a key issue for the numerical stability of their approach.

The rest of this paper is organized as follows. We first introduce some of the main
terms used in a multifrontal approach in section 2. Throughout this paper, we study
the performance obtained on the set of test problems that we describe in section 3.
We discuss, in section 4, the main parallel features of our approach. In section 5, we
give initial performance figures and show the influence of the ordering of the variables
on the performance of MUMPS. In section 6, we describe our work on the input of
matrices in elemental form. Section 7 then briefly describes the main properties of
the algorithms used for distributed assembled matrices. In section 8, we comment
on memory scalability issues. In section 9, we describe and analyze the distributed
dynamic scheduling strategies that will be further analyzed in section 10 where we
examine how we can modify the assembly tree to introduce more parallelism. We
present a summary of our results in section 11.

The majority of the results presented in this paper have been obtained on the
35 processor IBM SP2 located at GMD (National Research Center for Information
Technology in Bonn, Germany). Each node of this computer is a 66 MHertz proces-
sor with 128 MBytes of physical memory and 512 MBytes of virtual memory. The
SGI Origin 2000 from Parallab (University of Bergen, Norway) has also been used to
run some of our largest test problems. The Parallab computer consists of 64 nodes
sharing 24 GBytes of physically distributed memory. Each node has two R10000 MIPS
RISC 64-bit processors sharing 384 MBytes of local memory. Each processor runs at
a frequency of 195 MHertz and has a peak performance of a little under 400 Mflops
per second.

All experiments reported in this paper use Version 4 of MUMPS. The software is
written in Fortran 90. It requires MPI for message passing and makes use of BLAS
[18, 19], LAPACK [7], BLACS [17], and ScaLAPACK [10] subroutines. On the IBM
SP2, we used a nonoptimized portable local installation of ScaLAPACK, because the
IBM optimized library PESSL V2 was not available.

2. Multifrontal methods. It is not our intention to describe the details of a
multifrontal method. Rather, we just define terms used later in the paper and refer the
reader to earlier publications for a more detailed description, for example, [3, 20, 24].

In the multifrontal method, all elimination operations take place within dense
submatrices, called frontal matrices. A frontal matrix can be partitioned as shown in
Figure 2.1. In this matrix, pivots can be chosen from within the block F11 only. The
Schur complement matrix F22 − F21F

−1
11 F12 is computed and used to update later

rows and columns of the overall matrix. We call this update matrix the contribution
block.

fully summed rows ✲

partly summed rows ✲

fully summed columns

❄

partly summed columns

❄[
F11 F12

F21 F22

]

Fig. 2.1. Partitioning of a frontal matrix.

The overall factorization of the sparse matrix using a multifrontal scheme can
be described by an assembly tree, where each node corresponds to the computation
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of a Schur complement as just described, and each edge represents the transfer of
the contribution block from the son node to the parent node (or father) in the tree.
This parent node assembles (or sums) the contribution blocks from all its son nodes
with entries from the original matrix. If the original matrix is given in assembled
format, complete rows and columns of the input matrix are assembled at once, and,
to facilitate this, the input matrix is ordered according to the pivot order and stored
as a collection of arrowheads. For example, if the permuted matrix has entries in
columns {j1, j2, j3} of row i, i < j1, j2, j3, and in rows {k1, k2} of column i, i < k1, k2,
then the arrowhead list associated with variable i is {aii, aij1 , aij2 , aij3 , ak1i, ak2i}. In
the symmetric case, only entries from the lower triangular part of the matrix are
stored. We say that we are storing the matrix in arrowhead form or by arrowheads.
For unassembled matrices, complete element matrices are assembled into the frontal
matrices and the input matrix need not be preprocessed.

In our implementation, the assembly tree is constructed from the symmetrized
pattern of the matrix and a given sparsity ordering. By symmetrized pattern, we
mean the pattern of the matrix A+AT where the summation is symbolic. Note that
this allows the matrix to be unsymmetric.

Because of numerical pivoting, it is possible that some variables cannot be elimi-
nated from a frontal matrix. The fully summed rows and columns that correspond to
such variables are added to the contribution block that is sent to the parent node re-
sulting in a larger than predicted frontal matrix. The assembly of fully summed rows
and columns into the frontal matrix of the parent node means that the corresponding
elimination operations have been delayed. The delay of eliminations corresponds to
an a posteriori change to the data passed from son to father in the assembly tree and
in the sizes of the frontal matrices. In general, this introduces additional (numerical)
fill-in in the factors.

An important aspect of the assembly tree is that operations at a pair of nodes
where neither is an ancestor of the other are independent. This makes it possible to
obtain parallelism from the tree (so-called tree parallelism). For example, work can
commence in parallel on all the leaf nodes of the tree. Fortunately, near the root node
of the tree, where the tree parallelism is very poor, the frontal matrices are usually
much larger and so techniques for exploiting parallelism in dense factorizations can
be used (for example, blocking and use of higher level BLAS). We call this node
parallelism. We discuss further aspects of the parallelism of the multifrontal method
in later sections of this paper. Our work is based on our experience with designing and
implementing a multifrontal scheme on shared and virtual shared memory computers
(for example, [2, 3, 4]) and on an initial prototype distributed memory multifrontal
version [25]. We describe the design of our resulting distributed memory multifrontal
algorithm in the rest of this paper.

3. Test problems. Throughout this paper, we will use a set of test problems to
illustrate the performance of our algorithms. We describe the set in this section.

In Tables 3.1 and 3.2, we list, respectively, our unassembled and assembled test
problems. All except one come from the industrial partners of the PARASOL project
and are available at Parallab (Bergen, Norway).3 The remaining matrix, bbmat, is
from the forthcoming Rutherford-Boeing Sparse Matrix Collection [21]. All the sym-
metric matrices in our test set were stated by their source to be positive definite
and, in our experiments, we treated them as if they were. In fact, we have subse-

3They can be found by following links from the web page http://www.parallab.uib.no/parasol/.
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quently discovered that the factorization of bmw3 2 has 11 negative pivots. Typical
PARASOL test cases are from the following major application areas: computational
fluid dynamics (CFD), structural mechanics, modelling compound devices, modelling
ships and mobile offshore platforms, industrial processing of complex non-Newtonian
liquids, and modelling car bodies and engine components. All the test problems in
elemental format are also provided in assembled format. The suffix (rse or rsa)
is used to differentiate them. For those in elemental format, the original matrix is
represented as a sum of element matrices

A =
∑

Ai ,

where each Ai has nonzero entries only in those rows and columns that correspond
to variables in the ith element. Because element matrices may overlap, the number of
entries of a matrix in elemental format is usually larger than for the same matrix when
assembled (compare the matrices from Det Norske Veritas in Norway in Tables 3.1
and 3.2). Typically there are about twice the number of entries in the unassembled
elemental format.

Table 3.1
Unassembled symmetric test matrices from PARASOL partner (in elemental format).

Real Symmetric Positive Definite Elemental (rse)
Matrix name Order No. of elements No. of entries Origin
thread.rse 29736 2176 3718704 Det Norske Veritas
ship 001.rse 34920 3431 3686133 Det Norske Veritas
m t1.rse 97578 5328 6882780 Det Norske Veritas
x104.rse 108384 6019 7065546 Det Norske Veritas
shipsec8.rse 114919 35280 7431867 Det Norske Veritas
ship 003.rse 121728 45464 9729631 Det Norske Veritas
shipsec1.rse 140874 41037 8618328 Det Norske Veritas
shipsec5.rse 179860 52272 11118602 Det Norske Veritas

In Tables 3.3, 3.4, and 3.5, we present statistics on the factorizations of the
various test problems using MUMPS. The tables show the number of entries in the
factors and the number of floating-point operations (flops) for the elimination. For
symmetric matrices, we give the number of entries in the lower triangular part of the
matrix. For unsymmetric matrices, we show both the estimated number, assuming
no additional pivoting, and the actual number when numerical pivoting is used. All
our unsymmetric matrices are row and column scaled (each row/column is divided
by its maximum value). This is a default option of MUMPS for unsymmetric matrices.
Scaling significantly reduces the number of delayed pivots. The average number (over
the three unsymmetric matrices) is equal to 19257 before scaling and 1527 after.
Permuting large entries onto the diagonal [22] can significantly reduce the amount of
numerical pivoting but can also deteriorate the structural symmetry of the matrices.
On our set of relatively large unsymmetric matrices with a fairly symmetric pattern
(structural symmetry larger than 0.54), row and column scaling was enough to reduce
numerical pivoting (compare the columns “estim.” and “actual” in Table 3.5).

The statistics clearly depend on the ordering used. Two classes of ordering are
considered in this paper. The first is an approximate minimum degree ordering (re-
ferred to as AMD; see [1]). The second class is based on a hybrid nested dissection
and minimum degree technique (referred to as ND). These hybrid orderings were gen-
erated using ONMETIS [35] or a combination of the graph partitioning tool SCOTCH
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Table 3.2
Assembled test matrices from PARASOL partners (except the matrix bbmat). (∗) StrSym is

the number of nonzeros matched by nonzeros in symmetric locations divided by the total number of
entries.

Real Unsymmetric Assembled (rua)

Matrix name Order No. of entries StrSym(∗) Origin
mixtank 29957 1995041 1.00 Polyflow S.A.
invextr1 30412 1793881 0.97 Polyflow S.A.
bbmat 38744 1771722 0.54 Rutherford-Boeing (CFD)

Real Symmetric Assembled (rsa)
Matrix name Order No. of entries Origin
oilpan 73752 1835470 INPRO
smdoor 162610 4036144 INPRO
ldoor 952203 23737339 INPRO
cranksg1 52804 5333507 MSC.Software
cranksg2 63838 7106348 MSC.Software
bmw7st 1 141347 3740507 MSC.Software
bmwcra 1 148770 5396386 MSC.Software
bmw3 2 227362 5757996 MSC.Software
inline 1 503712 18660027 MSC.Software
thread.rsa 29736 2249892 Det Norske Veritas
ship 001.rsa 34920 2339575 Det Norske Veritas
m t1.rsa 97578 4925574 Det Norske Veritas
x104.rsa 108384 5138004 Det Norske Veritas
shipsec8.rsa 114919 3384159 Det Norske Veritas
ship 003.rsa 121728 4103881 Det Norske Veritas
shipsec1.rsa 140874 3977139 Det Norske Veritas
shipsec5.rsa 179860 5146478 Det Norske Veritas

Table 3.3
Statistics for symmetric test problems, available in both assembled (rsa) and unassembled (rse)

formats (MFR ordering from Det Norske Veritas).

Entries in Flops
Matrix factors (×106) (×109)

thread 24.3 38.8
ship 001 14.5 9.4
m t1 29.5 16.8
x104 24.1 9.8
shipsec8 34.3 33.7
ship 003 57.1 73.0
shipsec1 36.6 32.1
shipsec5 50.8 51.7

Table 3.4
Statistics for symmetric test problems on the SGI Origin 2000.

AMD ordering ND ordering
Entries Flops Time for Entries Flops

Matrix in factors analysis in factors
(×106) (×109) (seconds) (×106) (×109)

oilpan 10.2 3.8 1.9 9.5 3.2
smdoor 26.0 13.2 4.7 23.5 11.5
ldoor 156.0 110.5 39.4 146.3 74.5
cranksg1 40.1 50.2 4.7 31.8 29.7
cranksg2 60.7 101.9 7.5 40.9 41.6
bmw7st 1 27.1 15.4 4.2 25.0 11.3
bmw3 2 51.1 44.9 8.3 44.9 28.6
bmwcra 1 97.2 127.9 8.5 70.3 61.0
inline 1 222.1 242.0 36.1 174.9 143.2
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Table 3.5
Statistics for unsymmetric test problems. Time for analysis in seconds on the SGI Origin 2000.

AMD ordering ND ordering
Entries in Flops Time Entries in Flops

Matrix factors (×106) (×109) factors (×106) (×109)
estim. actual estim. actual estim. actual estim. actual

mixtank 38.5 39.1 64.1 64.4 2.6 18.9 19.6 13.0 13.2
invextr1 30.3 31.2 34.3 35.8 2.3 15.7 16.1 7.7 8.1
bbmat 46.0 46.2 41.3 41.6 3.9 35.7 35.8 25.5 25.7

[38] with a variant of AMD (Halo-AMD; see [39]). For matrices available in both as-
sembled and unassembled format, we used nested dissection based orderings provided
by Det Norske Veritas and denote these by MFR.

Note that, in this paper, it is not our intention to compare the packages that we
used to obtain the orderings; we will only discuss the influence of the type of ordering
on the performance of MUMPS (in section 5).

4. Parallel implementation issues. In this paper, we assume a one-to-one
mapping between processes and processors in our distributed memory environment. A
process will thus implicitly refer to a unique processor and, when we say, for example,
that a task is allocated to a process, we mean that the task is also mapped onto the
corresponding processor.

As we did before in a shared memory environment [4], we exploit both tree par-
allelism (arising from sparsity) and node parallelism (arising from dense factorization
kernels). To avoid the limitations due to centralized scheduling (where a host process
is in charge of scheduling the work of the other processes), we have chosen a distributed
scheduling strategy. In our implementation, a pool of work tasks is distributed among
the processes that participate in the numerical factorization. A host process is still
used to perform the analysis phase (and identify the pool of work tasks), distribute
the right-hand side vector, and collect the solution. Our implementation allows this
host process to participate in the computations during the factorization and solution
phases. This allows the user to run the code on a single processor and avoids one
processor being idle during the factorization and solution phases.

The code solves the system Ax = b in three main steps:
1. Analysis. The host performs an approximate minimum degree ordering
based on the symmetrized matrix pattern A + AT or accepts an ordering
provided by the user. It also performs the subsequent symbolic factorization
phase. The host then computes a mapping of the nodes of the assembly tree
to the processors. The mapping, fully described in [5], is such that it keeps
communication costs during factorization and solution to a minimum and it
balances the memory and computation required by the processes. Using the
top-down (starting from the root of the tree) algorithm described in [27], we
first identify subtrees and perform a subtree-to-process mapping to balance
the computational work of the subtrees between the processes (see Figure 4.1).
Memory balancing criteria are then used to map the top of the tree; that is,
the nodes of the tree that are not in any of the subtrees. After computing the
mapping, the host sends symbolic information to the other processes. Using
this information, each process estimates the work space required for its part
of the factorization and solution. The estimated work space should be large
enough to handle the computational tasks that were assigned to the process



22 P. R. AMESTOY, I. S. DUFF, J.-Y. L’EXCELLENT, AND J. KOSTER

at analysis time plus possible tasks that it may receive dynamically during
the factorization, assuming that no excessive amount of unexpected fill-in
occurs due to numerical pivoting.

2. Factorization. The original matrix is first preprocessed (for example, con-
verted to arrowhead format in the case when the matrix is assembled) and
distributed to the processes that will participate in the numerical factoriza-
tion. Each process allocates an array for contribution blocks and factors.
The numerical factorization on each frontal matrix is performed by a process
determined by the analysis phase and potentially one or more other processes
that are determined dynamically. The factors must be kept for the solution
phase.

3. Solution. The right-hand side vector b is broadcast from the host to the
other processes. They compute the solution vector x using the distributed
factors computed during the factorization phase. The solution vector is then
assembled on the host.

4.1. Sources of parallelism. We consider the condensed assembly tree of Fig-
ure 4.1, where the leaves represent subtrees of the assembly tree.

P3
P0
P1
P2

P0
P1
P2

P3P2P1
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Fig. 4.1. Distribution of the computations of a multifrontal assembly tree over the four processes
P0, P1, P2, and P3.

If we consider only tree parallelism, then the transfer of the contribution block
from a node in the assembly tree to its parent node requires only local data movement
when the nodes are assigned to the same process. Communication is required when the
nodes are assigned to different processes. To reduce the amount of communication and
balance the computation during the factorization and solution phases, the mapping
computed during the analysis phase first assigns a subtree of the assembly tree to a
single process in a way similar to the approach described in [27]. The computational
cost of a subtree is approximated by the number of floating-point operations, assuming
no additional numerical pivoting is performed. In general, the mapping algorithm
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chooses more leaf subtrees than there are processes and, by mapping these subtrees
carefully onto the processes, we achieve a good overall load balance of the computation
at the bottom of the tree. However, if we exploit only tree parallelism, the speedups are
very disappointing. Obviously it depends on the problem, but typically the maximum
speedup is no more than 3 to 5 as illustrated in Table 5.1. This poor performance is
caused by the fact that the tree parallelism decreases while going towards the root of
the tree. Moreover, it has been observed (see, for example, [4]) that often more than
75% of the computations are performed in the top three levels of the assembly tree.
It is thus necessary to obtain further parallelism within the large nodes near the root
of the tree. The additional parallelism will be based on parallel blocked versions of
the algorithms used during the factorization of the frontal matrices.

Nodes of the assembly tree that are treated by only one process will be referred
to as nodes of type 1 and the parallelism of the assembly tree will be referred to as
type 1 parallelism. Further parallelism is obtained by a one-dimensional (1D) block
partitioning of the rows of the frontal matrix for nodes with a large contribution
block (see Figure 4.1). Such nodes will be referred to as nodes of type 2 and the
corresponding parallelism as type 2 parallelism. Finally, if the frontal matrix of the
root node is large enough, we partition it in a two-dimensional (2D) block cyclic way.
The parallel root node will be referred to as a node of type 3 and the corresponding
parallelism as type 3 parallelism.

During the analysis, the type 2 and type 3 nodes are first selected and then the
top of the tree is mapped onto the processes. This mapping tries to balance the
memory used by the processes assuming that all processes will contribute to a type 2
node. The storage cost is approximated by the number of entries in the factors. In our
implementation, we combine the main features of static and dynamic approaches; we
use the storage estimates obtained during analysis to map the main computational
tasks; the other tasks are dynamically scheduled at execution time. The dynamic
scheduling is performed using the statically generated mapping as a basis. We explain
this in more detail in sections 4.2 and 4.3.

4.2. Type 2 parallelism. During the analysis phase, a node is determined to
be of type 2 if the number of rows in its contribution block is sufficiently large. (For
nodes where the number of fully summed variables is very large, we discuss node
splitting in section 10.) If a node is of type 2, one process (called the master) holds
all the fully summed rows and performs the pivoting and the factorization on this
block while other processes (called slaves) perform the updates on the partly summed
rows. The slave processes are in charge of all the computation, both assembly and
factorization steps, associated with the blocks F21 and F22 in Figure 2.1.

The slaves are determined dynamically during factorization and any process may
be selected. We discuss strategies for this selection process in section 9. To be able
to assemble the original matrix entries quickly into the frontal matrix of a type 2
node, we duplicate the corresponding original matrix entries (stored as arrowheads
or element matrices) on all the processes before the factorization. This means that
the master and slave processes of a type 2 node have immediate access to the entries
that need to be assembled in the local part of the frontal matrix. This duplication of
original data enables efficient dynamic scheduling of computational tasks, but requires
some extra storage. This is studied in more detail in section 8. (Note that for a type 1
node, the original matrix entries need only be present on the process handling this
node.)

At execution time, the master of a type 2 node first receives symbolic information
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describing the structure of the contribution blocks of the son nodes in the tree. This
information is sent by the (master) processes handling the sons. Based on this infor-
mation, the master determines the exact structure of its frontal matrix and decides
which slave processes will participate in the factorization of the node. It then sends
information to the processes handling the sons to enable them to send the entries in
their contribution blocks directly to the appropriate processes involved in the type 2
node. The assemblies for this node are subsequently performed in parallel. The mas-
ter and slave processes then perform the elimination operations on the frontal matrix
in parallel. Macro-pipelining based on a blocked factorization of the fully summed
rows is used to overlap communication with computation. The efficiency of the algo-
rithm thus depends on both the block size used to factor the fully summed rows and
on the number of rows allocated to a slave process. Further details and differences
between the implementations for symmetric positive definite, general symmetric, and
unsymmetric matrices are described in [5]. Numerical issues will be further discussed
in section 4.5.

4.3. Type 3 parallelism. At the root node, we must factorize a dense matrix
and we can use standard codes for this. For scalability reasons, we use a 2D block
cyclic distribution of the root node and ScaLAPACK [10] or the vendor equivalent
implementation for the actual factorization.

Currently, a maximum of one root node, chosen during the analysis, is processed
in parallel. The node chosen will be the largest root provided its size is larger than
a computer dependent parameter (otherwise it is factorized on only one processor).
One process (also called master) holds all the indices describing the structure of the
root frontal matrix.

We call this root node, as determined by the analysis phase, the estimated root
node. Before factorization, the structure of the frontal matrix of the estimated root
node is statically mapped onto a 2D grid of processes. This mapping fully determines
to which process an entry of the estimated root node is assigned. Hence, for the
assembly of original matrix entries and contribution blocks, the processes holding this
information can determine exactly the processes to which they must send data.

In the factorization phase, the original matrix entries and the part of the contri-
bution blocks from the sons corresponding to the estimated root can be assembled
as soon as they are available. The master of the root node then collects the index
information for all the delayed variables (due to numerical pivoting) of its sons and
builds the final structure of the root frontal matrix. This symbolic information is
broadcast to all processes that participate in the factorization. The contributions
corresponding to delayed variables can then be sent by the sons to the appropriate
processes in the 2D grid for assembly (or the contributions can directly be assembled
locally if the destination is the same process). Note that, because of the requirements
of ScaLAPACK, the local part of the root node is copied since the leading dimension
will change if there are delayed pivots. Furthermore, because of the lack of a par-
allel ScaLAPACK code for LDLT factorization, we differentiate between symmetric
positive definite and general symmetric matrices. On symmetric positive definite ma-
trices, the ScaLAPACK code PDPOTRF for the LLT factorization is used whereas
on general symmetric matrices, the parallel factorization of the type 3 full matrix is
based on the ScaLAPACK LU factorization routine PDGETRF. Note that it is the
only place in the code where, because of numerical pivoting, we do not fully exploit
the symmetry of a general symmetric matrix.
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4.4. Parallel triangular solution. The solution phase is also performed in
parallel and uses asynchronous communications both for the forward elimination and
the back substitution. In the case of the forward elimination, the tree is processed
from the leaves to the root, in a similar way to the factorization, while the back
substitution requires a different algorithm that processes the tree from the root to
the leaves. A pool of ready-to-be-activated tasks is used. We do not change the
distribution of the factors as generated in the factorization phase. Hence, type 2
and 3 parallelism are also used in the solution phase. At the root node, we use the
ScaLAPACK routine PDGETRS for general matrices and the routine PDPOTRS for
symmetric positive definite matrices.

4.5. Numerical pivoting and related issues. To handle a large class of
matrices, including symmetric positive definite, symmetric, unsymmetric, and rank-
deficient matrices, one of the main features of our distributed memory sparse code is
its ability to postpone the elimination of a numerically unstable pivot. As a result,
the main data structures manipulated during factorization must be dynamic. For all
classes of matrices, numerical pivoting is based on partial threshold pivoting. Piv-
ots are selected from entries in the block F11 of Figure 2.1 which are not too small
(threshold parameter) with respect to the maximum value in the corresponding fully
summed row. Numerically unstable fully summed rows and columns are then sent to
the father node together with the contribution block.

For unsymmetric matrices, this strategy is applied to type 1 and type 2 nodes
since the fully summed rows (blocks F11 and F12) are located on the master process.
On the type 3 node, the ScaLAPACK routine PDGETRF, which uses partial pivoting,
is applied.

For symmetric matrices, partial threshold pivoting is applied to type 1 nodes with
the additional restriction that, to preserve symmetry, numerically stable pivots must
be found on the diagonal. Note that for type 1 nodes, one could also implement a two-
by-two pivoting strategy [12, 24] that would reduce the number of delayed variables.
This is not available in the current version of the package. For type 2 nodes, only the
master holds block F11 of Figure 2.1. The eligibility of a diagonal entry as a pivot in
a type 2 node is based on two numerical tests. We first check that the diagonal entry
is not too small with respect to the not yet factored fully summed entries in its row.
A diagonal entry that satisfies this criterion is called an acceptable diagonal pivot.
Second, if an acceptable pivot aii is such that |aii| is larger than

√
ε ‖A‖, where ε is

the machine precision and A is the original matrix, then aii is retained as a pivot and
permuted symmetrically immediately after the block of already eliminated variables
in F11. Otherwise the next acceptable diagonal entry is considered. The previous
tests are repeated until we are left with a block of numerically unsatisfactory diagonal
pivots for which the elimination is delayed to the father node.

When a rank-revealing factorization is requested (for rank detection and a null-
space basis), we implicitly assume that partial threshold pivoting will have postponed
all numerical problems to the dense root frontal matrix. In this context, both rank-
revealing QR and LU based algorithms have been developed for matrices with rela-
tively small rank deficiency. This ongoing work also involves Miroslav Tůma (Czech
Academy of Sciences, Praha, Czech Republic) and uses work in [13, 14, 33, 34].

To conclude this section, we mention that taking into account numerical pivoting
on distributed memory computers adds a significant level of complexity and many
constraints to the algorithms (also discussed in [9]). This could result in somewhat
less efficient and less scalable software with respect to approaches based on static
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pivoting.

5. Basic performance and influence of ordering. From earlier studies (for
example, [31]), we know that the ordering may significantly impact both the num-
ber of floating-point operations for the factorization and hence the uniprocessor time
and also the parallel behavior of the method. Table 5.1 shows some performance re-
sults obtained using only type 1 parallelism. The results show that using only type 1
parallelism does not produce good speedups. The results also show (see columns
“Speedup”) that we usually get better parallelism with nested dissection based or-
derings than with minimum degree based orderings. We thus gain by using nested
dissection because of a reduction in the number of floating-point operations (see Tables
3.4 and 3.5) and a better balanced assembly tree.

Table 5.1
Influence of the ordering on the time (in seconds) and speedup for the factorization phase, using

only type 1 parallelism, on 32 processors of the IBM SP2.

Matrix Time Speedup
AMD ND AMD ND

bbmat 78.4 49.4 4.08 4.00
oilpan 12.6 7.3 2.91 4.45
smdoor 33.4 25.5 3.47 4.22
bmw7st 1 55.6 21.3 2.55 4.87

We now discuss the performance obtained by MUMPS on matrices in assembled
format that will be used as a reference for this paper. The performance obtained on
matrices provided in elemental format is discussed in section 6. In Tables 5.2 and
5.3, we show the performance of MUMPS using nested dissection and minimum degree
orderings on the IBM SP2 and the SGI Origin 2000, respectively.

Table 5.2
Impact of the ordering on the time (in seconds) for factorization on the IBM SP2. (∗) estimated

CPU time on one processor; — means not enough memory.

Matrix Ordering Number of processors

1(∗) 4 8 16 24 32
bbmat AMD 320 276.4 68.3 47.8 44.0 39.8

ND 198 106.4 76.7 35.2 34.6 30.9
invextr1 AMD 279 — 67.9 63.2 56.5 56.0

ND 70 25.7 17.5 16.0 13.1 12.4
mixtank AMD 495 — 288.5 70.7 64.5 61.3

ND 104 32.8 26.1 17.4 14.4 14.8

oilpan AMD 37 13.6 9.0 6.8 5.9 5.8
ND 33 10.8 7.1 5.7 4.6 4.6

smdoor AMD 116 155.5 24.1 16.8 16.1 13.1
ND 108 55.7 21.6 16.8 14.7 10.5

cranksg1 AMD 456 — 508.3 162.4 78.4 63.3
ND 270 228.2 102.0 42.4 39.1 31.9

cranksg2 AMD 939 — — 819.6 308.5 179.7
ND 362 — 316.6 79.7 41.7 35.7

bmw7st 1 AMD 142 153.4 46.5 21.3 18.4 16.7
ND 104 105.7 36.7 20.2 12.9 11.7

bmw3 2 AMD 421 — 309.8 74.2 51.0 34.2
ND 251 — 145.3 52.4 26.2 23.0

Note that, for large problems, speedups are difficult to compute on the IBM SP2
because the data incur memory paging when run on a small number of processors.
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Hence, the better performance with nested dissection orderings on a small number of
processors of the IBM SP2 is due, in part, to the reduction in the memory required
by each processor (since there are fewer entries in the factors). To get a better idea
of the true algorithmic speedups (without memory paging effects), we give, in Table
5.2, the uniprocessor CPU time for one processor, instead of the elapsed time. The
speedup over the elapsed time on one processor (not listed) can be considerable.
When the memory was not large enough to run on one processor, an estimate of
the Megaflop rate was used to compute the uniprocessor CPU time. The ratio of
the actual performance obtained by one processor of the SGI Origin 2000 over that
obtained on the IBM SP2 is used to deduce the Megaflop rate on the IBM SP2. (This
estimate was also used, when necessary, to compute the speedups in Table 5.1.) On
a small number of processors, there can still be a memory paging effect that may
significantly increase the elapsed time.

Table 5.3 also shows the elapsed time for the solution phase; we observe that the
speedups for this phase are quite respectable if one considers the relatively higher
ratio of communication over computation for the parallel triangular solution.

Table 5.3
Impact of the ordering on the time (in seconds) for factorization and solve phases on the

SGI Origin 2000.

Factorization phase
Matrix Ordering Number of processors

1 2 4 8 16 32
ldoor AMD 635.0 428.5 211.4 112.7 69.2 54.8

ND 411.9 219.2 120.9 69.6 44.7 31.6
cranksg2 AMD 566.1 392.2 220.0 115.9 86.4 77.4

ND 216.9 115.9 72.0 60.3 46.9 38.9
bmw7st 1 AMD 85.7 56.0 28.2 18.5 15.1 14.2

ND 62.4 38.5 27.9 19.5 21.1 11.5
bmwcra 1 AMD 663.0 396.5 238.7 141.6 110.3 76.9

ND 306.6 182.7 80.9 52.9 41.2 35.5
bmw3 2 AMD 252.7 153.4 81.8 49.4 34.0 27.3

ND 151.1 93.8 52.5 33.0 22.1 17.0
inline 1 AMD 1329.0 856.0 449.7 275.5 161.4 125.3

ND 751.8 400.8 223.5 129.3 80.7 64.0

Solution phase
Matrix Ordering Number of processors

1 2 4 8 16 32
ldoor AMD 22.1 14.9 13.4 8.6 7.4 7.9

ND 22.3 13.9 9.9 6.7 6.2 9.1
cranksg2 AMD 6.8 5.8 4.4 2.9 2.4 2.3

ND 4.3 2.7 1.8 1.5 1.1 1.8
bmw7st 1 AMD 4.2 2.4 2.3 1.9 1.4 1.6

ND 3.3 2.1 1.7 1.4 1.6 1.5
bmwcra 1 AMD 11.4 7.2 6.8 3.9 2.8 2.4

ND 8.3 4.7 2.7 2.1 1.8 2.0
bmw3 2 AMD 6.7 4.1 3.6 2.4 2.1 1.9

ND 6.3 3.8 2.9 2.4 2.0 2.4
inline 1 AMD 27.1 16.5 15.7 14.2 9.7 7.9

ND 21.2 12.0 8.9 5.8 5.0 5.4

In the remainder of this paper, we will use nested dissection based orderings,
unless stated otherwise.

6. Elemental input matrix format. In this section, we discuss the main algo-
rithmic changes to efficiently handle problems that are provided in elemental format.
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We assume that the original matrix can be represented as a sum of element matrices

A =
∑

Ai ,

where each Ai has nonzero entries only in those rows and columns that correspond to
variables in the ith element. Ai is usually held as a dense matrix, but if the matrix
A is symmetric, only the lower triangular part of each Ai is stored.

The main modifications that we had to make to our algorithms for assembled
matrices to accommodate unassembled matrices lie in the analysis, the distribution
of the matrix, and the assembly process. We describe them in more detail below.

In the analysis phase, we exploit the elemental format of the matrix to detect
supervariables. We define a supervariable as a set of variables having the same list
of adjacent elements. Table 6.1 shows the impact of using supervariables on the
size of the graph processed by the ordering phase (AMD ordering). Graph size is
the length of the adjacency lists of variables/supervariables given as input to the
ordering phase. Without supervariable detection, Graph size is twice the number of
off-diagonal entries in the corresponding assembled matrix. The work space required
by the analysis phase using the AMD ordering is dominated by the space required by
the ordering phase and is Graph size plus an overhead that is a small multiple of the
order of matrix. Table 6.1 shows that, on large graphs, compression can reduce the
memory requirements of the analysis phase dramatically.

Table 6.1
Impact of supervariable detection on the length of the adjacency lists given to the ordering phase

and on the analysis time (in seconds) (SGI Origin 2000). The time spent in the AMD ordering is
in parentheses.

Graph size with Time for analysis
Matrix supervariable detection supervariable detection

OFF ON OFF ON
thread.rse 4440312 397410 2.6 (0.9) 1.2 (0.2)
m t1.rse 9655992 299194 4.6 (1.8) 1.5 (0.3)
x104.rse 10059240 246950 6.4 (3.5) 1.5 (0.3)
shipsec8.rse 6538480 171428 5.7 (2.0) 2.6 (0.5)
ship 003.rse 7964306 204324 7.4 (2.8) 3.2 (0.7)
shipsec1.rse 7672530 193560 6.0 (2.2) 2.6 (0.6)
shipsec5.rse 9933236 256976 10.1 (4.6) 3.9 (0.8)

Table 6.1 also shows the impact of using supervariables on the time for the com-
plete analysis phase (including graph compression and ordering). We see that the
reduction in time is not only due to the reduced time for ordering; significantly less
time is also needed for building the much smaller adjacency graph of the supervari-
ables.

The overall time spent in the assembly process for matrices in elemental format
will differ from the overall time spent in the assembly process for the equivalent
assembled matrix. Obviously, for the matrices in elemental format there is often
significantly more data to assemble (usually about twice the number of entries than
for the same matrix in assembled format). However, the assembly process of matrices
in elemental format might be performed more efficiently than the assembly process of
assembled matrices. First, because we potentially assemble at once a larger and more
regular structure (a full matrix). Second, because most input data will be assembled at
or near leaf nodes in the assembly tree. This has two consequences. The assemblies are
performed in a more distributed way and most assemblies of original element matrices
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are done at type 1 nodes. (Hence, less duplication of original matrix data is necessary.)
A more detailed analysis of the duplication issues linked to matrices in elemental
format will be addressed in section 8. In experiments (not presented here), we have
observed that, despite the differences in the assembly process, the performance of
MUMPS for assembled and unassembled problems is very similar, provided the same
ordering is used. The reason for this is that the extra amount of assemblies of original
data for unassembled problems is relatively small compared to the total number of
flops.

The experimental results in Table 6.2, obtained on the SGI Origin 2000, show
the good behavior of the code for the factorization phase on our set of unassembled
matrices.

Table 6.2
Time (in seconds) for factorization of the unassembled matrices on the SGI Origin 2000. MFR

ordering from Det Norske Veritas is used.

Matrix Number of processors
1 2 4 8 16 32

thread.rse 186 120 69 46 37 32
m t1.rse 92 56 30 18 17 13
x104.rse 56 34 20 16 16 13
shipsec8.rse 187 127 68 36 30 23
ship 003.rse 392 242 156 120 92 73
shipsec1.rse 174 128 65 36 27 24
shipsec5.rse 281 176 114 63 43 36

7. Distributed assembled matrix. The distribution of the input matrix over
the available processors is the main preprocessing step in the numerical factorization
phase. During this step, the input matrix is organized into arrowhead format and is
distributed according to the mapping provided by the analysis phase. In the symmet-
ric case, the first arrowhead of each frontal matrix is also sorted to enable efficient
assembly [5]. If the assembled matrix is initially held centrally on the host, we have
observed that the time to distribute the real entries of the original matrix can some-
times be comparable to the time to perform the actual factorization. For example,
for the matrix oilpan, the time to distribute the input matrix on 16 processors of
the IBM SP2 is on average 6 seconds whereas the time to factorize the matrix is 6.8
seconds (using the AMD ordering; see Table 5.2). Clearly, for larger problems where
more arithmetic is required for the actual factorization, the time for factorization will
dominate the time for redistribution.

With a distributed input matrix format, we can expect to reduce the time for the
redistribution phase, because we can parallelize the reformatting and sorting tasks
and we can use asynchronous all-to-all (instead of one-to-all) communications. Fur-
thermore, we can expect to solve larger problems since storing the complete matrix
on one processor limits the size of the problem that can be solved on a distributed
memory computer. Thus, to improve both the memory and the time scalability of
our approach, we should allow the input matrix to be distributed.

Based on the static mapping of tasks to processes that is computed during the
analysis phase, one can a priori distribute the input data so that no further remapping
is required at the beginning of the factorization. This distribution, referred to as the
MUMPS distribution, will limit the communication to duplications of the original matrix
corresponding to type 2 nodes (further studied in section 8).



30 P. R. AMESTOY, I. S. DUFF, J.-Y. L’EXCELLENT, AND J. KOSTER

0 4 8 12 16 20 24 28 32
Number of Processors

 0

 1

 2

 3

 4

 5

 6

 7

D
is

tr
ib

ut
io

n 
ti

m
e 

(s
ec

on
ds

)

Centralized matrix
MUMPS distribution  
Balanced random dist.

Fig. 7.1. Impact of the initial distribution for matrix oilpan on the time for redistribution on
the IBM SP2.

To show the influence of the initial matrix distribution on the time for redistri-
bution, we compare, in Figure 7.1, three ways for providing the input matrix:

1. Centralized mapping: the input matrix is held on one process (the host).

2. MUMPS distribution: the input matrix is distributed over the processes accord-
ing to the static mapping that is computed during the analysis phase.

3. Balanced random distribution: the input matrix is uniformly distributed over
the processes in a random manner that has no correlation to the mapping
computed during the analysis phase.

The fastest approach should clearly be the MUMPS distribution because the amount
of communication is minimized and all-to-all communications can be used. This
approach is, however, too restrictive for the user who has to build the input matrix
according to the static mapping returned by MUMPS in the analysis phase. In this
context, we want, with the balanced random distribution, to analyze the extra cost
of not respecting the MUMPS mapping while still having the input matrix uniformly
distributed.

Figure 7.1 clearly shows the benefit of using asynchronous all-to-all communica-
tions (required by the MUMPS and random distributions) compared to using one-to-all
communications (for the centralized mapping). It is even more interesting to ob-
serve that distributing the input matrix according to the MUMPS distribution does not
significantly reduce the time for the redistribution. We attribute this to the good over-
lapping of communication with computation (mainly data reformatting and sorting)
in our redistribution algorithm.

8. Memory scalability issues. In this section, we study the memory require-
ments and memory scalability of our algorithms.

Figure 8.1 illustrates how MUMPS balances the memory load over the processors.



DISTRIBUTED MEMORY SPARSE DIRECT SOLVER 31

The figure shows, for two matrices, the maximum memory required on a processor
and the average over all processors, as a function of the number of processors. We
observe that, for varying numbers of processors, these values are quite similar.

bmw3 2 bmwcra 1
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Fig. 8.1. Total memory (maximum and average) requirement per processor during factorization
(ND ordering).

Table 8.1 shows the average size per processor of the main components of the
work space used during the factorization of the matrix bmw3 2. These components
are

• Factors: the space reserved for the factors; a processor does not know after
the analysis phase in which type 2 nodes it will participate, and therefore it
reserves enough space to be able to participate in all type 2 nodes.
• Store area: the space used to store both the contribution blocks and the
factors.
• Initial matrix: the space required to store the initial matrix in arrowhead
format.
• Communication buffers: the space allocated for both send and receive
buffers.
• Other: the size of all the remaining work space allocated per processor.
• Total: the total memory required per processor.

The lines ideal in Table 8.1 are obtained by dividing the memory requirement on one
processor by the number of processors. By comparing the actual and ideal numbers,
we get an idea of how MUMPS scales in terms of memory for some of the components.

We see that, even if the total memory (sum of all the local work spaces) increases,
the average memory required per processor significantly decreases up to 16 processors.
We also see that the size for the Factors and the Store area are much larger than
ideal. Part of this difference is due to parallelism and is unavoidable. Another part,
however, is due to an overestimation of the space required. The main reason for this
is that the mapping of the type 2 nodes on the processors is not known at analysis
and each processor can potentially participate in the elimination of any type 2 node.
Therefore, each processor allocates enough space to be able to participate in all type
2 nodes. The work space that is actually used is smaller and, on a large number of
processors, we could reduce the estimate for both the Factors and the Store area.
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Table 8.1
Analysis of the memory used during factorization of matrix bmw3 2 (ND ordering). All sizes

are in MBytes per processor.

Number of processors 1 2 4 8 16 24 32
Factors 423 211 107 58 35 31 31
ideal — 211 106 53 26 18 13

Store area 502 294 172 92 51 39 38
ideal — 251 126 63 31 21 16

Initial matrix 69 34.5 17.3 8.9 5.0 4.0 3.5
ideal — 34.5 17.3 8.6 4.3 2.9 2.2

Communication buffers 0 45 34 14 6 6 5
Other 20 20 20 20 20 20 20

Total 590 394 243 135 82 69 67
ideal — 295 147 74 37 25 18

For example, we have successfully factorized matrix bmw3 2 on 32 processors with a
Store area that is 20% smaller than reported in Table 8.1.

The average work space used by the communication buffers also significantly
decreases up to 16 processors. This is mainly due to type 2 node parallelism where
contribution blocks are split among processors until a minimum granularity is reached.
Therefore, when we increase the number of processors, we decrease (until reaching this
minimum granularity) the size of the contribution blocks sent between processors.
Note that on larger problems, the average size per processor of the communication
buffers will continue to decrease for a larger number of processors. The line Other
does not scale at all since it corresponds to data arrays of size O(n) that are allocated
on each process. We see that this space significantly affects the difference between
Total and ideal, especially for larger numbers of processors. Note that the relative
influence of this fixed size area will be smaller on large matrices from three-dimensional
simulations. Actually, this O(n) working area per process could be reduced to a
working area of size O(|Subtree|), where |Subtree| denotes the number of nodes in
the subtrees assigned to the process. This has not been considered in our package but
could be considered to improve the memory scalability of the approach.

The imperfect scalability of the initial matrix storage comes from the duplication
of the original matrix data that is linked to type 2 nodes in the assembly tree. We will
study this in more detail in the remainder of this section. We want to stress, however,
that from a user point of view, all numbers reported in this context should be related
to the total memory used by the MUMPS package which is usually dominated, on large
problems, by the size of the Store area.

An alternative to the duplication of data related to type 2 nodes would be to
allocate the original data associated with a frontal matrix to only the master process
responsible for the type 2 node. During the assembly process, the master process
would then be in charge of redistributing the original data to the slave processes.
This strategy introduces extra communication costs during the assembly of a type 2
node and thus has not been chosen. With the approach based on duplication, the
process responsible for a type 2 node has all the flexibility to choose collaborating
processes dynamically since this will not involve any data migration of the original
matrix. However, the extra cost of this strategy is that it requires partial duplication
of the original matrix.

All the nodes that do not belong to a subtree are candidates for type 2 selection.
Since the mapping algorithm naturally computes more (but smaller) subtrees for
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Table 8.2
Amount of duplication due to type 2 nodes. “Total entries” is the sum of the number of original

matrix entries over all processors (×103). The number of type 2 nodes is also given.

Matrix Number of processors
1 2 4 8 12 16

oilpan Type 2 nodes 0 4 7 10 17 22
Total entries 1835 1845 1888 2011 2235 2521

bmw7st 1 Type 2 nodes 0 4 7 9 13 21
Total entries 3740 3759 3844 4031 4308 4793

bmw3 2 Type 2 nodes 0 1 3 13 14 21
Total entries 5758 5767 5832 6239 6548 7120

thread.rsa Type 2 nodes 0 3 8 12 23 25
Total entries 2250 2342 2901 4237 6561 8343

thread.rse Type 2 nodes 0 2 8 12 15 25
Total entries 3719 3719 3719 3719 3719 3719

shipsec1.rsa Type 2 nodes 0 0 4 11 19 21
Total entries 3977 3977 4058 4400 4936 5337

shipsec1.rse Type 2 nodes 0 1 4 13 19 27
Total entries 8618 8618 8618 8627 8636 8655
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Fig. 8.2. Percentage of entries in the original matrix that are duplicated on all processors due
to type 2 nodes.

larger numbers of processors, the potential (and actual) number of type 2 nodes also
increases. This implies that more data of the original matrix will be duplicated when
the number of processors increases. The influence of the number of processors on the
amount of duplication is shown in Table 8.2. On a representative subset of our test
problems, we show the total number of type 2 nodes and the sum over all processors
of the number of original matrix entries and duplicates. If there is only one processor,
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type 2 nodes are not used and no data is duplicated. Figure 8.2 shows, for four of our
matrices, the number of original matrix entries that are duplicated on all processors,
relative to the total number of entries in the original matrix.

Since the original data for unassembled matrices are in general assembled earlier in
the assembly tree than the data for the same matrix in assembled format, the number
of duplications is often relatively much smaller with unassembled matrices than with
assembled matrices. Matrix thread.rse (in elemental format) is an extreme example
since, even on 16 processors, type 2 node parallelism does not require any duplication
(see Table 8.2).

To conclude this section, we point out that, apart from the O(n) working ar-
rays, the code scales well in terms of memory usage. On (virtual) shared memory
computers, the total memory (sum of local workspaces of all the processors) required
by MUMPS can sometimes be prohibitive. Therefore, we are currently investigating
how we can reduce the current overestimates of the local Store areas to reduce
the total memory required. Limiting the dynamic scheduling of a type 2 node (and
corresponding data duplication) to a subset of processors might be a solution for this.

9. Dynamic scheduling strategies. To avoid the drawback of centralized
scheduling on distributed memory computers, we have chosen to implement dis-
tributed dynamic scheduling strategies. Recall that type 1 nodes are statically mapped
to processes at analysis time and that only type 2 tasks, which represent a large part
of the computations and of the parallelism of the method, are involved in the dynamic
scheduling strategy.

To be able to choose dynamically the processes that will collaborate in the pro-
cessing of a type 2 node, we have designed a two-phase assembly process. Let Inode
be a node of type 2 and let Pmaster be the process to which Inode is initially mapped.
In the first phase, the (master) processes, to which the sons of Inode are mapped, send
symbolic data (integer lists) to Pmaster. When the structure of the frontal matrix
is determined, Pmaster decides a partitioning of the frontal matrix and chooses the
slave processes. It is during this phase that Pmaster will collect information concern-
ing the load of the other processors to help in its decision process. The slave processes
are informed that a new task has been allocated to them. Pmaster then sends the
description of the distribution of the frontal matrix to all collaborative processes of
all sons of Inode so that they can send their contribution blocks (numerical values)
in pieces directly to the correct processes involved in the computation of Inode. The
assembly process is thus fully parallelized and the maximum size of a message sent
between processes is reduced (see section 8).

A pool of tasks private to each process is used to implement dynamic scheduling.
All tasks ready to be activated on a given process are stored in the pool of tasks local
to the process. Each pool of tasks is initialized with the assembly process associated
with the local leaf nodes. Each process executes the following algorithm:

Algorithm 1.

while (not all nodes processed)

if local pool empty then

blocking receive for a message; process the message

elseif message available then

receive and process message
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else
extract work from the pool, and process it

endif
end while
Note that the task corresponding to the processing of a message is immediately

executed without going to the pool. A task ready to be activated can, however, result
from the processing of a message and will be added at the head of the pool. The
algorithm gives priority to message reception. The main reasons for this choice are
first that the message received might be a source of additional work and parallelism
and second, the sending process might be blocked because its send buffer is full (see
[5]). In the actual implementation, we use the routine MPI IPROBE to check whether
a message is available.

Table 9.1
Comparison of cyclic and flops-based schedulings. Time (in seconds) for factorization on the

IBM SP2 (ND ordering).

Matrix & Number of processors
scheduling 16 20 24 28 32
cranksg2
cyclic 79.7 47.9 41.7 41.3 35.7
flops-based 61.1 45.6 41.9 41.7 40.4
bmw3 2
cyclic 52.4 31.8 26.2 29.2 23.0
flops-based 29.4 27.8 25.1 25.3 22.6

We implemented two scheduling strategies. In the first strategy, referred to as
cyclic scheduling, the master of a type 2 node does not take into account the load
on the other processors and performs a simple cyclic mapping of the tasks to the
processors. In the second strategy, referred to as (dynamic) flops-based scheduling,
the master process uses information on the load of the other processors to allocate
type 2 tasks to the least loaded processes. The load of a processor is defined here as the
amount of work (flops) associated with all the active or ready-to-be-activated tasks.
Each process is in charge of maintaining local information associated with its current
load. With a simple remote memory access procedure, using, for example, the one-
sided communication routine MPI GET included in MPI-2, each process has access
to the load of all other processes when necessary. However, MPI-2 is not available on
our target computers. To overcome this, we have designed a module based only on
symmetric communication tools (MPI asynchronous send and receive). Each process
is in charge of both updating and broadcasting its local load. To control the frequency
of these broadcasts, an updated load is broadcast only if it is significantly different
from the last load broadcast.

When the initial static mapping does not balance the work well, we might expect
that the dynamic flops-based scheduling will improve the performance with respect to
cyclic scheduling. Tables 9.1 and 9.2 show that significant performance gains can be
obtained by using dynamic flops-based scheduling. On more than 24 processors, the
gains are less significant because the number of parallel tasks is not enough to keep
all the processes busy. We also expect that this feature will improve the behavior of
the parallel algorithm on a multiuser distributed memory computer.

Another possible use of dynamic scheduling is to improve the memory usage. We
have seen, in section 8, that the size of the Store area is overestimated. Dynamic
scheduling based on memory load, instead of computational load, could be used to
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Table 9.2
Comparison of cyclic and flops-based schedulings. Time (in seconds) for factorization on the

SGI Origin 2000 (MFR ordering).

Matrix & Number of processors
scheduling 4 8 16
shipsec8.rse
cyclic 68.3 36.3 29.9
flops-based 65.0 35.0 25.1
ship 003.rse
cyclic 156.1 119.9 91.9
flops-based 140.3 110.2 83.8
shipsec5.rse
cyclic 113.5 63.1 42.8
flops-based 99.9 61.3 37.0

address this issue. Type 2 tasks can then be mapped to the least loaded processor (in
terms of memory used in the Store area).

10. Splitting nodes of the assembly tree. During the processing of a parallel
type 2 node, both in the symmetric and the unsymmetric case, the factorization of
the pivot rows is performed by a single processor. Other processors can then help in
the update of the rows of the contribution block using a 1D decomposition (as shown
in section 4). The elimination of the fully summed rows can represent a potential
bottleneck for scalability, especially for frontal matrices with a large fully summed
block near the root of the tree. To overcome this problem, we subdivide nodes with
large fully summed blocks, as illustrated in Figure 10.1.

In this figure, we consider an initial node of size NFRONT with NPIV pivots.
We replace this node by a son node of size NFRONT with NPIVson pivots, and a
father node of size NFRONT−NPIVson, with NPIVfather = NPIV−NPIVson pivots.
Note that by splitting a node, we increase the number of operations for factorization,
because we add assembly operations. Nevertheless, we expect to benefit from splitting
because we increase parallelism.

We experimented with a simple algorithm that postprocesses the tree after the
symbolic factorization. The algorithm considers only nodes near the root of the tree.
Splitting large nodes far from the root, where sufficient tree parallelism can already be
exploited, would only lead to additional assembly and communication costs. A node
is considered for splitting only if its distance to the root, that is, the number of edges
between the root and the node, is less than or equal to dmax = log2(NPROCS− 1).

Let Inode be a node in the tree, and d(Inode) the distance of Inode to the root.
For all nodes Inode such that d(Inode) ≤ dmax, we apply the Algorithm 2.

Algorithm 2. Splitting of a node

if NFRONT−NPIV/2 is large enough then
1. Compute Wmaster = number of flops performed by the master of Inode.
2. Compute Wslave = number of flops performed by a slave,

assuming that NPROCS− 1 slaves can participate.

3. if Wmaster > Wslave · (1 + p ·max(1, d(Inode)− 1)
100

) then

3.1. Split Inode in nodes son and father so that NPIVson = NPIVfather = NPIV/2.
3.2. Apply Algorithm 2 recursively to nodes son and father.

endif
endif
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Fig. 10.1. Tree before and after the subdivision of a frontal matrix with a large pivot block.

Algorithm 2 is applied to a node only when NFRONT – NPIV/2 is large enough
because we want to make sure that the son of the split node is of type 2. (The size of
the contribution block of the son will be NFRONT – NPIVson.) A node is split only
when the amount of work for the master (Wmaster) is large relative to the amount
of work for a slave (Wslave). To reduce the amount of splitting further away from
the root, we add, at step 3 of the algorithm, a relative factor to Wslave. This factor
depends on a machine dependent parameter p, p > 0, and increases with the distance
of the node to the root. Parameter p allows us to control the general amount of
splitting. Finally, because the algorithm is recursive, we may divide the initial node
into more than two new nodes.

The effect of splitting is illustrated in Table 10.1 on both the symmetric matrix
cranksg2 and the unsymmetric matrix invextr1. Ncut corresponds to the number
of type 2 nodes cut. A value p = ∞ is used to indicate no splitting. Flops-based
dynamic scheduling is used for all runs in this section. The best time obtained for
a given number of processors is indicated in boldface. We see that significant per-
formance improvements (of up to 40% reduction in time) can be obtained by using
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Table 10.1
Time (in seconds) for factorization and number of nodes cut (Ncut) for different values of

parameter p on the IBM SP2. Nested dissection ordering and flops-based dynamic scheduling are
used.

cranksg2
p Number of processors

16 20 24 28 32
∞ Time 61.1 45.6 41.9 41.7 40.4

Ncut 0 0 0 0 0
200 Time 37.9 31.4 30.4 29.5 25.4

Ncut 6 7 9 9 12
150 Time 41.8 31.3 31.0 28.9 27.2

Ncut 7 9 10 12 13
100 Time 39.8 32.3 28.4 28.6 26.7

Ncut 9 11 13 14 15
50 Time 36.7 33.6 31.4 29.6 27.4

Ncut 12 13 16 17 21
10 Time 40.8 32.5 29.5 29.8 26.0

Ncut 16 17 21 28 32

invextr1
p Number of processors

4 8 16 24 32
∞ Time 25.9 16.7 14.6 13.5 14.6

Ncut 0 0 0 0 0
200 Time 25.5 16.7 13.4 12.1 12.4

Ncut 0 1 3 6 12
150 Time 24.9 16.3 13.5 13.4 12.4

Ncut 1 1 4 11 9
100 Time 24.9 16.2 13.7 13.1 13.6

Ncut 1 2 6 19 24
50 Time 24.9 17.0 13.5 13.6 16.6

Ncut 1 3 14 25 35
10 Time 24.9 17.5 13.4 14.5 15.8

Ncut 2 6 17 27 33

node splitting. The best timings are generally obtained for relatively large values of
p. More splitting occurs for smaller values of p, but the corresponding times increase
only slightly.

11. Summary. Tables 11.1 and 11.2 show results obtained with Version 4 of
MUMPS using both flops-based dynamic scheduling and node splitting. Default val-
ues for the parameters controlling the efficiency of the package have been used and
therefore the timings do not always correspond to the fastest possible execution time.
A comparison with results presented in Tables 5.2, 5.3, and 6.2 summarizes well the
benefits coming from the work presented in sections 9 and 10.

The largest problem we have solved to date is an automotive crankshaft model
from MSC.Software. The problem matrix is symmetric positive definite and has order
943695 with more than 39 million entries. The number of entries in the factors is
1.4 × 109 and the number of operations during factorization is 5.9 × 1012. On one
processor of the SGI Origin 2000, the factorization phase required 8.9 hours and on
two (nondedicated) processors 6.2 hours were required. Because of the total amount
of memory estimated and reserved by MUMPS, we could not solve it on more than
two processors. This issue will need to be addressed to improve the scalability on
globally addressable memory computers and further analysis will be performed on
purely distributed memory computers with a larger number of processors. Possible
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Table 11.1
Time (in seconds) for factorization using Version 4 of MUMPS with default options on the IBM

SP2. ND ordering is used. (∗): uniprocessor CPU or estimated CPU time; — means excessive
swapping or not enough memory.

Matrix Number of processors

1(∗) 4 8 16 24 32
bbmat 198 106 85 35 33 31
invextr1 70 25 16 14 13 12
mixtank 104 31 22 16 15 15
oilpan 33 11 8 5 5 5
smdoor 108 56 22 13 13 11
cranksg1 270 185 92 27 26 21
cranksg2 362 — — 42 31 27
bmw7st 1 104 — 30 14 12 11
bmw3 2 251 — — 24 24 20

Table 11.2
Time (in seconds) for factorization using Version 4 of MUMPS with default options on the SGI

Origin 2000. ND ordering is used.

Matrix Number of processors
1 2 4 8 16 32

ldoor 412 228 121 68 39 31
cranksg2 217 112 66 46 29 23
bmw7st 1 62 36 25 12 10 8
bmwcra 1 307 178 82 58 36 27
bmw3 2 151 96 53 33 18 15
inline 1 752 406 225 127 76 55
thread.rse 186 125 70 38 24 22
m t1.rse 92 56 31 19 13 9
x104.rse 56 34 19 12 11 10
shipsec8.rse 187 119 64 35 27 23
ship 003.rse 392 237 124 108 51 43
shipsec1.rse 174 125 63 39 25 20
shipsec5.rse 281 181 103 62 37 29

solutions to this have been mentioned in the paper (limited dynamic scheduling and/or
memory based dynamic scheduling) and will be developed in the future.
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Abstract. It is known that the norm of the solution to a weighted linear least-squares problem
is uniformly bounded for the set of diagonally dominant symmetric positive definite weight matrices.
This result is extended to weight matrices that are nonnegative linear combinations of symmetric
positive semidefinite matrices. Further, results are given concerning the strong connection between
the boundedness of weighted projection onto a subspace and the projection onto its complementary
subspace using the inverse weight matrix. In particular, explicit bounds are given for the Euclidean
norm of the projections. These results are applied to the Newton equations arising in a primal-dual
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projection operator.
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1. Introduction. In this paper we study certain properties of the weighted lin-
ear least-squares problem

minimize
π∈Rm

‖W 1/2(ATπ − g)‖22,(1.1)

where A is an m× n matrix of full row rank and W is a positive definite symmetric
n × n matrix whose matrix square root is denoted by W 1/2. (See, e.g., Golub and
Van Loan [14, p. 149] for a discussion on matrix square roots.) Linear least-squares
problems are fundamental within linear algebra; see, e.g., Lawson and Hanson [20],
Golub and Van Loan [14, Chapter 5] and Gill, Murray, and Wright [12, Chapter 6].
An individual problem of the form (1.1) can be converted to an unweighted problem

by substituting Ã = AW 1/2 and g̃ = W 1/2g. However, our interest is in sequences
of weighted problems, where the weight matrix W changes and A is constant. The
present paper is a continuation of the paper by Forsgren [10], in which W is assumed
to be diagonally dominant. Our concern is when the weight matrix is of the form

W = (H +D)−1,(1.2)

where H is a constant positive semidefinite symmetric matrix and D is an arbitrary
positive definite diagonal matrix. Such matrices arise in interior methods for convex
quadratic programming. See section 1.1 below for a brief motivation.

The solution of (1.1) is given by the normal equations

AWATπ = AWg(1.3)
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or alternatively as the solution to the augmented system (or Karush–Kuhn–Tucker
(KKT ) system) (

M AT

A 0

)(
r

π

)
=

(
g

0

)
,(1.4)

where M = W−1. In some situations, we will prefer the KKT form (1.4), since we
are interested in the case when M is a positive semidefinite symmetric and singular
matrix. In this situation, W−1 and (1.3) are not defined, but (1.4) is well defined.
This would be the case, for example, in an equality-constrained weighted linear least-
squares problem; see, e.g., Lawson and Hanson [20, Chapter 22]. For convenience, we
will mainly use the form (1.3).

If M = W−1, then, mathematically, (1.3) and (1.4) are equivalent. From a
computational point of view, this need not be the case. There is a large number
of papers giving reasons for solving systems of one type or the other, starting with
Bartels, Golub, and Saunders [1], followed by, e.g., Duff et al. [9], Björck [4], Gulliksson
and Wedin [17], Wright [29, 31], Björck and Paige [5], Vavasis [26], Forsgren, Gill, and
Shinnerl [11], and Gill, Saunders, and Shinnerl [13]. The focus of the present paper
is linear algebra, and we will not discuss these important computational aspects.

If A has full row rank and if W+ is defined as the set of n × n positive definite
symmetric matrices, then for any W ∈ W+, the unique solution of (1.1) is given by

π = (AWAT )−1AWg.(1.5)

In a number of applications, it is of interest to know if the solution remains in a
compact set as the weight matrix changes, i.e., the question is whether

sup
W∈W

‖(AWAT )−1AW‖

remains bounded for a particular subset W of W+. It should be noted that bounded-
ness does not hold for an arbitrary subset W of W+. Take for example A = (0 1) and
let

W (ε) =

(
2
ε 1

1 ε

)

for ε > 0. Then W (ε) ∈ W+ for ε > 0, and

(AW (ε)AT )−1AW (ε) =
(

1
ε 1

)
.

This implies that ‖(AWAT )−1AW‖ is not bounded whenW is allowed to vary inW+.
See Stewart [24] for another example of unboundedness and related discussion. For the
case whereW is the set of positive definite diagonal matrices, Dikin [8] gives an explicit
formula for the optimal π in (1.1) as a convex combination of the basic solutions formed
by satisfying m linearly independent equations. From this result, the boundedness is
obvious. If A does not have full row rank, it is still possible to show boundedness; see
Ben-Israel [2, p. 108]. Later, Wei [28] also studied boundedness in absence of a full row
rank assumption on A and has furthermore given some stability results. Bobrovnikova
and Vavasis [6] have given boundedness results for complex diagonal weight matrices.
The geometry of the set (AWAT )−1AWg when W varies over the set of positive
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definite diagonal matrices has been studied by Hanke and Neumann [18]. Based on
the formula derived by Dikin [8], Forsgren [10] has given boundedness results when
W is the set of positive definite diagonally dominant matrices.

We show boundedness for the set of weight matrices that are arbitrary nonnegative
combinations of a set of fixed positive semidefinite symmetric matrices and the set of
inverses of such matrices. As a special case, we then obtain the set of weight matrices
of the form (1.2), which was our original interest. The boundedness is shown in the
following way. In section 2, we review results for the characterization of π as W
varies over the set of symmetric matrices such that AWAT is nonsingular. Section 3
establishes the boundedness when W is allowed to vary over a set of matrices that are
nonnegative linear combinations of a number of fixed positive semidefinite matrices
such that AWAT is positive definite. In section 4, results that are needed to handle
the projection using the inverse weight matrix are given. In section 5, we combine
results from the previous two sections to show boundedness for the π that solves (1.4)
when M is allowed to vary over the nonnegative linear combinations of a set of fixed
positive semidefinite symmetric matrices.

The research was initiated by a paper by Gonzaga and Lara [15]. The link to
that paper has subsequently been superseded, but we include a discussion relating
our results to the result of Gonzaga and Lara in the appendix.

1.1. Motivation. Our interest in weighted linear least-squares problems is from
interior methods for optimization and in particular for convex quadratic programming.
There is a vast number of papers on interior methods, and here we give only a brief
motivation for the weighted linear least-squares problems that arise. Any convex
quadratic programming problem can be transformed to the form

minimize
x∈Rn

1
2x

THx+ cTx

subject to Ax = b,
x ≥ 0,

(1.6)

where H is a positive semidefinite symmetric n× n matrix and A is an m× n matrix
of full row rank. For x ∈ R

n, π ∈ R
m, and s ∈ R

n such that x > 0 and s > 0, an
iteration of a primal-dual path-following interior method for solving (1.6) typically
takes a Newton step towards the solution of the equations

Hx+ c−ATπ − s = 0,(1.7a)

Ax− b = 0,(1.7b)

Xs− µe = 0,(1.7c)

where µ is a positive barrier parameter; see, e.g., Monteiro and Adler [21, p. 46]. Here,
X = diag(x) and similarly below S = diag(s). Strict positivity of x and s is implicitly
required and typically maintained by limiting the step length. If µ is set equal to zero
in (1.7) and the implicit requirements x > 0 and s > 0 are replaced by x ≥ 0 and s ≥ 0,
the optimality conditions for (1.6) are obtained. Consequently, (1.7) and the implicit
positivity of x and s may be viewed as a perturbation of the optimality conditions
for (1.6). In a primal-dual path-following interior method, the perturbation is driven
to zero to make the method converge to an optimal solution. The equations (1.7)
are often referred to as the primal-dual equations. Forming the Newton equations
associated with (1.7) for the corrections ∆x, ∆π, ∆s and eliminating ∆s gives(

H +X−1S AT

A 0

)(
−∆x
∆π

)
=

(
Hx+ c− µX−1e−ATπ

Ax− b

)
.(1.8)



LEAST-SQUARES PROBLEMS AND QUADRATIC PROGRAMMING 45

If x and s are strictly feasible, i.e., x and s are strictly positive and x satisfies Ax = b,
then a comparison of (1.4) and (1.8) shows that the Newton equations (1.8) can be
associated with a weighted linear least-squares problem with a positive definite weight
matrix (H +X−1S)−1. A sequence of strictly feasible iterates {xk}∞k=0 gives rise to a
sequence of weighted linear least-squares problems, where the weight matrix changes
but A is constant.

In a number of convergence proofs for linear programming, a crucial step is to
ensure boundedness of the step (∆x,∆s); see, e.g., Vavasis and Ye [27, Lemma 4]
and Wright [30, Lemmas 7.2 and A.4]. Since linear programming is the special case
of convex quadratic programming where H = 0, we are interested in extending this
boundedness result to convex quadratic programming. Therefore, the boundedness of

‖(A(H +X−1S)−1AT )−1A(H +X−1S)−1‖(1.9)

as X−1S varies over the set of diagonal positive definite matrices is of interest. This
boundedness property of (1.9) is shown in section 5.

1.2. Notation. When we refer to matrix norms and make no explicit reference
to what type of norm is considered, it can be any matrix norm that is induced from
a vector norm such that ‖(xT 0)T ‖ = ‖x‖ holds for any vector x. To denote the ith
eigenvalue and the ith singular value, we use λi and σi, respectively. For symmetric
matrices A and B of equal dimension, A 	 B means that A−B is positive semidefinite.
Similarly, A 
 B means that A−B is positive definite.

The remainder of this section is given in Forsgren [10]. It is restated here for
completeness. For an m× n matrix A of full row rank, we shall denote by J (A) the
collection of sets of column indices associated with the nonsingularm×m submatrices
of A. For J ∈ J (A), we denote by AJ the m ×m nonsingular submatrix formed by
the columns of A with indices in J . Associated with J ∈ J (A), for a diagonal n× n
matrix D, we denote by DJ the m×m diagonal matrix formed by the elements of D
that have row and column indices in J . Similarly, for a vector g of dimension n, we
denote by gJ the vector of dimension m with the components of g that have indices
in J . The slightly different meanings of AJ , DJ , and gJ are used in order not to
make the notation more complicated than necessary. For an example clarifying the
concepts, see Forsgren [10, p. 766].

The analogous notation is used for an m × n matrix A of full row rank and an
n× r matrix U of full row rank in that we associate J (AU) with the collection of sets
of column indices corresponding to nonsingular m×m submatrices of AU . Associated
with J ∈ J (AU), for a diagonal r×r matrix D, we denote by DJ the m×m diagonal
matrix formed by the elements of D that have row and column indices in J . Similarly,
for a vector g of dimension r, we denote by gJ the vector of dimension m with the
components of g that have indices in J . Since column indices of AU are also column
indices of U , for J ∈ J (AU), we denote by UJ the n ×m submatrix of full column
rank formed by the columns of U with indices in J . Note that each element of J (A)
as well as each element of J (AU) is a collection of m indices.

2. Background. In this section, we review some fundamental results. The fol-
lowing theorem, which states that the solution of a diagonally weighted linear least-
squares problem can be expressed as a certain convex combination, is the basis for our
results. As far as we know, it was originally given by Dikin [8] who used it in the con-
vergence analysis of the interior point method for linear programming he proposed [7].
The proof of the theorem is based on the Cauchy–Binet formula and Cramer’s rule.
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Theorem 2.1 (Dikin [8]). Let A be an m× n matrix of full row rank, let g be a
vector of dimension n, and let D be a positive definite diagonal n× n matrix. Then,

(ADAT )−1ADg =
∑

J∈J (A)

(
det(DJ) det(AJ)

2∑
K∈J (A) det(DK) det(AK)2

)
A−T

J gJ ,

where J (A) is the collection of sets of column indices associated with nonsingular
m×m submatrices of A.

Proof. See, e.g., Ben-Tal and Teboulle [3, Corollary 2.1].
Theorem 2.1 implies that if the weight matrix is diagonal and positive definite,

then the solution to the weighted least-squares problem (1.1) lies in the convex hull of
the basic solutions formed by satisfyingm linearly independent equations. Hence, this
theorem provides an expression on the supremum of ‖(ADAT )−1AD‖ for D diagonal
and positive definite, as the following corollary shows.

Corollary 2.2. Let A be an m× n matrix of full row rank, and let D+ denote
the set of positive definite diagonal n× n matrices. Then,

sup
D∈D+

‖(ADAT )−1AD‖ = max
J∈J (A)

‖A−T
J ‖,

where J (A) is the collection of sets of column indices associated with nonsingular
m×m submatrices of A.

Proof. See, e.g., Forsgren [10, Corollary 2.2].
The boundedness has been discussed by a number of authors over the years; see,

e.g., Ben-Tal and Teboulle [3], O’Leary [22], Stewart [24], and Todd [25]. Theorem 2.1
can be generalized to the case where the weight matrix is an arbitrary symmetric, not
necessarily diagonal, matrix such that AWAT is nonsingular. The details are given
in the following theorem.

Theorem 2.3 (Forsgren [10]). Let A be an m × n matrix of full row rank,
and let W be a symmetric n × n matrix such that AWAT is nonsingular. Suppose
W = UDUT , where D is diagonal. Then,

(AWAT )−1AW =
∑

J∈J (AU)

(
det(DJ) det(AUJ)

2∑
K∈J (AU) det(DK) det(AUK)2

)
(AUJ)

−TUT
J ,

where J (AU) is the collection of sets of column indices associated with nonsingular
m×m submatrices of AU .

Proof. See Forsgren [10, Theorem 3.1].

3. Nonnegative combinations of positive semidefinite matrices. Let A
be an m×n matrix of full row rank and assume that we are given an n×n symmetric
weight matrix W (α), which depends on a vector α ∈ R

t for some t. If W (α) can
be decomposed as W (α) = UD(α)UT , where U does not depend on α and D(α) is
diagonal, Theorem 2.3 can be applied, provided AW (α)AT is nonsingular and the
matrices (AUJ)

−TUT
J involved do not depend on α. If, in addition D(α) 	 0, then the

linear combination of Theorem 2.3 is a convex combination. Consequently, the norm
remains bounded as long as the supremum is taken over a set of values of α for which
AW (α)AT 
 0 and D(α) 	 0. In particular, we are interested in the case where a set
of positive semidefinite and symmetric matrices, Wi, i = 1, . . . , t, are given and W (α)
is defined as W (α) =

∑t
i=1 αiWi. The following two lemmas and associated corollary

concern the decomposition of W (α). The first lemma concerns the set of all possible
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decompositions of a positive semidefinite matrix W as W = UUT and the relation
between different decompositions of this type.

Lemma 3.1. Let W be a symmetric positive semidefinite n× n matrix of rank r,
and let Ū = {U ∈ R

n×r : UUT =W}. Then, Ū is nonempty and compact. Further, if
U and Ũ belong to Ū , then there is an r× r orthogonal matrix Q such that U = ŨQ.

Proof. It is possible to decompose W as W = UUT , where U is an n×r matrix of
full column rank, for example, using a Cholesky factorization with symmetric inter-
changes; see, e.g., Golub and Van Loan [14, section 4.2.9]. Therefore, Ū is nonempty.

If U and ŨT both belong to Ū , then

UTx = 0 ⇔ UUTx = 0 ⇔ Ũ ŨTx = 0 ⇔ ŨTx = 0.

Hence, UT and ŨT have the same null space, which implies that the range spaces of
U and Ũ are the same. Therefore, there is a nonsingular r × r matrix M such that
U = ŨM , from which it follows that Ũ ŨT = ŨMMTŨT. Premultiplying this equation
by ŨT and postmultiplying it by Ũ gives

ŨTŨ ŨTŨ = ŨTŨMMTŨTŨ .(3.1)

Since ŨTŨ is nonsingular, (3.1) gives MMT = I. Compactness is established by
proving boundedness and closedness. Boundedness holds because ‖UTei‖22 = Wii,
i = 1, . . . , n, where ei is the ith unit vector. Let {U (i)}∞i=1 be a sequence converging
to U∗ such that U (i) ∈ Ū for all i. From the continuity of matrix multiplication, U∗
belongs to Ū , and the closedness of Ū follows.

A consequence of this lemma is that we can decompose each Wi, i = 1, . . . , t, as
stated in the following corollary.

Corollary 3.2. For i = 1, . . . , t, let Wi be an n×n symmetric positive semidef-
inite matrix of rank ri. Let r =

∑t
i=1 ri. Then

U =
{
U ∈ R

n×r : U =
(
U1 U2 · · · Ut

)
, Ui ∈ R

n×ri , UiU
T
i =Wi, i = 1, . . . , t

}

is a well-defined compact subset of R
n×r. Furthermore, if U and Ũ belong to U , then,

for i = 1, . . . , t, there are orthogonal ri × ri matrices Qi such that Ui = ŨiQi.
Proof. The result follows by applying Lemma 3.1 to each Wi.
It should be noted that U depends on the matrices Wi. This dependence will be

suppressed in order to not make the notation more complicated than necessary. From
Corollary 3.2, we get a decomposition result for matrices that are nonnegative linear
combinations of symmetric positive semidefinite matrices, as is stated in the following
lemma. It shows that if we are given a set of positive semidefinite and symmetric
matrices, Wi, i = 1, . . . , t, and W (α) is defined as W (α) =

∑t
i=1 αiWi, then we can

decompose W (α) into the form W (α) = UD(α)UT , where U does not depend on α
and D(α) is diagonal.

Lemma 3.3. For α ∈ R
t, let W (α) =

∑t
i=1 αiWi, where Wi, i = 1, . . . , t, are

symmetric positive semidefinite n × n matrices. Further, let U be associated with
Wi, i = 1, . . . , t, according to Corollary 3.2, and for each i, let ri denote rank(Wi) and
let Ii be an identity matrix of dimension ri. Then W (α) may be decomposed as

W (α) = UD(α)UT,

where U is any matrix in U and D(α) = diag(α1I1, α2I2, . . . , αtIt).
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Proof. Corollary 3.2 shows that we may write

W (α) =

t∑
i=1

αiWi =

t∑
i=1

αiUiU
T
i = UD(α)UT ,

where U is an arbitrary matrix in U and D(α) = diag(α1I1, α2I2, . . . , αtIt).
Note that D(α) is positive semidefinite if α ≥ 0. An application of Theorem 2.3

to the decomposition of Lemma 3.3 now gives the boundedness result for nonnegative
combinations of positive semidefinite matrices, as stated in the following proposition.

Proposition 3.4. Let A be an m×n matrix of full row rank. For α ∈ R
t, α ≥ 0,

let W (α) =
∑t

i=1 αiWi, where Wi, i = 1, . . . , t, are symmetric positive semidefinite
n×n matrices. IfW (α) is decomposed asW (α) = UD(α)UT, according to Lemma 3.3,
then for α ≥ 0 and AW (α)AT 
 0,

(AW (α)AT )−1AW (α) =
∑

J∈J (AU)

(
det(DJ(α)) det(AUJ)

2∑
K∈J (AU) det(DK(α)) det(AUK)2

)
(AUJ)

−TUT
J .

Furthermore,

sup
α≥0:

AW (α)AT �0

‖(AW (α)AT )−1AW (α)‖ ≤ min
U∈U

max
J∈J (AU)

‖(AUJ)
−TUT

J‖,(3.2)

where J (AU) is the collection of sets of column indices associated with nonsingular
m × m submatrices of AU , and U is associated with Wi, i = 1, . . . , t, according to
Corollary 3.2.

Proof. If AW (α)AT 
 0, Theorem 2.3 immediately gives

(AW (α)AT )−1AW (α) =
∑

J∈J (AU)

(
det(DJ(α)) det(AUJ)

2∑
K∈J (AU) det(DK(α)) det(AUK)2

)
(AUJ)

−TUT
J .

Since α ≥ 0, it follows that D(α) 	 0. Consequently, det(DJ(α)) ≥ 0 for all J ∈
J (AU). Thus, the above expression gives

sup
α≥0:AW (α)AT�0

‖(AW (α)AT )−1AW (α)‖ ≤ max
J∈J (AU)

‖(AUJ)
−TUT

J‖.

Since this result holds for all U ∈ U , it holds when taking the infimum over U ∈ U .
To show that the infimum is attained, let

fJ(U) =

{ ‖(AUJ)
−TUT

J ‖ if det(AUJ) �= 0,
0 otherwise

for every J that is a subset of {1, . . . , n} such that |J | = m. For a fixed J , fJ is

continuous at every Ũ such that det(AŨJ) �= 0. Further, at Ũ such that AŨJ is
singular, fJ is a lower semicontinuous function; see, e.g., Royden [23, p. 51]. Hence,
fJ is lower semicontinuous everywhere. Due to the construction of fJ(U),

max
J∈J (AU)

‖(AUJ)
−TUT

J‖ = max
J:|J|=m

fJ(U).

The maximum of a finite collection of lower semicontinuous functions is lower
semicontinuous; see, e.g., Royden [23, p. 51], and the set U is compact by Corol-
lary 3.2. Therefore, the infimum is attained (see, e.g., Royden [23, p. 195]) and the
proof is complete.
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Note that Proposition 3.4 as special cases includes two known cases: (i) the
diagonal matrices, where W (α) =

∑n
i=1 αieie

T
i ; and (ii) the diagonally dominant

matrices, where

W (α) =

n∑
i=1

αieie
T
i +

n∑
i=1

n∑
j=i+1

(
α+
ij(ei + ej)(ei + ej)

T+ α−
ij(ei − ej)(ei − ej)T

)
.

In both these cases, the supremum bound of (3.2) is sharp. This is because all the
matrices whose nonnegative linear combinations form the weight matrices are of rank
one. In that case, the minimum over U in (3.2) is not necessary since it follows from
Corollary 3.2 that the columns of U are unique up to multiplication by ±1. Hence,
D(α) may be adjusted so as to give weight one to the submatrix AUJ for which the
maximum of the right-hand side of (3.2) is achieved and to give negligible weight to
the other submatrices. In general, when not all matrices whose nonnegative linear
combinations form the weight matrix have rank one, it is an open question if the
supremum bound is sharp.

4. Inversion of the weight matrix. For a constant positive semidefinite ma-
trix H, our goal is to obtain a bound on ‖(A(H + D)−1AT )−1A(H + D)−1‖ when
D is an arbitrary positive definite diagonal matrix. One major obstacle in applying
Theorem 2.3 is the inverse in the weight matrix (H+D)−1. The following proposition
and its subsequent corollary and lemma provide a solution to this problem.

Proposition 4.1. Suppose that an n × n orthogonal matrix Q is partitioned as
Q = (Z Y ), where Z is an n× s matrix and 2s ≤ n. Further, let W be a symmetric
nonsingular n× n matrix such that ZTW−1Z and Y TWY are nonsingular. Then

(Y TWY )−1Y TWZ = −((ZTW−1Z)−1ZTW−1Y )T

and

σ2
i ((Y

TWY )−1Y TW ) = σ2
i ((Z

TW−1Z)−1ZTW−1)

= 1 + σ2
i ((Z

TW−1Z)−1ZTW−1Y )

= 1 + σ2
i ((Y

TWY )−1Y TWZ), i = 1, . . . , s,

σi((Y
TWY )−1Y TW ) = 1, i = s+ 1, . . . , n− s.

Proof. The orthogonality of Q ensures that Y TZ = 0 and ZZT+ Y Y T = I. This
gives

0 = Y TZ = Y TW (ZZT+ Y Y T)W−1Z = Y TWZZTW−1Z + Y TWY Y TW−1Z,

and hence

(Y TWY )−1Y TWZ = −((ZTW−1Z)−1ZTW−1Y )T ,(4.1)

proving the first part of the proposition.
Since ZTW−1Z and Y TWY are nonsingular, we may write

(ZTW−1Z)−1ZTW−1
(
Z Y

)
=
(
I (ZTW−1Z)−1ZTW−1Y

)
,(4.2a)

(Y TWY )−1Y TW
(
Z Y

)
=
(
(Y TWY )−1Y TWZ I

)
.(4.2b)
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The orthogonality of Q ensures that

σi((Z
TW−1Z)−1ZTW−1Q) = σi((Z

TW−1Z)−1ZTW−1), i = 1, . . . , s.(4.3)

We also have

σ2
i

(
I (ZTW−1Z)−1ZTW−1Y

)
= 1 + σ2

i

(
(ZTW−1Z)−1ZTW−1Y

)
,(4.4)

i = 1, . . . , s. A combination of (4.2a), (4.3), and (4.4) gives

σ2
i ((Z

TW−1Z)−1ZTW−1) = 1 + σ2
i ((Z

TW−1Z)−1ZTW−1Y ), i = 1, . . . , s.(4.5)

An analogous argument applied to (4.2b), taking into account that 2s ≤ n, gives
σ2
i ((Y

TWY )−1Y TW ) = 1 + σ2
i ((Y

TWY )−1Y TWZ), i = 1, . . . , s,(4.6a)

σ2
i ((Y

TWY )−1Y TW ) = 1, i = s+ 1, . . . , n− s.(4.6b)

The second part of the proposition follows by a combination of (4.1), (4.5), and
(4.6).

In particular, Proposition 4.1 gives the equivalence between the Euclidean norms
of a projection and the projection onto the complementary space using the inverse
weight matrix, given that the matrices used to represent the spaces are orthogonal.
This is shown in the following corollary.

Corollary 4.2. Suppose that an n × n orthogonal matrix Q is partitioned as
Q = (Z Y ), where Y is an n×m matrix. Further, let W be a symmetric nonsingular
n× n matrix such that ZTW−1Z and Y TWY are nonsingular. Then

‖(Y TWY )−1Y TW‖2 = ‖(ZTW−1Z)−1ZTW−1‖2.
Further, let W+ denote the set of n× n positive definite symmetric matrices, and let
W ⊆W+. Then,

sup
W∈W

‖(Y TWY )−1Y TW‖2 = sup
W∈W

‖(ZTW−1Z)−1ZTW−1‖2.

Proof. If m ≥ n/2, the first statement follows by letting i = 1 in Proposition 4.1.
The second statement is a direct consequence of the first one. If m < n/2, we may
similarly apply Proposition 4.1 after interchanging the roles of Y and Z, and W and
W−1.

As noted above, Corollary 4.2 states the equality between the Euclidean norms of
two projections, given that the matrices describing the spaces onto which we project
are orthogonal. The following lemma relates the Euclidean norms of the projections
when the matrices are not orthogonal.

Lemma 4.3. Let A be an m × n matrix of full row rank, and let N be a matrix
whose columns form a basis for the null space of A. Further, let W be a symmetric
nonsingular n× n matrix such that NTW−1N and ATWA are nonsingular. Then

σn−m(N)

σ1(A)
≤ ‖(AWAT )−1AW‖2
‖(NTW−1N)−1NTW−1‖2 ≤

σ1(N)

σm(A)
.

Proof. Let Q = (Z Y ) be an orthogonal matrix such that the columns of Z form
a basis for the null space of A. Then, there are nonsingular matrices RZ and RY such
that N = ZRZ and AT = Y RY . Since a matrix norm which is induced from a vector
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norm is submultiplicative (see, e.g., Horn and Johnson [19, Theorem 5.6.2]) this gives

1

‖RZ‖ ≤
‖(NTW−1N)−1NTW−1‖
‖(ZTW−1Z)−1ZTW−1‖ ≤ ‖R

−1
Z ‖,(4.7a)

1

‖RY ‖ ≤
‖(AWAT )−1AW‖
‖(Y TWY )−1Y TW‖ ≤ ‖R

−1
Y ‖.(4.7b)

If the Euclidean norm is used, the bounds in (4.7) can be expressed in terms of singular
values of A and N since Y and Z are orthogonal matrices, i.e.,

‖RZ‖2 = σ1(N), ‖R−1
Z ‖2 = 1/σn−m(N),(4.8a)

‖RY ‖2 = σ1(A), ‖R−1
Y ‖2 = 1/σm(A).(4.8b)

A combination of Corollary 4.2, (4.7), and (4.8) gives the stated result.
If the weight matrix is allowed to vary over some subset of the positive definite

symmetric matrices, it follows from Lemma 4.3 that the norm of the projection onto
a subspace is bounded if and only if the norm of the projection onto the orthogonal
complement is bounded when using inverses of the weight matrices. This is made
precise in the following corollary.

Corollary 4.4. Let W+ denote the set of n × n positive definite symmetric
matrices, and let W ⊆W+. Let A be an m× n matrix of full row rank, and let N be
a matrix whose columns form a basis for the null space of A. Then

sup
W∈W

‖(AWAT )−1AW‖ <∞ if and only if sup
W∈W

‖(NTW−1N)−1NTW−1‖ <∞.

In particular,

σn−m(N)

σ1(A)
sup

W∈W
‖(NTW−1N)−1NTW−1‖2 ≤ sup

W∈W
‖(AWAT )−1AW‖2,

sup
W∈W

‖(AWAT )−1AW‖2 ≤ σ1(N)

σm(A)
sup

W∈W
‖(NTW−1N)−1NTW−1‖2.

Proof. The second statement follows by multiplying the inequalities in Lemma 4.3
by ‖(NTW−1N)−1NTW−1‖2 and then taking the supremum of the three expres-
sions. The first statement of the corollary then follows from the equivalence of matrix
norms that are induced from vector norms; see, e.g., Horn and Johnson [19, Theorem
5.6.18].

5. Inversion and nonnegative combination. Let A be an m × n matrix of
full row rank, and let Z be a matrix whose columns form an orthonormal basis for
the null space of A. Further, let M(α) =

∑t
i=1 αiMi, where Mi, i = 1, . . . , t, are

given symmetric positive semidefinite n× n matrices. In section 3 the weight matrix
was assumed to be the nonnegative combination of symmetric positive semidefinite
matrices. This section concerns weight matrices that are the inverse of such combi-
nations, i.e., where the weight matrix is the inverse of M(α). Further, if the problem
is originally posed as the KKT system, cf. (1.4),

(
M(α) AT

A 0

)(
r(α)

π(α)

)
=

(
g

0

)
,(5.1)
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it makes sense to study the problem under the assumption that ZTM(α)Z 
 0 since
in our situation, ZTM(α)Z 
 0 if and only if the matrix of (5.1) is nonsingular;
see Gould [16, Lemma 3.4]. Note that ZTM(α)Z 
 0 is a weaker assumption than
M(α) 
 0, which is necessary if the least-squares formulation is to be valid. A
combination of Proposition 3.4 and Lemma 4.3 shows that π(α) remains bounded
under the above-mentioned assumptions. This is stated in the following theorem,
which is the main result of this paper.

Theorem 5.1. Let A be an m × n matrix of full row rank and let g be an n-
vector. Further, let Z be a matrix whose columns form an orthonormal basis for the
null space of A. For α ∈ R

t, α ≥ 0, let M(α) =
∑t

i=1 αiMi, where Mi, i = 1, . . . , t,
are symmetric positive semidefinite n×n matrices. Further, let r(α) and π(α) satisfy

(
M(α) AT

A 0

)(
r(α)

π(α)

)
=

(
g

0

)
.

Then,

sup
α≥0:

ZTM(α)Z�0

‖π(α)‖ <∞.(5.2)

In particular, if ZTM(α)Z 
 0, then

‖π(α)‖2 ≤ 1

σm(A)
‖(ZTM(α)Z)−1ZTM(α)‖2‖g‖2.(5.3)

Finally, if M(α) is decomposed according to Lemma 3.3, then

sup
α≥0:

ZTM(α)Z�0

‖π(α)‖2 ≤ 1

σm(A)
min
U∈U

max
J∈J (ZTU)

‖(ZTUJ)
−TUT

J‖2‖g‖2,(5.4)

where J (ZTU) is the collection of sets of column indices associated with nonsingular
m ×m submatrices of ZTU , and U is associated with Mi, i = 1, . . . , t, according to
Corollary 3.2.

Proof. For α ≥ 0 and ε > 0, M(α) + εI 
 0. Therefore,

π(α, ε) = (A(M(α) + εI)−1AT )−1A(M(α) + εI)−1g

is well defined. By Lemma 4.3 it follows that

‖π(α, ε)‖2 ≤ ‖(A(M(α) + εI)−1AT )−1A(M(α) + εI)−1‖2‖g‖2
≤ 1

σm(A)
‖(ZT(M(α) + εI)Z)−1ZT(M(α) + εI)‖2‖g‖2.(5.5)

For α such that ZTM(α)Z 
 0, the matrix in the system of equations defining π(α)
and r(α) is nonsingular; see Gould [16, Lemma 3.4]. Then, the implicit function
theorem implies that limε→0+ π(α, ε) = π(α). Therefore, letting ε→ 0+ in (5.5) gives
(5.3). Taking the supremum over α such that α ≥ 0 and ZTM(α)Z 
 0 and using
Proposition 3.4 gives (5.4), from which (5.2) follows upon observing that all norms on
a real finite-dimensional vector space are equivalent; see, e.g., Horn and Johnson [19,
Corollary 5.4.5].
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As a consequence of Theorem 5.1, we are now able to prove the boundedness of
the projection operator for the application of primal-dual interior methods to convex
quadratic programming described in section 1.1.

Corollary 5.2. Let H be a positive semidefinite symmetric n×n matrix, let A
be an m× n matrix of full row rank, and let D+ denote the space of positive definite
diagonal n× n matrices. Then,

sup
D∈D+

‖(A(H +D)−1AT )−1A(H +D)−1‖ <∞.

Proof. If M(α) 
 0, then π(α) of Theorem 5.1 satisfies

π(α) = (AM(α)−1AT )−1AM(α)−1g.

Since {α ≥ 0 :M(α) 
 0} ⊆ {α ≥ 0 : ZTM(α)Z 
 0}, Theorem 5.1 implies that π(α)
is bounded. This holds for any vector g, and hence

sup
α≥0:M(α)�0

‖(AM(α)−1AT )−1AM(α)−1‖ <∞.(5.6)

The stated result follows by applying (5.6) withMi = eie
T
i , i = 1, . . . ,m,Mm+1 = H,

and letting αm+1 = 1.
For convenience in notation, it has been assumed that all variables of the convex

quadratic program are subject to bounds. It can be observed that the analogous
results hold when some variables are not subject to bounds. In this situation, M of
(1.4) may be partitioned as

M =

(
H11 H12

HT
12 H22

)
+

(
D11 0

0 0

)
,

where H is symmetric and positive semidefinite and D11 is diagonal and positive
definite. Let A be partitioned conformally with M as A = (A1 A2). Then, (1.4)
has a unique solution as long as there is no nonzero p2 such that A2p2 = 0 and
pT2H22p2 = 0; see Gould [16, Lemma 3.4]. Hence, under this additional assumption,
Theorem 5.1 can be applied to bound ‖π(α)‖ as D11 varies over the set of positive
definite diagonal matrices.

6. Summary. It has been shown that results concerning the boundedness of
(AWAT )−1AW for A of full row rank and W diagonal, or diagonally dominant, and
symmetric positive definite can be extended to a more general case where W is a
nonnegative linear combination of a set of symmetric positive semidefinite matrices
such that AWAT 
 0. Further, boundedness has been shown for the projection onto
the null space of A using as the weight matrix the inverse of a nonnegative linear
combination of a number of symmetric positive semidefinite matrices. This result
has been used to show boundedness of a projection operator arising in a primal-dual
interior method for convex quadratic programming.

The main tools for deriving these results have been the explicit formula for the
solution of a weighted linear least-squares problem given by Dikin [8] and the relation
between a projection onto a subspace with a certain weight matrix and the projection
onto the orthogonal complement using the inverse weight matrix.

An interesting question that is left open is whether or not the explicit bounds
that are given are sharp. In the case where all the matrices whose nonnegative linear
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combination form the weight matrix are of rank one, the bounds are sharp. In the
general case, this is an open question. On a higher level, an interesting question
is whether the results of this paper can be utilized to give new complexity bounds
for quadratic programming, analogous to the case of linear programming; see, e.g.,
Vavasis and Ye [27, section 9].

Appendix. Relationship to partitioned orthogonal matrices. In this
appendix we review a result by Gonzaga and Lara [15] concerning diagonally weighted
projections onto orthogonally complementary subspaces and combine this result with
a result concerning singular values of submatrices of orthogonal matrices. It was these
results in fact which lead to the more general results relating weighted projection onto
a subspace and the projection onto its complementary subspace using the inverse
weight matrix, as described in section 4.

Gonzaga and Lara [15] state that if Y is an n×m orthogonal matrix and Z is a
matrix whose columns form an orthonormal basis for the null space of Y T, then

sup
D∈D+

‖(Y TDY )−1Y TD‖ = sup
D∈D+

‖(ZTDZ)−1ZTD‖,

where D+ is the set of positive definite diagonal n×n matrices. They use a geometric
approach to prove this result. We note that Corollary 4.2, specialized to the case of
diagonal positive definite weight matrices, allows us to state the same result. Fur-
thermore, we obtain an explicit expression for the supremum by Corollary 2.2. The
following corollary summarizes this result.

Corollary A.1. Suppose that an n × n orthogonal matrix Q is partitioned as
Q = (Z Y ), where Y is an n×m matrix. Let D+ denote the set of diagonal positive
definite n× n matrices. Then,

sup
D∈D+

‖(ZTDZ)−1ZTD‖2 = max
J∈J (ZT )

1

σmin(ZJ)

= sup
D∈D+

‖(Y TDY )−1Y TD‖2 = max
J̃∈J (Y T )

1

σmin(YJ̃)
,

where J (ZT ) is the collection of sets of column indices associated with nonsingular
(n−m)× (n−m) submatrices of ZT and J (Y T ) is the collection of sets of column
indices associated with nonsingular m×m submatrices of Y T .

Proof. Since D ∈ D+ if and only if D−1 ∈ D+, Corollary 4.2 shows that

sup
D∈D+

‖(ZTDZ)−1ZTD‖2 = sup
D∈D+

‖(Y TDY )−1Y TD‖2.

The explicit expressions for the two suprema follow from Corollary 2.2.
Hence, in our setting, we would rather state the result of Gonzaga and Lara [15]

in the equivalent form

sup
D∈D+

‖(Y TDY )−1Y TD‖ = sup
D∈D+

‖(ZTD−1Z)−1ZTD−1‖

with the expressions for the suprema stated in Corollary A.1.
Note that an implication of Corollary A.1 is that if an n×n orthogonal matrix Q

is partitioned as Q = (Z Y ) where Y has m columns, there is a certain relationship
between the smallest singular value of all nonsingular (n−m)×(n−m) submatrices of
Z and the smallest singular value of all nonsingular m×m submatrices of Y . This is
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in fact a consequence of a more general result, namely, that if Q is partitioned further
as

Q =

(
Z1 Y1

Z2 Y2

)
,(A.1)

where Z1 is (n − m) × (n − m), then all singular values of Z1 and Y2 that are less
than one are identical. This in turn is a consequence of properties of singular values
of submatrices of orthogonal matrices that can be obtained by the CS-decomposition
of an orthogonal matrix; see, e.g., Golub and Van Loan [14, section 2.6.4].

This result relating the singular values of Z1 and Y2 of (A.1) implies the existence
of J and J̃ , which are complementary subsets of {1, . . . , n}, for which the maxima in
Corollary A.1 are achieved. This observation lead us to the result that

‖(Y TDY )−1Y TD‖2 = ‖(ZTD−1Z)−1ZTD−1‖2
for any positive definite diagonal D. Subsequently, this result was superseded by the
more general analysis presented in section 4.
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Abstract. The recent paper [J. Approx. Theory, 106 (2000), pp. 185–225] provides a complete
characterization of the L2-smoothness of a refinable function in terms of the spectrum of an associated
operator. Based on this theory, we devise in this paper a numerically stable algorithm for calculating
that smoothness parameter, employing the deflated Arnoldi method to this end. The algorithm is
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1. Introduction. We are interested in the computation of the smoothness pa-
rameter of refinable functions. Refinable functions (known also as “scaling functions”)
are solutions of special functional equations that are known as refinement equations.
The refinement equation expresses a dilate of the solution as the convolution product
of that solution with a discrete kernel, the latter being known as the mask (cf. (2.2)
for the precise definition). The smoothness of refinable functions is important in two
subareas of analysis. In the area of subdivision algorithms, it determines the smooth-
ness of the limit curve/surface of the subdivision process; in the area of wavelets,
the smoothness of the refinable function is passed on to all wavelet systems that are
derived from it (via the multiresolution analysis vehicle). In most practical cases, the
refinable function is not known explicitly, and the available information consists, pri-
marily, of the mask. Therefore, the determination of the smoothness of the solution
from properties of the mask is one of the key problems in the above-mentioned areas.

Our efforts in this paper are focused on the study of the above problem via
the transfer/transition operator approach. The analysis of the regularity of refinable
functions in terms of the transfer operator was developed by several authors (cf.,
e.g., [D], [DD], [E], and [V] for the univariate case, [RiS], [CGV], [J], [LMW], [RS1],
and [R2] for the multivariate case). In the L2-case, the regularity estimates are in
terms of a specific eigenpair of an associated transfer operator; hence, they seem to be
computationally feasible. However, while the smoothness parameter of some examples
was successfully computed by some authors (see, e.g., [HJ] and [RS1]), there has not
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been (to best of our knowledge) a reliable (i.e., robust) numerical algorithm that works
without significant restrictions on the mask.

Our method is based on the characterizations of the L2-smoothness parameter
given in [RS1], a detailed account of which is given in section 2. For the discussion
here, it suffices to note that the characterization is given in terms of the restriction
of a certain linear operator (the transfer operator) to a finite-dimensional invariant
subspace H (the elements of H are trigonometric polynomials). In order to compute
the smoothness using this approach, one has to overcome four different obstacles, two
of which are of theoretical nature and the other two of numerical nature. First, one
needs a characterization of the spaceH, a characterization that applies to a wide range
of refinement equations; specifically, one should avoid restrictions on the refinement
equations that either cannot be verified numerically or exclude examples of interest.
Second, the characterization of the invariant space H must be computationally veri-
fiable; we found that in most practical cases it is not feasible to compute a basis for
H, hence one must have an alternative method for checking whether a given function
belongs to that invariant space. That alternative method employs a superspace H0

of H which is also an invariant subspace of the transfer operator, and which has an
easily computable basis. The algorithm then finds in H0 eigenvectors of the transfer
operator, and uses a subtle criterion to determine whether the eigenvector found also
lies in H. The success of this approach relies on the ability to recover accurately
many eigenvectors, and not only few dominant ones. Thus, our third obstacle is the
necessity of choosing and implementing carefully the eigensolver. Fourth, a direct
implementation of the theory converts “small” problems (measured, say, in terms of
the support of the mask) to a huge numerical mess, unless properly approached. For
example, the matrix involved in computing one of the bivariate interpolatory refinable
functions constructed in [RiS] has an order of about 4 × 103, leading, thereby, to a
numerically prohibitive eigenproblem.

We present our algorithm and its implementation in four stages. In the first
(section 2), we survey the results of [RS1] on the regularity of refinable functions,
results that serve as the main stimulus for the present endeavor. As is seen there,
the characterization of [RS1] can be implemented in many different ways, and we
carefully devise in the second stage (section 3) what we consider to be the “winning
algorithm” (designed to be fast for the average problem and robust for other cases).
The algorithm requires a supplementary stable method for computing eigenvalues of
linear operators. In the third stage of the presentation (section 4), we describe a
variation of the Arnoldi method [A] that is used to that end, and provide a rough
sketch of our Matlab code. We document in section 5 a sample of the numerical
experiments. Finally, proofs of some results in section 3 are given in section 6.

One must keep in mind that it is rather hard to devise a good universal numerical
algorithm for this problem since the numerical challenge in computing the smoothness
has many, conflicting, faces. For example, in the construction of compactly supported
bivariate interpolatory subdivision schemes, as well as in the related construction
of certain orthogonal and biorthogonal refinable functions (see, e.g., [DGL], [DDD],
[CD], [CS], [RiS], [JRS], [HL], [HJ], [KS], [BW]), one expects to have a relatively large
mask, hence one has to cope with the sheer size of the problem. In contrast, in the
theory of wavelet frames, and in the subsequent constructions of tight wavelet frames
and bi-frames, (cf. [RS2], [RS3], [RS4], [RS5] and in particular [GR]), good wavelet
systems (e.g., tight frames), are derived from a multiresolution analysis based on a
refinable function with unstable shifts. While that refinable function may be very at-
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tractive for applications (having many alternative properties such as high smoothness,
good approximation order, and small support), the problem of finding its smoothness
without the stability assumption is a theoretical challenge (which was overcome for
the first time in [RS1]) and is also a computational challenge.

2. The Sobolev regularity of refinable functions. Since the main objective
of this paper is to convert (some of) the results in [RS1] from theory to practice, we
naturally review first the pertinent results of that paper. The presentation here is
confined to the setup of the present paper. We consider here only scalar refinable
functions (PSI case) in one or two variables whose refinement masks are finitely sup-
ported. (The characterizations of [RS1] apply to the vector (FSI) case, to any number
of dimensions, and do not assume the mask to be finitely supported.) A complete list
of the assumptions made in this paper is provided in what follows.

Let s be a d× d integer matrix that satisfies

s∗s = λ2I(2.1)

for some λ > 1. We refer to such a matrix s as a dilation matrix or, more precisely,
as an isotropic dilation matrix. Let φ be a compactly supported L2-function in d
variables (or, more generally, a compactly supported distribution). We say that φ
is refinable with respect to the dilation matrix s if there exists a finitely supported
sequence a such that

φ(x) = |det s|
∑
j∈Zd

a(j)φ(sx− j), x ∈ R
d.(2.2)

The equivalent formulation of this condition on the Fourier domain is

φ̂(s∗·) = âφ̂,(2.3)

with â the symbol of the sequence a, i.e.,

â(ω) =
∑
j∈Zd

a(j) exp (−ijω).

The sequence a (as well as its symbol â) is called the refinement mask of φ. The
L2-regularity parameter α(φ) of φ is defined by

α(φ) := sup{α ∈ R : φ ∈Wα
2 (R

d)}.
Here, Wα

2 (R
d) is the usual Sobolev space. For the more general nonisotropic dilation,

the analysis in [RS1] provides only upper and lower bounds on the regularity param-
eter. Moreover, most of the interesting refinable functions correspond to isotropic
dilation matrices, whence our decision to consider only isotopic dilations.

As it turns out, the regularity of φ is determined by properties of a related function
known as the autocorrelation function φ# of φ, and which is defined as follows:

φ# : t �→
∫

Rd

φ(x)φ(x− t) dx.

It is easy to see that the Fourier transform of φ# is |φ̂|2. Hence, φ# is refinable with
mask

b̂ := |â|2.
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The 2π-periodization of the Fourier transform of φ#, i.e., the L1(T
d)-function

Φ :=
∑
j∈Zd

|φ̂(·+ 2πj)|2,(2.4)

plays a pivotal role in our discussion. Since φ# is compactly supported (by the fact
that φ is), the Poisson summation formula implies that Φ is a trigonometric polynomial
whose spectrum (i.e., frequencies) in the set

(suppφ#) ∩ Z
d = {x− y ∈ Z

d : x, y ∈ suppφ}.(2.5)

Next, we define the transfer operator. Let Γ be any representer set of the quotient
group 2π(s∗−1

Z
d/Zd). The transfer or transition operator T is defined as

T : L2(T
d) �→ L2(T

d) : f �→
∑
γ∈Γ

(̂bf)(s∗−1 ·+γ).(2.6)

For example, if the spatial dimension is 1, and the dilation is dyadic (i.e., s = 2), Γ
can be chosen as {0, π}, and T becomes

(T f)(ω) = (̂bf)

(
ω

2

)
+ (̂bf)

(
ω

2
+ π

)
.

As was already alluded to in the introduction, the L2-smoothness of φ is char-
acterized by the spectral radius of the restriction of T to a certain invariant space
H (of T ), with H finite dimensional and consisting of trigonometric polynomials. In
general, the space H does not have a simple structure. As a first step, we would
like to construct a finite dimensional superspace of H (made also of trigonometric
polynomials) which on one hand will be T -invariant, while, on the other hand, will
have a simple structure.

To this end, let

Zφ := {j ∈ Z
d : ‖j‖2 ≤ r},

where r is any (fixed) number larger than or equal to

1

λ− 1
max{‖j‖2 : bj �= 0}

with λ defined in (2.1) and with (bj) being the mask coefficients of the autocorrelation
function. Then, since ‖s∗−1x‖2 = 1

λ‖x‖2, the space
Hφ(2.7)

of all trigonometric polynomials whose band lies in that set (i.e., the space spanned by
the exponentials exp (ij·), j ∈ Zφ) is a T -invariant subspace, and all eigenvectors of T
that are trigonometric polynomials must lie in Hφ. Moreover, given any trigonometric
polynomial f , we have that T kf ∈ Hφ for all sufficiently large k (see [LLS1]). This
last property implies that Hφ must contain each eigenvector f of T , provided that f
is a trigonometric polynomial, and that its associated eigenvalue is nonzero. We use
these basic facts in what follows without further notice.

Theorem 2.2 of [RS1] states that the regularity parameter α(φ) of φ is

α(φ) = − logλ ρ
2

,
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where λ is given by (2.1), and ρ = |µ| with µ an eigenvalue of the transfer operator
(and with the associated eigenvector being a trigonometric polynomial). Hence, the
key to the numerical computation of the regularity parameter α(φ) is to compute this
eigenpair (µ, fµ) of T . We will describe in this paper a reliable and numerically stable
algorithm that computes this eigenpair of T , and which thereby finds α(φ). The
algorithm is based on the characterization of ρ as the spectral radius of the restriction
of T to H, with H a certain T -invariant subspace (that is defined below) of Hφ. One
should note thatH, as any subspace ofHφ, consists of trigonometric polynomials, each
of which can be finitely represented in terms of its Fourier coefficients. However, in
order to compute ρ directly from the above description, we also need a robust method
for constructing a basis for H; since the methods we could find for constructing a
basis for H are highly unstable, we will study the action of T on the larger space Hφ,
and we will actually find ρ by other means. But, first, we recall the description of the
space H from [RS1].

The space H is defined as H := Hφ ∩ Iφ, with Iφ an ideal of trigonometric poly-
nomials defined below. To this end, we set Π for the space of all d-variate (algebraic)
polynomials, and Πφ for the following subspace of it:

Πφ :=


p ∈ Π :

∑
j∈Zd

p(j)φ#(· − j) ∈ Π


 .

Definition 2.1 (the ideal Iφ). Let φ be a compactly supported L2-function with

φ̂(0) �= 0. Let φ# be the autocorrelation function of φ and let Φ be the 2π-periodization
of the Fourier transform of φ# as given in (2.4). The ideal Iφ is the collection of all
trigonometric polynomials (in L2(T

d)) f that satisfy

(i) f/Φ ∈ L∞(Td);

(ii) f is annihilated by Πφ in the sense that p(−iD)f(0) = 0 for all p ∈ Πφ. Here
D = ∂

∂ω1...∂ωd
, i.e., p(D) is the constant coefficient differential operator associated

with the polynomial p.

With the definition of Iφ, the results of [RS1] that are used in the present paper
for computing the regularity parameter α(φ) are summarized as follows.

Result 2.2. Let φ be a compactly supported refinable function corresponding
to the isotropic dilation matrix s with φ̂(0) �= 0 and let T be its associated transfer
operator. Further, let the space Hφ and the ideal Iφ be given as in (2.7) and Definition
2.1, respectively. Then

(i) Iφ is T -invariant;

(ii) the regularity parameter α(φ) is

−(logλ ρ)/2,

where ρ is the maximal modulus of the eigenvalues of the restriction of T to Iφ;

(iii) for ρ in (ii), there is an eigenpair (µ, f) of T such that ρ = |µ| and f ∈
Hφ ∩ Iφ.

Indeed, the T -invariance of Iφ is proved in Theorem 2.4 of [RS1]. That theorem
also shows that the regularity parameter α(φ) is determined by any dominant eigen-
pair (µ, f) of T restricted on Hφ ∩ Iφ, in the sense that α(φ) = −(logλ |µ|)/2. This
gives (ii). Recalling that all the T -eigenvectors in Iφ are either in Hφ or in kerT , we
get (iii).
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3. An algorithm for computing the regularity parameter. Result 2.2 sug-
gests that in order to compute the regularity parameter of the refinable function,
we “merely” need to find the spectral radius of the restriction of T to H, where
H = Hφ ∩ Iφ. However, the result cannot be implemented directly, due to the fact
that there is no “good” method for constructing a basis for H.

Before we advance the discussion any further, we seek the following “terminolog-
ical relief”: from now on, given any linear space S, and any linear bounded operator
T from S into a superspace of it, the notion of the spectral radius of T is meant as
the spectral radius of the restriction of T to the largest T -invariant subspace of S.

Result 2.2 suggests the following “direct algorithm”: Given the transfer operator
T associated with the compactly supported refinable φ, a simple method for comput-
ing α(φ) is as follows: (i) Choose a T -invariant superspace H0 of Hφ ∩ Iφ (one which
is convenient for computations). (ii) Find all eigenvalues ν of T |H0

. (iii) For each
eigenvalue ν, find the corresponding eigenspace Vν , then check whether Vν ∩ Iφ �= 0.
(iv) The desired ρ is max{|ν| : Vν ∩ Iφ �= 0}.

Various improvements of this direct algorithm are possible. The most obvious
one is to avoid finding all the eigenvalues ((ii) above), and instead finding them one
by one in decreasing the modulus of the eigenvalue; stop when the first eigenvector
in Iφ is found. That approach suits the Arnoldi method of computing eigenvalues
and eigenvectors. However, even with that improvement, the above “direct method”
suffers from the following drawbacks: (a) If the critical eigenpair (µ, fµ) is preceded
by many other eigenpairs (whose eigenvalues have greater magnitudes), the approxi-
mation provided by the Arnoldi method for the critical eigenvector fµ may be crude,
and it may be hard to determine numerically whether fµ ∈ Iφ. (b) The necessity
to compute a bulk of eigenpairs makes the process relatively slow. (c) Even if the
eigenvector is computed with high accuracy, it may still be hard to determine whether
it belongs to Iφ. This problem (which exists in other approaches too, but to a lesser
extent) is particularly troubling in the case of a multiple eigenvalue, since then we
must check whether Iφ has a nonzero intersection with the eigenspace, a task which
is almost always a numerical challenge (unless the eigenspace lies entirely in Iφ).

The above discussion reveals the following three different aspects that a successful
algorithm has to deal with:

Aspect I: The eigenproblem aspect. We need to recover an eigenpair of a
linear operator. The eigenpair that we look for may be dominated by many other
pairs; nonetheless, we need a fast and accurate recovery of the eigenpair. It would be
best if all/many/most of the eigenpairs that dominate the critical one can somehow
be avoided. Standard variations of the power method (such as the shifted inverse
power method) require an estimate of the critical eigenvalue, an estimate that is not
available here. A fast implementation also requires a savvy conversion of the problem
to matrix computations.

Aspect II: Φ and Πφ. One of the key steps in any algorithm that computes
the regularity parameter is to determine whether a given trigonometric polynomial
f is in Iφ. For this, one needs to (1) find the polynomial Φ, and (2) find the space
Πφ (see the definition of the ideal Iφ). The first task is relatively modest: once we
adopt a mild assumption (the E-condition; see below), it becomes truly simple to
compute Φ accurately. As to the second task, viz., computing a basis for Πφ, it is
hampered by the fact that Πφ, in general, does not have a simple structure (e.g., may
not have a monomial basis), which makes it “unpleasant” even under some additional
conditions (e.g., stability). To overcome this difficulty, we use subtle theoretical facts
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that allow us to get away with only partial computation of Πφ. Moreover, under
“favorable conditions” (which are far less demanding than stability), the approach
yields a substantial shortcut in the search of the critical eigenvalue.

Aspect III: Testing a given eigenvector. In order to check whether a given
eigenvector f is in Iφ, one needs to check whether both (i) and (ii) in the definition
of Iφ are satisfied. As we will see, the algorithm used here frees us from checking
the second condition in the definition of Iφ. Furthermore, when the trigonometric
polynomial Φ is positive everywhere (a condition which is known as “the stability of
the shifts of φ”), the first condition in the definition of the ideal Iφ is automatically
satisfied. Hence, under this stability assumption, the process of checking whether the
eigenvector in hand is in Iφ is fast and very robust. Without the stability assumption,
we have to check whether f/Φ is bounded or not. This problem is on par with the
classical NA problem: determining whether a small number is 0 or not. As said, this
problem is particularly acute for multiple eigenvalues.

The first and third aspects above are problems that belong to the area of numerical
algebra, and we will discuss them in the next section as a part of the discussion on the
implementation and the code. To have an optimal treatment of the second aspect,
we need some additional discussion concerning the regularity of refinable functions
(beyond the general discussion of the previous section).

The discussion is divided into two parts: the first is about the computation of Φ
and the second deals with Πφ.

Computing the trigonometric polynomial Φ. We start with a finitely sup-
ported mask a. For a given mask, we want to know whether there exists a compactly
supported solution to the corresponding refinement equation, and if there is a solu-
tion, whether the solution is unique and whether the solution is in L2. The following
result provides satisfactory answers.

Result 3.1. Let a be a finitely supported mask, and let T be the associated
transfer operator.

(i) If
∑

α∈Zd a(α) = 1 (i.e., â(0) = 1), there exists a compactly supported distri-
bution φ that solves the refinement equation. It is the unique solution that satisfies
φ̂(0) = 1.

(ii) If the restriction of T to Hφ has spectral radius 1, and if all the eigenvalues
(of that restriction) that lie on the unit circle are nondefective, then the corresponding
solution of the refinement equation must lie in L2.

(iii) If the solution φ of the corresponding refinement equation is in L2, then (1,Φ)
is an eigenpair of T .

The first statement is proved by showing that the infinite expansion
∏∞

j=1 â(s
∗−jω)

converges, uniformly on compact sets, to a tempered distribution. The last assertion
is a straightforward exercise. The proof of the second assertion can be found in [LLS2]
as well as in [R2].

Corollary 3.2. Let a be a finite mask satisfying â(0) = 1. Assume that the
corresponding transfer operator T satisfies (ii) of Result 3.1. Then T must have an
eigenpair (1, f), with f a nonnegative trigonometric polynomial.

The condition that appears in part (ii) of Result 3.1 is not necessary for the
solution φ to be in L2 (cf. [RS1]), but refinable functions whose transfer operator
violates this condition are quite “pathological.” In our algorithm, we assume a bit
more, namely that the eigenvalue 1 is simple.

Definition: The weak E-condition. Let a be a given finite mask with â(0) = 1
and let φ be the corresponding compactly supported solution. Let T be the transfer
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operator associated with φ. We say that a (or φ, or T ) satisfies the weak E-condition
if the restriction of T to Hφ has spectral radius 1, all the eigenvalues on the unit
circle are nondefective, and 1 (which is then necessarily an eigenvalue) is a simple
eigenvalue.

Remark. The previous discussion implies that, under the weak E-condition, the
refinement equation has a unique compactly supported solution, φ, that lies in L2

and satisfies φ̂(0) = 1. Further, Φ (i.e., the 2π-periodization of the Fourier transform
of the autocorrelation of the solution) is the unique eigenvector (up to a constant) of
the eigenvalue 1 of the transfer operator.

Remark. If we add to the weak E-condition the additional assumption that T |Hφ

has a unique dominant eigenvalue, we obtain a condition known as the E-condition
(which is useful in the analysis of various problems; for example, [LLS2] proves that
the E-condition characterizes the L2-convergence of the cascade algorithm; see also
section 3.1 of [R2]). This explains our usage of “weak E-condition.” Finally, we point
out that it is not difficult to show that if T satisfies the weak E-condition on Hφ, then
it satisfies weak E-condition on any T -invariant superspace H0 of Hφ that consists of
trigonometric polynomial (see [LLS2]).

In the first step of the algorithm, we select a convenient T -invariant superspace
H0 of Hφ. Then, the algorithm checks whether T satisfies the weak E-condition.
If the weak E-condition is satisfied, it computes the eigenvector associated with the
eigenvalue 1. The (normalized) symbol of that eigenvector is the function Φ.

Doing without Πφ. We now elaborate on the second condition in the definition
of Iφ. Let Z be some finite, fixed, subset of Z

d, and let HZ be the span of the
exponentials ω �→ exp(ij · ω), j ∈ Z, endowed with the L2(T

d)-inner product 〈·, ·〉.
Given any (algebraic) polynomial p and any f ∈ HZ , one observes that p(−iD)f(0) =∑

j∈Z p(j)fj , with (fj)j the Fourier coefficients of f . Hence, the linear functional
(in H∗

Z) f �→ p(−iD)f(0) is represented by the trigonometric polynomial tp(ω) :=∑
j∈Z p(j) exp(ij · ω), i.e.,

p(−iD)f(0) = 〈tp, f〉 =
∑
j∈HZ

p(j)fj ∀f ∈ HZ .(3.1)

We now connect the above abstract discussion to our concrete problem. In this
discussion, we use, for a given subspace Q ⊂ Π of algebraic polynomials, the notation

PQ

for the orthogonal projector from HZ onto {tp : p ∈ Q}.
When Z above is Zφ (see (2.5)), the space HZ becomes Hφ (of (2.7)). Further-

more, by choosing Q above to be Πφ, the second condition in the definition of Iφ
simply says that the critical eigenvector lies in the orthogonal complement (in Hφ) of
{tp : p ∈ Πφ}. Thus, if we set

Pφ := PΠφ

for the orthogonal projection of Hφ onto {tp : p ∈ Πφ}, condition (ii) in the defini-
tion of Iφ will be automatically satisfied if we iterate (in the search for the critical
eigenvector) with the operator (1−Pφ)T , instead of iterating with the transfer oper-
ator itself. This allows us to restate Result 2.2 in the following equivalent (yet more
practical) way.
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Restatement of Result 2.2. In the notations and assumptions of Result 2.2, let I ′φ
be the ideal of all trigonometric polynomials of the form tΦ, t ∈ L∞(Td) (i.e., those
that satisfy the first condition in the definition of Iφ). Then the spectral radius ρ in
Result 2.2 is the same as the spectral radius of the restriction of (1−Pφ)T to Hφ∩I ′φ.

The discussion still leaves us with the need of finding a basis for Πφ (in order to
compute the projector Pφ). As we alluded to before, this can be partially circum-
vented: suppose that Q is some subspace of Πφ, and suppose that we replace the
operator (1 − Pφ)T by the operator (1 − PQ)T . The latter one will fail to suppress
some of the eigenvalues that the former one does; however, that apparent fault is
harmless if we know that all these “unsuppressed” eigenvalues are smaller than the
critical one. But do we have such a space Q, which, in addition, has a simple basis?

In order to answer the above question, we define

mφ := max{m ∈ N : Πm ⊂ Πφ},(3.2)

where Πm is the space of d-variate algebraic polynomials with degree ≤ m. We will
show that we can replace the space Πφ by the space Πmφ

, and, moreover, we can
sometimes do with Πm for m < mφ. In addition, we show a way to compute mφ from
the given data, viz., the mask a and the trigonometric polynomial Φ. We begin with
that latter issue.

Proposition 3.3. Let φ be a refinable compactly supported L2-function with
mask a. Let Γ = 2π(s∗−1

Z
d/Zd). Then Πm ⊂ Πφ if and only if b̂Φ (= |â|2Φ) has a

zero of order m+ 1 at each of the points in Γ\0.
The spaces Πm, m ≤ mφ, are certainly subspaces of Πφ and have a simple struc-

ture. The next result studies the suitability of the choice Q := Πm. For notational
convenience we set, for any nonnegative integer m,

Pm := PΠm .

Proposition 3.4. Let φ be a refinable function with corresponding mask a and
transfer operator T . Let ρm be the spectral radius of the restriction of (1 − Pm)T to
Hφ ∩ I ′φ. Then

(a) ρmφ
= ρ;

(b) for an odd m ≤ mφ, we still have ρm = ρ, unless ρm ≤ λ−m−1.
We prove the above propositions in the last section; hence, we are ready to present

here our algorithm.
Algorithm: Step I. Compute the T -invariant space Hφ. Then, check whether

T satisfies (onHφ) the weak E-condition. If 1 is not an eigenvalue of T , return the mes-
sage ‘‘There is no L2-solution to the refinement equation" and quit. If, oth-
erwise, the weak E-condition is still violated, give another appropriate rejection mes-
sage (that indicates that the solution may still not be in L2) and quit. If the weak
E-condition is satisfied, compute the eigenvector associated with the eigenvalue 1.
Check (for consistency only) that the eigenvector is nonnegative (or nonpositive).
The (normalized) symbol of that eigenvector is the function Φ.

Algorithm: Step II. Set mφ,γ + 1 to be the order of the zero that |â|2Φ has at
γ, and set

mφ := min{mφ,γ : γ ∈ Γ\0}.
Algorithm: Step III. Find the eigenpairs (in Hφ) of (1−PΠmφ

)T , one by one,

ordered according to the eigenvalue modulus. Stop when finding the first eigenpair

(µ, fµ) for which fµ/Φ is bounded. The L2-regularity of α(φ) is then − logλ(|µ|)
2 .
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Remark. We note that no differentiation is really conducted in Step II. Instead,
one uses the fact that

p(−iD)f(γ) = 〈p exp(iγ·), f〉

(compare with 3.1). Further, since the maximal order of zeros of b̂Φ is even, mφ is
odd.

Remark. We note that if Φ does not vanish at Γ\0, then the space (1−PΠmφ
)Hφ

is T -invariant. In contrast, if Φ vanishes at a point of Γ\0, (1−PΠmφ
)Hφ may not be

T -invariant anymore. Nonetheless, Proposition 3.4 always holds. Its proof relies on
the fact that the subspace (1− PΠmφ

)(Hφ ∩ Iφ) is always T -invariant.
The algorithm checks for possible shortcuts: Stability. In many cases of

interest, the shifts of the refinable function are stable. A convenient way to define
the stability here (which is entirely equivalent to the more standard definitions) is
that Φ > 0 (everywhere). Since our algorithm computes Φ in any event, it checks
whether Φ is everywhere positive. In that event, it performs two shortcuts. The
major one is that the first condition in the definition of Iφ becomes superfluous, and
hence the iterations with (1−PΠmφ

)T search for a dominant eigenvalue. This not only

accelerates the algorithm, but also results in a dramatic improvement of its numerical
stability. Indeed, in this case we do not need to determine whether a large value of
f/Φ should be interpreted as finite or infinite. Note that, since Φ is the dominant
eigenvector, we are able to compute Φ with great accuracy. Hence, it is possible to
have a stable numerical algorithm to check whether Φ > 0.

In the case of stability, another, less important, shortcut occurs: in the computa-
tion of mφ, we look in general for the order of the zeros of b̂Φ on Γ\0. If Φ vanishes

nowhere, these zeros coincide with those of b̂, and we do not need to compute b̂Φ
(i.e., to convolve their Fourier coefficients.) For that shortcut, we need only Φ to
be nonzero on Γ\0 (and indeed we implement that shortcut under that mere latter
condition).

4. Numerical implementation details. In the actual numerical implementa-
tion, we treat the transfer operator as acting on sequences, i.e., we use the operator
T defined by

T c := (T ĉ)∨,

where f∨ is the inverse Fourier transform of f . The sequence c is always defined on
Z
d and has finite support. We use the pairing

〈θ, c〉 :=
∑
j∈Zd

θ(j)c(j),(4.1)

in which c is finitely supported and θ is any sequence defined on Z
d, or more generally,

a function in C(Rd).
Next, we provide some details about the steps in the algorithm given in the

previous section.
For the first step, we find the set Zφ as in section 2. We then compute, via the

deflated Arnoldi method, a basis for the dominant eigenspace of the transfer operator
T : +2(Zφ) −→ +2(Zφ). Then, we check whether the transfer operator T satisfies the
weak E-condition. If the weak E-condition is satisfied, we compute the eigenvector
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corresponding to the eigenvalue 1: its Fourier series is the function Φ; else, the weak
E-condition is violated, and we quit.

For the second step, we first check whether Φ vanishes on Γ\{0}. If it does not,
we find the largest integer m such that

〈exp(iγ·) p, a〉 = 0 ∀ p ∈ Πm, γ ∈ Γ\{0},(4.2)

where a is the refinement mask of φ. We then set mφ := 2m + 1. If Φ vanishes on
Γ\{0}, then we find the largest integer m such that

〈exp (iγ·) p, c〉 = 0 ∀ p ∈ Πm, γ ∈ Γ\{0},(4.3)

where c = b ∗h, b is the mask of the autocorrelation function φ#, and h is the Fourier
coefficients of Φ, i.e., ĥ = Φ. We then set mφ := m.

For these, it is sufficient to check that (4.2) or (4.3) holds for a basis of Πm.
However, it is important to choose a well-conditioned basis. The usual monomial
basis of Πm is very ill conditioned, and therefore is inappropriate for our purpose. We
choose here instead a suitable orthonormal basis. That orthonormal basis is described
in what follows.

For the third step, if Φ vanishes nowhere, we compute the dominant eigenvalue
µ of (I − PΠmφ

)T via the deflated Arnoldi method as detailed below. Then, set

α(φ) = − logλ |µ|
2 .

If Φ vanishes anywhere (in [−π, π]d as this function is 2π-periodic), then we
proceed as follows.

(i) We compute the next group of the distinct dominant eigenvalues of (I −
PΠmφ

)T via the deflated Arnoldi method. Then we order the eigenvalues according
to decreasing magnitudes of their values as

|µ1| ≥ |µ2| ≥ · · · .

(ii) We compute a basis for the eigenspace associated with each of the eigenvalues
computed in (i) via the deflated Arnoldi method. Denote them as {f1, . . . , fL}.

(iii) If there exists scalars t1, . . . , tL not all zero such that

L∑
i=1

tif̂i/Φ

is bounded, then set α(φ) = − logλ |µk|
2 ; stop. Otherwise, go back to step (i).

We discuss now the following numerical methods used to implement the algorithm.
The action of T on a vector. Let c be an arbitrary sequence in +2(Zφ). The

action of the transfer operator T on c is as follows. First, generate a new sequence
b∗c by convolution, then reparameterize the sequence (b∗c)j∈Zd to a sequence defined
on s−1

Z
d. Finally, the image T c is the restriction to Z

d of the sequence (b∗ c)j∈s−1Zd .
The resulting sequence T c is still supported in Zφ. Once T c ∈ +2(Zφ) is obtained,
it is relatively easy to compute orthogonal projections of it onto various subspaces,
provided that we also have an orthonormal basis for these subspaces.

Construction of an orthonormal basis for Πn. The standard construction
of an orthonormal basis (ON) for Πm is done by applying the Gram–Schmidt process
to the monomial basis {(jβ)j∈Zφ

: |β| ≤ m}. However, this standard construction is
numerically unstable. A more stable process (known as the modified Gram–Schmidt)
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can be devised by modifying the Gram–Schmidt process, which we describe now in
the bivariate case. Set N := #Zφ.
Modified Gram–Schmidt:

Let v(0,0) = 1√
N
(1)j∈Zφ

.

for k = 1, 2, . . . ,m
for β1 = 0, 1, . . . , k

if β1 = 0
w = (j(2) v(0,k−1)(j))j∈Zφ

.
else
w = (j(1) v(β1−1,k−β1)(j))j∈Zφ

.
Orthogonalize w against all previously generated ON vectors v to get w′.
Set v(β1,k−β1) = w′/‖w′‖2.

Let

Bm := {v(β) : |β| ≤ m}.(4.4)

Now, we describe here how to apply the deflated Arnoldi method [S] to our case.
The method may not be as robust as other more sophisticated methods for the same
purpose, such as the implicitly restarted Arnoldi [LSVY], [LS], the Jacobi–Davidson
method [SV], and the truncated RQ iteration [SY]. Nonetheless, as our examples in
the next section show, even with this relatively simple method, our proposed algorithm
works well. Of course, for a more robust implementation, one should replace the
deflated Arnoldi method by one of the more robust dominant eigenspace solvers just
mentioned.

The deflated Arnoldi method. We first note that the operator (I−Pφ)T can
be viewed as an operator on R

N with N = |Zφ|; we just need to order the points
in Zφ, and identify +2(Zφ) with R

N , the latter equipped with the standard inner
product on R

N . Let A be an arbitrary linear endomorphism of R
N . The deflated

Arnoldi method is described in the following steps:
(1) Choose an initial vector v1 ∈ R

N with ‖v1‖2 = 1. Set k = 1. Select the
number m of Arnoldi iterations to be performed in each pass.

(2) Arnoldi iteration:
for j = k, k + 1, . . . ,m

compute w = Avj
for i = 1, 2, . . . , j
hij = 〈w, vi〉
w = w − hijvi

hj+1,j = ‖w‖2
vj+1 = w/hj+1,j .

Let Vm be the matrix whose kth column is the vector vk and Hm = (hij) be the
m×m upper Hessenberg matrix constructed above. The vectors vj generated by the
Arnoldi iteration satisfy the following relation:

AVm = VmHm + hm+1,m vm+1e
T
m.

Suppose (µ, y) is an eigenpair of Hm. Then (µ, Vmy) is an approximate eigenpair of
A.

(3) Compute approximate eigenvectors y1, y2, . . . , yt, associated with the
dominant eigenvalues µ1, µ2, . . . , µt of Hm. Compute the residual norms ρk =
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‖AVmyk − µVmyk‖2 for k = 1, . . . , t. If yi1 , yi2 , . . . , yir (where r ≤ t) are the vectors
such that the corresponding residual norms are small enough, then ui1 = Vmyi1 , ui2 =
Vmyi2 , . . . , uir = Vmyir are converged approximate eigenvectors of A associated with
the dominant eigenvalues µi1 , µi2 , . . . , µir .

(4) Deflation: Suppose yi1 , yi2 , . . . , yir are eigenvectors of Hm corresponding to
converged eigenvectors ui1 , ui2 , . . . , uir of A associated with the dominant eigenval-
ues µi1 , µi2 , . . . , µir . This step is to deflate these converged eigenvectors from the
Arnoldi iteration so that additional eigenvectors of A associated with these dominant
eigenvalues can be found, whenever they exist.

(i) Compute the QR factorization of the matrix (yi1 , . . . , yir ) using Householder
matrices:

(yi1 . . . yir ) = Q

(
Rr

0

)
,

where Q is an m×m orthogonal matrix and Rr is an r × r upper triangular matrix.
(ii) Update the factorization

Hm ← QTHmQ,

Vm ← VmQ.

It can be shown that the matrices Vm and Hm satisfy the relation

AVm = VmHm + hm+1,m vm+1e
T
m + hm+1,m vm+1w

T

for some vector w such that ‖w‖2 is close to the machine epsilon if the condition
number of Rr is modest. Furthermore, the columns of Vm together with vm+1 form
an orthonormal set, and the first r vectors of Vm lie in the eigenspace of A associated
with µ. That is, the first r vectors of Vm are Schur vectors for the eigenspace of A
associated with µ. The r × r principal minor of Hm is the upper triangular matrix
Rr.

(iii) Exit Step 4. Discard the vectors vr+1, . . . , vm in Vm. Set k = r + 1 and
vr+1 = vm+1, repeat step 2 through step 4; stop if a basis for the eigenspace of A
associated with µ has been found. Note that this process is equivalent to applying
a new deflated Arnoldi iteration with initial vector vr+1 to the operator (I − Pr)A,
where Pr is the orthogonal projector onto the subspace spanned by the Schur vectors
{v1, . . . , vr} of A.

Remark. For simplicity, our discussion above focused on finding the dominant
eigenspace of A, but this restriction is not necessary. In practice, one can find the
eigenspaces associated with several dominant eigenvalues simultaneously.

Checking the boundedness of f/Φ. The major and the most difficult substep
of Step III is to check the boundedness of f/Φ, with f a given trigonometric poly-
nomial. When Φ > 0 (i.e., when the shifts of φ are stable), f/Φ is always bounded,
and this substep is omitted. Thus, under the stability assumption, our algorithm (and
code) is very robust for both univariate and bivariate cases. As a proof of evidence, our
code successfully computed the regularity of the (8, 8, 8) bivariate interpolatory mask
of [RiS], whose autocorrelation mask is support on the square [−31, 31] × [−31, 31].
The matrix representation of the associated transfer operation has an order of about
4000, and a brute force calculation of the regularity using the transfer operator would
require one to find hundreds of eigenvalues of a huge matrix and decide later which of
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the eigenvalues is the critical one. In contrast, since our algorithm does not use the
matrix representation of the transfer operator explicitly, the size of the memory we
need is only a small fraction of that required by a direction calculation. Also, by sup-
pressing a priori hundreds of eigenvectors corresponding to polynomial reproduction,
we need only to calculate the dominant eigenvalue of the operator (I − Pφ)T instead
of a multitude of eigenvalues of T .

For the univariate case, since the function Φ has only finitely many isolated zeros
and the multiplicity of each zero is relatively easy to find, the boundedness of f/Φ
can be completely settled. Consequently, the algorithm and the derived code provide
in this case the exact regularity parameter.

For the bivariate case, it is much more difficult to compute numerically the mul-
tiplicity space of the zeros of Φ. The current version of the code can only handle
the case when Φ has finitely many zeros (which we find as an acceptable assumption:
refinable functions with unstable shifts may be very useful in the construction of
framelets with “customized” properties (cf. [R1]). It is very unlikely that any of these
constructs will violate the “finitely many zeros” condition). Already for this case, the
reliability of our code depends on (i) the number of the zeros and their distribution,
(ii) the “degree” of the multiplicity space of each zero. However, for all of the inter-
esting examples we tested, we did obtain reliable smoothness parameters. Even for
an “extremely bad” refinable function (i.e., whose Φ vanishes at many points and to
high degrees) the code is able to provide “good” lower bounds on the regularity, much
better than the lower bound obtained by ignoring the dependence relation effect.

Given a trigonometric polynomial f , in order to check whether f/Φ is bounded
in [−π, π]d, one needs only to check whether it is bounded in local neighborhoods of
the zeros of Φ.

Let ξ be a zero of Φ in [−π, π]2 of exact orderm. (The numberm can be computed
numerically.) Thus, all the derivatives of Φ up to order m− 1 vanish at ξ, but some
derivatives of order m do not. The Taylor expansion of Φ at ξ has then the form

Φ(ξ + η) =
∑

|β|=m

DβΦ(ξ)

β!
ηβ + O(‖η‖m+1).

Now, if f/Φ were to be bounded in a local neighborhood of ξ, then it would be
necessary for f to satisfy the condition

Dβf(ξ) = 0 ∀ |β| ≤ m− 1.(4.5)

Hence, we can reject those eigenvalues whose eigenspace contains no eigenvectors that
satisfy (4.5) (for all ξ).

Next we discuss how the condition (4.5) can be checked numerically in our algo-
rithm.

Suppose {g1, . . . , gL} is a basis for the eigenspace associated with an eigenvalue

µ. Consider the eigenvector g =
∑L

i=1 cigi, where not all the coefficients are zero.
The condition that Dβ ĝ(ξ) = 0 for all |β| ≤ m− 1 is equivalent to

〈g, Sξ〉 = 0,

where

Sξ = {p exp (iξ·) : p ∈ Πm−1} .
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Since g is supported on Zφ, the functions in Sξ may be regarded as sequences defined
on that domain too. Thus, we may interpret the above condition as saying that g lies
in the null space of B∗

ξ for a suitable matrix Bξ (whose columns span Sξ). Thus, if
G is a corresponding matrix representation for the basis {g1, . . . , gL}, we need to find
the null space of B∗

ξG.

If Φ has more than one zero, say ξ(1), . . . , ξ(K), then in order to find g such that
ĝ/Φ is bounded on [−π, π]d, we seek a nontrivial null space for

G :=
[
Bξ(1) · · · Bξ(K)

]∗
G.

In our implementation, we find c in the null space of G by computing the SVD (singular
value decomposition) of G. If the minimal singular value σmin(G) of G is sufficiently
small, then we conclude that the null space of G is nontrivial and take c to be a
minimal singular vector of G.

Suppose that f satisfies (4.5) and that d = 2. If, in addition, the following two
polynomials

t �→
∑
|β|=q

DβΦ(ξ)

β!
tβ2 , t �→

∑
|β|=q

DβΦ(ξ)

β!
tβ1 ,(4.6)

are strictly positive on the interval [−1, 1], then f/Φ is bounded. To see this, we
analyze the ratio

f(ξ + η)

Φ(ξ + η)
=

∑
|β|=q

Dβf(ξ)
β! ηβ +O(‖η‖q+1)∑

|β|=q
DβΦ(ξ)

β! ηβ +O(‖η‖q+1)
(4.7)

for sufficiently small nonzero vector η. Suppose |η2| ≤ |η1|. Then η2 = t η1 for
t ∈ [−1, 1], and substituting this into (4.7) would lead to

f(ξ + η)

Φ(ξ + η)
=

∑
|β|=q

Dβf(ξ)
β! tβ2 +O(η1)∑

|β|=q
DβΦ(ξ)

β! tβ2 +O(η1)
.

Hence, whenever the polynomials in (4.6) are strictly positive on [−1, 1], f/Φ is
bounded in a neighborhood of ξ (the above argument applies to the case |η2| ≤ |η1|,
and the complementary case is obtained by symmetry.) Finally, we remark that
whether the polynomials in (4.6) are strictly positive can be checked numerically.

It must be emphasized that the multiplicity of the zero of Φ at a given point ξ,
while necessarily of finite-dimension (since the zero is isolated), is not always of a
total degree form. The present version of our code, however, computes only the total
degree subspace of that multiplicity space, and hence provides in such cases lower
bounds on the smoothness parameter.

5. Examples. We record some of our numerical experiments that we conducted
as a test for the code.

The first class of examples are taken from the bivariate interpolatory refinable
functions that were constructed by [RiS] (“interpolatory” means that φ(j) = δj ,
j ∈ Z

d, and is a stronger property than stability). These examples demonstrate that
the code can handle very large masks of stable refinable functions.
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Example 5.1. The mask ar of an interpolatory refinable function φr in [RiS] is
obtained by convoluting the mask mr of a centered three directional box spline with
mask qr of a carefully chosen distribution. The symbol of mr (for an even r) is

m̂r(ω) =
(
cos
(ω1

2

)
cos
(ω2

2

)
cos
(ω1 + ω2

2

))r
.

The mask mr is of a box spline that lies in C2r−2(R2). The smoothness of φr also
increases with r, but not at the same rate as its box spline factor. The distribution
factor qr, while having a negative effect on the smoothness, is necessary in order to
achieve the interpolatory property of φr. For r = 2, the corresponding q2 is

q̂2(ω) =
(
5− cos(ω1)− cos(ω2)− cos(ω1 + ω2)

)
/2.

The L2-regularity of φ2 is 2.440765. We computed the smoothness αr of the other
interpolatory refinable functions φr, r = 3, 4, . . . , 8. They are as follows:

r 3 4 5 6 7 8
αr 3.175132 3.793134 4.344014 4.862018 5.362768 5.852746

.

As a second test class, we tested four directional box splines. It is well known (cf.
[BHR]) that the shifts of the four directional box spline are not stable. At the same
time, their smoothness is explicitly known.

Example 5.2. The symbols of the masks of the four direction box splines consid-
ered here are

m̂r(ω) =
(
cos
(ω1

2

)
cos
(ω2

2

)
cos
(ω1 + ω2

2

)
cos
(ω1 − ω2

2

))r
.

Our code computed, for r = 1, 2, 3, 4, the corresponding smoothness of 2.5, 5.5, 8.5,
11.5. These are, indeed, the exact smoothness parameters of these splines.

The third set of examples is taken from [JS]. The pertinent refinable functions
are univariate, interpolatory, and correspond to dilation s = 3, 4. The shifts of these
functions form an orthonormal system.

Example 5.3. The mask an of the interpolatory refinable function φn whose
shifts form an orthonormal basis is obtained by convoluting a B-spline of order n
with the mask qn of some distribution. The smoothness of the examples in [JS] with
dilation s = 3, and with B-spline factor of order 2 and 3 are 0.963825 and 1.098068,
respectively. The smoothness of the examples in [JS] with dilation s = 4 and a
B-spline factor of order 2, 3, 4 are 0.890339, 1.21178, and 1.303449.

Example 5.4. The next example is a univariate refinable function whose shifts
are unstable, with mask given by

m̂(ω) = cosj
(ω
2

) (
2 cos(ω)− 1

)k
.

For (j, k) = (4, 3) and (j, k) = (4, 2), the computed smoothness of the refinable
functions is 3.5. This agrees with the fact that both functions are cubic splines. We
note that for this examples the lower bound estimates (that ignore the first condition
in the definition of Iφ) fail to yield the correct smoothness.

The last example shows the difficulties in getting the exact regularity of refinable
functions, in the case where the corresponding dominant eigenvector Φ of T has many
zeros. However, a good lower bound of the regularity is still possible to obtain.
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Example 5.5. The mask is

m̂r(ω)

= cos
(ω1

2

)
cos
(ω2

2

)
cos
(ω1 + ω2

2

)
cos
(ω1 − ω2

2

) (1 + ei(6ω1+5ω2)

2

)(1 + ei(−3ω1+5ω2)

2

)
.

The operator (I − Pφ)T has the following dominant eigenvalues:

µ = 2−6 with the dimension of eigenspace = 6;

µ = 2−7 with the dimension of eigenspace = 12;

µ = 2−8 where dimension of eigenspace = 52.

Thus, a straightforward lower bound on the smoothness is 3. The function Φ has
about 79 zeros in [−π, π) × [−π, π). In our computations, we were able to compute
accurately the following zeros:

(−π,−π) ± (2π/3, 0) ± (0, 0.8π) ± (0, 0.4π) ± (2π/3, 0.8π).

Each is verified to have total order 4. Based on these zeros, we were able to reject the
eigenvalues 2−6 and 2−7 as “false” eigenvalues. Thus a lower bound on the regularity
is 4. The refinable function is this case is a box spline whose exact L2-smoothness is
α = 4.5.

6. Proofs of Propositions 3.3 and 3.4.
Proof of Proposition 3.3. Approximation theory basics (cf., e.g., [BDR] and [BR])

imply that Πm ⊂ Πφ if and only if |φ̂|2 has a zero of order m+1 at each j ∈ 2πZ
d\0.

Set L := 2π(Zd\(s∗Zd)) (to get a feeling for that set: in one dimension, dyadic
dilations, this is the set of 2π-odd integers). Given a nonzero 2π-integer j, we write
it as j = s∗kj′, j′ ∈ L, and use k times the refinement equation to conclude that

φ̂(ω + j) = φ̂(s∗−kω + j′)
k∏

n=1

â(s∗−n(ω + j)).

This means that |φ̂|2 has a zero of order m+ 1 as each point of 2πZ
d\0 if and only if

it has such a zero at each point of (the smaller set) L.
We proceed by stating the following lemma, whose proof is postponed until after

the proposition is proved.
LEMMA. Let φ be a compactly supported L2-function. Let γ ∈ R

d. Then |φ̂|2
vanishes to order m at each j ∈ γ + 2πZ

d if and only if its 2π-periodization Φ has
such zero at γ.

In order to complete the proof of the proposition, note that L is the disjoint union
of the cosets s∗(γ + 2πZ

d), γ ∈ Γ\0. For j ∈ 2πZ
d, the 2π-periodicity of b̂ implies

that |φ̂(s∗(γ + j))|2 = b̂(γ)|φ̂(γ + j)|2. The 2π-periodization of the right-hand side is

b̂(γ)Φ(γ); thus the lemma applies to show that |φ̂|2 has a zero of order m+ 1 at each

of s∗(γ + 2πZ
d) if and only if b̂Φ has such a zero at γ. Varying that conclusion over

all γ ∈ Γ\0, we obtain the desired result.

It remains now to prove the lemma. One implication here is trivial: since |φ̂|2 is
nonnegative, its 2π-periodization can have a zero of a certain order at γ only if each
of the summands has a corresponding zero.
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Assume conversely that |φ̂|2 has a zero of order m at each γ + j, j ∈ 2πZ
d, and

note that (since φ̂ is smooth) m must be even. Let Ω be a small neighborhood of

γ. Since φ is compactly supported, we have that φ̂ ∈ W ρ
2 (R

d) for any ρ. Now, since

φ̂ has a zero of order m/2 at γ + j, we have (with Dβ , β ∈ Z
d, the usual partial

differentiation)

|φ̂(ω + γ + j)| ≤ c|ω|m/2 max
|β|=m/2

‖Dβφ̂‖L∞(Ω+j) for ω ∈ Ω.(6.1)

Choosing ρ > m/2 + d/2, the Sobolev embedding theorem implies that W ρ
2 (Ω + j) is

continuously embedded in the Sobolev space W
m/2
∞ (Ω + j). Thus,

max
0≤|β|≤m/2

‖Dβφ̂‖L∞(Ω+j) ≤ c1‖φ̂‖Wρ
2 (Ω+j),

with c1 independent of j (since all the Ω + j sets are translates of each other). Sub-
stituting this into (6.1) we obtain that

|φ̂(ω + γ + j)| ≤ c2|ω|m/2‖φ̂‖Wρ
2 (Ω+j), ω ∈ Ω, j ∈ 2πZ

d.

Squaring the last inequality and summing over j ∈ 2πZ
d (and assuming, for simplicity

and without loss, that ρ is an integer) we obtain that

Φ(ω + γ) ≤ c3|ω|m‖φ̂‖2Wρ
2 (Rd).

Proof of Proposition 3.4. Statement (a) follows from (b): choosing in (b) m to
be (the odd number) mφ, we get (a) unless ρmφ

≤ λ−mφ−1. However, in the event
that this latter inequality holds, we get that ρ ≤ ρm ≤ λ−mφ−1, implying thereby
that α(φ) ≥ mφ+1

2 . This implies (cf. [R1]) that the shifts of φ span all polynomials of

degree
mφ+1

2 , and hence that the shifts of φ# span all polynomials of degree mφ + 1,
in contradiction to the very definition of mφ.

In order to prove (b), let f ∈ Hφ∩I ′φ be an eigenvector of the operator (1−Pm)T ,
with an associated eigenvalue µ. Assume also that |µ| > λ−m−1.

We first prove that f is actually an eigenvector of T . For that, we first observe

that b̂f has a zero of order m+ 1 at each of the points of Γ: for γ ∈ Γ\0, this follows
from the fact that b̂f = b̂Φt, for a bounded t (since f ∈ I ′φ), together with Proposition
3.3. For γ = 0, this follows from the fact that, by assumption, (1 − Pm)T f = µf ,
hence f lies in the range of (1 − Pm) (and every function in that range vanishes to

orderm+1 at the origin). Thus, indeed, b̂f vanishes to orderm+1 on Γ. We conclude
from the definition of T that T f vanishes to order m+1 at the origin, and hence that
µf = (1− Pm)T f = T f.

We will now establish (b) by a chain of (in)equalities. First, by our assumptions
on µ,

m+ 1 < logλ(|µ|).

Second, once we know that (µ, f) is an eigenpair of T , we can write

logλ(|µ|) = lim
k→∞

logλ ‖T k(f)‖L1(Td)

k
.(6.2)
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Since |T f | ≤ T |f | (regardless of the nature of f), we get that

lim
k→∞

logλ ‖T k(f)‖L1(Td)

k
≤ lim sup

k→∞

logλ ‖T k|f |‖L1(Td)

k
.(6.3)

Let

u : ω �→

 d∑

j=1

sin2(ωj/2)




(m+1)/2

.

Then, our assumptions here imply that the function g := |f |/u is bounded and that,
moreover, g/Φ is also bounded. Invoking (b) of Corollary 2.10 of [RS1] (with g there
being our g here, and with + there being (m + 1)/2 here; the corollary requires that
the right-hand side of (6.2) is greater than m + 1, something that we have already
proved), we get that

lim sup
k→∞

logλ ‖T k(|f |)‖L1(Td)

k
≤ −2α(φ).

Finally, −2α(φ) = logλ ρ. We thus conclude that logλ |µ| ≤ logλ ρ and hence that
ρm ≤ ρ. The converse inequality is trivial.
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ROBUST EIGENSTRUCTURE ASSIGNMENT IN QUADRATIC
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Abstract. Feedback design for a second-order control system leads to an eigenstructure assign-
ment problem for a quadratic matrix polynomial. It is desirable that the feedback controller not only
assigns specified eigenvalues to the second-order closed loop system but also that the system is robust,
or insensitive to perturbations. We derive here new sensitivity measures, or condition numbers, for
the eigenvalues of the quadratic matrix polynomial and define a measure of the robustness of the
corresponding system. We then show that the robustness of the quadratic inverse eigenvalue problem
can be achieved by solving a generalized linear eigenvalue assignment problem subject to structured
perturbations. Numerically reliable methods for solving the structured generalized linear problem
are developed that take advantage of the special properties of the system in order to minimize the
computational work required. In this part of the work we treat the case where the leading coefficient
matrix in the quadratic polynomial is nonsingular, which ensures that the polynomial is regular. In
a second part, we will examine the case where the open loop matrix polynomial is not necessarily
regular.

Key words. second-order control systems, quadratic inverse eigenvalue problem, feedback
design, robust eigenstructure assignment, structured perturbations

AMS subject classifications. 65F18, 65F35, 93B32, 93B52, 93B55

PII. S0895479899362867

1. Introduction. The time-invariant second-order control system

J z̈−Dż− Cz = Bu, z(0), ż(0) given,(1)

where z(t) ∈ R
n, u(t) ∈ R

m, J,D,C ∈ R
n×n, and B ∈ R

n×m, arises naturally in a
wide variety of applications, including, for example, the control of large flexible space
structures, earthquake engineering, the control of mechanical multibody systems, sta-
bilization of damped gyroscopic systems, robotics, and vibration control in structural
dynamics [1], [2], [14], [15], [22], [6], [25], [12], [13], [3], [26], [32], [23], [4], [7]. The
control problem is to design a proportional and derivative state feedback controller of
the form

u = K1z+K2ż+ r,(2)

where K1,K2 ∈ R
m×n and r(t) ∈ R

m, such that the closed loop system

J z̈− (D +BK2)ż− (C +BK1)z = Br(3)

has desired properties. The behavior of the closed loop system (3) is governed by the
eigenstructure of its associated quadratic matrix polynomial

Pcl(λ) ≡ λ2J − λ(D +BK2)− (C +BK1).(4)
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The response of the system can, therefore, be shaped by selecting the feedback gain
matrices K1 and K2 to assign the eigenstructure of the quadratic polynomial (4). The
control design problem is thus formulated as an inverse quadratic eigenvalue problem.
In practice (if m > 1), there is additional freedom in the solution to the problem
and it is desirable to choose the feedback to ensure that the eigenstructure of the
closed loop system is as robust, or insensitive to perturbations in the system matrices
J, D +BK2, C +BK1, as possible.

Few computational techniques are available for treating the multi-input quadratic
eigenstructure assignment problem directly. In [2], [14], [22], methods based on modal
decompositions, which require the simultaneous diagonalization of the system matri-
ces, are proposed. This approach is not generally applicable since the open loop
system matrices may not always be diagonalizable. In any case, the technique is not
numerically reliable because modal decompositions can be highly sensitive to compu-
tational errors. Two methods that are numerically reliable are described in [5]. The
first of these is a modification of a technique proposed in [15], and the second is a
generalization of a feedback stabilization procedure given in [8]. Both of these tech-
niques aim to ensure that the (augmented) matrix of eigenvectors is well conditioned
for inversion, which is a desirable property of the design. These procedures do not,
however, ensure the robustness of the closed loop system.

In the majority of methods that have been proposed for solving the robust
quadratic eigenvalue assignment problem, the second-order control system (1) is
rewritten as a first-order system and techniques for treating the generalized linear
feedback design problem are applied. There are two difficulties in using this approach.
The first is that the measure of robustness for the linear problem is not the same as
for the quadratic problem, since the allowable perturbations in the linear system are
more general than in the quadratic problem. The second difficulty arises because the
linear system has double the dimensions of the original quadratic system and, hence,
the computational work used to solve the problem is greater than necessary.

In [16] we have developed numerical techniques for maximizing the robustness of
the feedback design in linear systems that are subject to structured perturbations. We
show here that the sensitivity of the eigenvalue problem for the quadratic polynomial is
equivalent to that for a generalized linear pencil subject to a specific class of structured
perturbations. The robustness of the second-order closed loop system can thus be
ensured by solving a generalized linear eigenvalue assignment problem subject to this
class of perturbations. We extend the methods derived in [16] to generalized linear
systems and show how the special structure of the linear pencil derived from the
quadratic polynomial can be exploited to reduce the computational work needed to
solve the problem.

We consider here the case where the system matrix J is nonsingular and the
quadratic polynomial is thus guaranteed to be regular. In a second paper we will
consider the case where the system matrix J may be singular and the quadratic
polynomial associated with the open loop system may not be regular. The aim of the
feedback design is then to guarantee the regularity of the closed loop system as well
as to assign the finite eigenvalues of the system robustly.

In the case where J is nonsingular, the quadratic matrix polynomial (4) can
be reduced to a monic polynomial by applying the inverse of J from the left. In
practice, the inversion of J should be avoided to ensure numerical reliability. The
nonsingularity of J is assumed here in the theoretical derivation of the robustness
measures, but the computational methods derived here do not use this inverse and
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rely only on numerically stable procedures. We begin by presenting the background
and sensitivity theory for the quadratic eigenvalue problem. In section 3 we establish
the relation between the quadratic problem and the linear eigenvalue problem subject
to structured perturbations. The robust eigenstructure assignment problem is defined
and analyzed in section 4, and a numerical method for constructing the feedback
controller is described in section 5. The results are summarized in the final section.

2. Quadratic eigenvalue problem.

2.1. Preliminary theory. The quadratic matrix polynomial

P (λ) ≡ λ2J − λD − C(5)

and the corresponding second-order system (1) are said to be regular if

det(P (λ)) �= 0 for some λ ∈ C.(6)

We assume throughout that the matrix J is nonsingular. The polynomial P (λ) is thus
regular and the system (1) is solvable in the sense that it admits a classical twice-
differentiable solution z(t) for all continuous controls u(t) and any initial conditions
z(0), ż(0) ∈ R

n. This solution can be characterized in terms of the eigenstructure of
the quadratic polynomial P (λ).

For J nonsingular, the generalized eigenvalues of the quadratic polynomial are
given by the 2n values of λ ∈ C for which det(λ2J −λD−C) = 0. The corresponding
right and left eigenvectors are defined, respectively, to be nonzero vectors v and w
satisfying

(λ2J − λD − C)v = 0,
wH(λ2J − λD − C) = 0.

(7)

Regularity of the polynomial ensures that there exist full rank matrices V,W ∈ C
n×2n

that simultaneously satisfy

JV Λ2 −DV Λ− CV = 0,
Λ2WHJ − ΛWHD −WHC = 0,

(8)

and

VWHJ = 0, V ΛWHJ = I,(9)

where Λ ∈ C
2n×2n is in Jordan canonical form with the eigenvalues of P (λ) on the

diagonal. The columns of V and W comprise, respectively, the right and left eigen-
vectors and principle vectors of the quadratic polynomial. The relations (9) define a
specific normalization of these vectors.

We assume that the modal matrix V satisfying the first equation of (8) is such
that Ṽ = [V T , (V Λ)T ]T is nonsingular. Then, in the notation of [9], the matrix V
and the Jordan matrix Λ together form a Jordan pair of the polynomial P (λ). The
matrixWH = Ṽ −1[0, I]TJ−1 then satisfies the second of (8) and the relations (9) also
hold. The matrices V,Λ,W are known as a Jordan triple of the quadratic polynomial.
Conversely, we find that if V,Λ,W satisfy (8) and (9), where Λ is in Jordan form, then
V,Λ,W form a Jordan triple and we can establish the following lemma. The lemma
gives an explicit form for the inverse of Ṽ that we use subsequently.
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Lemma 1. Let V,W be full rank matrices satisfying (8)–(9), where Λ is in Jordan
canonical form. Then the matrix Ṽ = [V T , (V Λ)T ]T is nonsingular and its inverse is
given by

Ṽ −1 = [ΛWHJ −WHD,WHJ ].(10)

Proof. If (8) and (9) hold, then the conditions

V ΛWHJ − VWHD = I,
V (Λ2WHJ − ΛWHD) = VWHC = 0

(11)

also hold. Therefore, [
V
V Λ

]
[ΛWHJ −WHD,WHJ ] = I2n,(12)

which proves the result.
The solution to the second-order system (1) can be written in terms of the Jordan

triple V,Λ,W as follows.
Theorem 2. Let V,W,Λ satisfy (8)–(9) and let u(t) be a continuous function on

the interval t ∈ [0, T ]. Then, the solution to the second-order system of differential
equations (1) is given explicitly for all t ∈ [0, T ] by

z(t) = V exp(Λt)(ΛWHJ −WHD)z(0) + V exp(Λt)WHJ ż(0)

+

∫ t

0

V exp(Λ(t− s))WHBu(s)ds.
(13)

Proof. The proof is by differentiation and direct verification. We let z(t) be
defined by (13) and assume that (9) holds. Then, by Leibniz’s rule, the continuity of
u(s) and exp(Λ(t− s)) for s, t ∈ [0, T ] implies that the first and second derivatives of
z(t) are given by

ż = V Λexp(Λt)(ΛWHJ −WHD)z(0) + V Λexp(Λt)WHJ ż(0)

+

∫ t

0

V Λexp(Λ(t− s))WHBu(s)ds,

z̈ = V Λ2 exp(Λt)(ΛWHJ −WHD)z(0) + V Λ2 exp(Λt)WHJ ż(0)

+

∫ t

0

V Λ2 exp(Λ(t− s))WHBu(s)ds+ J−1Bu(t).

(14)

The relations (9) imply also that the initial conditions on z and ż at t = 0 are both
satisfied. The proof then follows from (8) by direct substitution of (14) into (1). (See
also [9], [19].)

The response of the control system is therefore shaped by the eigenstructure of its
corresponding quadratic polynomial, and the robustness of the system design depends
on the sensitivity of the eigenstructure to perturbations in the system matrices. In the
next sections, measures of the sensitivity and robustness of the system are derived.

2.2. Sensitivity and robustness. In order to measure the sensitivity of an
eigenvalue of the quadratic polynomial P (λ) to perturbations in its coefficient matri-
ces, we follow the approach of Wilkinson [30]. Without loss of generality (since J is
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nonsingular), we let JδJ, JδD, JδC ∈ R
n×n denote the perturbations in the coeffi-

cient matrices J,D,C, respectively. We assume that λ is a simple eigenvalue of P (λ)
with corresponding right and left eigenvectors v and w satisfying (7). The condition
number of λ is then defined to be

c(λ) = lim
ε→0

sup (|δλ|/ε) ,(15)

where (
(λ+ δλ)2(J + JδJ)− (λ+ δλ)(D + JδD)− (C + JδC)

)
(v + δv) = 0(16)

and

||[δJ, δD, δC]||2 ≤ ε.(17)

It is assumed that ε is sufficiently small to ensure that J(I+δJ) is nonsingular and the
perturbed polynomial thus remains regular. (It is assumed implicitly in the definition
that the perturbations δλ, δv → 0 as ε → 0. See also [11].) From this definition we
have that

|δλ| ≤ c(λ)ε+O(ε2),(18)

and the condition number c(λ) therefore gives a measure of the sensitivity of λ to
perturbations of order ε in the coefficients of P (λ). An explicit form for c(λ) can be
derived as follows.
Theorem 3. Let λ be a simple eigenvalue of the quadratic polynomial (5). Then,

the condition number c(λ) is given by

c(λ) =
α
∣∣∣∣wHJ

∣∣∣∣
2
||v||2

|wH(2λJ −D)v| ,(19)

where α = (|λ|4 + |λ|2 + 1)
1
2 .

Proof. By expanding (16), premultiplying by wH , and applying (7) we obtain

δλwH(2λJ −D)v = −wHJ(λ2δJ − λδD − δC)v +O(ε2)

= −(wHJ)[δJ, δD, δC]


 λ2v
−λv
−v


+O(ε2).

(20)

The assumption that λ is a simple eigenvalue implies that wH(2λJ −D)v �= 0, and
hence an upper bound on the first-order perturbation in λ is given by

|δλ| ≤ α
∣∣∣∣wHJ

∣∣∣∣
2
||v||2

|wH(2λJ −D)v| ||[δJ, δD, δC]||2 +O(ε
2).(21)

To show that this upper bound is attained we let T = (ε/α)JTwvH/
∣∣∣∣wHJ

∣∣∣∣
2
||v||2

and take δJ = λ̄2T, δD = −λ̄T , and δC = −T. Then
||[δJ, δD, δC]||2 = ε(22)

and, since

|wHJ(λ2δJ − λδD − δC)v| = εα
∣∣∣∣wHJ

∣∣∣∣
2
||v||2 ,(23)
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we obtain equality in (21) for these choices of the perturbations. Dividing (21) by ε
and taking the limit as ε→ 0 then completes the proof.

The condition number c(λ) given by (19) measures the sensitivity of the eigenvalue
λ to perturbations in P (λ) in an absolute sense. For a nonzero eigenvalue, a measure
of the relative sensitivity is given by the condition number κ(λ) defined, as in [11], [29],
to be

κ(λ) = lim
ε→0

sup (|δλ|/(ε|λ|)) .(24)

With this definition we find that

κ(λ) = c(λ)/|λ| = α
∣∣∣∣wHJ

∣∣∣∣
2
||v||2

|λ||wH(2λJ −D)v| .(25)

This expression is similar to the result derived in [29]. The difference is due to
the definition of the perturbations and the form of the bound on δJ, δD, δC. The
perturbations chosen here represent errors relative to the components in the leading
coefficient matrix J. This particular form ensures that the same condition number is
derived if the polynomial is first reduced to monic form. It also allows the relations
between the quadratic and linear cases to be established directly, as shown in section 3.
More importantly, this formulation leads to a numerical procedure for solving the
robust eigenstructure assignment problem that does not require the inversion of the
matrix J.

To measure the robustness of the second-order system (1), we need an indicator
of the overall sensitivity of the eigenvalues of the corresponding quadratic polynomial
(5). The condition number (19) gives a proportional measure of the sensitivity of a
simple eigenvalue to perturbations of order ε in the coefficient matrices. For a nonde-
fective eigenvalue λ of multiplicity p, the condition numbers (19) are also well defined
for a particular choice of the basis eigenvectors {vj}p1, {wj}p1 spanning the correspond-
ing right and left invariant subspaces. Provided that these bases are biorthogonal with
respect to the matrix 2λJ −D, then an equivalent proportional measure of the sen-
sitivity of the eigenvalue is given by the square root of the sum of the squares of all
the associated condition numbers. If the system has a defective multiple eigenvalue,
then the sensitivity of some eigenvalue to perturbations of order ε is expected to be
larger by at least an order of magnitude in ε [30], [20], [24]. Therefore, systems that
have defective eigenvalues are necessarily less robust than nondefective systems.

As a global measure of robustness we thus take

ν2 =

2n∑
j=1

ω2
j c(λj)

2,(26)

where the eigenvalues {λj}n1 of the system are assumed to be nondefective and the

positive weights ωj , j = 1, . . . , 2n, satisfy
∑2n

j=1 ω
2
j = 1 with ωj = ωk if λj = λk.

(See also [18], [17].) If the right and left eigenvectors vj , wj , corresponding to λj ,
are normalized such that

(|λj |4 + |λj |2 + 1)
1
2 ||vj ||2 = 1, |wH

j (2λjJ −D)vj | = 1, j = 1, . . . , 2n,(27)

then the robustness measure ν2 can be written

ν2 =

2n∑
j=1

ω2
j

∣∣∣∣wH
j J
∣∣∣∣2
2
=
∣∣∣∣DωW

HJ
∣∣∣∣2
F
,(28)
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whereDω = diag{ω1, . . . , ω2n}. (Here ||(·)||F denotes the Frobenius matrix norm.) The
normalization (27) is consistent with (9) and is selected to enable the relationships
with the linear eigenvalue problem to be established.

2.3. Monic polynomial. Of practical interest is the case where P (λ) is a monic
polynomial with leading coefficient matrix J = I. It is assumed that this leading
coefficient matrix is not subject to perturbations. We consider specifically the monic
quadratic polynomial

P̂ (λ) ≡ λ2I − λA2 −A1,(29)

corresponding to the second-order system (1), where J = I, D = A2, C = A1.
A measure of the sensitivity of a simple eigenvalue λ of the monic polynomial

(29) to perturbations δA1, δA2 in its coefficient matrices A1, A2, respectively, is given
by the condition number c(λ) defined in (15). The right and left eigenvectors cor-
responding to λ are again denoted by v,w, and the first-order perturbation δλ now
satisfies

(
(λ+ δλ)2I − (λ+ δλ)(A2 + δA2)− (A1 + δA1)

)
(v + δv) = 0,(30)

where

||[δA1, δA2]||2 ≤ ε.(31)

An explicit form for c(λ) in this case can be derived as follows.
Theorem 4. Let λ be a simple eigenvalue of the monic polynomial (29). Then,

the condition number c(λ) is given by

c(λ) =
α̂
∣∣∣∣wH

∣∣∣∣
2
||v||2

|wH(2λI −A2)v| ,(32)

where α̂ = (|λ|2 + 1)
1
2 .

Proof. By expanding (30), premultiplying by wH , and using the assumption that
λ is a simple eigenvalue, we can show, by similar arguments to those in Theorem 3,
that an upper bound on the first-order perturbation in λ is given by

|δλ| ≤ α̂
∣∣∣∣wH

∣∣∣∣
2
||v||2

|wH(2λI −A2)v| ||[δA1, δA2]||2 +O(ε2).(33)

This upper bound is attained for the perturbations δA1 = T and δA2 = λ̄T, where
T = (ε/α̂)wvH/

∣∣∣∣wH
∣∣∣∣
2
||v||2 , since this choice ensures that

||[δA1, δA2]||2 = ε(34)

and

|wH(λδA2 + δA1)v| = εα̂
∣∣∣∣wH

∣∣∣∣
2
||v||2 .(35)

Dividing (33) by ε and taking the limit as ε→ 0 then completes the proof.
The form of the condition number in the monic case is thus the same as in

the generalized case up to a constant factor. The difference is due to the different
assumptions on the allowable perturbations.
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The condition number (32) gives an absolute measure of the sensitivity of the
eigenvalue λ in the monic case. For a nonzero eigenvalue, a measure of the relative
sensitivity is given by the condition number κ(λ) defined in (24). We find now that

κ(λ) = c(λ)/|λ| = α̂
∣∣∣∣wH

∣∣∣∣
2
||v||2

|λ||wH(2λI −A2)v| .(36)

The global measure of robustness in the monic case is also taken to be ν2, defined
as in (26). Normalizing the eigenvectors of the polynomial such that

(1 + |λj |2) 1
2 ||vj ||2 = 1, |wH

j (2λjI −A2)vj | = 1, j = 1, . . . , 2n,(37)

then gives

ν2 =

2n∑
j=1

ω2
j

∣∣∣∣wH
j

∣∣∣∣2
2
=
∣∣∣∣DωW

H
∣∣∣∣2
F
.(38)

In both the generalized and the monic quadratic polynomial cases, the control
design problem is to select the feedback gains to assign a given set of 2n nondefective
eigenvalues to the second-order closed loop system and to minimize its robustness
measure ν2. In section 3 we show that this problem can be solved by minimizing the
robustness of a generalized linear system subject to a restricted set of perturbations.

3. Generalized linear problem.

3.1. Transformation of the system. The inverse quadratic eigenvalue prob-
lem is commonly treated by transforming the second-order control system (1) into a
generalized linear state-space, or descriptor, system of the form

Eẋ = Ax+ B̃u, x(0) given,(39)

where E,A ∈ R
2n×2n, B̃ ∈ R

2n×m, and x = [ zT , żT ]T . Various transformations
can be used to embed the second-order equations into the linear form. We consider
the generalized linear system where

E =

[
I 0
0 J

]
, A =

[
0 I
C D

]
, B̃ =

[
0
B

]
.(40)

This form is suitable for treating the feedback design problem. Different transforma-
tions may be desirable for other purposes (see [29]).

The response of the system (39) is governed by the eigenstructure of the general-
ized linear matrix pencil

L(λ) ≡ λE −A.(41)

Since J is nonsingular, the linear pencil L(λ) is regular in the case where E,A are
defined by (40). The system (39) is then uniquely solvable for any continuous con-
trol u(t) and the solution is equivalent to that of the second-order system (1). The
solutions to (1) can therefore also be characterized in terms of the eigenstructure of
L(λ).

The generalized eigenvalues of the linear pencil (41) are given by the 2n values of
λ ∈ C for which det(λE − A) = 0. The corresponding right and left eigenvectors are
defined, respectively, to be nonzero vectors ṽ and w̃ satisfying

(λE −A)ṽ = 0,

w̃H(λE −A) = 0.
(42)
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Regularity of the pencil ensures that there exist nonsingular matrices Ṽ , W̃ ∈ C
2n×2n

that simultaneously satisfy

EṼ Λ−AṼ = 0,

ΛW̃HE − W̃HA = 0,
(43)

and

W̃HEṼ = I,(44)

where Λ ∈ C
2n×2n is in Jordan canonical form. The columns of Ṽ and W̃ comprise,

respectively, the right and left eigenvectors and principle vectors of the linear matrix
pencil. The relation (44) defines a normalization of these vectors.

The equivalence between the eigenstructure of the linear matrix pencil (41) with
coefficients given by (40) and that of the quadratic matrix polynomial (5) can now be
established.
Theorem 5. Let E,A be given by (40). If Ṽ , W̃ are nonsingular matrices satis-

fying (43)–(44), where Λ is in Jordan canonical form, then

Ṽ =

[
V
V Λ

]
, W̃H = [ΛWHJ −WHD,WH ],(45)

where V,W are full rank matrices satisfying (8)–(9). Conversely, if V,W are full rank
matrices satisfying (8)–(9), then Ṽ , W̃ given by (45) are nonsingular and satisfy (43)–
(44).

Proof. We let Ṽ = [Ṽ H
1 , Ṽ

H
2 ]H . If Ṽ satisfies the first equation of (43), where E,A

are defined as in (40), then

Ṽ2 = Ṽ1Λ,

CṼ1 +DṼ2 = JṼ2Λ.
(46)

It follows that Ṽ1 = V satisfies the first equation of (8) and Ṽ2 = V Λ. Conversely, if
V satisfies the first equation of (8), then

A

[
V
V Λ

]
=

[
V Λ

CV +DV Λ

]
=

[
V Λ
JV Λ2

]
= E

[
V
V Λ

]
Λ,(47)

and the first equation of (43) is satisfied. The relation between W̃ and W is shown
similarly. The invertibility of E together with (44) then implies that E−1 = Ṽ W̃H

and hence, from (45), V,W must satisfy VWH = 0 and V ΛWH = J−1 and (9) must
hold. Conversely, if conditions (8)–(9) are satisfied, then, by Lemma 1, Ṽ , W̃ are
invertible and Ṽ W̃H = E−1, which implies that (44) holds.

We next relate the sensitivity of the eigenstructure of the quadratic matrix poly-
nomial to that of the linear matrix pencil.

3.2. Sensitivity to structured perturbations. The sensitivity of a simple
eigenvalue λ of the linear matrix pencil (41) to arbitrary perturbations in the pencil
is known to be directly proportional to the condition number

cL(λ) =
∣∣∣∣w̃HE

∣∣∣∣
2
||ṽ||2 /|w̃HEṽ|,(48)

where ṽ, w̃ are the right and left eigenvectors of the pencil corresponding to λ. (See
[30], [11], [27], [28].) In the case where the coefficient matrices of the pencil are given
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by (40), this condition number is not equivalent to the condition number c(λ) of the
embedded quadratic matrix polynomial derived in section 2.2. The condition number
cL(λ) measures the sensitivity of λ to arbitrary perturbations in all components of the
coefficient matrices E,A of the pencil, whereas the condition number c(λ) measures
the sensitivity of λ only to perturbations in the coefficient matrices J,D,C of the
quadratic polynomial.

In order to establish a condition number for the generalized linear eigenproblem
that is equivalent to that of the quadratic eigenproblem, we extend the theory of [16]
to find a measure of the sensitivity of an eigenvalue of the generalized pencil (41)
to a specific class of structured perturbations. We assume again that λ is a simple
eigenvalue of L(λ) with corresponding right and left eigenvectors ṽ, w̃, respectively.
We consider perturbations δE, δA to the coefficient matrices E,A of L(λ) of the form

δE = EF∆EG
T
1 , δA = EF∆AG

T
2 ,(49)

where ∆E ,∆A are arbitrary (unknown) disturbance matrices and F,G1, G2 are spec-
ified matrices that define the structure of the perturbations. The sensitivity of λ to
perturbations of the form (49) can then be measured by the condition number c̃(λ),
defined as in (15), where the first-order perturbation δλ now satisfies(

(λ+ δλ)(E + EF∆EG
T
1 )− (A+ EF∆AG

T
2 )
)
(ṽ + δṽ) = 0(50)

and

||[∆E ,∆A]||2 ≤ ε.(51)

It is assumed that ε is sufficiently small to ensure that E(I +F∆EG
T
1 ) is nonsingular

and the perturbed linear pencil therefore remains regular. An explicit form for c̃(λ)
is given as follows.
Theorem 6. Let λ be a simple eigenvalue of the linear matrix pencil (41). Then,

the condition number c̃(λ) is given by

c̃(λ) =

∣∣∣∣w̃HEF
∣∣∣∣
2

∣∣∣∣GT
λ ṽ
∣∣∣∣
2

|w̃HEṽ| ,(52)

where Gλ = [λG1, −G2].
Proof. Applying arguments analogous to those in the proofs of Theorems 3 and 4,

we find from (50) that

|δλ||w̃HEṽ| = |w̃H [λEF∆EG
T
1 − EF∆AG

T
2 ]ṽ|+O(ε2)

=

∣∣∣∣w̃HEF [∆E ,∆A]

[
λGT

1

−GT
2

]
ṽ

∣∣∣∣+O(ε2)
≤ ∣∣∣∣w̃HEF

∣∣∣∣
2

∣∣∣∣GT
λ ṽ
∣∣∣∣
2
ε+O(ε2).

(53)

Regularity of the pencil ensures that w̃HEṽ �= 0, and hence an upper bound on the
first-order perturbation in λ is given by

|δλ| ≤
∣∣∣∣w̃HEF

∣∣∣∣
2

∣∣∣∣GT
λ ṽ
∣∣∣∣
2

|w̃HEṽ| ||[∆E ,∆A]||2 +O(ε2).(54)

Equality in (54) is achieved for the perturbations

∆E = λ̄ETFT w̃ṽHG1ε/τ, ∆A = −ETFT w̃ṽHG2ε/τ,(55)
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where τ =
∣∣∣∣w̃HEF

∣∣∣∣
2

∣∣∣∣GT
λ ṽ
∣∣∣∣
2
. Then ||[∆E ,∆A]||2 = ε and

|w̃HE[λF∆EG
T
1 − F∆AG

T
2 ]ṽ| = ε

∣∣∣∣w̃HEF
∣∣∣∣
2

∣∣∣∣GT
λ ṽ
∣∣∣∣
2
,(56)

and the upper bound on |δλ| is attained. Dividing (54) by ε and taking the limit as
ε→ 0 then proves the result.

In the case where the quadratic polynomial is embedded in the linear pencil (41)
and the coefficients of the pencil are given by (40), the arbitrary perturbations may
be taken to be

∆E = δJ, ∆A = [δD, δC],(57)

and the matrices F,Gλ that structure the perturbations may be defined by

F =

[
0
In

]
, GT

1 = [0, In] , GT
2 =

[
0 In
In 0

]
.(58)

The admissible structured perturbations (49) then have the forms

δE =

[
0 0
0 JδJ

]
, δA =

[
0 0
JδC JδD

]
,(59)

where

||[δJ, δD, δC]||2 = ||[∆E ,∆A]||2 ≤ ε.(60)

The condition number c̃(λ) of the linear pencil, subject to the structured pertur-
bations, can now be shown to equal the condition number c(λ) of the quadratic
polynomial.
Corollary 7. Let E,A be defined by (40) and let ∆E ,∆A and F,Gλ be defined

by (57)–(58). Then, the condition number c̃(λ) satisfies

c̃(λ) =
α
∣∣∣∣wHJ

∣∣∣∣
2
||v||2

|wH(2λJ −D)v| ≡ c(λ),(61)

where α = (|λ|4+|λ|2+1)
1
2 and v,w are the right and left eigenvectors of the quadratic

polynomial (5) corresponding to the eigenvalue λ.
Proof. From Theorem 5 it follows that

∣∣∣∣w̃HEF
∣∣∣∣
2
=
∣∣∣∣wHJ

∣∣∣∣
2
,
∣∣∣∣GT

λ ṽ
∣∣∣∣
2
=

∣∣∣∣
∣∣∣∣
[
λGT

1 ṽ
GT

2 ṽ

]∣∣∣∣
∣∣∣∣
2

=

∣∣∣∣∣∣
∣∣∣∣∣∣

 λ2v
λv
v



∣∣∣∣∣∣
∣∣∣∣∣∣
2

= α ||v|| ,(62)

and

|w̃HEṽ| = |2λwHJv −wHDv|.(63)

Substitution into the definitions of the condition numbers then establishes the
result.

An analogous result can be obtained in the case where the embedded quadratic
polynomial is monic. In this case the linear pencil is also monic with coefficient
matrices

E =

[
I 0
0 I

]
, A =

[
0 I
A1 A2

]
.(64)
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It is assumed that the matrix E remains unperturbed. The arbitrary perturbations
are now taken to be ∆E = 0 and ∆A = [δA1, δA2]. The structure of the perturbations
is defined by F = [0, In]

T and GT
λ ≡ GT

2 = I2n. The admissible perturbations then
satisfy ||[δA1, δA2]||2 ≤ ε and the condition number c̃(λ), given by (52), can be shown
to equal the condition number c(λ), given by (32).
Corollary 8. In the case of a monic pencil, with coefficients E,A defined by

(64), the condition number c̃(λ) satisfies

c̃(λ) =
α̂
∣∣∣∣wH

∣∣∣∣
2
||v||2

|wH(2λI −A2)v| ≡ c(λ),(65)

where α̂ = (|λ|2 + 1)
1
2 and v,w are the right and left eigenvectors of the monic

quadratic polynomial (29) corresponding to the eigenvalue λ.
Proof. From Theorem 5 we have

∣∣∣∣GT
λ ṽ
∣∣∣∣
2
=

∣∣∣∣
∣∣∣∣I2n

[
v
λv

]∣∣∣∣
∣∣∣∣
2

= α̂ ||v|| , |w̃HEṽ| = |wH(2λI −A2)v|.(66)

The proof then follows as in Corollary 7 with J = I, D = A2, and C = A1.

3.3. Robustness. As an overall measure of the sensitivity of the linear matrix
pencil (41) to structured perturbations of the form (49), we take a weighted sum
of the squares of the condition numbers c̃(λj), j = 1, . . . , 2n (see [16], [18], [17]).
We assume that the pencil is nondefective, since if any eigenvalue is defective, the
order of the perturbation is expected to be magnified in some eigenvalue. In the
case of a nondefective multiple eigenvalue, the condition numbers are defined with
respect to a particular choice of the basis eigenvectors spanning the corresponding
invariant subspaces and biorthogonal with respect to the matrix E. The right and left
eigenvectors ṽj , w̃j associated with each eigenvalue λj may also be normalized such
that ∣∣∣∣∣∣GT

λj
ṽj

∣∣∣∣∣∣
2
= 1, |w̃H

j Eṽj | = 1 for all j = 1, . . . , 2n.(67)

Then (44) holds and the global robustness measure is given by

ν̃2 ≡
2n∑
j=1

ω2
j c̃(λj)

2 =

2n∑
j=1

ω2
j

∣∣∣∣w̃H
j EF

∣∣∣∣2
2
=
∣∣∣∣∣∣DωW̃

HEF
∣∣∣∣∣∣2
F
=
∣∣∣∣∣∣DωṼ

−1F
∣∣∣∣∣∣2
F
,(68)

where Dω = diag{ω1, . . . , ω2n} and ωj , j = 1, . . . , 2n, are positive weights satisfying∑2n
j=1 ω

2
j = 1 with ωj = ωk if λj = λk.

In the case where the coefficients of the linear pencil are given by (40), we can
show, using Theorem 5, that the robustness measure (68) is equal to the robustness
measure (28) of the embedded quadratic polynomial. As demonstrated in the proof
of Corollary 7, the normalizations (67) and (27) are equivalent and, since c̃(λ) = c(λ),
it follows that

ν̃2 =
∣∣∣∣∣∣DωW̃

HEF
∣∣∣∣∣∣2
F
=
∣∣∣∣∣∣DωṼ

−1[0, I]T
∣∣∣∣∣∣2
F
=
∣∣∣∣DωW

HJ
∣∣∣∣2
F
= ν2,(69)

which proves the result.
The equivalence of the robustness measures can also be established in the case

where the quadratic polynomial embedded in the linear pencil is monic and the coef-
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ficient matrices of the linear pencil are given by (64). Using the definitions of F,Gλ

applicable to the monic case, we find that the normalizations (67) and (37) are equiv-
alent. The equality between the robustness measures (68) and (38) of the linear
pencil and the monic quadratic polynomial, respectively, then follows immediately
from Corollary 8.

The robust eigenstructure assignment problem for the second-order control system
(1) can now be formulated as an equivalent problem for a linear pencil. Numerical
methods previously developed in [16] can then be applied directly to find the desired
feedback gain matrices. In the next section we reformulate the control problem and
establish the theory needed for eigenstructure assignment. In section 5 we derive a
modified numerical procedure for solving the design problem that takes advantage of
the special structure of the generalized pencil.

4. Robust eigenstructure assignment.

4.1. Quadratic control problem. The control design problem for the second-
order system (1) is to select feedback matrices K1,K2 to ensure that the closed loop
system (3) has a desired modal response. As demonstrated in section 2, the modal
behavior of the closed loop system is characterized by the eigenstructure of its corre-
sponding quadratic matrix polynomial Pcl(λ) = λ2J−λ(D+BK2)− (C+BK1). The
primary aim of the controller is therefore to determine feedback gains that assign a
given set of eigenvalues to the quadratic polynomial. The inverse quadratic eigenvalue
problem is stated explicitly as follows.

Problem 1. Given real matrices J,D,C ∈ R
n×n and B ∈ R

n×m, and a set of
2n complex numbers L = {λ1, . . . , λ2n}, closed under complex conjugation, find real
matrices K1,K2 ∈ R

m×n such that the eigenvalues of Pcl(λ) are equal to λj , j =
1, . . . , 2n.

Conditions for the existence of solutions to Problem 1 are known and the following
theorem is easily established.

Theorem 9. Solutions K1,K2 to Problem 1 exist for every set L of self-conjugate
complex numbers if and only if the system (1) is completely controllable, that is,

rank[λ2J − λD − C,B] = n for all λ ∈ C.(70)

If the system is not completely controllable, then solutions exist if and only if the
set L = {Lu,Lc} contains Lu, the set of all values of λ for which the system (1) is
uncontrollable (that is, the set of values of λ for which (70) is not satisfied).

Proof. The proof follows directly from the standard theory for the equivalent
generalized linear system (39), characterized by the matix triple (E,A, B̃) defined as
in (40). (See also [5], for example.)

In the single input case (m = 1), the solution to Problem 1 is unique and the
robustness of the closed loop system cannot be controlled. In the multi-input case
(m > 1), there are extra degrees of freedom in the design that can be specified
so as to optimize a measure of the robustness of the system. The feedback gains
can be parameterized in terms of the eigenvectors of the closed loop system and the
eigenvectors corresponding to the desired eigenvalues can then be selected to minimize
the sensitivity measure ν2, defined by (26). The degrees of freedom in the feedback
matrices are reflected precisely by the degrees of freedom available for assigning the
eigenvectors. The robust eigenstructure assignment problem is formulated explicitly
as follows.
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Problem 2. Given real matrices J,D,C,B and a set L as in Problem 1, find
real matrices K1,K2 ∈ R

m×n and matrix V ∈ C
n×2n such that Ṽ = [V T , (V Λ)T ]T is

nonsingular,

JV Λ2 − (D +BK2)V Λ− (C +BK1)V = 0, Λ = diag{λ1, . . . , λ2n},(71)

and the measure ν2, defined as in (26), is minimized.
We remark that the requirement that the matrix Λ is diagonal, together with the

invertibility of Ṽ , ensures that the closed loop system is nondefective. This require-
ment imposes certain simple restrictions on the multiplicity of the eigenvalues that
may be assigned. The condition that Ṽ is nonsingular is also needed for a well-posed
parameterization of the feedback gains in terms of V. In the next section we derive
conditions for the solution of Problem 2.

4.2. Eigenstructure assignment. The objective of the design problem now is
to select the modal matrix V of right eigenvectors of the closed loop polynomial Pcl(λ)
to satisfy condition (71) of Problem 2 for some choice of K1,K2. We let W denote
the corresponding modal matrix of left eigenvectors of the polynomial. We assume
without loss of generality that B is of full column rank. No restriction is made on the
controllability of the open loop system, but it is assumed that the set of prescribed
eigenvalues L contains each uncontrollable eigenvalue with its full multiplicity. We
remark that although the values of the uncontrollable eigenvalues of the system are
not affected by the feedback, the corresponding eigenvectors may be modified and the
conditioning of these eigenvalues may be improved.

The next theorem provides necessary and sufficient conditions under which a given
set of nondefective eigenvalues and corresponding eigenvectors can be assigned.
Theorem 10. Let V ∈ C

n×2n be such that Ṽ = [V T , (V Λ)T ]T is nonsingu-
lar, where Λ = diag{λ1, . . . , λ2n}. Then, there exist real matrices K1,K2, satisfying
condition (71) of Problem 2 if and only if

UT
1 (JV Λ2 −DV Λ− CV ) = 0,(72)

where

B = [U0, U1]

[
Z
0

]
(73)

with U = [U0, U1] orthogonal and Z nonsingular. The matrices K1,K2 are given
explicitly by

[K1,K2] = Z−1UT
0 (JV Λ2 −DV Λ− CV )Ṽ −1.(74)

Proof. The assumption that B is full rank implies the existence of the decom-
position (73). Condition (71) then holds if and only if the feedback matrices K1,K2

satisfy

B[K1,K2]

[
V
V Λ

]
= (JV Λ2 −DV Λ− CV ).(75)

Premultiplication by UT gives

Z[K1,K2]Ṽ = UT
0 (JV Λ2 −DV Λ− CV ),

0 = UT
1 (JV Λ2 −DV Λ− CV ).

(76)
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If condition (71) is satisfied, then (72) and (74) follow directly, since Ṽ is invertible by
assumption. Conversely, if (72) is satisfied and Ṽ is nonsingular, then K1,K2 given
by (74) exist and satisfy (71). (See also [15], [5].)

An immediate consequence of Theorem 10 is the following.
Corollary 11. The right eigenvector vj of Pcl(λ) corresponding to the pre-

scribed eigenvalue λj ∈ L must belong to the space

Sj = N{UT
1 (λ2

jJ − λjD − C)},(77)

where N{·} denotes right nullspace. The dimension of Sj is given by

dim(Sj) = m+ kλj ,(78)

where kλj = dim(N{[B, λ2
jJ − λjD − C]T }).

Proof. From (72) we obtain immediately that

UT
1 (λ2

jJ − λjD − C)vj = 0,(79)

and therefore vj ∈ Sj , j = 1, . . . , 2n, is necessary. Using (72)and (73) we find that

UT [B, λ2
jJ − λjD − C] =

[
Z UT

0 (λ2
jJ − λjD − C)

0 UT
1 (λ2

jJ − λjD − C)

]
.(80)

From the definition of kλj , we find also that rank(UT [B, λ2
jJ − λjD−C]) = n− kλj .

Since matrix Z is square (m×m) and invertible, we then have rank(UT
1 (λ2

jJ −λjD−
C)) = n−m− kλj

, from which (78) readily follows.
From Corollary 11 we can now deduce restrictions on the set L of eigenvalues

that can be assigned. If the system (1) is completely controllable, then the dimension
kλ is zero for all λ. For the closed loop polynomial to be nondefective, the maximum
multiplicity of any eigenvalue λj that can be assigned is then equal to dim(Sj) = m. If
the system is not completely controllable and λj ∈ S is an uncontrollable eigenvalue,
then there exists a set of at least kλj

independent (left) eigenvectors of the polynomial
Pcl(λ) for every choice of K1,K2. The eigenvalue λj must, therefore, be assigned with
multiplicity at least kλj and at most dim(Sj) = m+ kλj

.
As a consequence of Theorem 10 we can also derive explicit expressions for the

feedback matrices directly in terms of the right and left modal matrices V,W of the
closed loop polynomial.
Corollary 12. Let V be such that Ṽ = [V T , (V Λ)T ]T is nonsingular and

condition (72) of Theorem 10 is satisfied and letWHJ = Ṽ −1[0, I]T . Then the feedback
matrices K1,K2 satisfying condition (71) of Problem 2 are given explicitly by

K1 = Z−1UT
0 (JV Λ3WHJ − J(V Λ2WHJ)2 − C),

K2 = Z−1UT
0 (JV Λ2WHJ −D).

(81)

Proof. By definition, the matrices V,Λ,W form a Jordan triple of the closed loop
polynomial Pcl(λ) for some K1,K2. Then conditions (9) hold and WH satisfies

Λ2WHJ − ΛWHD −WHC = ΛWHBK2 +W
HBK1.(82)

Premultiplying by Z−1UT
0 JV, using Z

−1UT
0 B = I, and applying (9) then gives the

result for K2. Similarly, premultiplying (82) by Z−1UT
0 JV Λ, applying (9), and sub-

stituting for K2 then gives the result for K1. (Alternatively, (81) can be established
using the definition of Ṽ −1 given by Lemma 1 in the closed loop case.)
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The solution to Problem 2 can now be found by selecting the columns vj of V

from the subspaces Sj , j = 1, . . . , 2n, such that the matrix Ṽ = [V T , (V Λ)T ]T is non-
singular and the robustness measure ν2 is minimized. The required feedback matrices
K1,K2 can then be constructed directly from (74) or (81). In the next section we
show that this solution can also be obtained by solving the eigenstructure assignment
problem for the corresponding generalized linear control system. Methods previously
developed for optimizing the robustness of the linear system subject to structured
perturbations are then adapted to solve the quadratic control design problem.

4.3. Reformulation of the control problem. In order to solve the control
design problem, Problem 1, it is common practice to transform the second-order
control system (1) into a generalized linear state-space (descriptor) system of the
form (39), where the coefficients E,A, B̃ are given by (40). The matrix B̃ is assumed,
without loss of generality, to be of full column rank.

The control problem is now to synthesize a proportional state feedback controller
of the form

u = K̃x+ r,(83)

where K̃ ∈ R
m×2n, such that the closed loop system

Eẋ = (A+ B̃K̃)x+ B̃r(84)

has desired properties. Specifically, the aim is to select real matrix K̃ such that the
2n eigenvalues of the linear matrix pencil

Lcl(λ) ≡ λE − (A+ B̃K̃)(85)

corresponding to the closed loop system (84) are equal to λj ∈ L, where L =
{λ1, . . . , λ2n} is a specified self-conjugate set of complex numbers. In the case where
the system coefficients are given by (40) and K̃ = [K1,K2], the closed loop pencil has
the form

Lcl(λ) = λ

[
I 0
0 J

]
−
[

0 I
C +BK1 D +BK2

]
(86)

and the solution to the generalized linear inverse eigenvalue problem gives the solution
to Problem 1 immediately.

The linear inverse eigenvalue problem has been studied widely and conditions for
the existence of solutions are well known [31]. The eigenvalues of the closed loop
pencil Lcl(λ), given by (85), can be assigned arbitrarily if and only if the system
(39) is completely controllable, that is, if and only if rank([B̃, λE − A]) = 2n for
all λ ∈ C. If the system is not completely controllable, then the prescribed set L of
eigenvalues must contain each value of λ for which the system is uncontrollable with
its full multiplicity. In the case where the coefficients E,A, B̃ of the system are given
by (40), the conditions for the existence of solutions are precisely equivalent to those
of Theorem 9 for the embedded quadratic polynomial.

The robust eigenstructure assignment problem for the generalized linear system
(39) has also been investigated thoroughly [18], [17], [16]. The objective is to find
a nonsingular matrix Ṽ comprising the right eigenvectors of the closed loop pencil
Lcl(λ) for some feedback K̃ such that the robustness of the closed loop system is
optimized. Specifically the aim now is to minimize the sensitivity of the assigned
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eigenvalues to structured perturbations of the form (49). The robustness measure
is thus given by ν̃2, defined as in (68). For the system (39)–(40), this measure is
equal to the robustness measure ν2 of the embedded second-order system, as shown
in section 3. The solution to the linear robust eigenstructure problem therefore gives
the solution V = [I, 0]Ṽ and [K1,K2] = K̃ to Problem 2 directly.

We remark that the robustness measure for the linear system is commonly taken
to be the sum of the squares of the condition numbers cL(λ), defined as in (48). This
measure gives the sensitivity of the closed loop eigenvalues to perturbations in all ele-
ments of E,A+ B̃K̃. Its minimal value varies with the form of linear embedding used
and it is not a true measure of the robustness of the quadratic polynomial. In order
for the linear and quadratic inverse problems to be equivalent, it is necessary to apply
the measure of robustness for the linear system with respect to the structured pertur-
bations. The generalized linear eigenstructure problem is thus formulated explicitly
as follows.
Problem 3. Given real matrices E,A ∈ R

2n×2n, B̃ ∈ R
2n×m, a set of 2n complex

numbers L = {λ1, . . . , λ2n}, closed under complex conjugation, and real matrices F ∈
R

2n×mF , Gλj ∈ R
2n×mG , j = 1, . . . , 2n, find real matrix K̃ ∈ R

m×2n and nonsingular

matrix Ṽ ∈ C
2n×2n such that

EṼ Λ− (A+ B̃K̃)Ṽ = 0, Λ = diag{λ1, . . . , λ2n},(87)

and ν̃2 ≡
∣∣∣∣∣∣DωṼ

−1F
∣∣∣∣∣∣2
F

is minimized, subject to
∣∣∣∣∣∣GT

λj
Ṽ ej

∣∣∣∣∣∣
2
= 1, j = 1, . . . , 2n. (Here

ej denotes the jth unit vector.)
Conditions under which a given set of nondefective eigenvalues and eigenvectors

can be assigned to the linear system are given in the monic case in [18]. These condi-
tions can be extended to the generalized (nonsingular) case with minor modifications
and the following results can be established by similar arguments to those used in [18]
and in the proof of Theorem 10.
Theorem 13. Let Ṽ ∈ C

2n×2n be nonsingular. Then, there exists real matrix K̃
satisfying condition (87) of Problem 3 if and only if

ŨT
1 (EṼ Λ−AṼ ) = 0,(88)

where

B̃ = [Ũ0, Ũ1]

[
Z̃
0

]
(89)

with Ũ = [Ũ0, Ũ1] orthogonal and Z̃ nonsingular. The matrix K̃ is given explicitly by

K̃ = Z̃−1ŨT
0 (EṼ Λ−AṼ )Ṽ −1.(90)

Proof. See [18].
In the case where the coefficients of the control system are defined by (40), the

decomposition of B̃ can be written in terms of the decomposition (73) of B. Using
the orthogonal matrix U = [U0, U1] from (73), we find that the decomposition (89) is
given by

Ũ0 =

[
0
U0

]
, Ũ1 =

[
0 I
U1 0

]
, Z̃ = Z.(91)

The following corollary is then a direct consequence of Theorem 13.
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Corollary 14. Let E,A, B̃ be defined by (40). Then the right eigenvector ṽj of
Lcl(λ) corresponding to the prescribed eigenvalue λj ∈ L must belong to the space

S̃j = N{ŨT
1 (λjE −A)}(92)

and must satisfy ṽj = [I, λjI]
Tvj with vj ∈ Sj , where Sj is defined by (77).

Proof. From (88) we immediately obtain

ŨT
1 (λjE −A)ṽj = 0,(93)

and therefore ṽj ∈ S̃j , j = 1, . . . , 2n, is necessary. Using (40) and (91) in (93) then
gives [ −UT

1 C UT
1 (λjJ −D)

λjI −I
]
ṽj = 0.(94)

The second of these relations implies that ṽj = [vT
j , (λjvj)

T ]T and the first establishes
that vj ∈ Sj is necessary.

Finally, from the result (90) of Theorem 13 and from (91) we may establish a direct
relation between the solutions to the linear and quadratic feedback design problems.
Corollary 15. Let E,A, B̃ be defined by (40). Let Ṽ be a nonsingular matrix

satisfying condition (88) of Theorem 13 and let V = [I, 0]Ṽ , WHJ = Ṽ −1[0, I]T .
Then, the feedback matrix K̃ satisfying condition (87) of Problem 3 is equal to K̃ =
[K1,K2], where K1,K2 are defined by (74), or equivalently, by (81).

Proof. Substituting (40) and (91) into (90) gives the result immediately.
In summary, the solution to Problem 3 can then be found by selecting the

columns ṽj of Ṽ from the subspaces S̃j , j = 1, . . . , 2n, such that the matrix Ṽ is
nonsingular and the robustness measure ν̃2 ≡ ν2 is minimized, subject to the con-
straints ‖GT

λj
ṽj‖2 = 1. The required feedback matrix K̃ can then be constructed

from (90). If E,A, B̃ are given by (40) and F,Gλj
= [λjG1, G2], j = 1, . . . , 2n,

are determined by (58), then the solution to Problem 3 immediately gives the solu-
tion V = [I, 0]Ṽ , [K1,K2] = K̃ to the quadratic robust eigenstructure assignment
problem, Problem 2.

5. Numerical algorithm. Previously, in [16], we have developed a numerical
algorithm for solving the linear robust eigenstructure assignment problem subject to
structured perturbations. In the monic case this method can be applied directly to
solve Problem 3. The algorithm is easily adapted to treat the generalized case. The
method does not, however, take direct advantage of the special structure of the linear
pencil in the case where the linear system represents an embedded quadratic system.

We now present a modified form of the algorithm that can be applied to solve the
robust quadratic eigenstructure problem, Problem 2.

5.1. Basic steps. The basic steps of the algorithm are first described. Details
of the implementation are then discussed.
Algorithm 1.
Input: Real matrices J,D,C ∈ R

n×n and B ∈ R
n×m, a set of 2n complex num-

bers L = {λ1, . . . , λ2n}, and a diagonal matrix Dω = diag{ω1, . . . , ω2n}, where
ωj , j = 1, . . . , 2n, are real positive weights satisfying

∑2n
j=1 ω

2
j = 1 with ωj = ωk

if λj = λk.
Step 1. Find the decomposition (73) of B and an orthonormal basis, comprised

by the columns of the matrix Sj , for the subspaces Sj , j = 1, . . . , 2n, defined in
(77).
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Step 2. Select an initial matrix V = [v1,v2, . . . ,v2n] such that vj ∈ Sj , αj ||vj ||2 =
1, and Ṽ = [V T , (V Λ)T ]T is nonsingular, where Λ = diag{λj , j = 1, . . . , 2n}
and αj = (|λj |4 + |λj |2 + 1)

1
2 .

Step 3. For j = 1, 2, . . . , 2n do
Step 3.1. Find vector v̂j that minimizes

ν2 =
∣∣∣∣DωW

HJ
∣∣∣∣2
F
≡
∣∣∣∣∣
∣∣∣∣∣Dω

[
V
V Λ

]−1 [
0
I

]∣∣∣∣∣
∣∣∣∣∣
2

F

over all vj ∈ Sj subject to αj ||vj ||2 = 1 and vi fixed for all i �= j.
Step 3.2. Form updated matrices V = [v1, . . . ,vj−1, v̂j ,vj+1, . . . ,v2n] and

Ṽ = [V T , (V Λ)T ]T and CONTINUE.
Step 4. Repeat Step 3 until ν2 has “converged.”
Step 5. Construct feedback matrices K1,K2 by solving

[K1,K2]Ṽ = Z−1UT
0 (JV Λ2 −DV Λ− CV ).

We remark that the decomposition of B in Step 1 can be found either by the QR or
the SVD method (see [10]). The matrix Sj can be found from the QR decomposition
of (UT

1 (λ2
jJ − λjD − C))T .

If the system (1) is completely controllable and the prescribed eigenvalues are
distinct, then an initial matrix V satisfying the requirements in Step 2 can always be
selected. (Under mild restrictions, this also holds for uncontrollable systems and/or
for prescribed multiple eigenvalues.) To obtain the initial matrix V it is generally suf-
ficient to select random vectors from each subspace Sj . The conditioning of the initial

matrix Ṽ is not significant and it may be very close to singular without detriment.
The key step of the algorithm is Step 3. Details of the procedure used for updating

the eigenvectors in Step 3.1 are discussed in the next section. If the initial matrix Ṽ
is nonsingular, then each subsequent matrix Ṽ generated in this step is guaranteed
also to be nonsingular. The update is selected to minimize the robustness measure
ν2 over all vectors in the finite dimensional subspace Sj . The sequence of values of
ν2 generated by the iteration process is therefore nonincreasing and bounded from
below, and hence the iteration must converge.

The problem of computing the feedback matrices in Step 5 from the constructed
matrix Ṽ is well conditioned if Ṽ is well conditioned for inversion. Since the aim of the
procedure is essentially to orthogonalize Ṽ with respect to [0, I]T , Ṽ is expected to be
reasonably well-conditioned. Additional degrees of freedom in Ṽ may exist, however,
and these are then selected explicitly in Step 3.1 to make Ṽ as well conditioned as
possible. If the constructed matrix Ṽ is, nevertheless, very badly conditioned, then
the closed loop system will necessarily be very sensitive to perturbations, regardless
of the accuracy of the computed feedback gains. It is then recommended that the
set of prescribed eigenvalues should be altered, allowing a less sensitive closed loop
system to be derived.

As an alternative to the procedure in Step 5, the matrices K1,K2 could be de-
termined by solving for WHJ from Ṽ (WHJ) = [0, I]T and then substituting directly
into (81). Analysis suggests, however, that this procedure will be less efficient and
less accurate than that proposed in Step 5. The solution for WHJ requires the in-
version of Ṽ into n right-hand-side vectors, whereas the solution in Step 5 requires
the inversion of Ṽ into only m ≤ n right-hand sides. Moreover, forming the product
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of the computed WHJ with the other factors in (81), which already contain numeri-
cal errors, is likely to magnify the computational errors introduced into the feedback
matrices and hence to give less accurate solutions.

5.2. Updating the eigenvectors. The computation of the update to the vector
vj in Step 3.1 of the algorithm is accomplished explicitly. In essence, this step aims
to orthogonalize the vectors ṽj = [I, λjI]

Tvj , j = 1, . . . , 2n, with respect to the
matrix [0, I]T , subject to the constraints. In the first phase, orthogonal bases Q and
q are found for the space spanned by the fixed vectors ṽi, i �= j, and its orthogonal
complement, respectively, and the measure ν2 is expressed in terms of these bases.
Next, the required vector is scaled to have a fixed normalization and the direction
of the minimizing vector in the required subspace is found by solving a least squares
problem. The optimal normalization is then determined to satisfy the constraint.
These steps follow the algorithm of [16], but are modified to produce the vector vj as
efficiently as possible. The technical details are as follows.

We denote Ṽj = [ṽ1, . . . , ṽj−1, ṽj+1, . . . , ṽ2n] and let the (complex) QR decom-

position of Ṽj be given by

Ṽj = [Q,q]

[
R
0T

]
,(95)

where [Q,q] is orthogonal and R is upper triangular and nonsingular. We write

vj = Sjη ∈ Sj . Then we obtain ν2 =
∣∣∣∣∣∣DωṼ

−1[0, I]T
∣∣∣∣∣∣2
F
= ||Y ||2F , where

Y =

[
Dω̂ 0
0 ωj

] [
Ṽj ,

[
I
λjI

]
Sjη

]−1 [
0
I

]

=

[
Dω̂ 0
0 ωj

] [
R−1 −ρR−1QH [I, λjI]

TSjη
0 ρ

][
QH

2

qH
2

]

=

[
Dω̂ 0
0 ωj

][
R−1QH

2 −R−1(QH
1 + λjQ

H
2 )Sjηρq

H
2

ρqH
2

]
,

(96)

and Dω̂ = diag{ω1, . . . , ωj−1, ωj+1, . . . , ω2n}, ρ =
(
qH [I, λjI]

TSjη
)−1

, QH =
[QH

1 , Q
H
2 ], qH = [qH

1 ,q
H
2 ].

If q2 �= 0, then using αj ||vj ||2 = ||αjη||2 = 1 and applying Lemma 2 of [16], for
example, we can show that

δ2 ||Y ||2F =

∣∣∣∣
∣∣∣∣δ2
[
Dω̂R

−1(QH
1 + λjQ

H
2 )Sj

αjIm

]
(ρη)−

[
Dω̂R

−1QH
2 q2

0

]∣∣∣∣
∣∣∣∣
2

F

+ c,(97)

where δ2 = qH
2 q2 and c is a constant independent of η.

The problem now is to minimize ||Y ||2F over all η ∈ C
m. In order to reduce

this nonlinear minimization problem to a linear least-squares problem, we fix the
normalization of the vector ρη. We find the Householder transformation P such that

(qH
1 + λjq

H
2 )SjP = σeTm,(98)

where em is the mth unit vector. From the definition of ρ, we then have

1 = qH [I, λjI]
TSjρη = (qH

1 + λjq
H
2 )SjPP

Hρη = σeTmP
Hρη.(99)

We may therefore define η̂ to be such that [η̂H , 1]H = σPHρη.
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Writing P = [P1,p] then gives σPPHρη = P [η̂H , 1]H = P1η̂ + p and the mini-
mization problem becomes

min
η̂

∣∣∣∣
∣∣∣∣δ2
[
Dω̂H
αjI

]
P1η̂ +

[
Dω̂(δ

2Hp− σh)
δ2αjp

]∣∣∣∣
∣∣∣∣
2

F

,(100)

where H = R−1(QH
1 + λjQ

H
2 )Sj , h = R−1QH

2 q2. This is a standard linear least-
squares problem that can be solved by the QR (or SVD) method.

Finally, we restore the scaling of the optimal vector to satisfy the constraints.
Since P is orthogonal and the columns of Sj form a set of orthonormal vectors, the
required update is given by

v̂j = SjP

[
η̂
1

]
/

∣∣∣∣
∣∣∣∣αj

[
η̂
1

]∣∣∣∣
∣∣∣∣
2

.(101)

In the special case where q2 = 0 (or is very small), then ||Y ||F is constant (almost),
independent of η. In this case the new vector v̂j could be selected to be any vector in

Sj . In order to maximize the orthogonality of Ṽ , however, the new vector is chosen
such that [I, λjI]

T v̂j equals the closest vector to q in the allowable subspace, given
by the projection of q into [I, λjI]

TSj . The required update is then

v̂j = SjS
H
j (q1 + λ̄jq2)/

∣∣∣∣αjS
H
j (q1 + λ̄jq2)

∣∣∣∣
2
.(102)

The new updated matrix Ṽ generated by this procedure must be nonsingu-
lar. Since the original matrix was nonsingular, the definition of q implies that
qH [I, λjI]

TSj �= 0 and σ �= 0. Hence qH [I, λjI]
T v̂j �= 0 and the vector [I, λjI]

T v̂j has

a component in the direction orthogonal to all the other columns of Ṽ . The columns
of the updated matrix Ṽ must therefore all be linearly independent, which establishes
the result.

We may summarize the update step of the algorithm as follows.
Algorithm 1, Step 3.1.
Input: tol

Step 3.1.1. Form matrix Ṽj and find its QR decomposition (95) to determine
Q = [QH

1 , Q
H
2 ]H ,q = [qH1 , q

H
2 ]H , and R. Form δ2 = qH

2 q2.
Step 3.1.2. If |δ2| > tol, form (qH

1 +λjq
H
2 )Sj and find the Householder matrix

P satisfying (98). Solve R[H,h] = [(QH
1 + λjQ

H
2 )Sj , Q

H
2 q2] for H,h by

back-substitution and solve the least-squares problem (100) for η̂.
Step 3.1.3. If |δ2| > tol, define the update vj by (101); else define vj by
(102).

In the case where v̂j corresponds to a real eigenvalue λj , the method generates
a real update. In the case where λj is complex, a complex eigenvector is generated
and, in order to ensure that the computed feedback matrices are real, the updated
eigenvector corresponding to the conjugate eigenvalue λ̄j must be taken to be the
conjugate vector ¯̂vj . In practice, complex arithmetic can be avoided by generating
the real and imaginary parts of v̂j independently. The optimization is no longer
precise, however, and a reduction in ν2 cannot be guaranteed at every iteration step.
Experience indicates that this is not a drawback and rapid overall convergence is
obtained in practice.

We remark that the QR decomposition of Ṽj can be found by inexpensive updat-

ing techniques from the QR decomposition of Ṽj−1. The solution of the least-squares
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problem (100) requires the decomposition of a matrix of order m − 1, which may
be small even where the order 2n of the full system is large. The procedure is then
relatively efficient. Each update requires O(6n2m) +O(2nm2) operations. Practical
experiments have shown that the reduction of the minimization problem to a sequence
of linear least-squares problems is generally more efficient than global nonlinear op-
timization techniques for objective functions of this form [21]. Further work on the
procedure for maximizing robustness would, however, be useful.

Overall, the algorithm is considerably more efficient than the method of [16]
for treating the 2n × 2n linearized eigenstructure problem directly. The primary
advantage results from operating with the n×m subspaces Sj instead of the 2n×m
subspaces S̃j . In addition to reductions in the work required in the first step of the
procedure, further savings are achieved in the update step. The number of operations
saved is of the order of O(16n3m) + O(6n2m2) per iteration. The new algorithm
therefore provides a significant improvement in the solution of the robust quadratic
eigenstructure assignment problem.

5.3. Examples. The application of the algorithm is demonstrated with two ex-
amples.

Example 1. The first example is a third-order system with two inputs, given in
[5], and is defined by

J = 10I3, D = 0, C =


 −40 40 0

40 −80 40
0 40 −40


 , B =


 1 2

3 2
3 4


 .(103)

The system is undamped and the open loop eigenvalues (to five figures) are

{±3.6039i, ±2.4940i, ±0.89008i}.(104)

The desired closed loop eigenvalues λj , j = 1, . . . , 2n, are given by

L = {−1, −2, −3, −4, −5, −6}.(105)

The initial matrix V is generated by a random selection of vectors from each
subspace. The corresponding matrix Ṽ has condition number κ = 3438 and the
value of the sensitivity measure is ν = 2808. After one iteration of the algorithm
the sensitivity measure is reduced to ν = 137.6 and after three iterations the value
becomes ν = 136.6. The conditioning of Ṽ is then κ = 497.2 and the computed
feedback matrices are given (to five figures) by

K1 =

[ −1.2566 −44.622 120.23
56.184 42.276 −227.72

]
,

K2 =

[
86.175 −27.228 −16.522
−85.494 13.016 −4.9924

]
.

(106)

Further iterations give no significant improvement in the robustness measure and
the algorithm is stopped. For the feedback matrices obtained by the procedure, the
computed eigenvalues of the closed loop system equal the desired eigenvalues to within
an error of ±1× 10−13. The results compare favorably with those obtained in [5] for
this problem. Not only are the eigenvalues more accurately assigned and the matrix of
eigenvectors more well-conditioned, but the components of the feedback matrices are
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significantly smaller in magnitude, and therefore the required control effort is much
reduced.

The computed condition numbers c(λj), j = 1, . . . , 2n, of the assigned eigenvalues
are given (to four figures) by

{11.44, 68.21, 77.68, 49.22, 22.21, 70.22}.(107)

Introducing perturbations of the form JδD, JδC into the closed loop coefficient ma-
trices D + BK2, C + BK1, where δD, δC are random matrices bounded such that
||[δD, δC]||2 ≤ ε = 0.002, produces perturbations in the assigned closed loop eigen-
values of order O(0.01). The largest errors occur in the third eigenvalue, which is
expected to be the most sensitive to system perturbations. The perturbations in the
eigenvalues are well within the theoretical error estimates given by the product of the
condition numbers with ε. The absolute errors introduced into the coefficient matrices
are of order O(0.01). The perturbations in the eigenvalues are thus of the same order
of magnitude as the perturbations in the system matrices and the solution is therefore
very robust.

Example 2. In the second example we examine a case from [4] where the matrix
J is very ill-conditioned. The system matrices D, C, and B are the same as in
Example 1, and the matrix J is defined by

J =


 5000 0 0

0 1 1
0 1 1.00001


 .(108)

The open loop spectrum becomes (to five figures)

{±4899.0i, ±4.4726i, ±0.051635i}.(109)

The desired closed loop eigenvalues λj , j = 1, . . . , 2n, are again prescribed to be

L = {−1, −2, −3, −4, −5, −6}.(110)

The condition number of J is 1×109. Since the inverse of the matrix J is not required
by the algorithm, the numerical stability of the procedure is not affected by this
ill-conditioning.

The initial matrix V is again generated by a random selection of vectors from each
subspace. The corresponding matrix Ṽ has condition number κ = 5.24× 105 and the
sensitivity measure is ν = 4.47×105. After one iteration of the method the sensitivity
becomes ν = 3.298 × 104 and after three iterations it is reduced to ν = 3.156 × 104.
The conditioning of Ṽ is then κ = 7.622 × 104 and the computed feedback matrices
(to five figures) are given by

K1 =

[
2668.9 59.004 −58.413
19.996 −60.000 60.000

]
,

K2 =

[
1291.4 −3.2463 −3.1778
−0.018680 0.45542× 10−5 −0.53043× 10−4

]
.

(111)

With these feedback matrices, the computed eigenvalues of the closed loop system are
equal to the desired eigenvalues to at least 8 figures of accuracy. The feedbacks are
comparable to those obtained in [4], the large gains reflecting the amount of control
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effort needed to move the eigenvalues to the prescribed positions. Minor improvements
are achieved by further iterations of the method, but the sensitivity of the problem
remains of the same order of magnitude even after 300 iterations.

The condition numbers c(λj), j = 1, . . . , 2n, of the assigned eigenvalues are given
(to four figures) by

{0.1722, 0.9689, 2.191, 0.3722, 0.8464, 1.827} × 104.(112)

Perturbations of the form JδD, JδC in the closed loop coefficient matrices D +
BK2, C+BK1, where δD, δC are random matrices bounded such that ||[δD, δC]||2 ≤
ε = 2×10−6, now lead to perturbations in the closed loop eigenvalues of orderO(0.001)
with the largest again occuring in the third eigenvalue as expected. The perturbations
in the eigenvalues are well within the errors estimated by the product of the condition
numbers with ε. The absolute perturbations in the coefficient matrices are now of
order O(0.01), however, because of the large size of the matrix J. The perturbations
in the eigenvalues are actually less in magnitude than the errors in the system matrices
and the closed loop system is robust.

The effects of relative perturbations in the ill-conditioned matrix J are inter-
esting to note. Perturbations JδJ, JδD, JδC in the closed loop system matrices
J, D +BK2, C +BK1, where δJ, δD, δC are random matrices bounded such that
||[δJ, δD, δC]||2 ≤ ε = 3× 10−6, now lead to perturbations in the assigned eigenvalues
of order O(0.01). The perturbations in the eigenvalues therefore remain within the
theoretical error estimate given by the product of the condition number with ε. The
absolute errors introduced into the coefficient matrices correspond to perturbations
in the sixth figure in the components of J and are thus of order O(0.01). The pertur-
bations in the eigenvalues are therefore of the same size as the errors in the system
matrices and, despite the ill-conditioning of the matrix J, the closed loop system is
robust with respect to these “relative” perturbations.

6. Conclusions. We have investigated here the problem of robust eigenstructure
assignment by state feedback in a second-order control system. The response of
the system is determined by the eigenstructure of the associated quadratic matrix
polynomial and the aim of the controller design is to assign specified eigenvalues to
the closed loop system polynomial.

In the first sections of the paper we derive sensitivity measures, or condition num-
bers, for the eigenvalues of the quadratic matrix polynomial and define a measure of
the robustness of the corresponding system. In practice the second-order system is
commonly embedded in a generalized linear first-order control system. The standard
measure of sensitivity, or robustness, of the corresponding generalized linear matrix
pencil is not equivalent to that of the embedded quadratic polynomial. We show, how-
ever, that an equivalent robustness measure for the linear pencil can be established
by considering its sensitivity to structured perturbations. We derive condition num-
bers for the eigenvalues of the generalized linear pencil subject to perturbations with
specified structure and show that these condition numbers are equal to the sensitivity
measures for the embedded quadratic polynomial. We show also that the robustness
measures based on these condition numbers are equal.

In the remaining sections of the paper we review and extend the theory of eigen-
structure assignment in second-order control systems. We show that the solution
of the robust eigenstructure assignment problem for the second-order system can be
achieved by solving the generalized linear problem subject to structured perturba-
tions. Reliable and efficient numerical methods for determining the required feedback
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matrices are then developed, based on methods previously devised for solving the
structured linear problem.
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Abstract. Various applications give rise to eigenvalue problems for which the matrices are
Hamiltonian or skew-Hamiltonian and also symmetric or skew-symmetric. We define structured
backward errors that are useful for testing the stability of numerical methods for the solution of these
four classes of structured eigenproblems. We introduce the symplectic quasi-QR factorization and
show that for three of the classes it enables the structured backward error to be efficiently computed.
We also give a detailed rounding error analysis of some recently developed Jacobi-like algorithms of
Faßbender, Mackey, and Mackey [Linear Algebra Appl., to appear] for these eigenproblems. Based
on the direct solution of 4×4, and in one case 8×8, structured subproblems these algorithms produce
a complete basis of symplectic orthogonal eigenvectors for the two symmetric cases and a symplectic
orthogonal basis for all the real invariant subspaces for the two skew-symmetric cases. We prove that,
when the rotations are implemented using suitable formulae, the algorithms are strongly backward
stable and we show that the QR algorithm does not have this desirable property.

Key words. Hamiltonian, skew-Hamiltonian, symmetric, skew-symmetric, symplectic, back-
ward error, structure-preserving, rounding error, Jacobi algorithm, quaternion rotation
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1. Introduction. This work concerns real structured Hamiltonian and skew-
Hamiltonian eigenvalue problems where the matrices are either symmetric or skew-
symmetric. We are interested in algorithms that are strongly backward stable for these
problems. In general, a numerical algorithm is called backward stable if the computed
solution is the true solution for slightly perturbed initial data. If, in addition, this
perturbed initial problem has the same structure as the given problem, then the
algorithm is said to be strongly backward stable.

There are three reasons for our interest in strongly backward stable algorithms.
First, such algorithms preserve the algebraic structure of the problem and hence
force the eigenvalues to lie in a certain region of the complex plane or to occur in
particular kinds of pairings. Because of rounding errors, algorithms that do not
respect the structure of the problem can cause eigenvalues to leave the required region
[26]. Second, by taking advantage of the structure, storage and computation can be
lowered. Finally, structure-preserving algorithms may compute eigenpairs that are
more accurate than the ones provided by a general algorithm.

Structured Hamiltonian eigenvalue problems appear in many scientific and engi-
neering applications. For instance, symmetric skew-Hamiltonian eigenproblems arise
in quantum mechanical problems with time reversal symmetry [9], [23]. In response
theory, the study of closed shell Hartree–Fock wave functions yields a linear response
eigenvalue equation with a symmetric Hamiltonian [21]. Also, total least squares
problems with symmetric constraints lead to the solution of a symmetric Hamiltonian
problem [17].
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The motivation for this work comes from recently developed Jacobi algorithms for
structured Hamiltonian eigenproblems [10]. These algorithms are structure-preserving,
inherently parallelizable, and hence attractive for solving large-scale eigenvalue prob-
lems. Our first contribution is to define and show how to compute structured backward
errors for structured Hamiltonian eigenproblems. These backward errors are useful
for testing the stability of numerical algorithms. Our second contribution concerns
the stability of these new Jacobi-like algorithms. We give a unified description of
the algorithms for the four classes of structured Hamiltonian eigenproblems. This
provides a framework for a detailed rounding error analysis and enables us to show
that the algorithms are strongly backward stable when the rotations are implemented
using suitable formulae.

The organization of the paper is as follows. In section 2 we recap the necessary
background concerning structured Hamiltonians. In section 3 we derive computable
structured backward errors for structured Hamiltonian eigenproblems. In section 4,
we describe the structure-preserving QR-like algorithms proposed in [5] for structured
Hamiltonian eigenproblems. We give a unified description of the new Jacobi-like
algorithms and detail the Jacobi-like update for each of the four classes of structured
Hamiltonian. In section 5 we give the rounding error analysis and in section 6 we
use our computable backward errors to confirm empirically the strong stability of the
Jacobi algorithms.

2. Preliminaries. A matrix P ∈ R
2n×2n is symplectic if PTJP = J , where

J = [ 0
−In

In
0 ] and In is the n× n identity matrix.

A matrix H ∈ R
2n×2n is Hamiltonian if JH = (JH)T is symmetric. Hamiltonian

matrices have the form

H =

[
E F
G −ET

]
,

where E,F,G ∈ R
n×n and FT = F, GT = G. We denote the set of real Hamiltonian

matrices by H2n.
A matrix S ∈ R

2n×2n is skew-Hamiltonian if JS = −(JS)T is skew-symmetric.
Skew-Hamiltonian matrices have the form

S =

[
E F
G ET

]
,

where E,F,G ∈ R
n×n and FT = −F, G = −GT are skew-symmetric. We denote the

set of real skew-Hamiltonian matrices by SH2n.
Note that if H ∈ H2n, then P−1HP ∈ H2n and if S ∈ SH2n, then P−1SP ∈

SH2n, where P is an arbitrary symplectic matrix. Thus symplectic similarities
preserve Hamiltonian and skew-Hamiltonian structure. Also, symmetric and skew-
symmetric structures are preserved by orthogonal similarity transformations. There-
fore structure-preserving algorithms for symmetric or skew-symmetric Hamiltonian
or skew-Hamiltonian eigenproblems have to use real symplectic orthogonal trans-
formations, that is, matrices U ∈ R

2n×2n satisfying UTJU = J, UTU = I. As
in [10], we denote by SpO(2n) the group of real symplectic orthogonal matrices.
Any U ∈ SpO(2n) can be written as U = [U1

U2

−U2

U1
], where UT

1 U1 + UT
2 U2 = I and

UT
1 U2 = UT

2 U1.
In Tables 2.1 and 2.2, we summarize the structure of Hamiltonian and skew-

Hamiltonian matrices that are either symmetric or skew-symmetric, their eigenvalue
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Table 2.1
Properties of structured Hamiltonian matrices H ∈ H2n.

JH = (JH)T Structure Eigenvalues Canonical form

Symmetric
H = HT

[
E F
F −E

]
,

E = ET

F = FT
real,
pairs λ,−λ

[
D 0
0 −D

]

Skew-symmetric
H = −HT

[
E F
−F E

]
,

E = −ET

F = FT
pure imaginary,
pairs λ, λ̄

[
0 −D
D 0

]

Table 2.2
Properties of structured skew-Hamiltonian matrices S ∈ SH2n.

JS = −(JS)T Structure Eigenvalues Canonical form

Symmetric
S = ST

[
E F
−F E

]
,

E = ET

F = −FT
real,
double

[
D 0
0 D

]

Skew-symmetric
S = −ST

[
E F
F −E

]
,

E = −ET

F = −FT
pure imaginary,
double, pairs λ, λ̄

[
B 0
0 −B

]

properties, and their symplectic orthogonal canonical form. We use D ∈ R
n×n to

denote a diagonal matrix and B ∈ R
n×n to denote a block-diagonal matrix that is the

direct sum of 1 × 1 zero blocks and 2 × 2 blocks of the form [ 0
−b

b
0 ]. These canonical

forms are consequences of results in [19].
Next, we show that the eigenvectors of skew-symmetric Hamiltonian matrices can

be chosen to have structure. This property is important when defining and deriving
structured backward errors.

Lemma 2.1. The eigenvectors of a skew-symmetric Hamiltonian matrix H can
be chosen to have the form [ z

±iz ] with z ∈ C
n.

Proof. Let [ 0
D

−D
0 ] = UTHU be the canonical form of H with U = [U1

U2

−U2

U1
]

symplectic orthogonal. The matrix X = 1√
2
[ I
−iI

I
iI ] is unitary and diagonalizes the

canonical form of H:

X∗
[
0 −D
D 0

]
X =

[
iD 0
0 −iD

]
.

Hence

UX =
1√
2

[
U1 + iU2 U1 − iU2

U2 − iU1 U2 + iU1

]

is an eigenvector basis for H and this shows that the eigenvectors can be taken to
have the form [ z

±iz ] with z ∈ C
n.

Note that an eigenvector of a skew-symmetric Hamiltonian matrix does not neces-
sarily have the form [ z

±iz ]. For instance, consider H = [ 0
D

−D
0 ] with D = diag(−d, d).
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Table 3.1
t: Number of parameters defining H.

Hamiltonian Skew-Hamiltonian
H = HT H = −HT H = HT H = −HT

t n2 + n n2 n2 n2 − n

Then xT = [i, 1, 1, i] is an eigenvector of H, corresponding to the eigenvalue −id, that
is not of the form [ z

±iz ].

3. Structured backward error. We begin by developing structured backward
errors that can be used to test the strong stability of algorithms for our classes of
Hamiltonian eigenproblems.

3.1. Definition. For notational convenience, the symbol H denotes from now
on both Hamiltonian and skew-Hamiltonian matrices. Let (x̃, λ̃) be an approximate
eigenpair for the structured Hamiltonian eigenvalue problem Hx = λx, where H ∈
R

2n×2n. A natural definition of the normwise backward error of an approximate
eigenpair is

η(x̃, λ̃) = min
{
ε : (H +∆H)x̃ = λ̃x̃, ‖∆H‖ ≤ ε‖H‖

}
,

where we measure the perturbation in a relative sense and ‖ · ‖ denotes any vector
norm and the corresponding subordinate matrix norm. Deif [8] derived the explicit
expression for the 2-norm

η(x̃, λ̃) =
‖r‖2

‖H‖2‖x̃‖2 ,

where r = λ̃x̃−Hx̃ is the residual. This shows that the normwise relative backward
error is a scaled residual. The componentwise backward error is a more stringent
measure of the backward error in which the components of the perturbation ∆H are
measured individually:

ω(x̃, λ̃) = min
{
ε : (H +∆H)x̃ = λ̃x̃, |∆H| ≤ ε|H|

}
.

Here inequalities between matrices hold componentwise. Geurts [12] showed that

ω(x̃, λ̃) = max
1≤i≤2n

|r|i
(|H||x̃|)i .

The componentwise backward error provides a more meaningful measure of the sta-
bility than the normwise version when the elements in H vary widely in magnitude.
However, this measure is not entirely appropriate for our problems as it does not
respect any structure (other than sparsity) in H. Bunch [2] and Van Dooren [25] have
also discussed other situations when it is desirable to preserve structure in definitions
of backward errors.

The four classes of structured Hamiltonian matrices we are dealing with are de-
fined by t ≤ n2 + n real parameters that make up E and F (see Table 3.1). We write
this dependence as H = H[p] with p ∈ R

t. Higham and Higham [13], [14] extend the
notion of componentwise backward error to allow dependence of the perturbations on
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a set of parameters and they define structured componentwise backward errors. Fol-
lowing their idea and notation we define the structured relative normwise backward
error by

µ(x̃, λ̃) = min
{
ε : (H +∆H)x̃ = λ̃x̃, H +∆H = H[p+∆p],(3.1)

‖∆H‖F ≤ ε‖H‖F
}
,

where H + ∆H = H[p + ∆p] implies that ∆H has the same structure as H. The

structured relative componentwise backward error ν(x̃, λ̃) is defined as in (3.1) but
with the constraint ‖∆H‖F ≤ ε‖H‖F replaced by |∆H| ≤ ε|H|.

In our case, the dependence of the data on the t parameters is linear. We natu-
rally require (x̃, λ̃) to have any properties forced upon the exact eigenpairs, otherwise
the backward error will be infinite. In the next subsections, we give algorithms for
computing these backward errors. We start by describing a general approach that
was used in [13] in the context of structured linear systems and extend it to the case
where the approximate solution lies in the complex plane.

3.2. A general approach for the computation of µ(x̃, λ̃). Let x̃ = ũ + iṽ

and λ̃ = µ̃+iν̃. By equating real and imaginary parts, the constraint (H+∆H)x̃ = λ̃x̃
in (3.1) becomes

[
∆H 0
0 ∆H

] [
ũ
ṽ

]
=

[
(µ̃I −H)ũ− ν̃ṽ
ν̃ũ+ (µ̃I −H)ṽ

]
=

[
s1

s2

]
,(3.2)

or equivalently ∆H [ ũ ṽ ] = [ s1 s2 ] . Applying the vec operator (which stacks the
columns of a matrix into one long vector), we obtain

(
[ ũ ṽ ]

T ⊗ I2n

)
vec(∆H) = s, s =

[
s1

s2

]
,(3.3)

where ⊗ denotes the Kronecker product. We refer to Lancaster and Tismenetsky [18,
Chap. 12] for properties of the vec operator and the Kronecker product. By linearity
we have

vec(∆H) = B∆p(3.4)

for B ∈ R
4n2×t of full rank and where ∆p is the t-vector of parameters defining ∆H.

There exists a diagonal matrix D1 depending on the structure of H (symmetric/skew-
symmetric Hamiltonian/skew-Hamiltonian) such that

‖∆H‖F = ‖D1∆p‖2.(3.5)

Let y = D1∆p and Y = ([ ũ ṽ ]
T ⊗ I2n) ∈ R

4n×4n2

. Using (3.4) we can rewrite (3.3)
as Y BD−1

1 y = s with Y BD−1 ∈ R
4n×t. Then, using (3.5),

µ(x̃, λ̃) = min
y ∈ R

t

{
‖y‖2/‖H‖F : Y BD−1

1 y = s
}
.(3.6)

This shows that the structured backward error is given in terms of the minimal 2-norm
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solution to an underdetermined system. If the underdetermined system is consistent,
then the minimal 2-norm solution is given in terms of the pseudo-inverse by y =
(Y BD−1

1 )+s. In this case

µ(x̃, λ̃) = ‖(Y BD−1
1 )+s‖2/‖H‖F .(3.7)

When H is a symmetric structured Hamiltonian, we can assume that λ̃ and x̃ are
real. Therefore ν̃ = 0 and ṽ = 0 and from (3.2) we have [ s1 s2 ] = (µ̃I −H) [ ũ ṽ ].
Applying the vec operation gives

s =
(
[ ũ ṽ ]

T ⊗ I2n

)
vec(µ̃I −H) = Y vec(µ̃I −H).

As µ̃I − H is also a symmetric structured Hamiltonian, we have by linearity that
vec(µ̃I − H) = Bp

µ̃
, where p

µ̃
is the t-vector of parameters defining µ̃I − H. Then

s = Y BD−1
1 D1pµ̃ lies in the range of Y BD−1

1 . Therefore, the underdetermined

system in (3.6) is consistent for symmetric Hamiltonians and for symmetric skew-
Hamiltonians. For a skew-symmetric Hamiltonian, we can again prove consistency
for pure imaginary approximate eigenvalues and approximate eigenvectors of the form
in Lemma 2.1. We have not been able to prove that the underdetermined system is
consistent for the skew-symmetric skew-Hamiltonian case.

As the dependence on the parameters is linear, in the definition of the structured
relative componentwise backward error ν(x̃, λ̃), we have the equivalence

|∆H| ≤ ε|H| ⇐⇒ |∆p| ≤ ε|p|.

Let D2 = diag(pi) and ∆p = D2q. Then the smallest ε satisfying |∆p| ≤ ε|p| is
ε = ‖q‖∞. The minimal ∞-norm solution of Y BD2 q = s can be approximated by
minimizing in the 2-norm. We have

ν(x̃, λ̃) ≤ ‖(Y BD2)
+s‖2 ≤

√
t+ n ν(x̃, λ̃).

By looking at each problem individually, it is possible to reduce the size of the
underdetermined system. Nevertheless, solution of the system by standard techniques
still takes O(n3) operations. In the next section, we show that by using a symplectic
quasi-QR factorization of the approximate eigenvector and residual (or some appro-

priate parts) we can derive expressions for µ(x̃, λ̃) that are cheaper to compute for all
the structured Hamiltonians of interest except for skew-symmetric skew-Hamiltonians.
First, we define a symplectic quasi-QR factorization.

3.3. Symplectic quasi-QR factorization. We define the symplectic quasi-QR
factorization of an 2n×m matrix A by

A = QT, T =

[
T1

T2

]
,(3.8)

where Q is real symplectic orthogonal, T1 ∈ R
n×m is upper trapezoidal, and T2 ∈

R
n×m is strictly upper trapezoidal. Such a symplectic quasi-QR factorization has

also been discussed by Bunse-Gerstner [3, Cor. 4.5(ii)].Before giving an algorithm to
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compute this symplectic quasi-QR factorization, we need to describe two types of ele-
mentary orthogonal symplectic matrices that can be used to zero selected components
of a vector.

A symplectic Householder matrixH ∈ R
2n×2n is a direct sum of n×n Householder

matrices:

H(k, v) =

[
P (k, v) 0
0 P (k, v)

]
,

where

P (k, v) =


 diag

(
Ik−1, In−k+1 − 2

vT v
vvT
)

if v �= 0,
In otherwise,

and v is determined such that for a given x ∈ R
n, P (k, v)x = y with y(k + 1:n) = 0.

A symplectic Givens rotation G(k, θ) ∈ R
2n×2n is a Givens rotation where the

rotation is performed in the plane (k, k+ n), 1 ≤ k ≤ n, that is, G(k, θ) has the form

G(k, θ) =

[
C S
−S C

]
, where

C = diag(Ik−1, cos θ, In−k),
S = diag(0k−1, sin θ, 0n−k),

(3.9)

where θ is chosen such that for a given x ∈ R
2n, G(k, θ)x = y with yn+k = 0.

We use a combination of these orthogonal transformations to compute our sym-
plectic quasi-QR factorization: symplectic Householder matrices are used to zero large
portions of a vector and symplectic Givens are used to zero single entries.

Algorithm 3.1 (symplectic quasi-QR factorization). Given a matrix A = [A1

A2
]

with A1, A2 ∈ R
n×m, this algorithm computes the symplectic quasi-QR factorization

(3.8).

Q = I2n
For k = 1:min(n− 1,m)

Determine H1
k = H(k, v) with x = A2ek; A← H1

kA
Determine Gk = G(k, θ) with x = Aek; A← GkA
Determine H2

k = H(k, v) with x = A1ek; A← H2
kA

Q← QH1
kG

T
kH

2
k

End
If m ≥ n

Determine Gn = G(n, θ) with x = Aen; A← GnA, Q← QGT
n

End

We illustrate the procedure for a generic 6× 4 matrix:
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× × × ×
× × × ×
× × × ×
× × × ×
× × × ×
× × × ×




H1
1−→




× × × ×
× × × ×
× × × ×
× × × ×
0 × × ×
0 × × ×




G1

−→




× × × ×
× × × ×
× × × ×
0 × × ×
0 × × ×
0 × × ×




H2
1−→




× × × ×
0 × × ×
0 × × ×
0 × × ×
0 × × ×
0 × × ×




H1
2−→




× × × ×
0 × × ×
0 × × ×
0 × × ×
0 × × ×
0 0 × ×




G2

−→




× × × ×
0 × × ×
0 × × ×
0 × × ×
0 0 × ×
0 0 × ×




H2
2−→




× × × ×
0 × × ×
0 0 × ×
0 × × ×
0 0 × ×
0 0 × ×




G3

−→




× × × ×
0 × × ×
0 0 × ×
0 × × ×
0 0 × ×
0 0 0 ×



.

3.4. Symmetric Hamiltonian eigenproblems. Let r = (λ̃I − H)x̃ = ∆Hx̃
be the residual vector and QR = [x̃ r] be the symplectic quasi-QR factorization (3.8)
with Q symplectic orthogonal and

R =




e11 e12

0 e22
... 0

...
en+1,2

...
...

0 0



∈ R

2n×2.

We have QT∆HQQT x̃ = QT r, which is equivalent to

∆H̃




e11

0
...

...
0



=




e12

e22

0
...

en+1,2

...
0



,(3.10)

where ∆H̃ = QT∆HQ is still a symmetric Hamiltonian matrix. Equation (3.10)

defines the first column of ∆H̃. As |e11| = ‖x̃‖ �= 0, we have ∆h̃11 = e12/e11, ∆h̃21 =

e22/e11, ∆h̃n+1,1 = en+1,2/e11, and ∆h̃k,1 = 0 for k �= 1, 2, n+ 1. Let ∆Ẽ = (∆Ẽ)T
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and ∆F̃ = (∆F̃ )T be such that

∆Ẽ =
1

e11




e12 e22 0 · · · 0
e22 × · · · · · · ×
0

...
...

...
...

...
0 × · · · · · · ×


 , ∆F̃ =

1

e11




en+1,2 0 0 · · · 0
0 × · · · · · · ×
0

...
...

...
...

...
0 × · · · · · · ×


 ,

where the ×’s are arbitrary real coefficients. Then, any symmetric Hamiltonian of the
form

∆H = Q

[
∆Ẽ ∆F̃
∆F̃ −∆Ẽ

]
QT

satisfies (H +∆H)x̃ = λ̃x̃. The Frobenius norm of ∆H is minimized by setting the

×’s to zero in the definition of ∆Ẽ and ∆F̃ . We obtain the following lemma.
Lemma 3.2. The backward error of an approximate eigenpair of a symmetric

Hamiltonian eigenproblem is given by

µ(x̃, λ̃) =
2

|e11|

√
e2
12

2
+ e2

22 +
e2
n+1,2

2

/
‖H‖F ,

where R = (eij) = QT [x̃ r] is the quasi-triangular factor in the symplectic quasi-QR

factorization of [x̃ r] with r = (λ̃I −H)x̃. We also have

µ(x̃, λ̃) =

√
2‖QT r‖2 + 2(eT2 QT r)2

‖QT x̃‖

/
‖H‖F ,

where e2 is the second unit vector.

3.5. Skew-symmetric Hamiltonian eigenproblems. For skew-symmetric
Hamiltonian eigenproblems the technique developed in section 3.4 needs to be modi-
fied as in this case r, x̃ are complex vectors and we want to define a real skew-symmetric
Hamiltonian perturbation

∆H =

[
∆E ∆F
−∆F ∆E

]
, ∆E = −∆ET , ∆F = ∆FT

so that (H +∆H)x̃ = λ̃x̃.

In the definition of the structured backward error (3.1), we now assume that λ̃ is

pure imaginary and that x̃ has the form [ z̃T ±iz̃T ]T (see Lemma 2.1). Taking the

plus sign in x̃, the equation (H +∆H)x̃ = λ̃x̃ can be written as

∆Ez̃ + i∆F z̃ = (λ̃I − E)z̃ − iF z̃,(3.11)

−∆Fz̃ + i∆Ez̃ = F z̃ − i(λ̃I − E)z̃.(3.12)

Multiplying (3.12) by −i gives (3.11). Hence, we carry out the analysis with (3.11)
only. Setting λ̃ = iµ̃, µ̃ ∈ R, z̃ = ũ + iṽ in (3.11) and equating real and imaginary
parts yields

∆Eũ−∆Fṽ = −µ̃ṽ + F ṽ − Eũ,

∆Eṽ +∆Fũ = µ̃ũ− Eṽ − Fũ,
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which is equivalent to ∆Hw = s with w = [ ũT −ṽT ]T and s = (µ̃J −H)w. Using
xTEx = 0 and FT = F , we show that w and s are orthogonal:

wT s = [ ũT −ṽT ] (µ̃J −H)

[
ũ
−ṽ
]

= −ũTEũ− µ̃ũT ṽ + ũTF ṽ + µ̃ṽT ũ− ṽTEṽ − ṽTFũ = 0.

For the other choice of sign with x̃ = [ z̃T −iz̃T ]T , the equation (H+∆H)x̃ = λ̃x̃

is equivalent to ∆Hw = s with w = [ ũT ṽT ]
T
and s = −(µ̃J +H)w. Here again,

we can show that wT s = 0.
We can now carry on the analysis as in section 3.4. Let QR = [w s] be the

symplectic quasi-QR factorization of [w s]. As wT s = 0, we have that e12 = 0. We
obtain ∆H by solving the underdetermined system

∆H̃




e11

0
...

...
0



=




0
e22

0
...

en+1,2

...
0



, ∆H = Q∆H̃QT .(3.13)

Lemma 3.3. The backward error of an approximate eigenpair (x̃, λ̃) of a skew-

symmetric Hamiltonian eigenproblem with λ̃ pure imaginary and x̃ of the form x̃ =
[ z̃T ±iz̃T ]T is given by

µ(x̃, λ̃) =


 2

|e11|

√
e2
22 +

e2
n+1,2

2



/
‖H‖F ,

where R = QT [w s] is the quasi-triangular factor in the symplectic quasi-QR factor-
ization of [w s] with z̃ = ũ+ iṽ and

w =

{
[ ũT −ṽT ]T if x̃ = [ z̃T iz̃T ]

T
,

[ ũT ṽT ]
T
otherwise,

s =

{
(µ̃J −H)w if x̃ = [ z̃T iz̃T ]

T
,

−(µ̃J +H)w otherwise.

We also have

µ(x̃, λ̃) =

(√
2‖QT s‖22 + 2|eT2 QT s|2

‖QT x̃‖2

)/
‖H‖F ,

where e2 is the second unit vector.

3.6. Symmetric skew-Hamiltonian eigenproblems. The analysis for sym-
metric skew-Hamiltonian eigenproblems is similar to that in section 3.4. The only
difference comes from noting that

(Jx̃)T r = [ x̃T
2 −x̃T

1 ]

[
λ̃I − E −F

F λ̃I − E

] [
x̃1

x̃2

]

= x̃T
2 (λ̃I − E)x̃1 − x̃T

2 Fx̃2 − x̃T
1 Fx̃1 − x̃T

1 (λ̃I − E)x̃2 = 0
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using vTFv = 0 and x̃T
1 (λ̃I−E)x̃2 = x̃T

2 (λ̃I−E)x̃1. Instead of computing a symplectic
quasi-QR factorization of [x̃ r], we compute a symplectic quasi-QR factorization of
[Jx̃ r] in order to introduce one more zero in the triangular factor R. We summarize
the result in the next lemma.

Lemma 3.4. The backward error of an approximate eigenpair of a symmetric
skew-Hamiltonian eigenproblem is given by

µ(x̃, λ̃) =
2

|e11|

√
e2
22 +

e2
n+1,2

2

/
‖H‖F ,(3.14)

where R = QT [Jx̃ r] is the quasi-triangular factor in the symplectic quasi-QR factor-

ization of [Jx̃ r] with r = (λ̃I −H)x̃. We also have

µ(x̃, λ̃) =

(√
2‖QT r‖22 + 2|eT2 QT r|2

‖QTJx̃‖2

)/
‖H‖F .

3.7. Comments. Lemmas 3.2–3.4 provide an explicit formula for the backward
error that can be computed in O(n2) operations.

For skew-symmetric skew-Hamiltonian matrices H, the eigenvectors are complex
with no particular structure. The constraint (H+∆H)x̃ = λ̃x̃ in (3.1) can be written

in the form ∆H[�(x̃),�(x̃)] = [�(r),�(r)], where r = (H − λ̃I)x̃ is the residual.
We were unable to explicitly construct matrices ∆H satisfying this constraint via a
symplectic QR factorization of [�(x̃),�(x̃),�(r),�(r)]. Thus, in this case, we have to
use the approach described in section 3.2 to compute µ(x̃, λ̃), which has the drawback
that it requires O(n3) operations.

4. Algorithms for Hamiltonian eigenproblems. A simple but inefficient
approach to solve structured Hamiltonian eigenproblems is to use the (symmetric or
unsymmetric as appropriate) QR algorithm on the 2n × 2n structured Hamiltonian
matrix. This approach is computationally expensive and uses 4n2 storage locations.
Moreover, the QR algorithm does not use symplectic orthogonal transformations and
is therefore not structure-preserving.

Benner, Merhmann, and Xu’s method [1] for computing the eigenvalues and in-
variant subspaces of a real Hamiltonian matrix uses the relationship between the
eigenvalues and invariant subspaces of H and an extended 4n× 4n Hamiltonian ma-
trix. Their algorithm is structure-preserving for the extended Hamiltonian matrix
but is not structure-preserving for H. Therefore, it is not strongly backward stable
in the sense of this paper.

4.1. QR-like algorithms. Bunse-Gerstner, Byers, and Mehrmann [5] provide
a chart of numerical methods for structured eigenvalue problems, most of them based
on QR-like algorithms. In this section, we describe their recommended algorithms for
our structured Hamiltonian eigenproblems. In the limited case where rank(F ) = 1,
Byer’s Hamiltonian QR algorithm [6] based on symplectic orthogonal transformations
yields a strongly backward stable algorithm.

For symmetric Hamiltonian eigenproblems, the quaternion QR algorithm [4] is
suggested. The quaternion QR algorithm is an extension of the Francis QR algorithm
for complex or real matrices to quaternion matrices. This algorithm uses exclusively
quaternion unitary similarity transformations so that it is backward stable. Compared
with the standard QR algorithm for symmetric matrices, this algorithm cuts the
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storage and work requirements approximately in half. However, its implementation
requires quaternion arithmetic and it is not clear whether it is strongly backward
stable.

A skew-symmetric HamiltonianH is first reduced via symplectic orthogonal trans-
formations to block antidiagonal form [ 0

−T
T
0 ], where the blocks are symmetric tridi-

agonal. The complete solution is obtained via the symmetric QR algorithm applied
to T . The whole algorithm is strongly backward stable as it uses only real symplectic
orthogonal transformations that are known to be backward stable.

For symmetric skew-Hamiltonian problems, the use of the “X-trick” is suggested:

XTHX =

[
E − iF 0

0 E + iF

]
with X =

1√
2

[
I I
−iI iI

]
.(4.1)

The eigenvalues of H are computed from the eigenvalue of the Hermitian matrices
E − iF or E + iF , using the Hermitian QR algorithm for instance. One drawback of
this approach is that it uses complex arithmetic and does not provide a real symplectic
orthogonal eigenvector basis. Hence the algorithm does not preserve the “realness”
of the original matrix.

Finally, for the skew-symmetric skew-Hamiltonian case, H is reduced to block-
diagonal form via a finite sequence of symplectic orthogonal transformations. The
blocks are themselves tridiagonal and skew-symmetric. Then Paardekooper’s Jacobi
algorithm [22] or the algorithm in [11] for skew-symmetric tridiagonal matrices can
be used to obtain the complete solution. The whole algorithm is strongly backward
stable.

4.2. Jacobi-like algorithms. Byers [7] adapted the nonsymmetric Jacobi algo-
rithm [24] to the special structure of Hamiltonian matrices. The Hamiltonian Jacobi
algorithm based on symplectic Givens rotations and symplectic double Jacobi rota-
tions of the form J ⊗ I2n, where J is a 2 × 2 Jacobi rotation, preserves the Hamil-
tonian structure. This Jacobi algorithm, when it converges, builds a Hamiltonian
Schur decomposition [7, Thm. 1]. For symmetric H, this Jacobi algorithm converges
to the canonical form [D0

0
−D ] and is strongly backward stable. For skew-symmetric

Hamiltonian H, this Jacobi algorithm does not converge as the symplectic orthogonal
canonical form for H is not Hamiltonian triangular.

Recently, Faßbender, Mackey, and Mackey [10] developed Jacobi algorithms for
structured Hamiltonian eigenproblems that preserve the structure and produce a com-
plete basis of symplectic orthogonal eigenvectors for the two symmetric cases and a
symplectic orthogonal basis for all the real invariant subspaces for the two skew-
symmetric cases. These Jacobi algorithms are based on the direct solution of 4 × 4,
and in one case 8 × 8, subproblems using appropriate transformations. The algo-
rithms work entirely in real arithmetic. Note that “realness” of the initial matrix can
be viewed as additional structure that these Jacobi algorithms preserve. We give a
unified description of these Jacobi-like algorithms for the four classes of structured
Hamiltonian eigenproblems under consideration.

Let H ∈ R
2n×2n be a structured Hamiltonian matrix (see Table 2.1 and 2.2).

These Jacobi methods attempt to reduce the quantity (off-diagonal norm)

off(H) =

√√√√ 2n∑
i=1

∑
j∈S
|hij |2,
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where S is a set of indices depending on the structure of the problem using a sequence
of symplectic orthogonal transformations H ← SHST with S ∈ R

2n×2n. The aim
is that H converges to its canonical form. In the following, we note Ai,j,i+n,j+n the
restriction to the (i, j, i+ n, j + n) plane of A.

Algorithm 4.1. Given a structured Hamiltonian matrix H ∈ R
2n×2n and a

tolerance tol > 0, this algorithm overwrites H with its approximate canonical form
PHPT , where P is symplectic orthogonal and off(PHPT ) ≤ tol ‖H‖F .

P = I2n
ε = tol ‖H‖F
while off(H) > ε

Choose (i, j)
Compute a symplectic orthogonal S

such that (SHST )i,j,i+n,j+n is in canonical form.
H ← SHST preserving structure
P ← SP preserving structure

end
Note that the pair (i, j) uniquely determines a 4× 4 principal submatrix

Hi,j,n+i,n+j =




hii hij hi,i+n hi,j+n

hji hjj hj,i+n hj,j+n

hi+n,i hi+n,j hi+n,i+n hi+n,j+n

hj+n,i hj+n,j hj+n,i+n hj+n,j+n


(4.2)

that also inherits the Hamiltonian or skew-Hamiltonian structure together with the
symmetry or skew-symmetry property. There are many ways of choosing the indices
(i, j) but this choice does not affect the rest of the analysis. We refer to n(n − 1)/2
updates as a sweep. Each sweep must be complete, that is, every part of the matrix
must be reached. We see immediately that any complete sweep of the (1, 1) block of
H consisting of 2×2 principal submatrices generates a corresponding complete sweep
of H.

For each 4 × 4 target submatrix, a symplectic orthogonal matrix that directly
computes the corresponding canonical form is constructed and embedded into the
2n× 2n identity matrix in the same way that the 4× 4 target has been extracted.

For skew-symmetric skew-Hamiltonians, the 4×4 based Jacobi algorithm does not
converge. The aim of these Jacobi algorithms is to move the weight to the diagonal
of either the diagonal blocks or off-diagonal blocks. That cannot be done for a skew-
symmetric skew-Hamiltonian because these diagonals are zero. There is no safe place
where the norm of the target submatrix can be kept. However, if an 8 × 8 skew-
symmetric skew-Hamiltonian problem is solved instead, the 2 × 2 diagonal blocks of
H become a safe place for the norm of target submatrices and the resulting 8 × 8
based Jacobi algorithm is expected to converge. The complete sweep is defined by
partitioning E in 2× 2 blocks, leaving 2× 1 and 1× 2 blocks along the rightmost and
lower edges when n is odd. Hence, in this case we must also be able to directly solve
6× 6 subproblems.

Immediately, we see that the difficult part in deriving these algorithms is to define
the appropriate symplectic orthogonal transformation S that computes the canonical
form of the restriction to the (i, j, i + n, j + n) plane of H. Faßbender, Mackey, and
Mackey [10] show that by using a quaternion representation of the 4 × 4 symplectic
orthogonal group, as well as 4× 4 Hamiltonian and skew-Hamiltonian matrices in the
tensor square of the quaternion algebra, we can define and construct 4× 4 symplectic
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orthogonal matrices R that do the job. These transformations are based on rotations
of P ∼= R

3, the subspace of pure quaternions.
We need to give all the required transformations in a form suitable for rounding

error analysis and also to facilitate the description of the structure preserving Jacobi
algorithms. We start by defining two types of quaternion rotations. This enables us
to encode the formulas in [10] into one. Let es �= e1 be a standard basis vector of R

4

and p ∈ R
4 such that p �= 0, eT1 p = 0 (p is a pure quaternion), and p/‖p‖2 �= es. Let

xT = ‖p‖2eT1 + eTs



0 −p2 −p3 −p4

p2 0 p4 −p3

p3 −p4 0 p2

p4 p3 −p2 0


 .(4.3)

We define the left quaternion rotation by

QL(p, s) =
1

‖x‖2



x1 −x2 −x3 −x4

x2 x1 −x4 x3

x3 x4 x1 −x2

x4 −x3 x2 x1


 .(4.4)

QL is symplectic orthogonal and not difficult to compute. We have x1 = ‖p‖2 + ps
and the other components of x are just permutations of the coordinates of p.

We define the right quaternion rotation by

QR(p, s) =
1

‖x‖2




x1 x2 x3 x4

−x2 x1 −x4 x3

−x3 x4 x1 −x2

−x4 −x3 x2 x1


 .(4.5)

The matrix QR is orthogonal. It is symplectic when s �= 3 and x2 = x4 = 0.
Let p = [ p1 p2 p3 p4 ]

T ∈ R
4 be nonzero. Following [10], we define the 4× 4

symplectic orthogonal Givens rotation associated with p by

G(p) =
1

‖p‖2




p1 p2 p3 p4

−p2 p1 p4 −p3

−p3 −p4 p1 p2

−p4 p3 −p2 p1


 .(4.6)

We now have all the tools needed to define the symplectic orthogonal transfor-
mations that directly compute the canonical form for each of the 4 × 4 structured
Hamiltonian eigenproblems of interest. We refer to [10] for more details about how
these transformations have been derived.

4.2.1. Symmetric Hamiltonian. Let H ∈ R
4×4 be a symmetric Hamiltonian

matrix. The canonical form of H is obtained in two steps: first H is reduced to 2× 2
block diagonal form and then the complete diagonalization is obtained by using a
double Jacobi rotation.

For the first step we consider the singular value decomposition of the 3×3 matrix

A =




1
2 (h11 + h22) 0 1

2 (h13 + h24)
h14 0 −h12

1
2 (h24 − h13) 0 1

2 (h11 − h22)


 = UΣV T .

Let u1 and v1 be the left and right singular vectors corresponding to the largest
singular value σ1 and let u = [ 0

u1
], v = [ 0

v1
]. We have ATu1 = σ1v1 and eT2 A

Tu1 = 0
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so that eT2 v1 = 0. Hence, for s = 2 and p = v, the vector x in (4.3) is such that
x2 = x4 = 0, which implies that the right quaternion rotation QR(v, 2) is symplectic
orthogonal. As shown in [10], the product Q = QL(u, 2)QR(v, 2) block diagonalizes

H, that is, QHQT = diag(Ẽ,−Ẽ). Complete diagonalization is obtained by using
a double Jacobi rotation J(θ) ⊗ I2, where θ is chosen such that J(θ) = [ cos θ

− sin θ
sin θ
cos θ ]

diagonalizes Ẽ.
In summary, the symplectic orthogonal transformation S used in Algorithm 4.1 is

equal to the identity matrix except in the (i, j, n+ i, n+ j) plane, where the (i, j, n+
i, n+ j)-restriction matrix is given by

Si,j,n+i,n+j =
(
J(θ)⊗ I2

)
QL(u, 2)QR(v, 2).

4.2.2. Skew-symmetric Hamiltonian. Let H ∈ R
4×4 be a skew-symmetric

Hamiltonian matrix and let p ∈ R
4 be defined from the elements of H by

p = [ 0, h21,
1
2 (h31 − h42), h41 ]

T
.

It is easy to verify that for S = QL(p, 3),

SHST =




0 0 −‖p‖2 + b 0
0 0 0 ‖p‖2 + b

‖p‖2 − b 0 0 0
0 −‖p‖2 − b 0 0


 ,

where b = 1
2 (h13 + h24).

4.2.3. Symmetric skew-Hamiltonian. Let H ∈ R
4×4 be a symmetric skew-

Hamiltonian matrix and let p ∈ R
4 be defined from the elements of H by

p = [ 0, −h14,
1
2 (h11 − h22), h12 ]

T
.

Then, S = QL(p, 3) diagonalizes H and

SHST =



b+ ‖p‖2 0 0 0

0 b− ‖p‖2 0 0
0 0 b+ ‖p‖2 0
0 0 0 b− ‖p‖2


 ,

where b = 1
2 (h11 + h22).

4.2.4. Skew-symmetric skew-Hamiltonian. For the convergence of the Ja-
cobi algorithm to be possible we need to solve an 8 × 8 subproblem. The matrix
H ∈ R

8×8 is block diagonalized with three 4 × 4 symplectic Givens rotations of the
form (4.6) and one symplectic Givens rotation of the form (3.9). Let G be the product
of these rotations. We have

GHGT =

[
Ẽ 0
0 −Ẽ

]
,(4.7)

where Ẽ ∈ R
4×4 is tridiagonal and skew-symmetric. The complete 2 × 2 block-

diagonalization is obtained by directly transforming Ẽ into its real Schur form as
follows. In [20], Mackey showed that the transformation Q = QL(q1, 2)QR(q2, 2) with

q1 = [ 0,− 1
2 (ẽ12 + ẽ34), 0,− 1

2 ẽ23 ]
T
, q2 = [ 0,

1
2 (ẽ12 − ẽ34), 0,− 1

2 ẽ23 ]
T
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directly computes the real Schur form of Ẽ, that is,

QẼQT =

[
B1 0
0 B2

]
with B1 =

[
0 s2 − s1

s1 − s2 0

]
, B2 =

[
0 −s1 − s2

s1 + s2 0

]
,

where s1 = ‖q1‖2 and s2 = ‖q2‖2. Then S = (Q⊗ I2)G is the symplectic orthogonal
transformation that computes the real Schur form of the 8× 8 skew-symmetric skew-
Hamiltonian H:

SHST =



B1 0 0 0
0 B2 0 0
0 0 −B1 0
0 0 0 −B2


 .

When n is odd, we have to solve a 6×6 subproblem for each complete sweep of the
Jacobi algorithm. As for the 8×8 case, the 6×6 skew-symmetric skew-Hamiltonian H
is first reduced to the form (4.7), where Ẽ ∈ R

3×3 is tridiagonal and skew-symmetric.
This is done by using just one 4× 4 symplectic Givens rotation followed by one 2× 2
symplectic Givens rotation. Let

Ẽaug =

[
0 0
0 Ẽ

]
∈ R

4×4

and q = [ 0 − 1
2 ẽ23, 0,− 1

2 ẽ12 ]
T
. Then Q = QL(q, 4)QR(q, 4) computes directly the

real Schur form of Ẽaug. Moreover, we have eT1 Qe1 = 1, so that Q = diag(1, Q̃) and

Q̃ẼQ̃T = B, where

B =


 0 −b 0
b 0 0
0 0 0


 with b = 2‖q‖2.

5. Error analysis of the Jacobi algorithms. In floating point arithmetic,
Algorithm 4.1 computes an approximate canonical form T̂ such that

T̂ =: P (H +∆H)PT ,

where P is symplectic orthogonal, and an approximate basis of symplectic ortho-
gonal eigenvectors P̂ . We want to derive bounds for ‖∆H‖, ‖P̂ P̂T − I‖, and
‖P̂ JP̂T − J‖.

5.1. Preliminaries. We use the standard model for floating point arithmetic
[16]

fl(x op y) = (x op y)(1 + δ), |δ| ≤ u, op = +,−, ∗, /,(5.1)

where u is the unit roundoff. We assume that (5.1) holds also for the square roots
operation. To keep track of the higher terms in u we make use of the following result
[16, Lem. 3.1].

Lemma 5.1. If |δi| ≤ u and ρi = ±1 for i = 1:n, and nu < 1, then

n∏
i=1

(1 + δi)
ρi = 1 + θn, where |θn| ≤ nu

1− nu
=: γn.



STABILITY OF STRUCTURED HAMILTONIAN EIGENSOLVERS 119

We define

γ̃k =
pku

1− pku
,

where p denotes a small integer constant whose value is unimportant. In the following,
computed quantities will be denoted by hats.

First, we consider the construction of a 4 × 4 Givens rotation and left and right
quaternion rotations.

Lemma 5.2. Let a 4 × 4 Givens rotation G = G(p) be constructed according to

(4.6) with p ∈ R
4. Then the computed Ĝ satisfies |Ĝ−G| ≤ γ5|G|.

Proof. This result is a straightforward extension of Lemma 18.6 in [16] concerning
2× 2 Givens rotations.

The rounding error properties of right and left quaternion rotations require more
attention. When ps < 0, the computation of ‖p‖2+ ps and therefore the computation
of QL(p, s) or QR(p, s) is affected by cancellation. This problem can be overcome by
using another formula as shown in the next lemma.

Lemma 5.3. Let 4 × 4 left and right quaternion rotations QL = QL(p, s) and
QR = QR(p, s) be constructed according to

QL(p, s) =
1√

2‖p‖2α




α −x2 −x3 −x4

x2 α −x4 x3

x3 x4 α −x2

x4 −x3 x2 α


 ,(5.2)

QR(p, s) =
1√

2‖p‖2α




α x2 x3 x4

−x2 α −x4 x3

−x3 x4 α −x2

−x4 −x3 x2 α


 ,(5.3)

where

[x2 x3 x4 ] =



[ 0 p4 −p3 ] if s = 2,
[−p4 0 p2 ] if s = 3,
[ p3 −p2 0 ] if s = 4

and

α =



‖p‖2 + ps if ps ≥ 0,

4∑
i=2,i �=s

(
p2
i

)
/(‖p‖2 − ps) otherwise,

(5.4)

with p ∈ R
4 given. Then the computed Q̂L and Q̂R satisfy

|Q̂L −QL| ≤ γ̃1|QL|, |Q̂R −QR| ≤ γ̃1|QR|.

Proof. It is straightforward to verify that the expressions forQL(p, s) andQR(p, s)
in (5.2) and (5.3) agree with the definitions in (4.4) and (4.5).

We have fl(‖p‖2) = ‖p‖2(1 + θ4) with |θ4| ≤ γ4. If ps ≥ 0,

fl(α) = (‖p‖2(1 + θ4) + ps)(1 + δ) = ‖p‖2(1 + θ5) + ps(1 + δ).
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As ps ≥ 0, there exists θ′5 such that fl(α) = (‖p‖2 + ps)(1 + θ′5) with |θ′5| ≤ γ5. If
ps < 0, using the same argument we have

fl(‖p‖2 − ps) = (‖p‖2 − ps)(1 + θ5), |θ5| ≤ γ5.

We also have

fl


 4∑

i=2,i �=s

p2
i


 =


 4∑

i=2,i �=s

p2
i


 (1 + θ3).

Using [16, Lem. 3.3] we have

fl(α) =
(
∑4

i=2,i �=s p
2
i )(1 + θ3)

(‖p‖2 − ps)(1 + θ5)
(1 + δ) = α(1 + θ9), |θ9| ≤ γ9,

and

fl(
√
2‖p‖2α) =

√
2‖p‖2α(1 + θ16), |θ16| ≤ γ16.

Hence, we certainly have

fl((QL)ij) ≤ (QL)ij(1 + θ26), |θ26| ≤ γ26 ≤ γ̃1.

In the following we use the term elementary symplectic orthogonal matrix to
describe any double Givens rotation, 4×4 Givens rotation, or left or right quaternion
rotation that is embedded as a principal submatrix of the identity matrix I ∈ R

2n×2n.
We have proved that any computed elementary symplectic orthogonal matrix

P̂ = fl(P ) used by the Jacobi algorithm satisfies a bound of the form

|P̂ − P | ≤ γ̃1|P |.(5.5)

Lemma 5.4. Let x ∈ R
2n×2n and consider the computation of y = P̂ x, where P̂ is

a computed elementary symplectic orthogonal matrix satisfying (5.5). The computed
ŷ satisfies

ŷ = P (x+∆x), ‖∆x‖2 ≤ γ̃1‖x‖2,
where P is the exact elementary symplectic orthogonal matrix.

Proof. The vector ŷ differs from x only in elements i, j, i+n, and j+n. We have

ŷi = eTi Px+∆yi, |∆yi| ≤ γ̃1|eTi P ||x|.
We obtain similar results for ŷj , ŷn+i, and ŷn+j . Hence,

ŷ = Px+∆y, |∆y| ≤ γ̃1|P | |x|.
As ‖ |P | ‖2 ≤ 2, we have ‖∆y‖2 ≤ 2γ̃1‖x‖2 = γ̃′

1‖x‖2. Finally, we define ∆x = PT∆y
and note that ‖∆x‖2 = ‖∆y‖2.

Now, we consider the pre- and postmultiplication of a matrixH by an approximate
elementary symplectic orthogonal matrix P̂ .

Lemma 5.5. Let H ∈ R
2n×2n and P ∈ R

2n×2n be any elementary symplectic
orthogonal matrix such that fl(P ) satisfies (5.5). Then,

fl(PH) = P (H +∆H), ‖∆H‖F ≤ γ̃1‖H‖F ,
f l(PHPT ) = P (H +∆H)PT , ‖∆H‖F ≤ γ̃1‖H‖F .
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Proof. Let hi be the ith column of H. By Lemma 5.4 we have

fl(Phi) = P (hi +∆hi), ‖∆hi‖2 ≤ γ̃1‖hi‖2.

The same result holds for hj , hn+i, and hn+j and the other columns of H are un-
changed. Hence, fl(PH) = P (H + ∆H), where ‖∆H‖F ≤ γ̃1‖H‖F . Similarly,

fl(B̂PT ) = (B̂ +∆B̂)PT with ‖∆B̂‖F ≤ γ̃1‖B̂‖F . Then, with B̂ = fl(PH) we have

fl(PHPT ) = (PH + P∆H +∆B̂)PT = P (H +∆H + PT∆B̂)PT ,

with ‖∆B̂‖F ≤ γ̃1(1 + γ̃1)‖H‖F and therefore ‖∆H + PT∆B̂‖F ≤ γ̃1‖H‖F .
As a consequence of Lemma 5.5, if Hk+1 is the matrix obtained after one Jacobi

update with Sk (which is the product up to six elementary symplectic orthogonal
matrices), we have

Ĥk+1 = Sk(Ĥk +∆Ĥk)S
T
k , ‖∆Ĥk‖F ≤ γ̃1‖Ĥk‖F ,(5.6)

where Sk is the exact transformation for Ĥk.
Up to now, we made no assumption on H. If H is a structured Hamiltonian

matrix, the (i, j, n+ i, n+ j)-restriction of RHRT is in canonical form. For instance,
if H is a skew-symmetric Hamiltonian matrix, in a computer implementation the
diagonal elements of H are not computed but are set to zero. Also, hij , hi,j+n and by
skew-symmetry hji, hj+n,i are set to zero. But by forcing these elements to be zero,
we are making the error smaller so the bounds still hold.

Because of the structure of the problem, both storage and the flop count can be
reduced by a factor of four. Any structured Hamiltonian matrix needs less than n2+n
storage locations. If only the t parameters defining H are computed, the structure in
the error is preserved and ∆H has the same structure as H. It is easy to see that
the bounds in Lemma 5.6 are still valid with the property that ∆H has the same
structure as H.

Theorem 5.6. Algorithm 4.1 for structured Hamiltonians H compute a canonical
form T̂ such that

T̂ = P (H +∆H)PT , PTP = I, PTJP = J,

where ∆H has the same structure as H and ‖∆H‖F ≤ γ̃k‖H‖F , where k is the
number of symplectic orthogonal transformations Si applied for each Jacobi update.

The computed basis of symplectic orthogonal eigenvectors P̂ = fl(Sk . . . S2S1)
satisfies

‖P̂T P̂ − I‖F ≤ γ̃k and ‖P̂TJP̂ − J‖F ≤ γ̃k.(5.7)

Proof. From (5.6), one Jacobi update of H satisfies

Ĥ1 = fl(S1HST
1 ) = S1(H +∆H1)S

T
1 , ‖∆H1‖F ≤ γ̃1‖H‖F .

For the second update we have

Ĥ2 = fl(S2Ĥ1S
T
2 ) = S2(Ĥ1 +∆Ĥ1)S

T
2 , ‖∆Ĥ1‖F ≤ γ̃1‖Ĥ1‖F

= S2S1(H +∆H1 + ST
1 ∆Ĥ1S1)S

T
1 ST

2

= S2S1(H +∆H2)S
T
1 ST

2 ,
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where ‖∆H2‖F ≤ ‖∆H1‖F +‖∆Ĥ1‖F ≤ γ̃1(1+(1+ γ̃1))‖H‖F ≤ γ̃2‖H‖F . Continuing
in this fashion, we find that, after k updates,

Ĥk = Sk . . . S1(H +∆Hk)S
T
1 . . . ST

k with ‖∆Hk‖F ≤ γ̃k‖H‖F .
In a similar way, using the first part of Lemma 5.5 we have

P̂1 = fl(S1I) = S1 +∆P1, ‖∆P1‖F ≤ γ̃1,

P̂2 = fl(S2P̂1) = S2(S1 +∆P1) +∆P̂2, ‖∆P̂2‖F ≤ γ̃1‖P̂1‖
= S2S1 +∆P2, ‖∆P2‖F ≤ γ̃1 + γ̃1(1 + γ̃1) ≤ γ̃2.

After k updates, P̂k = fl(SkP̂k−1) = Sk . . . S1 + ∆Pk, ‖∆Pk‖F ≤ γ̃k, and (5.7)
follows readily.

Theorem 5.6 shows that the computed eigenvalues are the exact eigenvalues of a
nearby structured Hamiltonian matrix and that the computed basis of eigenvectors is
orthogonal and symplectic up to machine precision. This proves the strong backward
stability of the Jacobi algorithms.

6. Numerical experiments. To illustrate our results we present some numeri-
cal examples. All computations were carried out in MATLAB, which has unit roundoff
u = 2−53 ≈ 2.2× 10−16.

For symmetric Hamiltonians, symmetric skew-Hamiltonians, and skew-symmetric
Hamiltonians with approximate eigenvector x̂ of the form [ z

±iz ], computing µ(x̂, λ̂) in
(3.1) involves a symplectic quasi-QR factorization of a 2n × 2 matrix, which can be
done in order n2 flops, a cost negligible compared with the O(n3) cost of the whole
eigendecomposition.

For skew-symmetric Hamiltonians with approximate eigenvector x̂ not of the form
[ z
±iz ], and for skew-symmetric skew-Hamiltonians, the computation of µ(x̂, λ̂) requires

O(n3) flops as we have to find the minimal 2-norm solution of a large underdetermined

system in (3.6). Thus, in this case, µ(x̂, λ̂) is not a quantity we would compute
routinely in the course of solving a problem.

Note that in our implementation of the Jacobi-like algorithm for skew-symmetric
Hamiltonians we choose the approximate eigenvectors to be the columns of P [ I

−iI
I

−iI ],
where P is the accumulation of the symplectic orthogonal transformations used by
the algorithm to build the canonical form. In this case, the approximate eigenvectors
x̂ are guaranteed to be of the form [ z

±iz ].
To test the strong stability of numerical algorithms for solving structured Hamil-

tonian eigenproblems, we applied the direct search maximization routine mdsmax of
the MATLAB Test Matrix Toolbox [15] to the function

f(E,F ) = max
1≤i≤2n

µ(x̂i, λ̂i),

where (λ̂i, x̂i) are the computed eigenpairs. In this way we carried out a search for
problems on which the algorithms performs unstably.

As expected from the theory, we could not generate examples for which the struc-
tured backward error for the Jacobi-like algorithms is large: µ(x̂, λ̂) < nu‖H‖F in all
our tests.

The symmetric QR algorithm does not use symplectic orthogonal transformations
and is therefore not structure-preserving. To our surprise, we could not generate exam-
ples of symmetric Hamiltonian and symmetric skew-Hamiltonian matrices for which



STABILITY OF STRUCTURED HAMILTONIAN EIGENSOLVERS 123

Table 6.1
Backward error of the eigenpair for λ = 0.741i of the 4×4 skew-symmetric Hamiltonian defined

by (6.1).

ηmax(x̂, λ̂) ωmax(x̂, λ̂) µmax(x̂, λ̂)

QR algorithm 2× 10−16 4× 10−16 9× 10−2

Jacobi-like algorithm 5× 10−17 1× 10−16 9× 10−17

Table 6.2
Backward errors of the approximation of the eigenvalue 0 for a 30×30 random skew-symmetric

skew-Hamiltonian matrix.

|λ̂| η(x̂, λ̂) ω(x̂, λ̂) µ(x̂, λ̂)

QR algorithm 3× 10−11 1× 10−16 6× 10−16 7× 10−7

Jacobi-like algorithm 0 6× 10−17 4× 10−16 1× 10−15

any of the eigenpairs computed by the symmetric QR algorithm has a large backward
error. However, the QR algorithm does not compute a symplectic orthogonal basis
of eigenvectors and also, it is easy to generate examples for which the ±λ structure
for symmetric Hamiltonians and eigenvalue multiplicity 2 structure for symmetric
skew-Hamiltonians is not preserved. If we generalize the definition of the structured
backward error of a single eigenpair to a set of k eigenpairs, the symmetric QR al-
gorithm is likely to produce sets of eigenpairs with an infinite structured backward
error. The QR-like algorithm for symmetric skew-Hamiltonians is likely to provide
eigenvectors that are complex instead of real, yielding an infinite structured backward
error in (3.14).

The good backward stability of individual eigenpairs computed by the QR al-
gorithm does not hold for the skew-symmetric Hamiltonian case. For instance, we
considered the skew-symmetric Hamiltonian eigenproblem

H =

[
E F
−F E

]
, with E =

[
0 0.75

−0.75 0

]
, F =

[−0.1875 0.0938
0.0938 −0.125

]
,(6.1)

whose eigenvalues are distinct: Λ(H) = {0.803i,−0.803i, 0.741i,−0.741i} . In Table
6.1, we give the normwise, componentwise, and structured normwise backward error
of the eigenpair for λ = 0.741i computed by the unsymmetric QR algorithm and
the skew-symmetric Jacobi algorithm. The QR algorithm does not use symplectic
orthogonal transformations and the computed eigenvectors do not have the structure
[ z
±iz ]. Therefore, for the computation of µmax(x̂, λ̂), we use the general formula (3.7).
In the skew-symmetric skew-Hamiltonian case, when n is odd, 0 is an eigenvalue

of multiplicity two and is not always well approximated with the unsymmetric QR
algorithm. We generated a random 15 × 15 E and F . We give in Table 6.2 the
backward errors associated with the approximation of the eigenvalue 0 for both the
QR algorithm and Jacobi algorithm.

7. Conclusion. The first contribution of this work is to extend existing def-
initions of backward errors in a way appropriate to structured Hamiltonian eigen-
problems. We provided computable formulae that are inexpensive to evaluate except
for skew-symmetric skew-Hamiltonians. Our numerical experiments showed that for
symmetric structured Hamiltonian eigenproblems, the symmetric QR algorithm com-
putes eigenpairs with a small structured backward error but the algebraic properties
of the problem are not preserved.
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Our second contribution is a detailed rounding error analysis of the new Jacobi
algorithms of Faßbender, Mackey, and Mackey [10] for structured Hamiltonian eigen-
problems. These algorithms are structure-preserving, inherently parallelizable, and
hence attractive for solving large-scale eigenvalue problems. We proved their strong
stability when the left and right quaternion rotations are implemented using our for-
mulae (5.2), (5.3). Jacobi algorithms are easy to implement and offer a good alterna-
tive to QR algorithms, namely, the unsymmetric QR algorithm, which we showed to be
not strongly backward stable for skew-symmetric Hamiltonian and skew-Hamiltonian
eigenproblems, and the algorithm for symmetric skew-Hamiltonians based on applying
the QR algorithm to (4.1), which does not respect the “realness” of the problem.

Acknowledgments. I thank Nil Mackey for pointing out the open question
concerning the strong stability of the Jacobi algorithms for structured Hamiltonian
eigenproblems and for her suggestion in fixing the cancellation problem when com-
puting the quaternion rotations. I also thank Steve Mackey for his helpful comments
on an earlier manuscript.
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Abstract. It is shown that the singularity-induced bifurcation theorem due to Venkatasubrama-
nian, Schattler, and Zaborszky [Proceedings of the IEEE, 83 (1995), pp. 1530–1558] can be expressed
as the perturbation of an infinite eigenvalue of a particular class of parameterized index-1 matrix
pencil, denoted (M,L(λ)). It is shown that the matrix pencil at the singularity-induced bifurcation
point, (M,L(λ0)), has Kronecker index-2. It is also shown that a two-parameter unfolding of a
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1. Introduction. Consider the parameterized semiexplicit, index-1 differential
algebraic equation (DAE)

ẋ = f(x, y, λ),(1.1a)

0 = g(x, y, λ),(1.1b)

where x ∈ R
n, y ∈ R

m, and λ ∈ R. As the parameter λ varies, an equilibrium of (1.1)
may encounter the singular set

S = {(x, y) ∈ R
n+m : g(x, y, λ) = 0, det(dyg(x, y, λ)) = 0}.

The singularity-induced bifurcation theorem (SIB), which was first proven in [16, 17],
describes the behavior of an eigenvalue associated with the linearization of (1.1) at
such an encounter.

For completeness, we state the SIB theorem from [17].
Theorem 1 (SIB). Define

∆(x, y, λ) = det(dyg(x, y, λ)),

set z = (x, y) and let F (x, y, λ) = (f × g)(x, y, λ). Suppose that z0 is an equilibrium
of (1.1) and write w = (z0, λ0). If

1. dyg(w) has a simple zero eigenvalue,

2. the matrix
(

dzF (w) dλF (w)
dz∆(w) dλ∆(w)

)
is invertible,

3. tr(dyf(w) · adj(dyg(w)) · dxg(w)) �= 0, and
4. dzF (w) is invertible,

then there is a unique, parameterized equilibrium of (1.1), defined in a neighborhood
of λ0, which is transversal to the singular set S at λ0. One real eigenvalue of the
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linearization of (1.1) about this equilibrium locus moves from one open half of the
complex plane to the other by diverging to infinity as λ passes λ0. The remaining
n− 1 eigenvalues of the linearization lie in some bounded set which does not contain
the origin.

There are several ingredients in the method of proof of Theorem 1 used in [16]
which are essentially nonlinear in nature. The approach used therein is to rescale time
and subsequently rewrite (1.1) as a smooth, parameterized vector field. Venkatasub-
ramanian, Schattler, and Zaborszky then apply the center manifold theorem to probe
this vector field and the eigenvalues of its linearization in a neighborhood of the equi-
librium which lies on S.

The described approach leads naturally to a description of the flow of the DAE
(1.1) when the equilibrium lies on S, namely, when λ = λ0. In [16] this description
is called the local decomposition theorem (LDT). We shall show in a future paper
[4] that the algebraic approach used in this paper, coupled to the implicit function
theorem, can be used to derive an extension of the LDT. This is important due to the
fact that the LDT is starting to find applications in wider mathematics [7, 14].

However, the SIB theorem concerns the perturbation of an infinite eigenvalue of
a parameterized matrix pencil. This observation permitted a result equivalent to the
SIB to be proven in [3]. This provided a much simpler method of proof and allowed
hypothesis 4 of the SIB theorem to be removed, at the same time maintaining the
asymptotic nature of the diverging eigenvalue.

We shall denote the diverging eigenvalue by α(λ) and in [16, 3] it was shown that
there is some µ �= 0 such that

α(λ) ∼ µ

λ− λ0
+O(1)

as λ→ λ0. The point λ0 is said to be a singularity-induced bifurcation point.
Let us define some notation. For any vector v ∈ R

p we shall write 〈v〉 =
{sv : s ∈ R}. If L : R

p → R
p is a linear mapping, then σ(L) denotes its spectrum,

N(L) and R(L) denote its null-space and range, respectively. We shall use N (L) and
R(L) to denote its generalized null-space and range, respectively. We shall use the
symbol # to denote cardinality and L(Rp) denotes the space of linear mappings over
R

p. We shall use Λ to denote some open interval containing λ0.
Suppose that (R,S) is a matrix pencil over R

N . It is said to be regular if there
is some s ∈ C such that

det(sR− S) �= 0.
Moreover, we shall write

σ(R,S) = {s ∈ C : det(sR− S) = 0}.
The following is well known [9, 10, 6] and is the Kronecker normal form (KNF).
Theorem 2 (KNF). Suppose that (R,S) is a regular matrix pencil on R

N . One
can write R

N = U ⊕V and find nonsingular maps P ∈ L(RN ) and Q ∈ L(U ⊕V,RN )
such that

PRQ =

[
Iu 0
0 N

]
and PSQ =

[
C 0
0 Iv

]
,

where there is an integer k ≥ 1 such that Nk = 0 and Nk−1 �= 0.
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Now C, Iu ∈ L(U), N, Iv ∈ L(V ) and Iu and Iv are identities on U and V ,
respectively. Moreover, σ(R,S) = σ(C) and #σ(R,S) = dimU . Define the index of
(R,S), written ind(R,S), to be the integer k.

Suppose that (1.1) has a zero equilibrium for all λ ∈ Λ and suppose that

L(λ) =

[
A(λ) B(λ)
C(λ) D(λ)

]
∈ L(Rn+m)

is the linearization of f × g about that equilibrium. In addition, we suppose that
λ �→ L(λ) is a Cr mapping. If D(λ) = dyg(0, 0, λ) is invertible, the implicit function
theorem implies that the eigenvalues of

Sλ def
= A(λ)−B(λ)D−1(λ)C(λ)(1.2)

determine the linear stability properties of the trivial equilibrium of (1.1).
Define the matrix

M(ε)
def
=

[
In 0
0 εIm

]
∈ L(Rn+m),

where the n and m may be omitted for brevity. Write M
def
= M(0).

The paper is organized as follows. The purpose of section 2 is twofold. First we
present a result which is equivalent to the SIB theorem, but with a method of proof
that is different from both [16] and [3]. Moreover, the method of proof used in section
2 shows that the linearization

(M,L(λ))

of (1.1) has the following property. If λ �= λ0, then (M,L(λ)) has index-1. We
compute the Kronecker normal form and show that (M,L(λ0)) has index-2.

The following simple theorem is called the singular Hopf bifurcation (SHB).
Theorem 3 (SHB). Let a, b, c, d ∈ C1(R) and suppose that for some λ0 ∈ R,

d(λ0) = 0, d′(λ0) �= 0, and c(λ0)b(λ0) = −ω2
0 < 0. Then there is an interval I =

(0, ε0) ⊂ R and C1 functions ω, λ : I → R such that for all ε ∈ I

iω(ε) ∈ σ

(
a(λ(ε)) b(λ(ε))

ε−1c(λ(ε)) ε−1d(λ(ε))

)
.

Moreover, λ(0+) = λ0 and limε→0+
ε1/2ω(ε) = ω0.

The SHB theorem plays a central role in [2, 15] and relates to the many discussions
of duck solutions and ducks oscillations to be found, for instance, in [5, 18, 8, 1]. Moti-
vated by Theorem 3, in section 3 we consider a singular unfolding of the linearization
of (1.1), given by

M(ε)ż = L(λ)z.(1.3)

It is shown that the infinite eigenvalue from the SIB theorem perturbs to give a pair
of purely imaginary eigenvalues of (M(ε), L(λ)) near infinity.

2. KNF and the SIB. We now present several preliminary lemmas.
Lemma 1. Let det : L(Rq)→ R be the determinant functional. It has derivative

det′ given by det′(P )[H] = tr(adjP ·H), where P,H ∈ L(Rq).
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Lemma 2. If detD(λ) �= 0, then dimN(Sλ) = dimN(L(λ)) and detSλ·detD(λ) =
detL(λ).

Lemma 3. Let P ∈ L(Rq) and suppose that there is a nonzero k ∈ R
q such that

N(P ) = 〈k〉, then R(adjP ) = 〈k〉 and N(adjP ) = R(P ).
We shall often omit the reference to λ0 for brevity and simply write

L(λ0) = L =

[
A B
C D

]
∈ L(Rn+m).

Lemma 4. Suppose L ∈ L(Rn+m) is invertible and has its inverse decomposed as

L−1 =

[
A1 B1

C1 D1

]
∈ L(Rn+m).

Then the finite spectrum of the pencil (M,L) satisfies σ(M,L) = [σ(A1)\{0}]−1
.

Proof. Clearly

det(λM − L) = 0⇔ det(L−1M − λ−1I) = 0

⇔ det

[
A1 − λ−1In 0

C1 −λ−1Im

]
= 0

and the result follows since detL �= 0.
We shall also use A1(λ), B1(λ), and so on, to denote the elements in the decom-

position of the parameterized inverse L(λ)−1.
Lemma 5. If detD(λ) �= 0, then σ(Sλ) = σ(M,L(λ)).
Lemma 4 shows that we can understand the infinite eigenvalue of (M,L) by

studying the zero eigenvalues of the mapping A1. Before studying the implications of
Lemma 4 further, we present the generalized SIB theorem [3].

Theorem 4. Suppose that r ≥ 3 and L ∈ Cr(Λ, L(Rn+m)). Suppose further that
N(D(λ0)) = 〈k〉, where k �= 0, D′(λ0)k �∈ R(D(λ0)), and C(λ0)B(λ0)k �∈ R(D(λ0)).
Then there is a δ > 0 such that for all λ ∈ Nδ(λ0)\{λ0}, Sλ ∈ L(Rn) exists. There is
a Cr locus of algebraically simple, real eigenvalues of Sλ, denoted α(λ), which has a
simple pole at λ0

α(λ) =
µ

λ− λ0
+ φ(λ− λ0),

where µ �= 0 and the function φ is Cr−2 in Nδ(λ0).
This has one fewer conditions than Theorem 1. Namely, the invertibility of

L(λ0) = dz(f × g)(0, 0, λ0) is needed to prove Theorem 1, but not its generaliza-
tion Theorem 4. However, Theorem 4 does not tell us how the remaining n − 1
elements of σ(Sλ) behave at λ0, nor does it provide an expression for the residue µ.
However, retaining this invertibility condition permits another proof of Theorem 1,
based on Lemma 4, which yields a simple expression for µ.

Theorem 5. Suppose that r ≥ 3 and L ∈ Cr(Λ,L(Rn+m)). Suppose further
that N(D(λ0)) = 〈k〉, where k �= 0, N(D(λ0)

T ) = 〈u〉, D′(λ0)k �∈ R(D(λ0)), and
C(λ0)B(λ0)k �∈ R(D(λ0)). In addition, suppose that L(λ0) ∈ GL(Rn+m).

Then there is a δ > 0 such that for all λ ∈ Nδ(λ0)\{λ0}, Sλ ∈ L(Rn) exists and
is invertible. There is a locus of eigenvalues, α(λ) ∈ σ(Sλ), and a Cr−2 function φ
such that α(λ) = µ/(λ− λ0) + φ(λ− λ0), where

µ = −u
TC(λ0)B(λ0)k

uTD′(λ0)k
.
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For all |λ − λ0| < δ the remaining n − 1 eigenvalue locii of Sλ lie in some compact
annulus A ⊂ C which does not contain the origin. Moreover, these eigenvalues can
be uniquely extended to a continuous function on Nδ(λ0).

In addition, in the notation of Lemma 4

A1(λ0) = lim
λ→λ0

S−1
λ ,

where N (A1(λ0)) = 〈B(λ0)k〉 and R(A1(λ0)) =
〈
CT (λ0)u

〉
.

Proof. Define the matrices S(λ) and T (λ) ∈ L(Rn+m),

T (λ)
def
=

[
I 0

C(λ) D(λ)

]
and S(λ)

def
=

[
I B(λ)
0 D(λ)

]
,

which form the Schur decomposition

L(λ) = S(λ)

[ Sλ 0
0 D(λ)−1

]
T (λ).(2.1)

By Lemmas 1 and 3, d
dλdetD(λ)

∣∣
λ=λ0

�= 0 and it follows that there is some

δ1 > 0 such that detD(λ) is nonzero on Nδ1(λ0)\{λ0}. Therefore Sλ exists on this
neighborhood and is a bijection using (2.1).

As detL(λ0) �= 0 there is a δ2 > 0 such that L(λ)−1L(λ) ≡ L(λ)L(λ)−1 = I for
all λ ∈ Nδ2(λ0). Let δ = min(δ1, δ2).

Let us define the Cr map

λ �→ L(λ)−1 =

[
A1(λ) B1(λ)
C1(λ) D1(λ)

]
.

One finds

A1(λ)B(λ) +B1(λ)D(λ) ≡ 0,(2.2a)

C(λ)A1(λ) +D(λ)C1(λ) ≡ 0,(2.2b)

C(λ)B1(λ) +D(λ)D1(λ) ≡ Im,(2.2c)

A(λ)A1(λ) +B(λ)C1(λ) ≡ In.(2.2d)

By taking inverses, it follows from (2.1) that

S−1
λ ≡ A1(λ)

when detD(λ) �= 0. We shall now prove that A1(λ0) has an algebraically simple
eigenvalue. This will provide a curve, β(λ), of eigenvalues of A1(λ) such that α(λ) =
1/β(λ) ∈ σ(Sλ) and the fact that β(λ0) = 0 will complete the proof.

Equation (2.2a) implies

A1(λ0)B(λ0)k = 0.

Suppose that there is some v �= 0 such that A1(λ0)v = 0. Using (2.2d) evaluated
at λ = λ0, we find B(λ0)C1(λ0)v = v. Using (2.2b) we see that D(λ0)C1(λ0)v = 0,
so C1(λ0)v = ζk for some ζ ∈ R by the simple null-space condition. Therefore
ζB(λ0)k = v and it follows that

N(A1(λ0)) = 〈B(λ0)k〉 .
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Now suppose B(λ0)k ∈ R(A1(λ0)) so that A1(λ0)w = B(λ0)k for some nonzero
w. This yields, from (2.2b), C(λ0)A1(λ0)w + D(λ0)C1(λ0)w = 0. It follows that
C(λ0)B(λ0)k = −D(λ0)C1(λ0)w and therefore u

TC(λ0)B(λ0)k = 0, a contradiction.
Hence 0 is an algebraically simple eigenvalue of A1(λ0) with eigenvector B(λ0)k,
therefore 0 is an algebraically simple eigenvalue of A1(λ0)

T .
Since, from (2.2b), 0 = (uTC(λ0)A1(λ0))

T = A1(λ0)
TC(λ0)

Tu we find

R(A1(λ0)) = R(A1(λ0)) = N(A1(λ0)
T )⊥ =

〈
C(λ0)

Tu
〉⊥

.

From spectral perturbation results in [11] one can find a Cr, algebraically sim-
ple, real eigenvalue locus β(λ) ∈ σ(A1(λ)) such that β(λ0) = 0. Differentiating the
identities

β(λ)v(λ) ≡ A1(λ)v(λ)

and also (2.2a) and then setting λ = λ0 yields

β′(λ0) = −u
TC(λ0)B1(λ0)D

′(λ0)k

uTC(λ0)B(λ0)k
.

Thus β′(λ0) = 0 if and only if

C(λ0)B1(λ0)D
′(λ0)k ∈ R(D(λ0)).

Postmultiplying (2.2c) by D′(λ0)k, one finds

C(λ0)B1(λ0)D
′(λ0)k +D(λ0)D1(λ0)D

′(λ0)k = D′(λ0)k.

Therefore

uTC(λ0)B1(λ0)D
′(λ0)k = uTD′(λ0)k �= 0

and consequently β′(λ0) �= 0. Define α(λ) = 1/β(λ).
Since limλ→λ0

(λ − λ0)α(λ) = µ and α(λ) = 1/β(λ) ∈ σ(A1(λ)
−1) ≡ σ(Sλ),

it is clear that µ = 1/β′(λ0). Since Sλ = A1(λ)
−1 for λ �= λ0, and A1(λ0) has an

algebraically simple zero eigenvalue, it has n−1 nonzero eigenvalues whose reciprocals
provide the elements of C required to remove the n− 1 singularities in σ(Sλ).

Corollary 1. Under the conditions of Theorem 5, if λ ∈ Nδ(λ0)\{λ0}, then
#σ(M,L(λ)) = n, however, #σ(M,L(λ0)) = n− 1.

Proof. Use Lemma 4 to count the number of nonzero eigenvalues of A1(λ) ac-
cording to algebraic multiplicity.

Theorem 6. If (M,L) is a regular pencil, then ind(M,L) = 1 if and only if
detD �= 0.

Proof. If detD �= 0, then it is simple to show that1 ind(M,L) = 1.
Now suppose that (M,L) is regular and ind(M,L) = 1. Hence there are matrices

Pij and Qij , for i = 1, 2 and j = 1, 2, which form nonsingular maps P and Q, such
that for some n1 and n2 with n1 + n2 = n+m,

PMQ =

[
P11 P12

P21 P22

] [
In 0
0 0

] [
Q11 Q12

Q21 Q22

]
=

[
In1 0
0 0n2

]
def
= M′.(2.3)

Now m = dimN(M) = dimN(PMQ) = dimN(M′) = n2 and it follows that n = n1.

1See the proof of Theorem 7 for details.
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Using (2.3) we find that P11Q11 = In, Q12 = 0, and P21 = 0. From this it is clear
that detP = detP11detP22 and detQ = detQ22/detP11. Also, for some Ĉ ∈ L(Rn)[

P11 P12

0 P22

] [
A B
C D

] [
P−1

11 0
Q21 Q22

]
=

[
Ĉ 0
0 Im

]
.(2.4)

It follows that P22DQ22 = Im and therefore detD �= 0.
Corollary 2. If (M,L) is regular and ind(M,L) = 1 then, there is a δ > 0

such that if ‖L− L′‖ < δ, then (M,L′) is regular and ind(M,L′) = 1.
In what follows we shall use P (M,L)Q to denote the pencil (PMQ,PLQ). Con-

sider the following example which shows various KNFs of a class of matrix pencil
which has the same form as (M,L).

Example 1. Consider the matrix pencil

(M,L)
def
=

([
1 0
0 0

]
,

[
a b
c d

])
.

If d �= 0, this pencil has index-1. If d = 0, but bc �= 0, it has index-2. If |d|+ |bc| = 0,
it is not regular.

Clearly, if d �= 0, the normal form is given by[
1 −b/d
0 1/d

]
(M,L)

[
1 0
−c/d 1

]
=

([
1 0
0 0

]
,

[
a− bc/d 0

0 1

])
.

If d = 0 but bc �= 0, then multiplying by the inverse of the second matrix within this
pencil gives the normal form

L−1(M,L)I =

([
0 0
1/b 0

]
,

[
1 0
0 1

])
.

Within the definition of KNF this corresponds to the vector subspace U being trivial,
namely, U = ∅.

The following theorem generalizes Example 1 to matrix pencils over R
n+m.

Theorem 7. Suppose that n ≥ 2,detL(λ0) �= 0,N(D(λ0)) = 〈k〉 , C(λ0)B(λ0)k �∈
R(D(λ0)), and D′(λ0)k �∈ R(D(λ0)). There is some r0 > 0 such that

ind(M,L(λ)) =

{
1 if λ ∈ Nr0(λ0)\{λ0},
2 if λ = λ0.

Moreover, the KNF of (M,L(λ)) is given as follows. If λ ∈ Nr0(λ0)\{λ0}, then
there are mappings P ′ and Q′ such that

P ′MQ′ =
[
In 0
0 0

]
and P ′L(λ)Q′ =

[ Sλ 0
0 0

]
.

There are mappings P , Q, and L0 such that

PMQ =


 Iu 0 0
0 0 0
0 C0 0


 and PL(λ0)Q =


 L0 0 0
0 1 0
0 0 Im


 ,

where C0 : R→ R
m is a linear map such that C0(1) = k. If we denote N(D(λ0)

T ) =

〈u〉 and write U =
〈
C(λ0)

Tu
〉⊥
, then L0 ∈ GL(U). The mappings PMQ and

PL(λ0)Q are elements of L(U ⊕ R⊕ R
m).
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Proof. From Theorem 5 we know that N (A1(λ0)) = 〈B(λ0)k〉 and that there is
an r0 > 0 such that if λ ∈ Nr0(λ0), detD(λ) = 0 if and only if λ = λ0. If λ �= λ0 is in
this neighborhood, define

P ′ =
[
In −B(λ)D(λ)−1

0 Im

]
and Q′ =

[
In 0

−D(λ)−1C(λ) D(λ)−1

]
.

A multiplication shows that the KNF is given by

P ′MQ′ =
[
In 0
0 0

]
and P ′L(λ)Q′ =

[
(A−BD−1C)(λ) 0

0 Im

]
.

Hence ind(M,L(λ)) = 1 for all λ ∈ Nr0(λ0)\{λ0}.
We now calculate ind(M,L(λ0)). We adopt the same notation as Theorem 5 and

drop the reference to λ0 for brevity.

Write R def
= R(A1) =

〈
CTu

〉⊥
, so that R

n = R⊕〈Bk〉 and dimR = n−1. Define
the restriction

A0
def
= A1|R ∈ GL(R).

Since 0 is an algebraically simple eigenvalue of A1, there is an invertible map J :
R⊕ R→ R

n such that

J−1A1J =

[
A0 0
0 0

]
∈ L(R⊕ R).

Therefore

J

[
0
1

]
= γBk

for some γ ∈ R. Without the loss of any generality, we may normalize k to ensure
that γ = 1.

If we premultiply (M,L) by L−1 we obtain the pencil

L−1(M,L) =

([
A1 0
C1 0

]
, In+m

)
∈ L(Rn+m)× L(Rn+m).

Conjugating this pencil with the map J : R⊕ R⊕ R
m → R

n+m given by

J
[
r
s

]
=

[
Jr
s

]
(r ∈ R⊕ R, s ∈ R

m)

yields

J−1(L−1M, In+m)J =



 A0 0 0
0 0 0
C0

1 C1
1 0


 , I


 ∈ L(R⊕R⊕R

m)×L(R⊕R⊕R
m),

where C0
1 = C1J |R : R → R

m and C1
1 = C1J |RI : R → R

m. Hence, for η ∈ R,
C1

1 (η) = ηC1
1 (1) and

C1
1 (1) = C1J

(
0
1

)
= C1Bk = k.

Here I is used to denote the identity on R⊕ R⊕ R
m.
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Conjugate (J−1L−1MJ , I) by

 IR 0 0

0 1 0
−C0

1A
−1
0 0 Im


 ∈ GL(R⊕ R⊕ R

m).

Now pre- or postmultiply the resulting pencil by
 A−1

0 0 0
0 1 0
0 0 Im


 ∈ GL(R⊕ R⊕ R

m).

This provides nonsingular transformations P and Q which, when applied simulta-
neously to M and L, yield

PMQ =


 I 0 0
0 0 0
0 C1

1 0


 and PL(λ0)Q =


 A−1

0 0 0
0 1 0
0 0 Im


 .

Comparing (PMQ,PLQ) to the KNF, we see that the nilpotent mapping N is

[
0 0
C1

1 0

]
∈ L(R⊕ R

m).

We see that this is nonzero because C1
1 (1) = k. However, N2 = 0 so that ind(M,L(λ0))

= 2.
The following theorem shows that the index of (M,L) is not always stable to

perturbations in L. Of course, we can easily see that the index of (M,L) is not
stable to perturbations in M because ind(M(ε), L(λ)) = 0 for λ �= λ0 and ε �= 0, yet
ind(M,L(λ)) = 1.

Let us note that one can easily formulate an analogy of Theorem 7 to cover the
case when n = 1. We omit this for brevity.

Example 2. Let φi(t) be smooth functions and consider the DAE

ẋ(t) = y1(t) + φ1(t),

0 = x(t) + y2(t) + φ2(t),

0 = λy1(t) + y2(t) + φ3(t).

This can be written in the formMż(t) = L(λ)z(t)+f(t) such that (M,L(λ)) satisfies
the SIB theorem at λ = 0. If λ �= 0, the solution is easily seen not to depend on any
of the derivatives of φi. We find that the solution of this DAE when λ = 0 is given by

x = φ3 − φ2, y1 = φ̇3 − φ̇2 − φ1, y2 = −φ3.

The dependence of the solution on the first derivatives of φi is to be expected because
the index of (M,L(0)) is 2.

3. Unfolding the SIB. We continue with the following definition.
Definition 1. A singular Hopf curve is the graph of a continuous function

H = {(ε, λ0(ε)) ∈ R
2 : ε ∈ (0, ε0)} such that (M(ε), L(λ)) has a purely imaginary

eigenvalue iω(ε) for all (ε, λ) ∈ H and limε→0+ ω(ε) = ∞. A point on H is called a
Hopf point.
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Let us remark that the existence of a Hopf curve is not sufficient to determine
the existence of periodic solutions in an ODE whose linearization is (M(ε), L(λ))
without further transversality assumptions such as those found in the Hopf bifurcation
theorem [12, 1]. Nevertheless, we proceed with the following theorem which provides
the necessary ingredient for Hopf bifurcation.

Theorem 8. Suppose that the matrix pencil (M,L(λ)) satisfies the hypotheses of
Theorem 5 and, adopting the notation of that theorem, uT k �= 0 and

uTC(λ0)B(λ0)k

uT k
= −ω2

0 < 0.(3.1)

Then there is an ε0 > 0 and unique Cr functions λ0 : (0, ε0) → R and ω0 : (0, ε0) →
(0,∞) such that (M(ε), L(λ0(ε))) has a pair of purely imaginary, algebraically simple
eigenvalues ±iω0(ε). Moreover, λ0(ε) = λ0 + O(ε) and ε1/2ω0(ε) = ω0 + O(ε) as
ε→ 0+.

Proof. If z = (x, y) ∈ R
n+m, let Π1z = x and Π2z = y be the projections of z

onto coordinate components. Let N(ε) = εM(ε)−1. Write ρ = ω2ε and seek a solution
of the augmented system

[ρM(ε) + L(λ)N(ε)L(λ)] z = 0,(3.2a)

uTC(λ)(Π1z)− 1 = 0,(3.2b)

kT (Π2z)− 1 = 0.(3.2c)

It is clear that a solution of (3.2) provides a purely imaginary pair of eigenvalues of
(M(ε), L(λ)). Write (3.2) as F (z, λ, ρ, ε) = 0, where F : Rn+m × R

3 → R
n+m × R

2 is
a Cr mapping. Set

ρ0 = ω2
0 , x0 =

B(λ0)k

uTC(λ0)B(λ0)k

and let y0 be the unique solution of

−k
uT k

+
C(λ0)B(λ0)k

uTC(λ0)B(λ0)k
+Dy0 = 0, k

T y0 = 1.

It follows that F ((x0, y0), λ0, ρ0, 0) = 0.
Now dz,λ,ρF (z, λ, ρ, ε) ∈ L(Rn+m × R

2) is given by the matrix


 ρM(ε) + L(λ)N(ε)L(λ) L′(λ)N(ε)L(λ) + L(λ)N(ε)L(λ)′ M(ε)z

uTC(λ)Π1· 0 0
kTΠ2· 0 0


 .(3.3)

Suppose that dz,λ,ρF (z0, λ0, ρ0, 0)[h, α, β] = (0, 0, 0) for some (h, α, β) ∈ R
n+m × R

2,
and write h1 = Π1h and h2 = Π2h. Then, using the fact that L(λ0) is invertible and
removing the reference to λ0 for brevity,[

0
0

]
=

[
ρ0A1 0

ρ0C1 + C D

] [
h1

h2

]
(3.4)

+ α

{
L−1L′

[
0

−ρ0

uTCBk
k

]
+

[
0

C ′x0 +D′y0

]}
+ β

[
0
1

uTCBk
k

]
,

where uTCh1 = 0 and kTh2 = 0.



136 R. E. BEARDMORE

Therefore,

ρ0A1h1 + α(A1B
′ +B1D

′)k = 0

and, premultiplying this by uTC and using the fact that AT
1 C

Tu = 0, we find 0 =
αuTCB1D

′k. Since CB1 = I −DD1, it follows that

0 = αuTCB1D
′k = αuT (I −DD1)D

′k = αuTD′k

and α = 0 follows. Hence there is a θ1 ∈ R such that h1 = θ1Bk, so that 0 = uTCh1 =
θ1u

TCBk and h1 = 0 also follows.
Finally, therefore, Dh2+

β
uTCBk

k = 0. As uT k �= 0, β = 0 must follow. Therefore,
there is a θ2 ∈ R such that h2 = θ2k. However, k

Th2 = 0 implies that h2 = 0. Hence,
the derivative dz,λ,ρF ((x0, y0), λ0, ρ0, 0) is a bijection and the result follows by the
implicit function theorem.

The sign condition (3.1) within Theorem 8 can be replaced by

uTC(λ0)B(λ0)k

uT k
= ω2

0 > 0

and the conclusions of the above theorem remain true, but instead for the matrix
pencil (M(−ε), L(λ)).

The following system of ODEs from [13] probes Theorem 8 quite effectively. It is a
model of cooperative phenomena which occur in oxygen-hemoglobin reactions taking
place in the bloodstream (details of this can be found in [13, p. 119]). The model is

du

dt
= −u+ (u− a3u+ a1)v1 + (a4 + u)v2,(3.5a)

ε
dv1

dt
= u− (u+ a3u+ a1 + a2)v1 + (a4 + a5 − u)v2,(3.5b)

ε
dv2

dt
= a3uv1 − (a4 + a5)v2,(3.5c)

where u(0) = 1 and v1(0) = v2(0) = 0.
The author of [13] only considers the behavior of (3.5) for large time by finding

the projection of the flow onto the one dimensional slow manifold. Instead, suppose
we consider the stability of the trivial equilibrium which exists for all parameter values
ai. The linearization of (3.5) at this equilibrium point is the matrix

M(ε)−1L(λ, µ)
def
=


 1 0 0

0 ε−1 0
0 0 ε−1




 −1 a1 a4

1 −λ µ
0 0 −µ


 ,(3.6)

where λ = a1+ a2 and µ = a4+ a5. We consider the stability properties of the origin
when λ and µ vary, with the other parameters fixed and ε small.

For fixed λ �= 0 and varying µ, a slow-manifold singularity is encountered by the
trivial equilibrium at µ = 0. However, ω0 = 0 in the notation of Theorem 8. One
finds on inspection that a Hopf curve does not emanate from the point (µ, ε) = (0, 0).

However, for a fixed µ �= 0 and varying λ, Theorem 8 is satisfied at λ = 0, provided
a1 < 0. A curve of Hopf points exists, and is given by the graph of λ0. Theorem 8
indicates that

ω0(ε) = ε−1/2
√−a1 +O(ε1/2), λ0(ε) = −ε+O(ε2).



SINGULARITY-INDUCED BIFURCATION 137

A simple calculation shows that

ω0(ε) = ε−1/2
√
a1 + ε and λ0(ε) = −ε.

The value of µ has no effect on the appearance of a Hopf curve in (λ, ε)-space, but
µ must be nonzero for Theorem 8 to apply. We therefore see that Theorem 8 provides
sufficient, but not necessary conditions for the existence of a Hopf curve. Namely, the
invertibility of L(λ0), which is used to prove Theorems 5 and 8, is not needed for a
Hopf curve to exist.
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Abstract. We consider the following problem: minx∈Rn min‖E‖≤η ‖(A+E)x− b‖, where A is
an m×n real matrix and b is an n-dimensional real column vector when it has multiple global minima.
This problem is an errors-in-variables problem, which has an important relation to total least squares
with bounded uncertainty. A computable condition for checking if the problem is degenerate as well
as an efficient algorithm to find the global solution with minimum Euclidean norm are presented.
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1. Introduction. In this paper we consider the following problem:

min
x∈Rn

min
‖E‖≤η

‖(A+ E)x− b‖,(1.1)

where A is an m × n real matrix and b is a real n-vector. This problem is a special
case of the errors-in-variables problem, which we have given the formal name of the
degenerate bounded errors-in-variables problem. For ease of reference we usually call
the problem the degenerate min-min problem, since degenerate bounded errors-in-
variables problem is a bit long. This problem can be viewed as a total least squares
(TLS) problem [3, 4] with bounds on the uncertainty in the coefficient matrix, which
we will explain in more detail in section 3. In this paper we make frequent use of
the terms degenerate and nondegenerate. Simply put, a degenerate problem is one
where multiple solutions exist. The nondegenerate case of this problem occurs when
η is small and b is in some sense far from the range of A. That η should be small
is intuitive, since for η = 0 we are left with the least squares problem, which is
nondegenerate (unique solution) when A has full column rank. Conversely, when η is
larger than the smallest singular value of A, we would anticipate degeneracy (multiple
solutions) as the perturbed matrix A + E is not guaranteed to be full column rank.
The intuition behind b needing to be far from the range of A for nondegeneracy
comes from the fact that if b were close enough that multiple perturbations E existed
such that b was in the range of A + E, then multiple solutions (degeneracy) would
exist. In [2] we considered the nondegenerate case of this problem and showed how to
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compute its unique solution in O(mn2) flops. In this paper we consider the problem
when it is degenerate; that is, when it has multiple solutions. In particular, we
present an O(mn2) algorithm to find the solution with the minimum Euclidean norm.
The degenerate case is actually the generic case for this problem, and hence is more
important than the nondegenerate case. This can be seen from the simple discussion
above, since the nondegenerate case holds only for certain combinations of b and A
when η is smaller than the smallest singular value of A. This is very restrictive, and
hence the claim.

We begin this paper with a motivational problem, which shows the advantage
of considering this criterion. We proceed by outlining the proof and presenting the
algorithm to solve the problem. We then proceed with the full proof of the problem.
We conclude with a tabulation of the results and an extension to the problem of a
column partitioned matrix with uncertainty in only one partition.

2. Motivation. Many different methods exist for solving the basic estimation
problem of finding some vector of unknowns x, from a vector of observations b, by
using a matrix of relations A. Probably the two best known methods are least squares
and TLS. We now want to get a feel for how these problems operate on a simple
example and to see if there is any room for improvement. Consider, for example, a
simple one dimensional “skyline” image that has been blurred. A “skyline” image is
a one dimensional image that looks like a city skyline when graphed, and thus is the
most basic image processing example. “Skyline” images involve sharp corners, and
it is of key importance to accurately locate these corner transitions. Blurring occurs
often in images; for example, atmospheric conditions, dust, or imperfections in the
optics can cause a blurred image. Blurring is usually modeled as a Gaussian function
or Gaussian blur, which incidentally is a great smoothing filter. The Gaussian blur
causes greater distortion on the corners, which is exactly where we do not want it to
happen. The Gaussian blur with standard deviation, σ, can be modeled as a matrix,
A, with the component in position, (i,j), given by

Ai,j = e−(i−j)2σ.

If we go on the presumption that we do not know the exact blur that was applied (σ
unknown) we cannot expect to get the exact system back. We realize that we will
not be able to perfectly extract the original system, but we want to see if we can get
a little more information than we have now. We “know” the blur is small compared
to the information so we are confident that we should be able to get something. The
least squares solution fails completely, yielding a result that is about three orders
of magnitude off; see Figure 1. We notice that the TLS solution is better than the
least squares solution, but still not acceptable. The degenerate min-min problem
yields great results. From this simple example we can see that there is room for
improvement.

3. Geometric understanding. Probably the easiest way to understand the
problem at hand is to look at it geometrically. For ease of drawing we will consider
A and b to be vectors of length 2. Note that while this is useful for getting a basic
understanding some of the key features of the problem do not appear in this case.
For instance, when A has multiple columns the problem can be degenerate for small
values of η. In such a case the degenerate min-min problem has several advantages
over other formulations, such as TLS. One such advantage is the perturbation on
A is much smaller in the degenerate min-min problem than in the TLS problem.
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Fig. 1. Skyline problem.

For comparison we start with the classic problem of least squares (see Figure 2).
The solution to the least squares problem is found by projecting b into A. This is
a common geometric view of the problem, but forms a basis for understanding the
other problems.

Ax
✲

A

b

�
�
�
�
�
��✒

✲

Fig. 2. Least squares.

In TLS, we allow A to be perturbed by a matrix E and b to be perturbed by a
vector f (see Figure 3). The net effect is that both A and b are projected into a plane
between the two such that the norm of [E f ] is minimized. The TLS problem can
thus be formulated as min ‖[E f ]‖ such that (b+f) ∈ R(A+E). Note that because
of this A can be moved arbitrarily far.

In the general min-min problem (degenerate or not), we project A and b into a
plane between the two as we did in the TLS problem, but we put a bound on how far A
can be perturbed (see Figure 4). Note that the cone around A shows us the boundary
of possible perturbations to A. We are in essence solving the problem min ‖[E f ]‖
such that (b+f) ∈ R(A+E) and ‖E‖ ≤ η. The problem at hand can thus be thought
of as a TLS problem with bounds on the errors in A.
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Fig. 5. Degenerate min-min problem.

To get a better understanding of the degenerate problem, we will consider one
of the ways the problem can become degenerate. The easiest to visualize, and the
only one that can be drawn in two dimensions, is the case when b lies in the cone of
possible perturbations of A (see Figure 5). In this case we see that any x̂ such that
xl ≤ x̂ ≤ xu is a solution to the problem. The perturbations E(x̂) change, but each x̂
in the range still solves the problem. We are now left with a problem, namely, which
x̂ do we choose. The most conservative choice is to pick the smallest one, which is
what we do. This choice has a lot to recommend it, but a full discussion is outside
the bounds of the paper at hand. In section 6, we take advantage of this basic insight
(picking the smallest solution) to reformulate the problem into a unique problem.

4. Proof outline. The proof is long and technically involved, so we provide this
overview. The cost function presented is useful for seeing how this problem handles the
uncertainty in the matrix A, but it is not immediately useful in solving the problem.
For instance, checking if a problem is degenerate in the original form of the problem
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is tedious. We thus desire to rewrite the problem into a simpler form, and then find
a computable condition for degeneracy. We start the proof with the cost function of
the problem we want to solve,

min
x∈Rn

min
‖E‖≤η

‖(A+ E)x− b‖,

and the degeneracy condition which was found in [2],

η‖x‖ ≥ ‖Ax− b‖.

Since the nondegenerate case is already solved, we proceed by assuming the degeneracy
condition holds. The first step is to minimize the cost function over ‖E‖ ≤ η, and find
that the optimal cost is zero. Since the problem is degenerate and the cost function
is zero, we choose the solution with the smallest norm to obtain the problem

min
‖Ax−b‖≤η‖x‖

‖x‖.

The condition η‖x‖ ≥ ‖Ax− b‖ is not practical for checking for degeneracy in a
problem, as mentioned above, since it requires the checking multiple values of x to
hopefully find one that holds and thus showing the problem is degenerate. The second
step is thus to find a computable condition for degeneracy. We proceed by squaring
the condition for degeneracy and using the singular value decomposition (SVD) of A
to find the two cases in which the problem is degenerate. The first case is when η is
larger than the smallest singular value of A. The first case is always degenerate. The
second case is when η is not larger than the smallest singular value of A. The second
case is degenerate only when

bT (I −A(ATA− η2I)−1AT )b ≤ 0.

While we now know when the problem is degenerate, we still need to show how
to get the solution. We would like to be able to use Lagrange multiplier techniques
to find the solution. We thus need to reduce the inequality η‖x‖ ≥ ‖Ax − b‖ to an
equality if possible. The third step of the proof is a proof that the solution, x̂, is
actually on the boundary of the inequality, and thus η‖x̂‖ = ‖Ax̂− b‖.

We then proceed in the fourth step to use Lagrange multiplier techniques to
parameterize the solution, x̂ = x(α), in terms of a single variable, α, thus reducing
the problem to finding the zeros a secular equation. A secular equation is a rational
expression of one variable, which we construct so that all the critical points of the
original problem occur at zeros of the secular equation. The secular equation reduces
our n-dimensional search for the solution, x̂, to a one dimensional search. We denote
the solution to the original problem as x(αo), and note that it will occur at one of the
2n zeros of the secular equation. The zero of the secular equation which corresponds
to x(αo) is denoted αo.

The remainder of the proof is concerned with showing which zero is αo. Toward
this end we start the second half of the proof with an assertion of the answer. The
unique zero of the secular equation in the interval [max(−σ2

n,−η2), ησ1] is α
o, where

σ1 is the largest singular value of A and σn is the smallest. We prove this by a process
of elimination.

To begin with we us Lagrange techniques (first and second order conditions on
the Lagrangian) to narrow down the search area. By employing these techniques, we
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find that αo must lie in the interval [max(−σ2
n−1,−η2), ησ1]. This still admits several

possibilities; see Figure 6. First of all there are two critical points (α = −σ2
n and

α = −σ2
n−1) which could be α

o. Second, αo could be in either interval ((−σ2
n, ησ1) or

the interval (−σ2
n−1,−σ2

n)).
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Fig. 6. Secular equation.

In particular, note that the interval (−σ2
n−1,−σ2

n) can have multiple zeros in it, so
we must also deal with this possibility. We put the arguments that only the rightmost
root in the interval (−σ2

n−1,−σ2
n) is a candidate to be α

o in Appendix B. With this
dealt with there are only four candidates zeros of g(α) to handle, which we denote
by α1 through α4. We thus introduce the four candidates: α1 ∈ (−σ2

n, ησ1], α2 is
the rightmost root in (−σ2

n−1,−σ2
n), α3 = −σ2

n, and α4 = −σ2
n−1 (see Figure 6). To

show that αo is the unique root in [−σ2
n, ησ1], we examine six cases. Most of the

work is involved at this stage, and hence most of the mathematical difficulties occur
here. The basic idea is to eliminate the possibility that any root except the one that
occurs in the interval [max(−σ2

n,−η2), ησ1] can be α
o. Additionally we must show the

existence and uniqueness of the zero. With this established we can then use bisection
or Newton’s method to find the root in our algorithm.

You might be wondering why we need to use six cases to prove the assertion that
αo lies in the interval [max(−σ2

n,−η2), ησ1]. The reason lies in three basic factors
which affect the shape of the secular equation. The first and most obvious is the size
of η. Note, for instance, that if η < σn, then only one of the zeros α1 is a candidate for
αo since we have from an earlier condition (first order condition on the Lagrangian)
that αo > −η2. Obviously to consider some of the candidates, such as α4, we need to
assume that η is large enough to admit the possibility. The cases just let us organize
the assumptions into convenient groups to handle. See Figure 7. The dotted vertical
lines mark where the singular values are, and the dash-dotted vertical line indicates
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where −η2 is. We note that in Case 1 of Figure 7, it looks like the secular equation
becomes flat to the right of α = −0.5 but it does not. The scale makes the graph
hard to read, so we provide an expanded view of the region in Figure 8. In Case 1
we consider η small (η < σn), in Case 2 we consider the special case of η = σn, and
finally in Cases 3–6 we consider η to be large (η > σn).

When η is large there are more possibilities. The first is that the smallest singular
value might have multiplicity of two or more. This can be exploited to simplify the
problem. In particular, α2 does not exist in this case, and α3 = α4. The cases where
σn < σn−1 are the more difficult ones. The second is that b might be orthogonal
to the left singular vector(s) of A, which correspond to smallest singular value. This
drastically changes the shape of the graph of the secular equation in the region around
α = −σ2

n. See, for instance, the middle left graph in Figure 7. The pole which
normally appears at −σ2

n is not present. In fact, the only time α3 can be α
o is when



DEGENERATE BOUNDED EIV MODEL 145

b is orthogonal to the left singular vector(s) of A, which corresponds to the smallest
singular value (σn). Similarly, the only time α4 can be α

o is when b is orthogonal
to the left singular vector(s) of A, which corresponds to the second smallest singular
value (σn−1). Note that if the smallest singular value has multiplicity of at least two,
then σn = σn−1. This case is shown on the middle right graph of Figure 7. The
last four cases cover all the combinations of singular value multiplicity and b vector
orthogonality which occurs when η is large.

5. Algorithm. For the reader’s convenience we present pseudocode for the al-
gorithm in this section. The syntax has been designed to be Matlab-like. Three lines
deserve particular attention, though. The first one to appear states “solve nonde-
generate problem.” In this case the problem is not degenerate so you will need to
provide code for the nondegenerate case as outlined in [2]. The next line that could
be confusing starts with “pick any Θ.” In this case any unit vector, Θ, will solve
the problem. An additional condition could be placed on the solution, x̂, to select
a specific Θ or to meet special requirements of the specific problem, so we leave it
unspecified in our pseudocode. The final line that requires clarification starts with
α ∈ [max(−σ2

n,−η2), ησ1

]
. In this case you are finding the root of g(α) in the speci-

fied range, so any root finder you prefer (for instance, bisection or Newton’s method)
can be used.

[U,Σ, V ] = SV D(A);
b1 = UT b;
cond = 0;
if (η < σn) or (η = σn and b1(n) = 0)

if (bT (I −A(ATA− η2I)−1AT )b > 0)
solve nondegenerate problem

else
cond = 1;

end
else

if (η = σn)
cond = 1;

else
if (σn < σn−1) and (b1(n) = 0) and (g(−σ2

n) ≥ 0)
Σ̄1 = Σ(1 : n− 1, 1 : n− 1);
b̄1 = b1(1 : n− 1);
x̂ = V

[
(Σ̄2

1 − σ2
nI)

−1Σ̄1b̄1

±
√

g(−σ2
n)

η2−σ2
n

]
;

elseif (σn = σn−k+1 < σn−k) and (‖b1(n− k + 1 : n)‖ = 0)
and (g(−σ2

n) ≥ 0)
Σ̄1 = Σ(1 : n− k + 1, 1 : n− k + 1);
b̄1 = b1(1 : n− k + 1);

r =
√

g(−σ2
n

η2−σ2
n
;

Pick any Θ ∈ Rk such that ‖Θ‖ = 1;

x̂ = V

[
(Σ̄2

1 − σ2
nI)

−1Σ̄1b̄1
rΘ

]
;

else
cond = 1;

end
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end
end
if cond == 1

α ∈ [max(−σ2
n,−η2), ησ1

]
such that g(α) = 0

x̂ = (ATA+ αI)†AT b;
end

Where g(α) is given by

g(α) = bT2 b2 + bT1
(
Σ2

1 + αI
)−2 (

α2I − η2Σ2
1

)
b1,

and

A = [U1 U2 ]

[
Σ1

0

]
V T ,

b1 = UT
1 b,

b2 = UT
2 b.

6. Minimization over E. We now start the full proof. The proof will be much
easier to read if the reader is familiar with the preceding papers [1, 2]. For the
reader’s convenience we will place major milestones in the proof in boxes at the end
of the sections where the milestone occurs. We assume that the problem is degenerate
and in particular that there exists an x such that η‖x‖ ≥ ‖Ax − b‖. We will soon
provide equivalent computable criteria for degeneracy; however, this formulation is
more useful for the present. Our goal in this section is to reduce the problem to
an equivalent formulation that does not involve E. The goal is accomplished by
showing the degenerate problem is equivalent to requiring the solution to be in the
set {x|η‖x‖ ≥ ‖Ax− b‖}. We begin by showing that the problem requires that we be
in the set, then show that any x̂ in the set solves the problem. Note that the method
used to get E is related to the formulation in [5], though we provide the full argument
for the ease of the reader. Under the assumption that the problem is degenerate it
follows that

min
x

min
‖E‖≤η

‖Ax− b+ Ex‖ = 0,

since for any x such that η‖x‖ ≥ ‖Ax− b‖ we can choose

E = −γη (Ax− b)xT

‖Ax− b‖‖x‖ , 0 ≤ γ ≤ 1,

and obtain

0 ≤ min
x

min
‖E‖≤η

‖Ax− b+ Ex‖ ≤ ‖Ax− b‖
∣∣∣∣1− γ

η‖x‖
‖Ax− b‖

∣∣∣∣ ,
and for the choice

γ =
‖Ax− b‖
η‖x‖ ≤ 1,

the upper bound is zero. Since there exists an E which makes the minimum zero, the
minimum value of the norm is zero. Therefore we only need consider the equation

Ax− b+ Ex = 0(6.1)
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with the constraint ‖E‖ ≤ η. This constrained equation is equivalent to being on the
set defined by

‖Ax− b‖ ≤ η‖x‖.(6.2)

To prove this, we first show that if the constrained equation (6.1) is met, then we are
in the set (6.2).

Ax− b+ Ex = 0,

Ax− b = −Ex.
Taking the norm of both sides we obtain

‖Ax− b‖ = ‖Ex‖
and we note that this implies

‖Ax− b‖ ≤ ‖E‖‖x‖.
Then using the constraint on the perturbation size, ‖E‖ ≤ η, we obtain

‖Ax− b‖ ≤ η‖x‖
and we have the desired result. We now show that if we are in the set (6.2), then the
constraint equation (6.1) is met. This is accomplished by showing that for any x in
the set, there exists a perturbation, E0, such that the constraint equation is satisfied.
To do this consider

E0 = − (Ax− b)xT

‖x‖2 .

We first note that this perturbation satisfies the constraint on the size of the pertur-
bations (‖E‖ ≤ η).

‖E0‖ ≤ ‖Ax− b‖
‖x‖ .

Since on the set ‖Ax− b‖ ≤ η‖x‖ we have
‖E0‖ ≤ η,

we now consider the equation given by Ax− b+ E0x. We note that this is

Ax− b+ E0x = Ax− b− (Ax− b).

Thus we have trivially that Ax− b+ E0 = 0 and the assertion is proven.
We know there are multiple solutions which will solve the problem as stated.

Since any will solve the original problem, we are free to add an additional constraint
which will simplify the solution and ensure the solution meets other requirements.
A reasonable choice is to pick the solution with the minimum norm. Other nice
properties of this choice also recommend it. For instance, it is possible under certain
conditions for the min-max solution (from [1]) to also solve the degenerate min-min
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problem. When this occurs the min-max solution is the solution to the degenerate
problem with minimum norm. We do not prove this for reasons of space, but it does
provide a good understanding of the relationships between the problems and gives
additional motivation for the choice. Using the choice of the minimum norm solution,
the problem can be rewritten into the better form, as follows.

The degenerate problem can be reformulated as a unique problem by considering

min
‖Ax−b‖≤η‖x‖

‖x‖.

7. Computable conditions for degeneracy. The constraint, ‖Ax − b‖ ≤
η‖x‖, defines the set on which our solution lies and is thus referred to as the fea-
sibility constraint. The feasibility constraint can be squared and expanded to obtain

xTATAx− 2xTAT b+ bT b ≤ η2xTx.(7.1)

Let A = UΣV T be the SVD of A conformally partitioned as follows:

U = (U1 U2 ) , Σ =

(
Σ1

0

)
,

and define both bi = UT
i b for i = 1, 2, and z = V Tx. These definitions are made solely

to simplify the expressions we are working with and provide a convenient shorthand
for the rest of the problem. Then inequality (7.1) can be simplified to obtain

zTΣ2
1z − 2zTΣ1b1 + bT1 b1 + bT2 b2 ≤ η2zT z.(7.2)

Now assuming that the singular values are in decreasing order, partition Σ1 as follows:

Σ1 =

(
Σ+ 0
0 Σ−

)
,

where Σ2
+ − η2I ≥ 0 and Σ2

− − η2I < 0. Also conformally partition z and b1

z =

(
z+
z−

)
b1 =

(
b1+
b1−

)
.

Then inequality (7.2) can be expanded into

0 ≥
zT+(Σ

2
+ − η2I)z+ − 2zT+Σ+b1+ + bT1+b1+

+zT−(Σ
2
− − η2I)z− − 2zT−Σ−b1− + bT1−b1−

+bT2 b2.

Now we observe that if Σ− is nonempty, then the inequality always has at least
one z which makes it true. In other words if ATA−η2I is indefinite, then the problem
is always degenerate. On the other hand, if ATA− η2I is positive-semidefinite, then
degeneracy depends on the vector b. To get a computable condition for degeneracy,
we first note that when x = 0 we have that the constraint is nonnegative. We proceed
by minimizing the expression

xT (ATA− η2I)x− 2xTAT b+ bT b
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and when η �= σi we obtain

xo = (ATA− η2I)−1AT b.

Now, when ATA− η2I is positive, we must have that the constraint is nonpositive at
this point. On plugging this back into the expression being minimized we obtain

bT (I −A(ATA− η2I)−1AT )b ≤ 0(7.3)

as the required computable condition for the problem to be degenerate when η < σn.

The problem is degenerate if either

η > σn

or

bT (I −A(ATA− η2I)−1AT )b ≤ 0.
8. Solution is on the boundary. We want to establish that the optimal so-

lution is obtained at the boundary of the feasible set; that is, at the minimum norm
solution the inequality is actually an equality. Mathematically this means the fea-
sibility constraint, ‖Ax − b‖ ≤ η‖x‖, is actually an equality, ‖Ax − b‖ = η‖x‖. To
prove this we use the shorthand developed in the last section that given the SVD of
A, then bi = UT

i b for i = 1, 2, and z = V Tx. The problem of finding the solution
with the smallest norm to the degenerate problem can now be recast as minimizing
zT z subject to the inequality constraint (7.3).

Now if b = 0, then clearly the minimum norm solution is z = 0 which does lie on
the boundary (0 = 0). So we restrict ourselves to the case when b �= 0. Let us denote
by f(z) the expression on the left-hand side of inequality (7.3). Then it is clear that
f(0) > 0, and therefore z = 0 is not a feasible point. Now suppose that contrary
to our hypothesis that the optimal solution occurs at an interior point. Denote that
optimal solution by z0. Since it is an interior point we must have 0 > f(z0). Let γ
denote a scalar and consider the function f(γz0) as γ varies. Since f(·) is a continuous
function it follows that as γ is decreased from 1 towards 0, the value of f(γz0) must
at sometime become equal to 0. But now we have a contradiction as ‖γz0‖ < ‖z0‖
for 0 < γ < 1. Hence we prove our hypothesis that the optimal solution must lie on
the boundary of the feasible set.

Therefore we can restrict our attention to the problem

min
‖Ax−b‖=η‖x‖

‖x‖.

We note that the problem is unaffected by squaring, thus to simplify the algebra we
will work with the squared problem.

The problem is equivalently stated as

min
‖Ax−b‖2=η2‖x‖2

‖x‖2.

9. Reduction to secular equation. Since we have reduced the problem to
an equality constrained minimization problem, we can use the method of Lagrange
multipliers. Letting λ denote the Lagrange multiplier we obtain the following set of
equations that characterize the critical points

x+ λ
(
AT (Ax− b)− η2x

)
= 0.



150 CHANDRASEKARAN, GU, SAYED, AND SCHUBERT

Simplifying, we obtain (
ATA+

1− λη2

λ
I

)
x = AT b.

Make the definition (1− λη2)/λ = α. Then we have

x = (ATA+ αI)−1AT b.

Plugging this into ‖Ax− b‖2 = η2‖x‖2 and using the SVD of A we obtain

bT2 b2 + bT1 Σ
4
1(Σ

2
1 + αI)−2b1 − 2bT1 Σ2

1(Σ
2
1 + αI)−1b1 + bT1 b1 = η2bT1 Σ

2
1(Σ

2
1 + αI)−2b1.

Simplifying we get

bT2 b2 + bT1 (Σ
2
1 + αI)−2(α2I − η2Σ2

1)b1 = 0.

Since we are interested in finding the values of α for which the right-hand side of the
above equation is zero, we define the function g(α) as

g(α) = bT2 b2 + bT1 (Σ
2
1 + αI)−2(α2I − η2Σ2

1)b1

and then study the zeros of this function. The function g(α) is called the “secular
equation,” since it is rational function of one variable. If σi denotes the ith singular
value of A, then the above secular equation has poles at −σ2

i .
This secular equation can have up to 2n real zeros. One of them will give us

the minimum norm solution to our problem, x(αo). We note that if α > ησ1 in the
secular equation, then we must have b = 0, which as we stated earlier requires z = 0,
and thus x = 0. Since we are considering b �= 0 we must have α ≤ ησ1.

The secular equation, g(α) is given by

g(α) = bT2 b2 + bT1 (Σ
2
1 + αI)−2(α2I − η2Σ2

1)b1.

10. Main theorem. We claim that in all cases where a degenerate solution
exists, the minimum norm solution is determined by the unique root of the secular
equation in the interval [max(−σ2

n,−η2), ησ1].
The rest of the paper is devoted to establishing this claim. This is a difficult

task due to the nonconvex nature of the problem and the presence of multiple local
minima.
The solution to the problem, x̂, is given by x̂ = x(αo) with αo the unique zero of

g(α) = bT2 b2 + bT1 (Σ
2
1 + αI)−2(α2I − η2Σ2

1)b1

in the interval [max(−σ2
n,−η2), ησ1].

11. First and second order conditions. Since the Lagrange multiplier must
be nonnegative at a local minimum and λ = 1/(α+ η2) we conclude that

α ≥ −η2.(11.1)

To narrow down the interesting zeros we look at the second order conditions for
a local minimum. Our Lagrangian was

L(x, λ) = ‖x‖2 + λ(‖Ax− b‖2 − η2‖x‖2).
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The second order condition for a local minimum is that the Hessian of L(x, λ) with
respect to x be positive-semidefinite when restricted to the tangent subspace of the
constraint. Differentiating once we have

∇xL(x, λ) = 2x+ λ
(
2AT (Ax− b)− 2η2x

)
.

Differentiating once more we get

∇2
xL(x, λ) = 2I + λ

(
2ATA− 2η2I

)
,

which on simplifying yields

∇2
xL(x, λ) = 2λ

(
αI +ATA

)
.

The constraint is

c(x) = ‖Ax− b‖2 − η2 ‖x‖2 .
The gradient of the constraint is

∇xc(x) = 2AT (Ax− b)− 2η2x,

which can be simplified by noting that

AT (Ax− b) = −αx
thus

∇xc(x) = −(α+ η2)x.

The tangent subspace of the constraint has n − 1 dimensions (even when η = σi).
We now construct a basis for this subspace. Using the SVD notation developed in
section 7 we have

V T∇xc(x) = −(α+ η2)z.

Similarly we can change the basis for the Hessian of the Lagrangian

V T∇2
xL(x, λ)V = 2λ

(
Σ2

1 + αI
)
.

We partition z as

z =

(
z1
z2

)
,

where z1 is a scalar. Let

H =

(
zT2
−z1I

)
.

Then HT z = 0. Therefore the restricted Hessian is

HTV T∇2
xL(x, λ)V H = 2λ

(
HTΣ2

1H + αHTH
)
.

We note that the second order condition requires that the restricted Hessian be
positive-semidefinite, and so we can apply Cauchy’s interlacing theorem. Cauchy’s
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interlacing theorem tells us that the smallest eigenvalue for this matrix must lie be-
tween the smallest and second smallest eigenvalues for the nonrestricted Hessian.
Thus for a local minimum the second smallest eigenvalue of the nonrestricted Hessian
must be greater than zero. For the condition on the second smallest eigenvalue to
be met, α must satisfy the constraint α ≥ −σ2

n−1, where σn−1 is the second smallest
singular value of A.

This raises the question of how many zeros of the secular equation are
larger than max(−η2,−σ2

n−1) and which of them corresponds to the global
minimum. We proceed by systematically eliminating zeros in this range. We have
two critical points (where the secular equation becomes infinite) which correspond
to α = −σ2

n−1 and α = −σ2
n. We also have two intervals to worry about, namely,

(−σ2
n, ησ1) and (−σ2

n−1,−σ2
n). In the first interval we can show that there is only one

zero, but this is not true for the second interval. In section 12 we use the second order
condition to rule out half of the zeros in the second interval. We show in Appendix B
that only the rightmost root in the second interval is actually a candidate. We are
left with four candidates, two in the intervals and two critical points, and we then use
six cases to prove which one corresponds to the global minimum.

αo > max(−η2,−σ2
n−1).

12. Squeezing the second order conditions. We can use the second order
conditions to discard some zeros in the interval (−σ2

n−1,−σ2
n). Recall that the re-

stricted Hessian is

HTV T∇2
xL(x, λ)V H = 2λ

(
HTΣ2

1H + αHTH
)
.

This can be expanded to obtain

HTV T∇2
xL(x, λ)V H = 2λ

(
σ2

1z2z
T
2 + z2

1Σ
2
2 + αz2z

T
2 + αz2

1I
)
,

where

Σ1 =

(
σ1 0
0 Σ2

)
.

We then make the conformal partition

b1 =

(
b11
b12

)

and use the representation z = (Σ2
1+αI)−1Σ1b1 to simplify the expansion. Addition-

ally, we make the definition M = HTV T∇2
xL(x, λ)V H for ease of reading and we can

thus get the simplified expansion

M = 2λ
b211σ

2
1

(σ2
1 + α)2

(Σ2
2 + αI)

(
I +

(σ2
1 + α)3

b211σ
2
1

(Σ2
2 + αI)−2Σ2b12b

T
12Σ2(Σ

2
2 + αI)−1

)
.

We now compute the determinant,

det(M) =

(
2λb211σ

2
1

(σ2
1 + α)2

)n

det(Σ2
2 + αI)

(
1 +

(σ2
1 + α)3

b211σ
2
1

bT12Σ
2
2(Σ

2
2 + αI)−3b12

)
,
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which can be further simplified to obtain

det(M) =

(
2λb211σ

2
1

(σ2
1 + α)2

)n
(σ2

1 + α)3

b211σ
2
1

det(Σ2
2 + αI)

(
bT1 Σ

2
1(Σ

2
1 + αI)−3b1

)
.(12.1)

We recall the definition of the secular equation, g(α), given in section 9:

g(α) = bT2 b2 + bT1 (Σ
2
1 + αI)−2(α2I − η2Σ2

1)b1.

Then differentiating once we obtain

g′(α) = 2(α+ η2)bT1 Σ
2
1(Σ

2
1 + αI)−3b1.(12.2)

Using this we can rewrite (12.1) as

det(M) =

(
2λb211σ

2
1

(σ2
1 + α)2

)n
(σ2

1 + α)3

2(α+ η2)b211σ
2
1

det(Σ2
2 + αI)g′(α).

Therefore we see that when a root of the secular equation lies in the interval
(−σ2

n−1,−σ2
n), then it can correspond to a local minimum only if g′(α) is nonpositive.

This essentially means that only half of the zeros in the interval correspond
to local minima.

A zero, αk, of g(α) in the interval (−σ2
n−1,−σ2

n) can correspond to a local minimum
of the Lagrangian (and thus have a chance of being the global minimum αo) only if

g′(αk) ≤ 0.
13. Four candidate zeros. At this point we can see several potential candi-

dates for α. First, we have the possibility of a root in the interval [−σ2
n, ησ1] designated

α1. The uniqueness and conditions for existence of α1 will be shown later. Second,
we potentially have many roots in the interval (−σ2

n−1,−σ2
n), but only the rightmost

one matters as will be shown later and it is thus designated α2. Finally, we could have
up to two critical points, α3 = −σ2

n and α4 = −σ2
n−1. We summarize the candidates

in Table 1.

Table 1
Candidate zeros.

α1 ∈ [−σ2
n, ησ1]

α2 ∈ (−σ2
n−1,−σ2

n)

α3 = −σ2
n

α4 = −σ2
n−1

The proof involves six cases, which cover special conditions for the problem. See
Table 2. The first two cases involve small values of η. The second two cases cover
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when b is orthogonal to the left singular vector(s) of the smallest singular value. The
last two cases cover when b is not orthogonal to the left singular vector(s) of the
smallest singular value. We now proceed to prove this and show which candidate root
will yield the solution to the problem, x̂.

Table 2
Six cases of the proof.

Case 1: η < σn

Case 2: η = σn

Case 3: η > σn, b1,n = 0, σn < σn−1

Case 4: η > σn, ‖b1,(n−k+1,n)‖ = 0, σn = σn−k+1

Case 5: η > σn, b1,n �= 0, σn < σn−1

Case 6: η > σn, ‖b1,n−k+1‖ �= 0, σn = σn−k+1

14. Case 1: η < σn. There is only one root in the interval [−η2, ησ1] and this
must correspond to the global minimum, as there are no other local minima to worry
about. The only candidate zero is α1 because of the first order condition, (11.1). We
need to only prove the existence and uniqueness of α1.

Since α + η2 ≥ 0 from (11.1), it follows by using (12.2) that g′(α) is positive in
the interval (−η2,∞) when η ≤ σn. Therefore, there can be at most one root in the
interval [−η2, ησ1].

We now show that there is at least one root in the interval [−η2, ησ1]. Simplifying
the degeneracy condition in (7.3) by using the SVD of A we obtain

bT2 b2 − η2bT1 (Σ
2
1 − η2I)−1b1 ≤ 0,

which is identical to g(−η2) ≤ 0. Furthermore,
lim

α→ησ1

g(α) > 0.

Therefore, there must be a zero of g(α) in the interval [−η2, ησ1].

15. Case 2: η = σn. We claim that there is a unique root of g(α) in [−σ2
n, ησ1],

and this is the global minimum. Uniqueness is established by the same method as in
section 14, and thus if a root exists in the interval [−σ2

n, ησ1], it is unique. Only two
candidates, the zero α1 and the critical point α3, are possible because of the first order
condition, (11.1). We will proceed to prove the claim in two steps. Before we start
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the first step we note that if σn is multiple with multiplicity k, then b̃1 = b1,(n−k+1:n)

is the partitioning of b1 corresponding to the multiple singular values of σn.
The first case is when b1,n �= 0 or ‖b̃1‖ �= 0. We first note that in this case the

candidate zero α3 is not possible. To see this we first partition Σ1 as

Σ1 =

(
Σ̄1 0
0 σn

)
.

We similarly partition z into z̄ and zn, and b1 into b̄1 and b1,n. We can use these to
rewrite the Lagrange condition, (ATA+ αI)x = AT b, as

(
Σ̄2

1 + α3I 0
0 0

)(
z̄
zn

)
=

(
Σ̄1b̄1
b1,n

)
.

Since b1,n �= 0, we see that α3 cannot be α
o. The existence of a root in the interval

(−σ2
n, ησ1) follows from the observation that

lim
α→−σ2

n+
g(α) = −∞,

lim
α→ησ1

g(α) ≥ 0.

Thus when b1,n �= 0 or ‖b̃1‖ �= 0, αo = α1.

The second case is b1,n = 0 when σn < σn−1 or ‖b̃1‖ = 0 when σn is multiple.
In this case we note that there is no longer a pole in g(α) at α = −σ2

n. By observing
the degeneracy condition given by (7.3) that the degeneracy in this case is determined
by b so for degeneracy, (7.3) must hold for a smaller problem. Simplifying the (7.3)
using the SVD of A we obtain

bT2 b2 − η2bT1 (Σ
2
1 − η2I)−1b1 ≤ 0,

which is identical to g(−η2) ≤ 0. Furthermore,

lim
α→ησ1

g(α) ≥ 0.

Therefore, there must be a root in the interval [−η2, ησ1], so α1 exists. We will show
that when α3 is α

o, then α3 = α1. To satisfy the equation(
Σ̄2

1 + α3I 0
0 0

)(
z̄
zn

)
=

(
Σ̄1b̄1
0

)
,

we must have that

z̄ =
(
Σ̄2

1 + α3I
)−1

Σ̄1b̄1.

The constraint equation can be written in z and simplified to

α3b̄
T
1

(
Σ̄2

1 + α3I
)−1

b̄1 + bT2 b2 = 0.

We note that this is exactly g(α3) = 0. Thus for α3 to be a candidate it must also
be the unique root in the interval [−η2, ησ1]. The condition for α3 to be α

o is that
α1 = α3, and thus we can easily see that in all cases the unique zero which corresponds
to the problem solution, x(αo), is given by α1.
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16. Case 3: η > σn, b1,n = 0, σn < σn−1. We claim that there is a unique
root in [−σ2

n, ησ1] and this is the global minimum. We now establish this claim. Two
cases arise when b1,n = 0 by observing the equation

(
Σ̄2

1 + αI 0
0 σ2

n + α

)(
z̄
zn

)
=

(
Σ̄1b̄1
0

)
.(16.1)

First, we could have α = α3 = −σ2
n, which we note can only happen when b1,n = 0.

The second case is zn = 0. First, we note that we still have

lim
α→ησ1

g(α) ≥ 0.

We also know that g′(α) > 0 on the interval (−σ2
n−1,∞), thus if a root exists, it is

unique. We will start by finding the form of the solution x̂ when α = α3 and then
we will show the conditions for determining which candidate zero yields the global
minimum.

When α = −σ2
n the solution is found in two steps. First we solve for z̄ from

(16.1). We obtain

z̄ =
(
Σ̄2

1 − σ2
nI
)−1

Σ̄1b̄1.

We note that the constraint can be written in z as∥∥∥∥Σ1z − b1
b2

∥∥∥∥
2

− η2 ‖z‖2 = 0.

We now separate zn in the constraint and obtain

b̄T1
(
Σ̄2

1 − σ2
nI
)−2 (

σ4
nI − η2Σ̄2

1

)
b̄1 + bT2 b2 +

(
σ2
n − η2

)
z2
n = 0.

We note that this can be rewritten in terms of g(−σ2
n) as

g
(−σ2

n

)
+
(
σ2
n − η2

)
z2
n = 0.

We thus see there are two answers (positive and negative squares) for zn. The answers
for zn are given by

z2
n =

g
(−σ2

n

)
η2 − σ2

n

.(16.2)

Note that for a solution for zn to exist we must have g(−σ2
n) ≥ 0. The solution is

then given by

x̂ = V

[ (
Σ̄2

1 − σ2
nI
)−1

Σ̄1b̄1

±
√

g(−σ2
n)

η2−σ2
n

]
.

We still need to identify which of the potential roots is the actual one we want. We
break this into two steps. The first is when g(−σ2

n) ≤ 0, and the second is g(−σ2
n) > 0.

If g(−σ2
n) ≤ 0, then we trivially have a unique root in [−σ2

n, ησ1]. Moreover, no
root exists in the interval (−σ2

n−1,−σ2
n) so α2 is not a candidate. We note that for

α4 = −σ2
n−1 to be a candidate, it must be true that b1,n−1 = 0. When b1,n−1 = 0, we

have g′(α) > 0 on the interval (−σ2
n−2,∞), which means g(−σ2

n−1) < 0. If we assume
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α = α4 and proceed similarly to section 16 we see that we must have g(−σ2
n−1) ≥ 0

and thus α4 cannot be α
o. Note that when g(−σ2

n) < 0, it is impossible for α = −σ2
n.

When g(−σ2
n) = 0, the unique root is α = −σ2

n and thus the two remaining candidate
zeros can easily be seen to coincide. Thus when g(−σ2

n) ≤ 0, the unique zero is given
by α1.

When g(−σ2
n) > 0 no root exists in (−σ2

n, ησ1] so α1 is not α
o but as we saw in

section 16 this is the condition for α = α3 = −σ2
n. We note that when g(−σ2

n) > 0,
there can be a root in the interval (−σ2

n−1,−σ2
n), but we know that the slope is

positive in this interval and by the results of section 12 it cannot be a minimum. The
only remaining question in this case is if α4 = −σ2

n−1 is a candidate when g(−σ2
n) > 0.

We again recall that for −σ2
n−1 to be a candidate, it must be true that b1,n−1 = 0

and g(−σ2
n−1) ≥ 0. We must thus satisfy the equation

 Σ̃2
1 + αI 0 0
0 σ2

n−1 + α 0
0 0 σ2

n + α




 z̃
zn−1

zn


 =


 Σ̃1b̃1

0
0


 .(16.3)

We proceed to show that −σ2
n−1 is not a candidate when g(−σ2

n−1) ≥ 0. We note
that since b1,n−1 = 0 = b1,n we must have g

′(α) > 0 on the interval (−σ2
n−2,∞). Now

introduce the parameter γ = ‖b1,n−1‖2 and we will consider a continuity argument
on γ similar to the continuity argument we will consider in section 18. Since the
argument is very similar to the one we will be constructing, we will only sketch the
details here. Note that for γ �= 0 we have a root in the interval (−σ2

n−1,−σ2
n) which

is not the global minimum. As γ goes to zero we make this root move to the left,
and it reaches −σ2

n−1 when γ = 0, since g(−σ2
n−1) ≥ 0. The derivative of the cost

with respect to γ can be seen to be negative in the interval (−σ2
n−1,−σ2

n) by the
following method. First, take the derivative and note that there appears the term
dα(γ)/dγ, which we solve for by taking the derivative of g(α(γ)) = 0 with respect to
γ. Substituting back in and simplifying we see that as γ increases, the cost decreases
in the interval (−σ2

n−1,−σ2
n) and thus the x corresponding to the root which appears

in the interval when γ �= 0 has a lower cost than the x which corresponds to −σ2
n−1.

The root is not a global minimum, however, and so neither can be αo at −σ2
n−1. The

only possibility when g(−σ2
n) ≥ 0 is thus αo = −σ2

n.

17. Case 4: η > σn, ‖b1,(n−k+1,n)‖ = 0, σn = σn−k+1. We claim that
there is a unique root in [−σ2

n, ησ1], and this is the global minimum. We now establish
this claim. For simplicity partition Σ1 as

Σ1 =

(
Σ̄1 0
0 σnI

)
,

where Σ̄1 corresponds to the singular values that are strictly greater than σn. We
similarly partition z into z̄ and z̃, and b1 into b̄1 and b̃1. Two cases arise when b̃1 = 0
by observing the equation(

Σ̄2
1 + αI 0
0 (σ2

n + α)I

)(
z̄
z̃

)
=

(
Σ̄1b̄1
0

)
.(17.1)

First we could have α = −σ2
n, which we note can only happen when b1,n = 0. The

second case is z̃ = 0. First we note that we still have

lim
α→ησ1

g(α) ≥ 0.
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We also know that g′(α) > 0 on the interval (−σ2
n−1,∞), thus if a root exists, it is

unique.
When α = −σ2

n, the solution is found in two steps. First we solve for z̄ from
(17.1). We obtain

z̄ =
(
Σ̄2

1 − σ2
nI
)−1

Σ̄1b̄1.

We note that the constraint can be written in z as∥∥∥∥Σ1z − b1
b2

∥∥∥∥
2

− η2 ‖z‖2 = 0.

We now separate z̃ in the constraint and obtain

b̄T1
(
Σ̄2

1 − σ2
nI
)−2 (

σ4
nI − η2Σ̄2

1

)
b̄1 + bT2 b2 +

(
σ2
n − η2

)
z̃T z̃ = 0.

Similar to what we saw in the last section, we note that the above equation can be
written in terms of g(−σ2

n). Doing so, we obtain

g
(−σ2

n

)
+
(
σ2
n − η2

)
z̃T z̃ = 0.

We note that this defines a hypersphere with radius

r =

√
g (−σ2

n)

η2 − σ2
n

.

To be able to solve for the radius we must have g(−σ2
n) ≥ 0, and thus this is a

condition on the solution when α = −σ2
n. Let Θ be any vector with unit Euclidean

norm. The solutions for z̃ are given by

z̃ = rΘ.

The solution is then given by

x̂ = V

[ (
Σ̄2

1 − σ2
nI
)−1

Σ̄1b̄1
rΘ

]
.

We note that the second order condition requires that α ≤ −σ2
n and thus the

only candidates are α1 and α3. If g(−σ2
n) ≤ 0, then we trivially have a unique root

in [−σ2
n, ησ1], and it is impossible for α = −σ2

n. If g(−σ2
n) > 0, no root exists in

(−σ2
n, ησ1] but as we saw above this is the condition for α = −σ2

n. When g(−σ2
n) = 0

the two zeros can easily be seen to coincide.

18. Case 5: η > σn, b1,n �= 0, σn < σn−1. We now claim that there is
a unique root in (−σ2

n, ησ1] and it is the global minimum. We note first that since
b1,n �= 0, we cannot have α = −σ2

n.
The existence of a root in the interval [−σ2

n, ησ1] follows from the observation
that

lim
α→−σ2

n+
g(α) = −∞,

lim
α→ησ1

g(α) ≥ 0.
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Uniqueness is established by the same method as in section 14.
We now proceed to show that of the three candidate roots only the one in the in-

terval (−σ2
n, ησ1] can be the global minimum. The argument proceeds by continuation

on β = b21,n. We begin by defining

ḡ(α) = bT2 b2 + b̄T1
(
Σ̄2

1 + αI
)−2 (

α2I − η2Σ̄2
1

)
b̄1.

We can thus rewrite the secular equation g(α) in terms of α and β as

g(α, β) = ḡ(α) + β
α2 − η2σ2

n

(σ2
n + α)2

.

We note that when β = 0, we have g(α, 0) = ḡ(α). Also note that ḡ′(α, 0) > 0 when
α lies in the interval (max(−σ2

n−1,−η2),∞). Let α1(β) denote the unique root in the
interval (−σ2

n, ησ1] and α2(β) denote the rightmost root in the interval (−σ2
n−1,−σ2

n)
of g(α, β). Also let y1(β) denote the stationary point V

T x̂ corresponding to α1(β)
and similarly for y2(β) corresponding to α2(β).

When ḡ(−σ2
n) < 0, we note that neither α1(β) nor α2(β) converge to −σ2

n as
β goes to zero. As already observed, at β = 0 we have that g′(α, 0) > 0 when α
lies in the interval (max(−σ2

n−1,−η2),∞), and since ḡ(−σ2
n) < 0 this implies that

g′(α, 0) > 0 when α lies in the interval (max(−σ2
n−1,−η2),−σ2

n). Thus we know that
y2(β) does not exist at β = 0 and thus it must not exist for some open neighborhood
around β = 0. For y2(β) to be a candidate there must exist some value of β, say, β2,
for which y2(β) first exists. At the point β2, α2(β2) must be at least a double root,
and thus the slope of g(α2(β)) must be zero at β2. From section 12, we note that
α2(β2) cannot be the α

o, so we note that we must have ‖y2(β2)‖2 ≥ ‖y1(β2)‖2.
We now proceed with the case when ḡ(−σ2

n) ≥ 0, and we will then show that in
both cases ‖y2(β)‖2 gets larger as β increases, while ‖y1(β)‖2 decreases. It is easy to
note from the form of g(α) that

lim
β→0+

α1(β) = −σ2
n = lim

β→0+
α2(β)

when ḡ(−σ2
n) ≥ 0. We now proceed to show that

lim
β→0+

|y1,i(β)| = |y1,i(0)| = |y2,i(0)| = lim
β→0+

|y2,i(β)| , 1 ≤ i ≤ n.

First observe that this is trivially true for i �= n. Next we note that ḡ(α) is continuous
at α = −σ2

n; thus

lim
β→0+

(
y2,n(β)

2 − y1,n(β)
2
)
= lim

β→0+

(
σ2
n

α2(β)2 − η2σ2
n

α2(β)
2 − η2σ2

n

(α(β) + σ2
n)

2 β

− σ2
n

α1(β)2 − η2σ2
n

α1(β)
2 − η2σ2

n

(α(β) + σ2
n)

2 β

)

=
1

σ2
n − η2

lim
β→0+

(
α2(β)

2 − η2σ2
n

(α2(β) + σ2
n)

2 β + ḡ(α2(β), β)

− α1(β)
2 − η2σ2

n

(α1(β) + σ2
n)

2 β − ḡ(α1(β), β)

)
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=
1

σ2
n − η2

lim
β→0+

(g(α2(β), β)− g(α1(β), β))

= 0.

We note that we have shown what we desired to and therefore, ‖y1(β)‖ and ‖y2(β)‖
are continuous for β ≥ 0, with ‖y1(0)‖ = ‖y2(0)‖.

We now examine the derivative of the cost function, ‖x‖2, with respect to β. We
will use this to show that in both cases ‖y1(β)‖ is less than ‖y2(β)‖ for all β ≥ 0. The
derivative is

d ‖x(α(β))‖2
dβ

=
σ2
n

(σ2
n + α(β))

2 − 2
dα(β)

dβ
bT1
(
Σ2

1 + α(β)I
)−3

Σ2
1b1.

We need to calculate the derivative of α(β) with respect to β, so we take the derivative
of g(α(β)) = 0:

0 =
dg(α(β))

dβ

=
α(β)2 − η2σ2

n

(α(β) + σ2
n)

2 + 2
(
α(β) + η2

) dα(β)
dβ

(
bT1
(
Σ2

1 + α(β)I
)−3

Σ2
1b1

)
.

Solving for the derivative of α(β) with respect to β yields

dα(β)

dβ
= − α(β)2 − η2σ2

n

2 (α(β) + η2) (σ2
n + α(β))

2
(
bT1 (Σ

2
1 + α(β)I)

−3
Σ2

1b1

) .

Substituting this into the derivative of ‖x‖2 with respect to β we obtain

d ‖x(α(β))‖2
dβ

=
σ2
n

(σ2
n + α(β))

2 +
α(β)2 − η2σ2

n

(α(β) + η2) (σ2
n + α(β))

2 .

Simplifying this we get

d ‖x(α(β))‖2
dβ

=
α(β)

(α(β) + η2) (α(β) + σ2
n)
.

Clearly, for increasing β we have that α1(β) decreases the cost function when α1(β) <
0, while α2(β) increases the cost function for all β. When 0 ≤ α1(β) ≤ ησn we have
that dα(β)/dβ ≥ 0 and we note that the cost is increasing for both y1(β) and y2(β).
Since the cost is increasing for y1(β) when 0 ≤ α1(β) ≤ ησn, we know that ‖y1(β)‖2 ≤
‖y1(ησn)‖2 on this interval. Additionally, note that for α1(β) in the interval [ησn, ησ1]
we have dα(β)/dβ ≤ 0 and the cost increases with increasing β. Note that while these
observations are true for [ησn,∞], we specify the interval [ησn, ησ1] because the root
cannot lie in [ησ1,∞]. Observe that we now have ‖y1(β)‖2 ≤ ‖y1(ησn)‖2 when α1(β)
is in the interval [ησn, ησ1]. Thus the maximum value of the cost, when α1(β) is in
the interval [ησn, ησ1], occurs at β = ησn. We can easily find the maximum rate of
change for the cost, when α1(β) is in the interval [0, ησ1], to be

max
d ‖x(α(β))‖2

dβ
=

ησn
(ησn + η2) (ησn + σ2

n)
.
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Simplifying we obtain

max
d ‖x(α(β))‖2

dβ
=

1

(η + σn)
2 .

We can do similar calculation for the interval (max(−η2,−σ2
n−1),−σ2

n−1) and we find
that the minimum increase in the cost occurs at β = −ησn and is given by

min
d ‖x(α(β))‖2

dβ
=

1

(η − σn)
2 .

We now note that the maximum rate of increase for y1(β) is less than the minimum
rate of increase for y2(β), and for β sufficiently small, we have ‖y1(β)‖ ≤ ‖y2(β)‖.
We can now easily see that ‖y1(β)‖ ≤ ‖y2(β)‖ for all β; thus α2 cannot be the global
minimum.

We now consider the third candidate zero, namely, −σ2
n−1. We note that for it

to be a candidate we must have that b1,n−1 = 0 and g(−σ2
n−1) ≥ 0. We observe that

similar to what we saw in Appendix B, the minimum on the interval (−σ2
n−2,−σ2

n)
must occur between the second to the rightmost and the rightmost roots of the secular
equation on the interval. Recall in that section the only options were the roots
themselves, but in this case there is also the possibility of −σ2

n−1. Note that if −σ2
n−1

is not one of the two rightmost roots on the interval (−σ2
n−2,−σ2

n), then it cannot be
the global minimum. We already know the rightmost root, designated α2, is not the
global minimum, and additionally the second most right root cannot be the global
minimum since the slope of g(α), is not negative at this point.

We now reintroduce the parameter γ = ‖b1,n−1‖2 and we will consider a continuity
argument on γ similar to the continuity argument presented in this section. Since the
argument is very similar to the one we constructed, we will again only sketch the
details here. Note that for γ �= 0 we have multiple roots in the interval (−σ2

n−1,−σ2
n),

none of which are the global minimum. As γ goes to zero we make all of the roots
move to the left, and all but the rightmost either reaches −σ2

n−1 or pops off the real
line as γ → 0, since g(−σ2

n−1) ≥ 0. The derivative of the cost with respect to γ can
be seen to be negative in the interval (−σ2

n−1,−σ2
n) by the following method. First

take the derivative and note there appears the term dα(γ)/dγ, which we solve for
by taking the derivative of g(α(γ)) = 0 with respect to γ. Substituting back in and
simplifying we see that as γ increases the cost decreases in the interval (−σ2

n−1,−σ2
n)

and thus the x which corresponds to the root which appears in the interval when
γ �= 0 has a lower cost than the x which corresponds to −σ2

n−1. That root is not a
global minimum, however, and so neither can the root be at −σ2

n−1. We can thus
exclude the possibility that −σ2

n−1 is α
o, and we are done.

19. Case 6: η > σn, ‖b1,n−k+1‖ �= 0, σn = σn−k+1. We again claim that
there is a unique root, α1, in the interval (−σ2

n, ησ1] and it is the global minimum.
The existence of a root , α1, in the interval (−σ2

n, ησ1] follows from the observation
that

lim
α→−σ2

n+
g(α) = −∞,

lim
α→ησ1

g(α) ≥ 0.

Uniqueness is established by the same method as in section 14.
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Table 3
Degeneracy conditions.

η < σn and b
T (I −A(ATA− η2I)−1AT )b ≤ 0

η = σn, b1,n = 0, and b̄T1 (I − Σ̄2
1(Σ̄1 − η2I)−1)b̄1 ≤ 0

η = σn, b1,n �= 0

η > σn

Since ‖b1,n−k+1‖ �= 0, we cannot have α = α3 = −σ2
n. Note that the second order

condition gives us the additional requirement that α ≥ −σ2
n. Since α ≥ −σ2

n then
trivially we do not have additional roots to worry about. The only candidate is thus
the unique root, α1, in the interval (−σ2

n, ησ1].

20. Summary of results. The problem we have been considering is

min
x∈Rn

min
‖E‖≤η

‖(A+ E)x− b‖,

where A is an m × n real matrix and b is an n-dimensional real column vector. We
assume that the problem is degenerate and in particular that there exists an x such
that η‖x‖ ≥ ‖Ax − b‖. Degeneracy can be easily checked as outlined in Table 3. To
obtain a solution to the degenerate problem we consider the optimization problem

min
‖Ax−b‖≤η‖x‖

‖x‖.

The SVD of A is given by

A = [U1 U2 ]

[
Σ1

0

]
V T ,

and we define b1 = UT
1 b and b2 = UT

2 b. When b1,n = 0 if σn is unique or ‖b1,n−k+1,n‖ =
0 if σn is of multiplicity k, we can partition Σ1 as

Σ1 =

(
Σ̄1 0
0 σnI

)
.

We similarly partition b1 into b̄1 and b1,n = 0. The secular equation is given by

g(α) = bT2 b2 + bT1 (Σ
2
1 + αI)−2(α2I − η2Σ2

1)b1.

Given these definitions, the solution to the problem is given in Table 4. Note that
to find the unique root of the secular equation, g(α), in the interval specified can be
easily and quickly done by a method such as bisection or Newton’s method.
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Table 4
Solution to the problem.

Condition Solution

η > σn, σn < σn−1,
b1,n = 0, g(−σ2n) ≥ 0

x = V

[(
Σ̄2
1 − σ2nI

)−1
Σ̄1b̄1

±
√

g(−σ2
n)

η2−σ2
n

]

η > σn, σn = σn−k+1,
‖b1,(n−k+1,n)‖ = 0, g(−σ2n) ≥ 0

x̂ = V

[(
Σ̄2
1 − σ2nI

)−1
Σ̄1b̄1

rΘ

]

r =

√
g(−σ2

n)
η2−σ2

n

‖Θ‖ = 1

else
x = (ATA+ αI)†AT b
α1 ∈ [max(−σ2n,−η2), ησ1] such that g(α1) = 0

21. Restricted perturbations. We have so far considered the case in which all
the columns of the A matrix are subject to perturbations. It may happen in practice,
however, that only selected columns are uncertain, while the remaining columns are
known precisely. This situation can be handled by the approach of this paper as we
now clarify.

Given A ∈ �m×n, we partition it into block columns,

A = [A1 A2 ] ,

and assume, without loss of generality, that only the columns of A2 are subject to
perturbations while the columns of A1 are known exactly. We then pose the following
problem:

Given A ∈ �m×n, with m ≥ n and A full rank, b ∈ �m, and nonnegative real
number η2, determine x̂ such that

min
x̂

min
‖δA2‖≤η2

{‖[A1 A2 + δA2 ] x̂− b‖} .(21.1)

If we partition x̂ accordingly with A1 and A2, say,

x̂ =

[
x̂1

x̂2

]
,

then we can write

‖[A1 A2 + δA2 ] x̂− b‖ = ‖Ax̂− b+ δA2x̂2‖ .
Assuming the fundamental condition for this case, which is

η2‖x̂2‖ ≥ ‖Ax− b‖,
and following the development of section 6 we conclude the problem is equivalent to

min
‖Ax−b‖2=η2

2‖x2‖2
‖x‖2.



164 CHANDRASEKARAN, GU, SAYED, AND SCHUBERT

We note that we can rewrite the constraint as

‖Ax− b‖2 + η2
2‖x1‖2 = η2

2‖x2‖2 + η2
2‖x1‖2,

which becomes ∥∥∥∥
[
A1 A2

η2I 0

] [
x1

x2

]
−
[
b
0

]∥∥∥∥
2

= η2
2‖x‖2.

We now define the following:

Ã =

[
A1 A2

η2I 0

]

and

b̃ =

[
b
0

]
.

The problem thus becomes

min
‖Ãx−b̃‖2=η2

2‖x‖2
‖x‖2,

which is easily seen to be of the same form as our original problem, though of slightly
larger dimension. This can thus be solved by the method discussed earlier in this
paper.

Appendix A. Piecewise convexity of ‖x(α)‖.
We now show that ‖x(α)‖2 is strictly convex in the interval (−σ2

n−1,−σ2
n), which

will allow us to show that only the zero closest to −σ2
n can correspond to a potential

candidate for the global minimum.
We have that

‖x(α)‖2 = bT1 Σ
2
1(Σ

2
1 + αI)−2b1.

Differentiating once with respect to α we get

d

dα
‖x(α)‖2 = −2bT1 Σ2

1(Σ
2
1 + αI)−3b1.

Differentiating once more we get

d2

dα2
‖x(α)‖2 = 6bT1 Σ

2
1(Σ

2
1 + αI)−4b1,

from which we can conclude that ‖x(α)‖2 is strictly convex on the interval (−σ2
n−1,−σ2

n)
and hence that it has a unique minimum on that interval.

Appendix B. Rightmost root.
We now show that of all the roots in the interval (−σ2

n−1,−σ2
n) only the rightmost

one can possibly correspond to the global minimum.
Let α0, . . . , αl denote the zeros of the secular equation g(α) in the interval (−σ2

n−1,
−σ2

n), in increasing order; that is,

−σ2
n−1 < α0 < α1 < · · · < αl < −σ2

n.
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From the result in section 12 we know that only the roots corresponding to neg-
ative slopes of the secular equation can correspond to local minima. Since

lim
α→−σ2

n−
g(α) = −∞,

it follows that

g′(αl) < 0 and g′(αl−1) > 0.

(We ignore the degenerate multiple root cases for now as the argument can be extended
to them by continuity.)

Now there are two possibilities. Either ‖x(αl)‖ ≤ ‖x(αl−1)‖ or not. The first case
implies that ‖x(αi+1)‖ < ‖x(αi)‖ due to the convexity of ‖x(α)‖ on (−σ2

n−1,−σ2
n).

For the second case we have that ‖x(αl−1)‖ < ‖x(αl)‖. We need to show this
implies ‖x(αl−1)‖ < ‖x(α)‖ for −σ2

n−1 < α < −αl−1, and that this is not the global
minimum. Toward this end we take the derivative of x(α) with respect to α and get

dx(α)

dα
= − (ATA+ αI

)−1
x(α).

We have already shown that ‖x(α)‖ is convex on this interval, and thus it suffices to
find if the derivative of ‖x(α)‖2 with respect to α is negative at αl−1, which shows
that x(α) is then decreasing. We note that the derivative of ‖x(α)‖2 is obtained by
premultiplying the derivative of x(α) by x(α)T . To do the analysis we use the SVD
of A and thus have

d‖x(α)‖2
dα

= −bT1 Σ2
1

(
Σ2

1 + αI
)−3

b1.

We note that the matrix in parenthesis is indefinite and thus we must determine if the
expression is negative or not at α = αl−1. To do this we consider another function
whose derivative we have already examined. Consider the constraint function, ‖Ax−
b‖2−η2‖x‖2, and since at α = αl−1 we are entering the infeasible region for increasing
α, the derivative of the constraint must be positive. This condition can be expressed
as

2(αl−1 + η2)bT1 Σ
2
1

(
Σ2

1 + αI
)−3

b1 > 0.

We note that 2(αl−1 + η2) > 0, thus the condition is

bT1 Σ
2
1

(
Σ2

1 + αI
)−3

b1 > 0.

This trivially gives us

d‖x(α)‖2
dα

< 0,

and thus x(α) must be decreasing at α = αl−1 for increasing α. Applying convexity
to this result gives us ‖x(αl−1)‖ < ‖x(α)‖ for −σ2

n−1 < α < −αl−1, and thus the
minimum feasible value for x(α) on −σ2

n−1 < α < −σ2
n is x(αl−1).

Now since x(αl−1) does not correspond to a local minimum it follows that there is
a neighborhood of x(αl−1) of the constraint surface such that in this neighborhood we
have ‖x‖ < ‖x(αl−1)‖. Thus since x(αl−1) does not correspond to a local minimum,
we can discard it from further consideration, since it is not the global minimum.
Either way we are down to only the rightmost in the interval (−σ2

n−1,−σ2
n).
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Abstract. This paper is devoted to a study of symmetric paraunitary matrix extensions. The
problem for a given compactly supported orthonormal scaling vector with some symmetric property,
to construct a corresponding multiwavelet which also has the symmetric property, is equivalent to the
symmetric paraunitary extension of a given matrix. In this paper we study symmetric paraunitary
extensions of two types of matrices which correspond to two different cases for the symmetry of the
scaling vector: the components of the scaling vector have or don’t have the same symmetric center.
In this paper we also discuss parametrizations of symmetric orthogonal multifilter banks.
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1. Introduction. Unlike one-dimensional scalar filters, the matrix filter for a
multiwavelet of L2(R) cannot in general be given in terms of the matrix filter for
the scaling vector (except in some special cases). So for a given r × r (r ≥ 2) finite
impulse response (FIR) matrix filter H(z) =

∑
k∈Z

hkz
−k (called a low-pass filter)

for a compactly supported orthonormal (o.n.) scaling vector φ = (φ1, . . . , φr)
T , one

needs an algorithm to construct another r × r FIR matrix filter G(z) =
∑

k∈Z
gkz

−k

(called a high-pass filter) such that

H(z)G(z)∗ +H(−z)G(−z)∗ = 0r, G(z)G(z)∗ +G(−z)G(−z)∗ = Ir(1.1)

for all z = eiω. With such a filter G, the vector ψ = (ψ1, . . . , ψr)
T defined by

ψ̂(ω) := G(e
iω
2 )φ̂

(ω
2

)
(1.2)

is a compactly supported multiwavelet, i.e., the collection {2 j
2ψ�(2

jx − k), 1 ≤ � ≤
r, j, k ∈ Z} forms an o.n. basis of L2(R) (see [3]). We call a vector of functions

φ = (φ1, . . . , φr)
T an o.n. scaling vector if φ is refinable (that is, φ satisfies φ̂(ω) =

H(e
iω
2 )φ̂(ω2 ) for some FIR H), φj ∈ L2(R), and∫

φj(x− k)φi(x)dx = δ(j − i)δ(k), 1 ≤ j, i ≤ r, k ∈ Z.

For a matrix filter P (z) =
∑

k∈Z
pkz

−k, it is said to be a finite impulse response
(FIR) filter if each entry of P (z) is a Laurent polynomial of z−1, i.e., there exist
integers k1, k2 such that pk = 0, k < k1, k > k2. If pk1 �= 0, pk2 �= 0, we use len(P ) :=
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k2 − k1 + 1 to denote its filter length. An FIR P (z) is said to be causal if each entry
of P (z) is a polynomial of z−1, i.e., pk = 0 for k < 0. Throughout this paper, PT

(resp., P ∗) denotes the transpose (resp., the complex conjugate and transpose) of P ,
and Ir and 0r denote the r× r identity matrix and zero matrix, respectively. We also
let 0j×l denote the j × l zero matrix, and we would drop the subscript j × l when it
does not cause any confusion. A necessary condition for H generating an o.n. scaling
vector φ is that H is a matrix conjugate quadrature filter (CQF) (see, e.g., [12], [5],
[6] for the necessary and sufficient conditions), i.e.,

H(z)H(z)∗ +H(−z)H(−z)∗ = Ir, z ∈ C.(1.3)

A pair {H,G} of matrix filters is called a multifilter bank, and it is said to be orthog-
onal if H,G satisfy (1.1) and (1.3).

For an FIR matrix filter H, write

H(z) =
∑

h2kz
−2k +

(∑
h2k+1z

−2k
)
z−1(1.4)

=:

√
2

2
He(z

2) +

√
2

2
Ho(z

2)z−1.

Then H satisfies (1.3) if and only if [He(z), Ho(z)] is paraunitary. A j × l (j ≤ l)
matrix filter P (z) with real coefficients pk is called paraunitary if

P (z)P (z−1)T = Ij , z �= 0,

that is, P (eiω) is a matrix of o.n. rows for all ω ∈ R. Throughout this paper we
assume that the coefficients of the matrix filters are real.

Let G be another FIR matrix filter, and let Ge, Go be the corresponding filters
defined in the way of (1.4). Then G satisfies (1.1) if and only if

[Ge(z), Go(z)]E(z
−1)T = [0, Ir],

where E(z) is the polyphase matrix of the multifilter bank {H,G} defined by

E(z) :=

[
He(z) Ho(z)
Ge(z) Go(z)

]
.(1.5)

Thus given an H satisfying (1.3), to find G to satisfy (1.1) is equivalent to the parau-
nitary extension problem of a paraunitary matrix: Given an r×2r paraunitary matrix
[He(z), Ho(z)], to find [Ge(z), Go(z)] such that E(z) defined by (1.5) is paraunitary. It
was shown in [9] and [10] that this paraunitary extension problem is always solvable,
i.e., given a paraunitary matrix [He(z), Ho(z)], one can always find its paraunitary
extension [Ge(z), Go(z)].

The problem considered in this paper is as follows: Given an FIR matrix filter H
generating an o.n. scaling vector φ with some symmetric property, is there a corre-
sponding compactly supported multiwavelet ψ with some symmetric property, and if
it exists, how can we construct the high-pass filter G? Equivalently, the problem we
consider is to decide for a given paraunitary matrix [He(z), Ho(z)] with some sym-
metry, if there exists its paraunitary extension [Ge(z), Go(z)] which also has some
symmetry and, if it exists, how to construct it. Since symmetry is one of the most
important properties of multiwavelets, the problem for a given symmetric o.n. scaling
vector, to construct a corresponding symmetric multiwavelet, deserves our study.



SYMMETRIC PARAUNITARY MATRIX EXTENSION 169

There are two types of symmetric causal filters H. The first one is that H satisfies

z−γS0H(z
−1)S0 = H(z), S0 = diag(Is,−Ir−s)(1.6)

for a nonnegative integer s ≤ r. In this case, if H generates an o.n. scaling vector
φ = (φ1, . . . , φr)

T , then φ1, . . . , φs are symmetric about γ/2 while φs+1, . . . , φr are
antisymmetric about γ/2 (see, e.g., [1], [7], [15] about the relationship between the
symmetry of φ, ψ and the property of H,G). Filters with this type of symmetry are
called filters with the same symmetric center.

The second type of the symmetric filter H is that H will generate a symmetric
o.n. scaling vector with its components not having the same symmetric center. We
call the filter of this type a filter with different symmetric centers. In this paper we
consider H(z) =

∑2γ+1
k=0 hkz

−k satisfying

z−(2γ+1)diag(S0z
2, 1)H(z−1)diag(S0, z) = H(z), S0 = diag(Is,−Ir−s−1)(1.7)

for a nonnegative integer s ≤ r− 1. In this case, if H generates an o.n. scaling vector
φ = (φ1, . . . , φr)

T , then φ1, . . . , φs are symmetric about γ − 1
2 while φs+1, . . . , φr−s−1

are antisymmetric about γ − 1
2 , and φr is symmetric about γ. φj , 1 ≤ j ≤ r − 1 are

supported on [0, 2γ − 1], while φr is supported on [0, 2γ] (see [13] for the discussion
on the supports of scaling vectors).

The symmetric extensions [Ge, Go] of the paraunitary matrices [He, Ho] related
to these two types of filters H are carried out in sections 2 and 3, respectively. We
will construct their paraunitary extensions [Ge, Go] such that ψ defined by (1.2) with

G(z) :=

√
2

2
Ge(z

2) +

√
2

2
Go(z

2)z−1(1.8)

have symmetry and len(G) ≤len(H). More precisely, for H satisfying (1.6), the
constructed G satisfies

z−γS0G(z
−1)S0 = −G(z).(1.9)

Thus components of the corresponding multiwavelet ψ are symmetric/antisymmetric
about γ/2. For H satisfying (1.7), the constructed G satisfies

z−(2γ+1)diag(S1z
2,S2)G(z

−1)diag(S0, z) = G(z),(1.10)

where

S1 := −I2s−r,S2 := diag(Ir−s,−Ir−s), if 2s ≥ r;(1.11)

S1 := Ir−2s,S2 := diag(Is,−Is), if 2s < r.
The corresponding multiwavelet ψ has the following symmetric properties: (1) if
2s ≥ r, then ψ1, . . . , ψ2s−r are antisymmetric about γ − 1

2 , and ψ2s−r+1, . . . , ψs and
ψs+1, . . . , ψr are symmetric and antisymmetric about γ, respectively; (2) if 2s < r,
then ψ1, . . . , ψr−2s are symmetric about γ− 1

2 , and ψr−2s+1, . . . , ψr−s and ψr−s+1, . . . ,
ψr are symmetric and antisymmetric about γ, respectively. Our construction also
answers the problem on the existence of symmetric multiwavelets.

In section 4, we discuss the parametrization of symmetric orthogonal multifilter
banks. Parametrizations of FIR orthogonal systems are of fundamental importance
to the design of filter banks (see, e.g., [14], [16], [17]). Parametrizations of orthog-
onal filter banks are equivalent to the factorizations of paraunitary matrices. The
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parametrization of symmetric orthogonal multifilter banks {H,G} with the low-pass
filter H satisfying (1.6) for γ = 2N + 1 was obtained in [7] (see [11] for the special
case). For the case r = 2, S0 = (1), the parametrization of orthogonal multifilter
banks {H,G} with H satisfying (1.7) was provided in [8]. In section 4 we present
the parametrization of orthogonal multifilter banks {H,G} with H satisfying (1.6)
for γ = 2N and the parametrization of {H,G} with H satisfying (1.7).

In this paper we use N,N0,Z to denote sets of all natural numbers, nonnegative
integers and integers, respectively. For n ∈ N, denote

Dn := diag(In,−In−1).(1.12)

We use O(n) to denote the set of all n×n real orthogonal matrices, and we use Tr(M)
to denote the trace of a matrix M .

2. Symmetric extension of matrices related to the same symmetric
center filters. In this section we discuss the symmetric matrix extension related to
low-pass filters H satisfying (1.6). We consider the cases γ = 2N + 1 and γ = 2N ,
N ∈ N in the following two subsections, respectively.

2.1. The case γ = 2N + 1. Let H =
∑2N+1

k=0 hkz
−k be a matrix CQF satisfy-

ing (1.6) with γ = 2N + 1, and h0 �= 0, h2N+1 �= 0. Let He, Ho be the filters defined
by (1.4). Then (1.6) for γ = 2N + 1 is equivalent to

z−NS0[He(z
−1), Ho(z

−1)]

[
S0

S0

]
= [He(z), Ho(z)].(2.1)

Denote

P (z) := [He(z), Ho(z)]U
T
0 ,

where

U0 :=

√
2

2

[
Ir S0

−Ir S0

]
.(2.2)

One can check that P satisfies

z−NS0P (z
−1)diag(Ir,−Ir) = P (z).(2.3)

Note that U0 ∈ O(2r). Thus P satisfies P (z)P (z−1)T = Ir, i.e., P is also paraunitary.
In the following we give a symmetric paraunitary extension of P .

We need a lemma which will be used here and in the following sections.
Lemma 2.1. (i) Suppose an �× 2k (� ≥ k) real matrix A satisfies

Adiag(Ik,−Ik)AT = 0.(2.4)

Then there exists u ∈ O(k) such that

A

[
Ik
uT

]
= 0.(2.5)

(ii) Suppose an �× (2k − 1) (� ≥ k − 1) real matrix A satisfies

Adiag(Ik,−Ik−1)A
T = 0.(2.6)
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Then there exists u ∈ O(k) such that

A

[
uT

(Ik−1, 0)

]
= 0.(2.7)

Proof. (i) By (2.4), the rank of A, denoted by n, is not greater than k. Let
{x1, x2, . . . , xn} be an o.n. basis for the columns of the matrix AT (found by the
Gram–Schmidt process). Write

[x1, . . . , xn] =:

[
Y1

Z1

]
, Y1, Z1 are k × n matrices.

Then Y T
1 Y1 + Z

T
1 Z1 = In. By (2.4), we have Y

T
1 Y1 = Z

T
1 Z1. Thus

Y T
1 Y1 = Z

T
1 Z1 =

1

2
In.

Therefore
√
2Y1,
√
2Z1 are k×n matrices of o.n. columns. Let Y2, Z2 be the k×(k−n)

matrices such that
√
2[Y1, Y2],

√
2[Z1, Z2] ∈ O(k). Then one has[

Y T
1 −ZT

1

Y T
2 −ZT

2

]
xj = 0, 1 ≤ j ≤ n.

Since each column of AT is a linear combination of xj , 1 ≤ j ≤ n, we have[
Y T

1 −ZT
1

Y T
2 −ZT

2

]
AT = 0.

Thus (2.5) holds true with u = −2[Y1, Y2][Z1, Z2]
T ∈ O(k).

(ii) The proof is similar. In this case write

[x1, . . . , xn] =:

[
Y1

Z1

]
, Y1, Z1 are k × n and (k − 1)× n matrices,

where {x1, x2, . . . , xn} is an o.n. basis for the columns of AT . Then
√
2Y1,
√
2Z1 are

k×n and (k−1)×n matrices of o.n. columns, respectively. Let Y2, Z2 be the k×(k−n)
and (k−1)× (k−1−n) matrices such that √2[Y1, Y2] ∈ O(k),

√
2[Z1, Z2] ∈ O(k−1).

Then one has [
Y T

1 −ZT
1

Y T
2 −[Z2, 0]

T

]
AT = 0, 1 ≤ j ≤ n.

Thus

A

[
Y1 Y2

−Z1 −[Z2, 0]

]
= 0,

and (2.7) holds with u = −2diag([Z1, Z2], 1)[Y1, Y2]
T ∈ O(k).

From the proof of Lemma 2.1, we know that orthogonal matrices u in (2.5) and
(2.7) are constructed by the Gram–Schmidt process of the rows of A.

For v ∈ O(r), define

V (z) :=
1

2

[
Ir −v
−vT Ir

]
+
1

2

[
Ir v
vT Ir

]
z−1, v ∈ O(r).(2.8)
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Then one has the following lemma.
Lemma 2.2. Let V (z) be the matrix defined by (2.8) with some v ∈ O(r). Then
(i) V (z)T = V (z−1), V (z)V (z−1) = I2r.
(ii) z−1diag(Ir,−Ir)V (z−1)diag(Ir,−Ir) = V (z).

Proof. Statements (i) and (ii) follow from the direct calculations.
For a causal paraunitary matrix P satisfying (2.3), write

P = p0 + · · ·+ pNz−N .

By (2.3), pN = S0p0diag(Ir,−Ir). On the other hand, the paraunitariness of P implies
that p0p

T
N = 0. Thus

p0diag(Ir,−Ir)pT0 = 0.

By Lemma 2.1, we can find vN ∈ O(r) such that p0[Ir, vN ]T = 0.
Let VN be the matrix defined by (2.8) with v = vN . Then P̃ defined by

P̃ (z) := P (z)VN (z
−1)

is causal. Since VN (z) is paraunitary and satisfies condition (ii) of Lemma 2.2, P̃ is
also paraunitary and satisfies (2.3) with N −1. Continuing this process, we construct
vN−1, . . . , v1 ∈ O(r) similarly such that P can be written as

P (z) = P̃ (z)VN (z) = · · · = P0V1(z) · · ·VN (z),

where Vj are defined by (2.8) with v = vj , 1 ≤ j ≤ N , and P0 is an r × 2r matrix of
constant entries satisfying

P0P
T
0 = Ir, S0P0 = P0diag(Ir,−Ir).

One has that for P0 satisfying the above conditions, it can be written as

P0 =

[
a0 0
0 b0

]
,

where a0 and b0 are s×r and (r−s)×r matrices, respectively, with a0aT0 = Is, b0b
T
0 =

Ir−s. Let a1 and b1 be such matrices that [
a0

a1
], [ b0b1 ] ∈ O(r). Denote

Q0 =

[
0 b1
a1 0

]
.

Then [ P0

Q0
] ∈ O(2r) and −S0Q0 = Q0diag(Ir,−Ir). Thus Q defined by

Q(z) := Q0V1(z) · · ·VN (z)

satisfies that

z−NS0Q(z
−1)diag(Ir,−Ir) = −Q(z),

and [PQ ] is causal and paraunitary. Therefore, Q is a symmetric paraunitary extension

of P . We note that the degree of each entry of Q as a polynomial of z−1 is not greater
than N . Let [Ge, Go] = Q(z)U0. Then we have the following theorem.
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Theorem 2.3. Suppose [He, Ho] is an r× 2r paraunitary matrix satisfying (1.6)
for γ = 2N + 1. Then [Ge, Go] obtained by the above algorithm is a symmetric para-
unitary extension of [He, Ho] with

z−NS0[Ge(z
−1), Go(z

−1)]

[
S0

S0

]
= −[Ge(z), Go(z)].

Let G be the filter defined by (1.8). Then G is causal, len(G) ≤ 2N+1, G satisfies
(1.9), and {H,G} is an orthogonal multifilter bank. Thus we have the following
corollary.

Corollary 2.4. Suppose the causal FIR H generates an o.n. scaling vector
φ = (φ1, . . . , φr)

T supported on [0, 2N + 1] with the first s components symmetric
and the other components antisymmetric about N + 1

2 . Let G be the causal matrix
filter constructed by the above algorithm. Then ψ defined by (1.2) is a multiwavelet
supported on [0, 2N + 1] with the first s components antisymmetric and the other
components symmetric about N + 1

2 .

Example 1. Let H(z) =
∑5

k=0 hkz
−k be a matrix CQF with

h0 =
1

101

[
100/101 10/101
10e e

]
, h1 =

1

101

[
100/101 1000/101
10e 100e

]
,

h2 =
1

101

[
9801/202 990/101
101f 0

]
, hj = S0h5−jS0, 3 ≤ j ≤ 5,

where S0 = diag(1,−1), and

e :=
261

4

7
√
1147− 202

707
√
1147− 41282 , f :=

101

4

14
√
1147− 143

707
√
1147− 41282 .

H satisfies (1.6) with γ = 5, and it generates a symmetric/antisymmetric o.n. scaling
vector φ with φ ∈ W 1.87659(R). Here W s(R) denotes the Sobolev space consisting of

all functions with f̂(ω)(1 + |ω|2) s
2 ∈ L2(R), and we use the smoothness estimate of

φ provided in [4]. We will construct the corresponding symmetric high-pass filter by
the above algorithm.

Let He, Ho be the filters defined by (1.4). Then P (z) := [He, Ho]U
T
0 is p0 +

p1z
−1 + p2z

−2 with

p0 =
1

101

[
200/101 −990/101 0 −10
20e −99e 0 −101e

]
,

p1 =
1

101

[
992/101 1980/101 0 0

0 0 −202f 0

]
,

p2 = S0p0diag(I2,−I2).
By the above algorithm, we can construct v2 ∈ O(2), then v1 ∈ O(2) with

v2 = − 1

101

[
99 −20
20 99

]
, v1 =

1

101

[
99 20
20 −99

]

such that P (z)V2(z
−1)V1(z

−1) is

P0 =

[
1 0 0 0
0 0 −2f −2e

]
,
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where Vj are the matrices defined by (2.8) with v = vj , j = 1, 2. Let Q0 defined by

Q0 =

[
0 0 2e −2f
0 1 0 0

]

be the orthogonal extension of P0. Then Q(z) = Q0V1(z)V2(z) is a symmetric exten-

sion of P (z). Finally, we get G(z) =
√

2
2 Q(z

2)U0[
I2

z−1I2
] =:

∑5
k=0 gkz

−k with

g0 =
1

101

[
10f f

−495/101 −99/202
]
, g1 =

1

101

[
10f 100f

−495/101 −4950/101
]
,

g2 =
1

101

[ −101e 0
990/101 200/101

]
, gj = −S0g5−jS0, 3 ≤ j ≤ 5.

The corresponding multiwavelet ψ is symmetric/antisymmetric about 5/2.

2.2. The case γ = 2N . Suppose H satisfies (1.6) with γ = 2N,N ∈ N. We
hope to find such a causal G that each component of the corresponding ψ has the
same symmetry center N , i.e., to find G to satisfy

z−2NS1G(z
−1)S0 = G(z), S1 = diag(±1, . . . ,±1).(2.9)

First we have the following proposition.
Proposition 2.5. Suppose {H,G} is orthogonal, and H,G satisfy (1.6) for

γ = 2N and (2.9), respectively. Then r is even and by permutations S0 and S1 are
diag(I r

2
,−I r

2
).

Proof. By (1.6) for γ = 2N and (2.9),

[
S0

S1

] [
H(1) H(−1)
G(1) G(−1)

] [
S0

S0

]
=

[
H(1) H(−1)
G(1) G(−1)

]
(2.10)

and

(−1)N
[
S0

S1

] [
H(−i) H(i)
G(−i) G(i)

] [
S0

S0

]
(2.11)

=

[
H(−i) H(i)
G(−i) G(i)

] [
Ir

Ir

]
.

Equation (2.10) implies that diag(S0, S1) is similar to diag(S0, S0). Thus Tr(S1) =
Tr(S0), while (2.11) implies that Tr(S1) + Tr(S0)=0. Therefore, Tr(S1) = Tr(S0) = 0.
Hence, r is even, and half diagonal entries of both S0 and S1 are 1 and the other half
diagonal entries are −1.

Due to Proposition 2.5, in the rest of this subsection we always assume that
r = 2m for some m ∈ N and

S0 = diag(Im,−Im).

We will discuss the following symmetric extension problem: Given a causal H satisfy-
ing (1.6) for γ = 2N , find G such that G satisfies (2.9) with S1 = diag(−Im, Im) and
{H,G} is orthogonal. For this we introduce a paraunitary matrix U(z) defined by

U(z) :=
1

2

[
S0U1S0 U1

U1z
−1 S0U1S0

]
, U1 =

[
Ir u
uT Ir

]
, u ∈ O(m).(2.12)
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Lemma 2.6. Let U(z) be the matrix defined by (2.12) for some u ∈ O(m). Then
(i) U(z)U(z−1)T = I2m.
(ii) U(z−1)diag(S0z

−1, S0)U(z
−1)T = [ S0

S0
].

Proof. One can obtain (i) by a direct calculation. For (ii), we have

U(z−1)diag(S0z
−1, S0) =

1

2

[
S0U1z

−1 U1S0

U1S0 S0U1

]
=

[
S0

S0

]
U(z).

For a causal matrix CQF H satisfying (1.6) for γ = 2N , let He, Ho be the causal
filters defined by (1.4). Then (1.6) for γ = 2N is equivalent to

z−(N−1)S0[He(z
−1), Ho(z

−1)]diag(z−1S0, S0) = [He(z), Ho(z)].(2.13)

By (1.3) and symmetry of H, h0h
T
2N = 0 and h2N = S0h0S0. Thus

h0S0h
T
0 = 0.

By Lemma 2.1, we can find u0 ∈ O(m) such that h0[Im, u0]
T = 0. Thus

h0

[
Im u0

uT0 Im

]
= 0.(2.14)

Let U0(z) be the paraunitary matrix defined by (2.12) with u = u0. Equation (2.14)

implies that the r × 2r matrix [H̃e, H̃o] defined by

[H̃e(z), H̃o(z)] = [He(z), Ho(z)]U0(z
−1)T

is causal. The paraunitariness of [He, Ho] and U0(z) imply that [H̃e, H̃o] is also pa-
raunitary. On the other hand, by (ii) in Lemma 2.6 and (2.13), one has

z−(N−1)S0[H̃e(z
−1), H̃o(z

−1)]

[
S0

S0

]
= [H̃e(z), H̃o(z)].

Thus by Theorem 2.3, there exist causal FIR filters G̃e(z), G̃o(z) such that [G̃e(z), G̃o(z)]

is a symmetric paraunitary extension of [H̃e, H̃o] with

z−(N−1)S0[G̃e(z
−1), G̃o(z

−1)]

[
S0

S0

]
= −[G̃e(z), G̃o(z)].

Define

[Ge(z), Go(z)] := [G̃e(z), G̃o(z)]U0(z).

Then [Ge(z), Go(z)] is a symmetric paraunitary extension of [He, Ho], and it satisfies

z−(N−1)S0[Ge(z
−1), Go(z

−1)]diag(z−1S0, S0) = −[Ge(z), Go(z)].(2.15)

Theorem 2.7. Suppose [He, Ho] is an r×2r causal paraunitary matrix satisfying
(2.13). Then [Ge, Go] obtained by the above algorithm is a symmetric paraunitary
extension of [He, Ho] with [Ge(z), Go(z)] satisfying (2.15). Furthermore, len(Ge) ≤ N ,
len(Go) ≤ N − 1.

Let G be the filter defined by (1.8). Then G is causal, len(G) ≤ 2N , G satisfies
(2.9) with S1 = diag(−Im, Im), and {H,G} is orthogonal.

Corollary 2.8. Suppose the causal filter H generates an o.n. scaling vector
φ = (φ1, . . . , φ2m)

T supported on [0, 2N ] with the first m components symmetric and
the other m components antisymmetric about N . Let G be the matrix filter obtained
by the above algorithm. Then ψ defined by (1.2) is a multiwavelet supported on [0, 2N ]
with the first m components antisymmetric and the other m components symmetric
about N .
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3. Symmetric extension of matrices related to different symmetric cen-
ter filters. Suppose H =

∑2γ+1
k=0 hkz

−k is a matrix CQF satisfying (1.7). Let He, Ho

be the causal filters defined by (1.4). Then [He, Ho] satisfies

z−γdiag(S0z, 1)[He(z
−1), Ho(z

−1)]diag(J0, z) = [He(z), Ho(z)],(3.1)

where

J0 :=


 S0

1
S0


 .(3.2)

In this section, we discuss the symmetric extension of [He, Ho]. We will construct
[Ge, Go] such that it is a paraunitary matrix of [He, Ho] and

z−γdiag(S1z,S2)[Ge(z
−1), Go(z

−1)]diag(J0, z) = [Ge(z), Go(z)],(3.3)

where S1 and S2 are defined by (1.11). Then G defined by (1.8) satisfies (1.10).
Define R1 ∈ O(2r − 1) by

R1 :=

√
2

2


 Ir−1 0 Ir−1

0
√
2 0

−Ir−1 0 Ir−1


 .(3.4)

Then

R1J0R
T
1 = diag(S0, 1,−S0).

Let M0 be such a 2r × 2r permutation matrix that

M0diag(S0, 1,−S0, z)M0 = diag(z, Ir,−Ir−1) = diag(z,Dr).(3.5)

Recall a matrix is called a permutation matrix if its columns are a permutation of the
columns of the identity matrix. Dr is the matrix defined by (1.12). Denote

P (z) := [He(z), Ho(z)]diag(R1, 1)M0.

Then P is causal and paraunitary, and [He, Ho] satisfies (3.1) if and only if P satisfies

z−γdiag(S0z, 1)P (z
−1)diag(z,Dr) = P (z).(3.6)

We now consider the symmetric extension of P . We want to construct a causal
filter Q such that Q is a paraunitary extension of P and satisfies

z−γdiag(S1z,S2)Q(z
−1)diag(z,Dr) = Q(z).(3.7)

If Q satisfies (3.7), then [Ge, Go] defined by [Ge, Go] = QM0diag(R
T
1 , 1) satisfies (3.3).

First let us consider the case γ = 1. In this case, (3.6) implies that P can be
written in the form of

 0 a0 0
0 0 b0
c0 y1 y2


+


 0 0 0
0 0 0
0 y1 −y2


 z−1,
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where a0, b0 are s× r and (r − s− 1)× (r − 1) matrices, c0 ∈ R and y1, y2 are 1× r
and 1× (r − 1) row vectors. The paraunitariness of P implies that

a0a
T
0 = Is, b0b

T
0 = Ir−s−1, a0y

T
1 = 0, b0y

T
2 = 0, y1y

T
1 = y2y

T
2 , c20+4y1y

T
1 = 1.

Thus we know a0, b0 are s× r and (r − s− 1)× (r − 1) matrices of o.n. rows.
Let θ be such a real number that

cos θ = c0, sin θ =
√
1− c20.

Then y1, y2 can be written as

y1 =
1

2
sin θu0, y2 =

1

2
sin θv0,(3.8)

where u0 and v0 are 1 × r and 1 × (r − 1) row vectors such that [ a0

u0
] and [ b0v0

] are
(s + 1) × r and (r − s) × (r − 1) matrices of o.n. rows. Indeed, if sin θ = 0, then
y1 = 0, y2 = 0 and any unit vectors u0, v0 o.n. to rows of a0, b0, respectively, will do.
If sin θ �= 0, u0 = 2y1/ sin θ, v0 = 2y2/ sin θ.

Consider the case 2s ≥ r. Choose (r − s − 1) × r, (2s − r) × (r − 1), and
(r − s− 1)× (r − 1) matrices ũ, ṽ1, ṽ such that

[aT0 , u
T
0 , ũ

T ] ∈ O(r), [bT0 , v
T
0 , ṽ

T , ṽT1 ] ∈ O(r − 1),
where u0, v0 are the vectors satisfying (3.8). Then Q defined by

Q(z) =
1

2




0 0 2ṽ1
−2 sin θ cos θu0 cos θv0

0 ũ ṽ
0 u0 v0
0 ũ ṽ


+

1

2




0 0 0
0 cos θu0 − cos θv0
0 ũ −ṽ
0 −u0 v0
0 −ũ ṽ


 z

−1

is a symmetric paraunitary extension of P with Q satisfying (3.7) for γ = 1.
For the case 2s < r, choose (r − 2s)× r, (s− 1)× (r − 1), and (s− 1)× (r − 1)

matrices ũ1, ũ, and ṽ such that

[aT0 , u
T
0 , ũ

T , ũT1 ] ∈ O(r), [bT0 , v
T
0 , ṽ

T ] ∈ O(r − 1),
where u0, v0 are the vectors satisfying (3.8). Then Q defined by

Q(z) =
1

2




0 2ũ1 0
−2 sin θ cos θu0 cos θv0

0 ũ ṽ
0 u0 v0
0 ũ ṽ


+

1

2




0 0 0
0 cos θu0 − cos θv0
0 ũ −ṽ
0 −u0 v0
0 −ũ ṽ


 z

−1

is a symmetric paraunitary extension of P with Q satisfying (3.7) for γ = 1.
Proposition 3.1. Suppose P is a causal paraunitary matrix that satisfies (3.6)

for γ = 1. Then Q constructed above is a symmetric paraunitary extension of P
satisfying (3.7) for γ = 1.

Now let us discuss the case γ ≥ 2. First we introduce a paraunitary matrixW (z).
For w =: [ w̃wr

] ∈ O(r) with wr the last row of w, define

W (z) :=
1

2



0 0 0
2 0 0
0 w̃ −Ir−1

0 −w̃ Ir−1


+ 1

2



0 2wr 0
0 0 0
0 w̃ Ir−1

0 w̃ Ir−1


 z−1.(3.9)
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Then by a direct calculation, one has the following lemma.
Lemma 3.2. Let W (z) be the matrix defined by (3.9) with some w ∈ O(r). Then
(i) W (z)W (z−1)T = I2r.
(ii) z−1diag(z−1, Dr)W (z−1)diag(z,Dr) =W (z).

Suppose P is a paraunitary matrix satisfying (3.6) for γ ≥ 2. Then P has the
form of

P =

[
a0 b0
c0 d0

]
+

[
a1 b1
c1 d1

]
z−1 + · · ·+

[
S0a0 S0b1Dr

c1 d2Dr

]
z−(γ−2)

+

[
0 S0b0Dr

c0 d1Dr

]
z−(γ−1) +

[
0 0
0 d0Dr

]
z−γ

for some cj ∈ R, (r− 1)× 1 and 1× (2r− 1) vectors aj and dj , and (r− 1)× (2r− 1)
matrices bj . The paraunitariness of P implies that

[
a0 b0
c0 d0

] [
0 0
0 d0Dr

]T
= 0,

[
a0 b0
c0 d0

] [
0 S0b0Dr

c0 d1Dr

]T
+

[
a1 b1
c1 d1

] [
0 0
0 d0Dr

]T
= 0,

which leads to [
b0
d0

]
Dr[b

T
0 , d

T
0 ] = 0.

By Lemma 2.1, we can construct wγ ∈ O(r) satisfying[
b0
d0

] [
wT

γ

(Ir−1, 0)

]
= 0.(3.10)

Write

wγ =:

[
w̃γ

wγ,r

]
,

where wγ,r is the last row of wγ . From (3.10), we have

d0Dr

[
wT

γ,r w̃T
γ

0 −Ir−1

]
= 0.(3.11)

Let Wγ(z) be the matrix defined by (3.9) with w = wγ . Define P̃ by

P̃ (z) := P (z)Wγ(z
−1)T .

Then (3.10) and (3.11) imply that P̃ is causal, and it can be written as

p̃0 + · · ·+ p̃N−1z
−(γ−1)

for some r × 2r matrices p̃j . Since Wγ(z) is paraunitary and satisfies (ii) of Lemma

3.2, P̃ is also paraunitary and satisfies (3.6) with γ − 1. In this way, we construct
wγ−1, . . . , w2 ∈ O(r) similarly such that P can be written as

P (z) = P̃ (z)Wγ(z) = · · · = P1(z)W2(z) · · ·Wγ(z),
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where Wj is defined by (3.9) with w = wj , and P1 is an r× 2r matrix satisfying (3.6)
with γ = 1. By Proposition 3.1, we can construct a causal filter Q1 such that Q1 is a
symmetric paraunitary extension of P1. Let

Q(z) = Q1(z)W2(z) · · ·Wγ(z).

Then Q is a symmetric extension of P satisfying (3.7). Define

[Ge(z), Go(z)] = Q(z)M0diag(R
T
1 , 1).

Then [Ge, Go] is a symmetric paraunitary extension of [He, Ho] with [Ge, Go] satisfying
(3.3).

Theorem 3.3. Suppose [He, Ho] is an r×2r causal paraunitary matrix satisfying
(3.1). Then [Ge, Go] obtained by the above algorithm is a symmetric paraunitary
extension of [He, Ho] satisfying (3.3). Furthermore, the filter length of [Ge, Go] is not
greater than γ.

Let G be the matrix defined by (1.8). Then G is causal, and it satisfies (1.10)
and len(G) ≤ 2γ + 1.

Corollary 3.4. Assume that the causal FIR H generates an o.n. scaling vector
φ = (φ1, . . . , φr)

T with φ1, . . . , φs and φs+1, . . . , φr−s−1 symmetric and antisymmet-
ric about γ − 1

2 , and φr is symmetric about γ. Let G be the causal matrix filter
obtained by the above algorithm. Then ψ = (ψ1, . . . , ψr)

T defined by (1.2) is such a
multiwavelet that ψ1, . . . , ψ2s−r are antisymmetric about γ − 1

2 , and ψ2s−r+1, . . . , ψs

and ψs+1, . . . , ψr are symmetric and antisymmetric about γ, respectively, for the case
2s ≥ r; and ψ1, . . . , ψr−2s are symmetric about γ − 1

2 , and ψr−2s+1, . . . , ψr−s and
ψr−s+1, . . . , ψr are symmetric and antisymmetric about γ, respectively, for the case
2s < r.

Example 2. Let φ = (φ1, φ2)
T be the o.n. scaling vector constructed in [2]. The

low-pass filter H for φ is given by

H(z) =
1

20

[
6 + 6z−1 8

√
2

(−1 + 9z−1 + 9z−2 − z−3)/
√
2 −3 + 10z−1 − 3z−2

]
.

In this case S0 = (1) and

R1 =

√
2

2


 1 0 1

0
√
2 0

−1 0 1


 , M0 =


 0 0 1
0 I2 0
1 0 0


 .

Let He, Ho be the filters defined by (1.4). Then P := [He, Ho]diag(R1, 1)M0 is[
0 4

5
3
5 0√

2
2 − 3

√
2

20

√
2

5 −
√

2
4

]
+

[
0 0 0 0

0 − 3
√

2
20

√
2

5

√
2

4

]
z−1.

By the above algorithm, one can find P ’s symmetric extension Q:

Q(z) =
1

2

[
−√2 − 3

√
2

10
2
√

2
5

√
2

2
0 − 3

5
4
5 1

]
+
1

2

[
0 − 3

√
2

10
2
√

2
5 −

√
2

2
0 − 3

5 − 4
5 1

]
z−1.

Then we get [Ge, Go] = Q(z)M0diag(R
T
1 , 1), and finally we have G(z) = Ge(z

2) +
Go(z

2)z−1:

G(z) =
1

20

[
(9− z−1 − z−2 + 9z−3)/

√
2 −3− 10z−1 − 3z−2

9− z−1 + z−2 − 9z−3 3
√
2(z−2 − 1)

]
.

The first and the second components of the corresponding ψ = (ψ1, ψ2)
T are sym-

metric and antisymmetric about 1, respectively.
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4. Parametrization of symmetric multifilter banks. In this section we dis-
cuss parametrizations of symmetric orthogonal filter banks. We consider two types
of symmetry filters, those having or not having the same symmetric centers, in the
following two subsections, respectively.

4.1. Filter banks with the same symmetric center. Assume that {H,G}
is a causal orthogonal filter bank satisfying

z−γS0H(z
−1)S0 = H(z), z−γS1G(z

−1)S0 = G(z),(4.1)

where

S0 = diag(Is,−Ir−s), S1 = diag(±1, . . . ,±1), s ∈ N0.

One can show as in subsection 2.2 that Tr(S1) = Tr(S0). In this subsection we assume
that S1 = −S0.

Theorem 4.1. A causal FIR multifilter bank {H,G} is orthogonal and satisfies
(4.1) with γ = 2N + 1 for some N ∈ N, S1 = −S0 if and only if it can be factorized
in the form of

H(z) =

√
2

2

[
a0 0
0 b0

]
V1(z

2) · · ·VN (z2)U0

[
Ir
Irz

−1

]
,(4.2)

G(z) =

√
2

2

[
0 b1
a1 0

]
V1(z

2) · · ·VN (z2)U0

[
Ir
Irz

−1

]
,

where Vj are the matrices defined by (2.8) with vj ∈ O(r), a0, b1 and a1, b0 are s× r
and (r − s) × r matrices, respectively, with [aT0 , a

T
1 ], [b

T
0 , b

T
1 ] ∈ O(r), and U0 is the

matrix defined by (2.2).
Theorem 4.2. A causal FIR multifilter bank {H,G} is orthogonal and satisfies

(4.1) with γ = 2N for some N ∈ N, S0 = diag(Im,−Im), S1 = −S0 if and only if it
can be factorized in the form of

H(z) =

√
2

2

[
a0 0
0 b0

]
V2(z

2) · · ·VN (z2)U0U(z
2)

[
Ir
Irz

−1

]
,(4.3)

G(z) =

√
2

2

[
0 b1
a1 0

]
V2(z

2) · · ·VN (z2)U0U(z
2)

[
Ir
Irz

−1

]
,

where Vj are the matrices defined by (2.8) with vj ∈ O(r), a0, b1 and a1, b0 are s× r
and (r− s)× r matrices, respectively, with [aT0 , a

T
1 ], [b

T
0 , b

T
1 ] ∈ O(r), and U0 and U(z)

are the matrices defined by (2.2) and (2.12) with u ∈ O(m), respectively.
Let M1 be the permutation matrix defined by

M1 := diag

(
Is,

[
0 Ir
Ir−s 0

])
.

One can easily show that for H,G given by (4.2) and (4.3), respectively, they can also
be written in the forms of[

H(z)
G(z)

]
=
1

2
M1V1(z

2) · · ·VN (z2)
[
A AS0

B −BS0

] [
Ir
Irz

−1

]
(4.4)

and [
H(z)
G(z)

]
=
1

2
M1V2(z

2) · · ·VN (z2)
[
A AS0

B −BS0

]
U(z2)

[
Ir
Irz

−1

]
,(4.5)
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where A,B ∈ O(r).
Parametric expressions of causal orthogonal multifilter banks (4.4) and (4.5) were

provided in [6]. It was shown in [7] that the factorization (4.4) is complete. Theorem
4.2 shows that the factorization (4.5) is also complete. By the completeness of the
factorization (4.4) and the equivalence of forms (4.2) and (4.4), Theorem 4.1 is in fact
not new. For completeness of this paper, the sketch of its proof is provided here.

Proof of Theorem 4.1. Clearly if {H,G} is given by (4.2), then it is a causal
symmetric orthogonal filter bank. Conversely, let E be the polyphase matrix of H,G.
Then E satisfies

z−Ndiag(S0,−S0)E(z
−1)

[
0 S0

S0 0

]
= E(z).(4.6)

Define E1(z) := E(z)U
T
0 , where U0 is the matrix defined by (2.2). Then E1 satisfies

z−Ndiag(S0,−S0)E1(z
−1)diag(Ir,−Ir) = E1(z).

Write

E1(z) = e0 + · · ·+ eNz−N .

By the symmetry of E, eN = diag(S0,−S0)e0diag(Ir,−Ir). By the paraunitariness
of E, e0e

T
N = 0. Thus, e0diag(Ir,−Ir)eT0 = 0. By Lemma 2.1, we can find vN ∈ O(r)

such that

e0

[
Ir
vTN

]
= 0.

Let VN (z) be the matrix defined by (2.8) with v = vN . Then Ẽ1(z) = E1(z)VN (z
−1)

is causal, paraunitary, and satisfies

z−(N−1)diag(S0,−S0)Ẽ1(z
−1)diag(Ir,−Ir) = Ẽ1(z).

Continuing this process, we can find vN−1, . . . , v1 ∈ O(r) such that E1(z)VN (z
−1) · · ·

V1(z
−1) is

[
aT0 0 0 aT1
0 bT0 bT1 0

]T
,

where a0, b1 and a1, b0 are s × r and (r − s) × r matrices, respectively, satisfying
[aT0 , a

T
1 ], [b

T
0 , b

T
1 ] ∈ O(r). Thus E can be factorized into

E(z) =

[
aT0 0 0 aT1
0 bT0 bT1 0

]T
V1(z) · · ·VN (z)U0.(4.7)

Hence H,G can be written in the form of (4.2).
Proof of Theorem 4.2. Clearly if {H,G} is given by (4.3), then it is a causal

symmetric orthogonal filter bank. Conversely, let E be the polyphase matrix of H,G.
Then E satisfies

z−(N−1)diag(S0,−S0)E(z
−1)diag(z−1S0, S0) = E(z).

Write

E(z) = [e0,1, e0,2] + [e1,1, e1,2]z
−1 + · · ·+ [eN,1, eN,2]z

−N ,
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where ej,1, ej,2 are 2r × r matices. Then
eN,2 = 0, eN,1 = diag(S0,−S0)e0,1S0.

By the paraunitariness of E, e0,1e
T
N,1 = 0. Thus, e0,1S0e

T
0,1 = 0. By Lemma 2.1, we

can find u0 ∈ O(m) such that

e0,1

[
Im
uT0

]
= 0.

Let U(z) be the matrix defined by (2.12) with u = u0. Then Ẽ(z) = E(z)U(z
−1)T

is causal, paraunitary, and satisfies (4.6) with N − 1. By the proof of Theorem 4.1,
Ẽ can be factorized into the product (4.7) with N − 1. Thus H,G can be factorized
into the form of (4.3).

4.2. Filter banks with different symmetric centers. Suppose H(z) =∑2γ+1
k=0 hkz

−k, G(z) =
∑2γ+1

k=0 gkz
−k satisfy (1.3), (1.1), and

z−(2γ+1)diag(S0z
2, s0)H(z

−1)diag(S0, s0z) = H(z),(4.8)

z−(2γ+1)diag(S1z
2, S2)G(z

−1)diag(S0, s0z) = G(z),

where s0 = ±1, S0, S1, S2 are diagonal matrices with diagonal entries 1 or −1.
Proposition 4.3. Suppose a causal multifilter bank {H,G} is orthogonal and

satisfies (4.8). Then

Tr(S0) + Tr(S1) = s0, Tr(S2) = 0.

Proof. By (4.8),

diag(S0, s0, S1, S2)

[
H(1) H(−1)
G(1) G(−1)

]
diag(S0, s0, S0,−s0)(4.9)

=

[
H(1) H(−1)
G(1) G(−1)

]

and

(−1)γidiag(S0,−s0, S1,−S2)

[
H(−i) H(i)
G(−i) G(i)

]
diag(S0, s0i, S1,−s0i)(4.10)

=

[
H(−i) H(i)
G(−i) G(i)

] [
Ir

Ir

]
.

By (4.9), Tr(S0) + Tr(S1) + Tr(S2) = s0, and by (4.10), Tr(S0) + Tr(S1) − Tr(S2) =
s0. Thus, Tr(S0) + Tr(S1) = s0 and Tr(S2) = 0.

In the following we assume that s0 = 1 and suppose

S0 = diag(Is,−Ir−s−1), S1 = diag(Ir−p−s,−Is−p), S2 = diag(Ip,−Ip)
for some s, p ∈ N0 with s ≤ p, 2p ≤ r. Let E be the polyphase matrix of H,G. Then
E satisfies

z−γdiag(S0z, 1, S1z, S2)E(z
−1)diag(J0, z) = E(z),

where J0 is the matrix defined by (3.2).
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Let M2 be such a permutation matrix that

M2diag(S0z, 1, S1z, S2)M2 = diag(Dr−pz,Dp+1).

Let R1 be the matrix defined by (3.4) and M0 be such a permutation matrix that
(3.5) holds. Denote

E(z) :=M2E(z)diag(R1, 1)M0.

Then E is causal, paraunitary, and satisfies

z−γdiag(Dr−pz,Dp+1)E(z−1)diag(z,Dr) = E(z).(4.11)

In the following we discuss the factorization of E . First we consider the case
γ = 1. For this we introduce a paraunitary matrix W(z) defined as follows. For
u =: [u1

u2
] ∈ O(r), v =: [v1

v2
] ∈ O(r − 1), where u1, u2, v1, and v2 are (r − p)× r, p× r,

(r − p− 1)× (r − 1), and p× (r − 1) matrices, respectively, define

W(z) :=
1

2




0 2u1 0
0 0 2v1
2 0 0
0 u2 v2
0 u2 v2


+

1

2




0 0 0
0 0 0
0 0 0
0 u2 −v2
0 −u2 v2


 z

−1.(4.12)

One can show that W is paraunitary and satisfies (4.11) for γ = 1.
Proposition 4.4. A causal paraunitary E satisfies (4.11) for γ = 1 if and only

if it can be written as

E(z) = diag(I2r−2p−1, c, Ip)W(z), c ∈ O(p+ 1).(4.13)

Proof. It is clear that if E is given by (4.13), then it is paraunitary and satisfies
(4.11) for γ = 1. Conversely, condition (4.11) implies that E has the form of


 0 L1 0

0 0 L2

c0 d0


+


 0 0 0
0 0 0
0 Dp+1d0Dr


 z−1,

where L1, L2 are (r − p) × r and (r − p − 1) × (r − 1) matrices, respectively, c0 is
(2p + 1) × 1 column vector satisfying Dp+1c0 = c0, and d0 is a (2p + 1) × (2r − 1)
matrix. The paraunitariness of E implies that

L1L
T
1 = Ir−p, L2L

T
2 = Ir−p−1, diag(L1, L2)d

T
0 = 0, d0Drd

T
0 = 0.(4.14)

Again let {x1, x2, . . . , xn} be an o.n. basis for the columns of dT0 , where n ≤ r − 1 is
the rank of d0. Write

[x1, . . . , xn] =

[
Y1

Z1

]
, Y1, Z1 are r × n and (r − 1)× n matrices.

Then
√
2Y1,
√
2Z1 are r × n and (r − 1) × n matrices of o.n. columns, respectively.

By (4.14), we know L1, L2 are (r − p) × r and (r − p − 1) × (r − 1) matrices of o.n.
columns, and L1Y1 = 0, L2Z1 = 0. Thus [

√
2Y1, L

T
1 ], [
√
2Z1, L

T
2 ] are r × (n + r − p)
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and (r − 1) × (n + r − p − 1) matrices of orthonormal columns, respectively. Thus,
n ≤ p. Let Y2, Z2 be r × (p− n) and (r − 1)× (p− n) matrices such that

[
√
2Y1, L

T
1 ,
√
2Y2] ∈ O(r), [

√
2Z1, L

T
2 ,
√
2Z2] ∈ O(r − 1).

Thus, [
Y T

1 −ZT
1

Y T
2 −ZT

2

]
xj = 0.

Therefore,

d0

[
Y1 Y2

−Z1 −Z2

]
= 0, diag(L1, L2)

[
Y1 Y2

−Z1 −Z2

]
= 0.

Let W(z) be the matrix defined by (4.12) with u1 = L1, v1 = L2, and u2 =√
2[Y1, Y2]

T , v2 =
√
2[Z1, Z2]

T . Then E0(z) := E(z)W(z−1)T is a causal paraunitary
matrix satisfying

diag(Dr−pz,Dp+1)E0(z−1)diag(Dr−pz
−1, Dp+1) = E0(z),

which implies that E0(z) is diag(a, b, c, d) for a ∈ O(r − p), b ∈ O(r − p − 1), c ∈
O(p + 1), d ∈ O(p). One can check that some parameters in a, b, c, d are redundant,
and we can choose a = Ir−p, b = Ir−p−1, d = Ip. Hence E can be written in the form
of (4.13).

Now let us consider the case γ ≥ 2.
Lemma 4.5. If a causal, paraunitary E(z) = e0+e1z−1+· · · eγz−γ satisfies (4.11)

for γ ≥ 2, then there exists wγ ∈ O(r) such that

e0[0, w̃γ ,−Ir−1]
T = 0,

where w̃γ is the matrix consisting of the first r − 1 rows of wγ .
Proof. By (4.11), E can be written as

E =
[
a0 b0
c0 d0

]
+

[
a1 b1
c1 d1

]

+ · · ·+
[

0 Dr−pb0Dr

Dp+1c0 Dp+1d1Dr

]
z−(γ−1) +

[
0 0
0 Dp+1d0Dr

]
z−γ ,

where aj , bj , cj , and dj are (2r − 2p− 1)× 1, (2r − 2p− 1)× (2r − 1), (2p+ 1)× 1,
and (2p+ 1)× (2r − 1) matrices. The paraunitariness of E implies that

[
a0 b0
c0 d0

] [
0 0
0 Dp+1d0Dr

]T
= 0

and[
a0 b0
c0 d0

] [
0 Dr−pb0Dr

Dp+1c0 Dp+1d1Dr

]T
+

[
a1 b1
c1 d1

] [
0 0
0 Dp+1d0Dr

]T
= 0.

Thus, [
b0
d0

]
Dr[b

T
0 , d

T
0 ] = 0.
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Therefore, by Lemma 2.1, there exists wγ ∈ O(r) such that
[
b0
d0

] [
wT

γ

(Ir−1, 0)

]
= 0.

The proof of Lemma 4.5 is complete.
By Lemma 4.5, for a causal, paraunitary E satisfying (4.11) for γ ≥ 2, there

exists wγ ∈ O(r) such that E(z)Wγ(z
−1)T is causal, paraunitary, and satisfies (4.11)

for γ − 1, where Wγ(z) is the matrix defined by (3.9) with w = wγ . In this way,
we can find wγ−1, . . . , w2 ∈ O(r) such that E(z)Wγ(z

−1)T · · ·W2(z
−1)T is causal,

paraunitary, and satisfies (4.11) for γ = 1. This together with Proposition 4.4 leads
to the following theorems.

Theorem 4.6. A causal paraunitary FIR E satisfies (4.11) if and only if it can
be factorized in the form of

E(z) = diag(I2r−2p−1, c, Ip)W(z)W2(z) · · ·Wγ(z),

where c ∈ O(p + 1), W is the matrix defined (4.12) for u ∈ O(r), v ∈ O(r − 1), and
Wj(z) are the matrices defined by (3.9) with wj ∈ O(r).

Theorem 4.7. A causal FIR multifilter bank {H,G} is orthogonal and satisfies
(4.8) if and only if H,G can be factorized in the form

[
H(z)
G(z)

]

=

√
2

2
M2diag(I2r−2p−1, c, Ip)W(z2)W2(z

2) · · ·Wγ(z
2)M0diag(R

T
1 , 1)

[
Ir
Irz

−1

]
,

where M2, R1,M0 are the matrices defined above, c ∈ O(p + 1), W is the matrix
defined (4.12) for u ∈ O(r), v ∈ O(r− 1), and Wj(z) are the matrices defined by (3.9)
with wj ∈ O(r).

For the special case r = 2, s = p = 1, another form of the complete factorization of
orthogonal {H,G} satisfying (4.8) was obtained in [8]. By the parametric expression of
symmetric multifilter banks, one can construct multiwavelets with various properties.
We will carry out such work elsewhere.
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Abstract. Pseudospectra associated with the standard and generalized eigenvalue problems
have been widely investigated in recent years. We extend the usual definitions in two respects,
by treating the polynomial eigenvalue problem and by allowing structured perturbations of a type
arising in control theory. We explore connections between structured pseudospectra, structured
backward errors, and structured stability radii. Two main approaches for computing pseudospectra
are described. One is based on a transfer function and employs a generalized Schur decomposition
of the companion form pencil. The other, specific to quadratic polynomials, finds a solvent of
the associated quadratic matrix equation and thereby factorizes the quadratic λ-matrix. Possible
approaches for large, sparse problems are also outlined. A collection of examples from vibrating
systems, control theory, acoustics, and fluid mechanics is given to illustrate the techniques.

Key words. polynomial eigenvalue problem, λ-matrix, matrix polynomial, pseudospectrum,
stability radius, backward error, transfer function, quadratic matrix equation, solvent, structured
perturbations, Orr–Sommerfeld equation

AMS subject classifications. 65F15, 15A22
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1. Introduction. Pseudospectra are an established tool for gaining insight into
the sensitivity of the eigenvalues of a matrix to perturbations. Their use is widespread
with applications in areas such as fluid mechanics, Markov chains, and control theory.
Most of the existing work is for the standard eigenproblem, although attention has also
been given to matrix pencils [4], [23], [33], [40], [46]. The literature on pseudospectra
is large and growing. We refer to Trefethen [41], [42], [43] for thorough surveys of
pseudospectra and their computation for a single matrix; see also the Web site [3].

In this work we investigate pseudospectra for polynomial matrices (or λ-matrices)

P (λ) = λmAm + λm−1Am−1 + · · ·+ A0,(1.1)

where Ak ∈ C
n×n, k = 0:m. We first define the ε-pseudospectrum and obtain a com-

putationally useful characterization. We examine the relation between the backward
error of an approximate eigenpair of the polynomial eigenvalue problem associated
with (1.1), the ε-pseudospectrum, and the stability radius. We consider both un-
structured perturbations and structured perturbations of a type commonly used in
control theory.

Existing methods for the computation of pseudospectra in the case m = 1 (the
standard and generalized eigenvalue problems) do not generalize straightforwardly to
matrix polynomials. We develop two techniques that allow efficient computation for
m > 1. A transfer function approach employs the generalized Schur decomposition of
the mn×mn companion form pencil. For the quadratic case (m = 2) an alternative
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solvent approach computes a solvent of the associated quadratic matrix equation
A2X

2 + A1X + A0 = 0 and thereby factorizes the quadratic λ-matrix; it works all
the time with n× n matrices once the solvent has been obtained. We give a detailed
comparison of these approaches and also outline techniques that can be efficiently
used when n is so large as to preclude factorizations.

In the last section, we illustrate our theory and techniques on applications from
vibrating systems, control theory, acoustics, and fluid mechanics.

2. Pseudospectra.

2.1. Definition. The polynomial eigenvalue problem is to find the solutions
(x, λ) of

P (λ)x = 0,(2.1)

where P (λ) is of the form (1.1). If x �= 0 then λ is called an eigenvalue and x the
corresponding right eigenvector; y �= 0 is a left eigenvector if y∗P (λ) = 0. The set
of eigenvalues of P is denoted by Λ(P ). When Am is nonsingular P has mn finite
eigenvalues, while if Am is singular P has infinite eigenvalues. Good references for
the theory of λ-matrices are [8], [20], [21], [37].

Throughout this paper we assume that P has only finite eigenvalues (and pseu-
doeigenvalues); how to deal with infinite eigenvalues is described in [16].

For notational convenience, we introduce

∆P (λ) = λm∆Am + λm−1∆Am−1 + · · ·+ ∆A0.(2.2)

We define the ε-pseudospectrum of P by

Λε(P ) =
{
λ ∈ C : (P (λ) + ∆P (λ))x = 0 for some x �= 0 and ∆P (λ)

with ‖∆Ak‖ ≤ εαk, k = 0:m
}
.(2.3)

Here the αk are nonnegative parameters that allow freedom in how perturbations are
measured—for example, in an absolute sense (αk ≡ 1) or a relative sense (αk = ‖Ak‖).
By setting αk = 0 we can force ∆Ak = 0 and thus keep Ak unperturbed. The norm,
here and throughout, is any subordinate matrix norm. Occasionally, we will specialize
to the norm ‖ · ‖p subordinate to the Hölder vector p-norm.

When P (λ) = A − λI, ∆P (λ) = ∆A and α1 = 1, definition (2.3) reduces to the
standard definition of ε-pseudospectrum of a single matrix:

Λε(A) =
{
λ ∈ C : λ ∈ Λ(A + ∆A) for some ∆A with ‖∆A‖ ≤ ε

}
.(2.4)

It is well known [43] that (2.4) is equivalent to

Λε(A) =
{
λ ∈ C : ‖(λI −A)−1‖ ≥ ε−1

}
.

In the following lemma, we provide a generalization of this equivalence for the ε-
pseudospectrum of P .

Lemma 2.1.

Λε(P ) =
{
λ ∈ C : ‖P (λ)−1‖ ≥ (ε p(|λ|))−1

}
,

where p(x) =
∑m

k=0 αkx
k.
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Proof. Let S denote the set on the right-hand side of the claimed equality. We
first show that λ ∈ Λε(P ) implies λ ∈ S. If λ is an eigenvalue of P this is immediate,
so we can assume that λ is not an eigenvalue of P and hence that P (λ) is nonsingular.
Since

P (λ) + ∆P (λ) = P (λ)
(
I + P (λ)−1∆P (λ)

)
is singular, we have

1 ≤ ‖P (λ)−1∆P (λ)‖ ≤ ‖P (λ)−1‖
(

m∑
k=0

|λ|kαkε

)
= ‖P (λ)−1‖ ε p(|λ|),

so that λ ∈ S.
Now let λ ∈ S. Again we can assume that P = P (λ) is nonsingular. Choose y

with ‖y‖ = 1 so that ‖P−1y‖ = ‖P−1‖ and let x = P−1y/‖P−1‖, so that ‖x‖ = 1.
Then there exists a matrix H with ‖H‖ = 1 such that Hx = y (see, for example, [11,
Lem. 6.3]). Let E = −H/‖P−1‖. Then

(P + E)x =
y

‖P−1‖ −
y

‖P−1‖ = 0

and

‖E‖ = 1/‖P−1‖ ≤ ε p(|λ|).
We now apportion E between the Ak by defining

∆Ak = sign(λk)αkp(|λ|)−1E,

where for complex z we define

sign(z) =

{
z/|z|, z �= 0,

0, z = 0.

Then

∆P (λ) =
m∑

k=0

λk∆Ak =

(
m∑

k=0

|λ|kαk

)
p(|λ|)−1E = E

and ‖∆Ak‖ ≤ αkε, k = 0:m. Hence λ ∈ Λε(P ).
The characterization of the ε-pseudospectrum in Lemma 2.1 will be the basis of

our algorithms for computing pseudospectra.
We note that for n = 1, Λε(P ) is the root neighborhood of the polynomial P

introduced by Mosier [28], that is, the set of all polynomials obtained by elementwise
perturbations of P of size at most ε. This set is also investigated by Toh and Trefethen
[38], who call it the ε-pseudozero set.

2.2. Connection with backward error. A natural definition of the normwise
backward error of an approximate eigenpair (x, λ) of (2.1) is

η(x, λ) := min{ ε : (P (λ) + ∆P (λ))x = 0, ‖∆Ak‖ ≤ εαk, k = 0:m },(2.5)

and the backward error for an approximate eigenvalue λ is given by

η(λ) := min
x�=0

η(x, λ).(2.6)
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By comparing the definitions (2.3) and (2.6) it is clear that the ε-pseudospectrum can
be expressed in terms of the backward error of λ as

Λε(P ) = {λ ∈ C : η(λ) ≤ ε }.(2.7)

The following lemma gives an explicit expression for η(x, λ) and η(λ). This lemma
generalizes results given in [36] for the 2-norm and earlier in [5], [10] for the generalized
eigenvalue problem.

Lemma 2.2. The normwise backward error η(x, λ) is given for x �= 0 by

η(x, λ) =
‖r‖

p(|λ|)‖x‖ ,(2.8)

where r = P (λ)x and p(x) =
∑m

k=0 αkx
k. If λ is not an eigenvalue of P then

η(λ) =
1

p(|λ|)‖P (λ)−1‖ .(2.9)

Proof. It is straightforward to show that the right-hand side of (2.8) is a lower
bound for η(x, λ). That the lower bound is attained is proved using a construction
for ∆Ak similar to that in the proof of Lemma 2.1. The expression (2.9) follows on
using the equality, for nonsingular C ∈ C

n×n, minx�=0 ‖Cx‖/‖x‖ = ‖C−1‖−1.
We observe that the expressions (2.7) and (2.9) lead to another proof of Lemma 2.1.

2.3. Structured perturbations. We now suppose that P (λ) is subject to
structured perturbations that can be expressed as

[∆A0, . . . , ∆Am ] = DΘ [E0, . . . , Em ] ,(2.10)

with D ∈ C
n×s, Θ ∈ C

s×t, and E = [E0, . . . , Em ] ∈ C
t×n(m+1). The matrices D

and E are fixed and assumed to be of full rank, and they define the structure of the
perturbations; Θ is an arbitrary matrix whose elements are the free parameters. Note
that ∆A0, . . . , ∆Am in (2.10) are linear functions of the parameters in Θ, but that
not all linear functions can be represented in this form. We choose this particular
structure for the perturbations because it is one commonly used in control theory
[17], [18], [30] and it leads to more tractable formulae than a fully general approach.
Note, for instance, that the system

ẋ(t) = (A + DΘE)x(t), t > 0

(which leads to a polynomial eigenvalue problem with m = 1), may be interpreted as
a closed loop system with unknown static linear output feedback Θ; see Figure 2.1.

Note that unstructured perturbations are represented by the special case of (2.10)
with

s = n, t = n(m + 1), D = In, Θ = [∆A0, . . . , ∆Am ] , E = In(m+1).(2.11)

For notational convenience, we introduce

E(λ) = E [ In, λIn, . . . , λmIn ]
T

= λmEm + λm−1Em−1 + · · ·+ E0.

Corresponding to (2.10) we have the following definition of structured backward error
for an approximate eigenpair (x, λ):

η(x, λ;D,E) := min
Θ∈Cs×t

{ ‖Θ‖ : (P (λ) + ∆P (λ))x = 0, ∆P (λ) = DΘE(λ)
}
,
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Θ

ẋ = Ax + Dv, y = Ex

v y

Fig. 2.1. Closed loop system with unknown static linear output feedback Θ.

and the backward error for an approximate eigenvalue is

η(λ;D,E) := min
x�=0

η(x, λ;D,E).

In the next result we use a superscript “+” to denote the pseudo-inverse [9].
Lemma 2.3. The structured backward error η(x, λ;D,E) in the Frobenius norm

is given by

ηF (x, λ;D,E) = ‖D+P (λ)x [E(λ)x]+‖F(2.12)

if the system

DΘE(λ)x = −P (λ)x(2.13)

is consistent; otherwise ηF (x, λ;D,E) is infinite.
Proof. It is immediate that ηF (x, λ;D,E) is the Frobenius norm of the minimum

Frobenius norm solution to (2.13). The result follows from the fact that X = A+CB+

is the solution of minimum Frobenius norm to the consistent system AXB = C [31,
sect. 3.4.8].

To gain some insight into the expression (2.12) we consider the case of unstruc-
tured but weighted perturbations, as in (2.11) but with

E = diag(α0In, . . . , αmIn) =: Iαn(m+1), E(λ) = [α0In, . . . , αmλmIn ]
T
.

The system (2.13) is now trivially consistent and (2.12) gives

ηF (x, λ; In, I
α
n(m+1)) =

∥∥∥∥∥∥∥P (λ)x


 α0x

...
αmλmx




+
∥∥∥∥∥∥∥
F

=
‖P (λ)x‖2

(
∑m

i=0 α
2
i |λ|2i)1/2 ‖x‖2

,(2.14)

using the fact that ‖ab∗‖F = ‖a‖2‖b‖2 for a, b ∈ C
n. The expression (2.14) differs

from that for η(x, λ) in (2.8) for the 2-norm only by having the 2-norm of the vector
[α0 . . . αmλm] rather than the 1-norm in the denominator.

Lemma 2.4. If λ is not an eigenvalue of P (λ) then the structured backward error
η(λ;D,E) is given by

η(λ;D,E) = ‖E(λ)P (λ)−1D‖−1.(2.15)
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Proof. We have

η(λ;D,E) = min
x�=0

η(x, λ;D,E)

= min
x�=0

min
Θ∈Cs×t

{ ‖Θ‖ : (P (λ) + ∆P (λ))x = 0, ∆P (λ) = DΘE(λ)
}

= min
Θ∈Cs×t

{ ‖Θ‖ : det(P (λ) + ∆P (λ)) = 0, ∆P (λ) = DΘE(λ)
}
.

The companion form of P (λ) + ∆P (λ) is given by

F − λG + ∆F − λ∆G,

where

F =




0 I 0 · · · 0

0 0 I
. . .

...
...

. . . 0
I

−A0 −A1 −A2 · · · −Am−1


 , G =




I
I

. . .

I
Am


 ,(2.16)

and

∆F =

[
0

−∆A0 · · · −∆Am−1

]
, ∆G =

[
0

∆Am

]
.

As ∆Ai = DΘEi, we have

∆F − λ∆G = D̃Θ [E0, . . . , Em−1 + λEm ] with D̃ = −




0
...
0
D


 .

Then, using the identity det(I + AB) = det(I + BA), valid whenever both AB and
BA are defined [47, p. 54],

det(P (λ) + ∆P (λ)) = 0⇔ det(F − λG + ∆F − λ∆G) = 0

⇔ det(I + (F − λG)−1(∆F − λ∆G)) = 0

⇔ det(I + (F − λG)−1D̃Θ [E0, . . . , Em−1 + λEm ]) = 0

⇔ det(I + Θ [E0, . . . , Em−1 + λEm ] (F − λG)−1D̃) = 0.

Let M = [E0, . . . , Em−1 + λEm ] (F − λG)−1D̃ ∈ C
t×s. Then, using [45, Lem. 1],

we have

η(λ;D,E) = min
Θ∈Cs×t

{ ‖Θ‖ : det(I + ΘM) = 0
}

= ‖M‖−1.

But it is easily verified that

(F − λG)




P (λ)−1D
...

λm−1P (λ)−1D


 = D̃,
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so that M = E(λ)P (λ)−1D.
We define the structured ε-pseudospectrum by

Λε(P ;D,E) = {λ ∈ C : (P (λ) + DΘE(λ))x = 0 for some x �= 0, ‖Θ‖ ≤ ε }.
Analogously to the unstructured case, Λε(P ;D,E) = {λ ∈ C : η(λ;D,E) ≤ ε }, and
so from Lemma 2.4 we have

Λε(P ;D,E) = {λ ∈ C : ‖E(λ)P (λ)−1D‖ ≥ ε−1 },(2.17)

which is a generalization of a result of Hinrichsen and Kelb [17, Lem. 2.2] for the
ε-pseudospectrum of a single matrix.

2.4. Connection between backward error and stability radius. In many
mathematical models (e.g., those of a dynamical system) it is required for stability
that a matrix has all its eigenvalues in a given open subset Cg �= ∅ of the complex
plane. Various stability radii have been defined that measure the ability of a matrix
to preserve its stability under perturbations.

We partition the complex plane C into two disjoint subsets Cg and Cb, with

C = Cg ∪ Cb, Cg �= ∅ an open set.(2.18)

Consider perturbations of the form in (2.10). Following Pappas and Hinrichsen [30]
and Genin and Van Dooren [7], we define the complex structured stability radius of
the λ-matrix P with respect to the perturbation structure (D,E) and the partition
(2.18) by

rC(P ;D,E) = inf
Θ∈Cs×t

{ ‖Θ‖ : Λ(P (λ) + ∆P (λ)) ∩ Cb �= ∅, ∆P (λ) = DΘE(λ)
}
.

Let ∂Cb be the boundary of Cb. By continuity, we have

rC(P ;D,E) = inf
Θ∈Cs×t

{ ‖Θ‖ : Λ(P (λ) + DΘE(λ)) ∩ ∂Cb �= ∅ }
= inf

λ∈∂Cb

inf
Θ∈Cs×t

{ ‖Θ‖ : det(P (λ) + DΘE(λ)) = 0 }
= inf

λ∈∂Cb

inf
x�=0

inf
Θ∈Cs×t

{ ‖Θ‖ : (P (λ) + DΘE(λ))x = 0 }
= inf

λ∈∂Cb

η(λ;D,E).

Thus we have expressed the stability radius as an infimum of the eigenvalue backward
error. Using Lemma 2.4 we obtain the following result.

Lemma 2.5. If λ is not an eigenvalue of P then

rC(P ;D,E) = inf
λ∈∂Cb

‖E(λ)P (λ)−1D‖−1

and for unstructured perturbations and the p-norm we have

rC(P ; In, I(m+1)n) = inf
λ∈∂Cb

(
‖[1 λ . . . λm]‖p‖P (λ)−1‖p

)−1

.

The result for the unstructured case in the second part of this lemma is also
obtained by Pappas and Hinrichsen [30, Cor. 2.4] and Genin and Van Dooren [7,
Thm. 2].
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3. Computation of pseudospectra. In this section, we consider the computa-
tion of Λε(P ), concentrating mainly on the 2-norm. We develop methods for unstruc-
tured perturbations and show how they can be extended to structured perturbations
of the form in (2.10).

Lemma 2.1 shows that the boundary of Λε(P ) comprises points z for which the
scaled resolvent norm p(|z|)‖P (z)−1‖ equals ε−1. Hence, as for pseudospectra of a
single matrix, we can obtain a graphical representation of the pseudospectra of a
polynomial eigenvalue problem by evaluating the scaled resolvent norm on a grid of
points z in the complex plane and sending the results to a contour plotter. We refer
to Trefethen [42] for a survey of the state of the art in computation of pseudospectra
of a single matrix.

The region of interest in the complex plane will usually be determined by the
underlying application or by prior knowledge of the spectrum of P . In the absence
of such information we can select a region guaranteed to enclose the spectrum. If
Am is nonsingular (so that all eigenvalues are finite) then by applying the result
“maxj |λj(A)| ≤ ‖A‖” to the companion form (2.16) we deduce that

max
j
|λj(P )| ≤ 1 +

m−1∑
j=0

‖A−1
m Aj‖p

for any p-norm. Alternatively, we could bound maxj |λj(P )| by the largest absolute
value of a point in the numerical range of P [24], but computation of this number
is itself a nontrivial problem. For much more on bounding the eigenvalues of matrix
polynomials see [15].

For the 2-norm, ‖P (z)−1‖2 = (σmin(P (z)))−1, where σmin denotes the smallest
singular value. If the grid is ν × ν and σmin is computed using the Golub–Reinsch
SVD algorithm then the whole computation requires roughly

ν2(8n3/3 + n2m) flops,(3.1)

which is prohibitively expensive for matrices of large dimension and a fine grid. Using
the fact that σmin(P (z)) is the square root of λmin(P (z)∗P (z)), we can approximate
‖P (z)−1‖2 with the power iteration or Lanczos iteration applied to P (z)−1P (z)−∗.
In the case of a single matrix, Lui [25] introduced the idea of using the Schur form of
A in order to speed up the computation of λmin((A− zI)∗(A− zI)). Unfortunately,
for matrix polynomials of degree m ≥ 2 no analogue of the Schur form exists (that
is, at most two general matrices can be simultaneously reduced to triangular form).
We therefore look for other ways to efficiently evaluate or approximate ‖P (z)−1‖ for
many different z.

3.1. Transfer function approach. The idea of writing pseudospectra in terms
of transfer functions is not new. Simoncini and Gallopoulos [34] used a transfer func-
tion framework to rewrite most of the techniques used to approximate ε-pseudospectra
of large matrices, yielding interesting comparisons as well as better understanding of
the techniques. Hinrichsen and Kelb [17] investigated structured pseudospectra of a
single matrix with perturbations of the form in (2.10), and they expressed the struc-
tured ε-pseudospectrum in terms of a transfer function.

Consider the equation

P (z)v = (zmAm + zm−1Am−1 + · · ·+ A0)v = u.
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It can be rewritten as

(F − zG)




v
w2
...

wm


 =




0
...
0
−u


 ,

where F and G are defined in (2.16). Hence

P (z)−1u = v = [ I 0 . . . 0 ] (F−zG)−1




0
...
0
−u


 = [ I 0 . . . 0 ] (F−zG)−1




0
...
0
−I


u.

Since this equation holds for all u, it follows that

P (z)−1 = [ I 0 · · · 0 ] (F − zG)−1




0
...
0
−I


 .(3.2)

This equality can also be deduced from the theory of λ-matrices [21, Thm. 14.2.1].
We have thus expressed the resolvent in terms of a transfer function.

In control theory, P (z)−1 corresponds to the transfer function of the linear time-
invariant multivariate system described by

Gẋ(t) = Fx(t) +




0
...
0
I


u(t),

y(t) = [ I 0 · · · 0 ]x(t).

Several algorithms have been proposed in the literature [22], [27] to compute transfer
functions at a large number of frequencies, most of them assuming that G = I. Our
objective is to efficiently compute the norm of the transfer function, rather than to
compute the transfer function itself.

For structured perturbations we see from (2.17) that the transfer function P (z)−1

is replaced by

E(z)P (z)−1D = [E(z) 0 · · · 0 ] (F − zG)−1




0
...
0
−D


 .

All the methods described below for the dense case are directly applicable with obvious
changes.

We would like a factorization of F − zG that enables efficient evaluation or appli-
cation of (F − zG)−1 for many different z. There are various possibilities, including,
when G is nonsingular,

F − zG = G(G−1F − zI) = G(W ∗TW − zI) = GW ∗(T − zI)W,
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where G−1F = W ∗TW is a Schur decomposition, with W unitary and T upper tri-
angular. However this approach is numerically unstable when G is ill conditioned. A
numerically stable reduction is obtained by computing the generalized Schur decom-
position

W ∗FZ = T, W ∗GZ = S,(3.3)

where W and Z are unitary and T and S are upper triangular. Then

P (z)−1 = [ I 0 · · · 0 ]Z (T − zS)−1 W ∗




0
...
0
−I


 .(3.4)

Hence once the generalized Schur decomposition has been computed, we can compute
P (z)−1x and P (z)−∗x at a cost of O((mn)2) flops, since T − zS is triangular of
dimension mn. For the 2-norm we can therefore efficiently approximate ‖P (z)−1‖
using inverse iteration or the inverse Lanczos iteration, that is, the power method or
the Lanczos method applied to P (z)−1P (z)−∗.

The cost of the computation breaks into two parts: the cost of the initial trans-
formations and the cost of the computations at each of the ν2 grid points. Assuming
that (3.3) is computed using the QZ algorithm [9, Sec. 7.7] and the average number
of power method or Lanczos iterations per grid point is k, the total cost is about

66(mn)3 + kν2(8mn2 + 3(mn)2) flops.

For the important special case m = 2 (the quadratic eigenvalue problem), this cost is

528n3 + 28kν2n2 flops.(3.5)

Comparing with (3.1) we see that this method is a significant improvement over the
SVD-based approach for a sufficiently fine grid and a small degree m.

For the 2-norm note that, because of the two outer factors in (3.4), we cannot
discard the unitary matrices Z and W , unlike in the analogous expression for the
resolvent of a single matrix in the standard eigenproblem. For the 1- and ∞-norms
we can efficiently estimate ‖P (z)−1‖ using the algorithm of Higham and Tisseur [14],
which requires only the ability to multiply matrices by P (z)−1 and P (z)−∗.

An alternative to the generalized Schur decomposition is the generalized
Hessenberg-triangular form, which differs from (3.3) in that one of T and S is upper
Hessenberg. The Hessenberg form is cheaper to compute but more expensive to work
with. It leads to a smaller overall flop count when kν2 >∼ 25mn.

3.2. Factorizing the quadratic polynomial. The transfer function-based method
of the previous section has the drawback that it factorizes matrices of dimension m
times those of the original polynomial matrix. We now describe another method,
particular to the quadratic case, that does not increase the size of the problem.

Suppose we can find a matrix S such that A2S
2 +A1S+A0 = 0, that is, a solvent

of the quadratic matrix equation A2X
2 + A1X + A0 = 0. Then

Q(z) := z2A2 + zA1 + A0 = −(A1 + A2S + zA2)(S − zI).(3.6)

If we compute the Schur decomposition

S = QTQ∗
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and the generalized Schur decomposition

W ∗(A1 + A2S)Z = R1, W ∗A2Z = R2

then

Q(z)−1 = −Q(T − zI)−1Q∗Z (R1 + zR2)−1 W ∗,(3.7)

so a vector can be premultiplied by Q(z)−1 or its conjugate transpose in O(n2) flops
for any z. Moreover, for the 2-norm we can drop the outer Q and W ∗ factors in (3.7),
by unitary invariance, and hence we do not need to form W . For the 2-norm, the
total cost of this method is

cS + 77n3 + 10kν2n2 flops,(3.8)

where cS is the cost of computing a solvent and we have assumed that we precompute
Q∗Z. Comparing this flop count with (3.5) we see that the cost per grid point of the
solvent approach is much lower.

The success of this method depends on two things: the existence of solvents
and being able to compute one at a reasonable cost. Some sufficient conditions for
the existence of a solvent are summarized in [13]. In particular, for an overdamped
problem, one for which A2 and A1 are Hermitian positive definite, A0 is Hermitian
positive semidefinite, and (x∗A1x)2 > 4(x∗A2x)(x∗A0x) for all x �= 0, a solvent is
guaranteed to exist.

Various methods are available for computing solvents [12], [13]. One of the most
generally useful is Newton’s method, optionally with exact line searches, which re-
quires a generalized Sylvester equation in n×n matrices to be solved on each iteration,
at a total cost of about 56n3 flops per iteration. If Newton’s method converges within
8 iterations or so, so that cS ≤ 448n3 flops, this approach is certainly competitive in
cost with the transfer function approach.

When there is a gap between the n largest and n smallest eigenvalues ordered by
modulus, as is the case for overdamped problems [20, Sec. 7.6], Bernoulli iteration is an
efficient way of computing the dominant or minimal solvent S [13]. If t iterations are
needed for convergence to the dominant or minimal solvent then the cost of Bernoulli
iteration is about cS = 4tn3 flops. Bernoulli iteration converges only linearly, but
convergence is fast if the eigenvalue gap is large.

A third approach to computing a solvent is to use a Schur method from [13],
based on the following theorem. Let F and G be defined as in (2.16), so that

F =

[
0 I
−A0 −A1

]
, G =

[
I 0
0 A2

]
.

Theorem 3.1 (Higham and Kim [13]). All solvents of Q(X) are of the form
X = Z21Z

−1
11 = Q11T11S

−1
11 Q−1

11 , where

Q∗FZ = T, Q∗GZ = S(3.9)

is a generalized Schur decomposition with Q and Z unitary and T and S upper tri-
angular, and where all matrices are partitioned as block 2 × 2 matrices with n × n
blocks.

The method consists of computing the generalized Schur decomposition (3.9) by
the QZ algorithm and then forming S = Z21Z

−1
11 . The generalized Schur decomposi-

tion may need to be reordered in order to obtain a nonsingular Z11. Note that the
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unitary factor Q does not need to be formed. For this method, cS = 50(2n)3 + rn2,
where the constant r depends on the amount of reordering required. From (3.8), the
total cost is now

479n3 + rn2 + 10kν2n2 flops,

which is much more favorable than the cost (3.5) of the transfer function method.

For higher degree polynomials we can generalize this approach by attempting to
factorize P into linear factors by recursively computing solvents. However, for degrees
m greater than 2 classes of problem for which a factorization into linear factors exists
are less easily identified and the cost of Newton’s method (for example) is much higher
than for m = 2 [19].

3.3. Large-scale computation. All the methods described above are intended
for small- to medium-scale problems for which Schur and other reductions are pos-
sible. For large, possibly sparse, problems, different techniques are necessary. These
techniques can be classified into two categories: those that project to reduce the size
of the problem and then compute the pseudospectra of the reduced problem, and
those that approximate the norm of the resolvent directly.

3.3.1. Projection approach. For a single matrix, A, Toh and Trefethen [39]
and Wright and Trefethen [48] approximate the resolvent norm by the Arnoldi method;

that is, they approximate ‖(A − zI)−1‖2 by ‖(Hm − zI)−1‖2 or by σmin(H̃m − zĨ),
where Hm is the square Hessenberg matrix of dimension m � n obtained from the
Arnoldi process and H̃m is the matrix Hm augmented by an extra row. Simoncini
and Gallopoulos [34] show that a better but more costly approximation is obtained by
approximating ‖(A− zI)−1‖2 with ‖V ∗

m(A− zI)−1Vm+1‖2, where Vm is the orthonor-
mal basis generated during the Arnoldi process. These techniques are not applicable
to the polynomial eigenvalue problem of degree larger than one because of the lack of
a Schur form for the Arnoldi method to approximate.

A way of approximating ‖P (z)−1‖ for all z is through a projection of P (z)−1 onto
a lower dimensional subspace. Let Vk be an n× k matrix with orthonormal columns.
We can apply one of the techniques described in the previous sections to compute
pseudospectra of the projected polynomial eigenvalue problem P̃ (λ) = V ∗

k P (λ)Vk.
A possible choice for Vk is an orthonormal basis of k selected linearly independent
eigenvectors of P (λ). In this case, P̃ (λ) is the matrix representation of the projection
of P (λ) onto the subspace spanned by the selected eigenvectors. The eigenvectors can
be chosen to correspond to parts of the spectrum of interest and can be computed
using the Arnoldi process on the companion form pencil (F,G) or directly on P (λ)
with the Jacobi–Davidson method or its variants [26], [35]. In the latter case, the
matrix Vk is built during the Davidson process.

3.3.2. Direct approach. This approach consists of approximating ‖P (z)−1‖
at each grid point z. Techniques analogous to those used for single matrices can be
applied, such as the Lanczos method applied to P (z)∗P (z) or its inverse. We refer
the reader to [42] for more details and further references.

4. Applications and numerical experiments. We give a selection of appli-
cations of pseudospectra for polynomial eigenvalue problems, using them to illustrate
the performance of our methods for computing pseudospectra. All our examples are
for 2-norm pseudospectra.
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4.1. The wing problem. The first example is based on a quadratic polynomial
Q(λ) = λ2A2 + λA1 + A0 from [6, Sec. 10.11], with numerical values modified as in
[20, Sec. 5.3]. The eigenproblem for Q(λ) arose from the analysis of the oscillations
of a wing in an airstream. The matrices are

A2 =


 17.6 1.28 2.89

1.28 0.824 0.413
2.89 0.413 0.725


 , A1 =


 7.66 2.45 2.1

0.23 1.04 0.223
0.6 0.756 0.658


 ,

A0 =


 121 18.9 15.9

0 2.7 0.145
11.9 3.64 15.5


 .

The left plot in Figure 4.1 shows the boundaries of ε-pseudospectra with perturbations
measured in the absolute sense (αi ≡ 1), with ε between 10−3 and 10−0.8. The
eigenvalues are plotted as dots. Another way of approximating a pseudospectrum
is by random perturbations of the original matrices [41]. We generated 200 triples
of complex random normal perturbation matrices (∆A1, ∆A2, ∆A3) with ‖∆Aj‖2 =
10−0.8, j = 1: 3. In the right plot of Figure 4.1 are superimposed as small dots the
eigenvalues of the perturbed polynomials λ2(A2 +∆A2)+λ(A1 +∆A1)+∆A0 +∆A0.
The solid curve marks the boundary of the ε-pseudospectrum for ε = 10−0.8. Both
pictures show that the pair of complex eigenvalues λ = −0.88 ± 8.4i are much more
sensitive to perturbations than the other two complex pairs.

The eigenvalues of Q(λ) are the same as those of the linearized problem A− λI,
where

A =

[
0 I

−A−1
2 A0 −A−1

2 A1

]
.(4.1)

Figure 4.2 shows boundaries of ε-pseudospectra for this matrix, for the same ε as in
Figure 4.1. Clearly, the ε-pseudospectra of the linearized problem (4.1) do not give
useful information about the behavior of the eigensystem of Q(λ) under perturbations.
This emphasizes the importance of defining and computing pseudospectra for the
quadratic eigenvalue problem in its original form.

4.2. Mass-spring system. We now consider the connected damped mass-spring
system illustrated in Figure 4.3. The ith mass of weight mi is connected to the (i+1)st
mass by a spring and a damper with constants ki and di, respectively. The ith mass
is also connected to the ground by a spring and a damper with constants κi and τi,
respectively. The vibration of this system is governed by a second-order differential
equation

M
d2

dt2
x + C

d

dt
x + Kx = 0,

where the mass matrix M = diag(m1, . . . ,mn) is diagonal, and the damping matrix
C and stiffness matrix K are symmetric tridiagonal. The differential equation leads
to the quadratic eigenvalue problem

(λ2M + λC + K)x = 0.(4.2)

In our experiments, we took all the springs (respectively, dampers) to have the same
constant κ = 5 (respectively, τ = 10), except the first and last, for which the constant
is 2κ (respectively, 2τ), and we took mi ≡ 1. Then

C = τ tridiag(−1, 3,−1), K = κ tridiag(−1, 3,−1),
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Fig. 4.1. Wing problem. Left: Λε(Q), for ε ∈ [10−3, 10−0.8]. Right: approximation to ε-
pseudospectrum with ε = 10−0.8.
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Fig. 4.2. Wing problem. Λε(A), for A in (4.1) with ε ∈ [10−3, 10−0.8].

and the quadratic eigenvalue problem is overdamped. We take an n = 250 degree
of freedom mass-spring system over a 100× 100 grid. A plot of the pseudospectra is
given in Figure 4.4.

For this problem we compare all the methods described. In the solvent approach
exact line searches were used in Newton’s method and no reordering was used in the
generalized Schur method. The solvents from the Bernoulli and Schur methods were
refined by one step of Newton’s method. The Bernoulli iteration converged in 12
iterations while only 6 iterations were necessary for Newton’s method. The Lanczos
inverse iteration converged after 3 iterations on average. In Table 4.1 we give the esti-
mated flop counts, using the formulae from section 3, together with execution times.
The computations were performed in MATLAB 6, which is an excellent environment
for investigating pseudospectra. While the precise times are not important, the con-
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Fig. 4.3. An n degree of freedom damped mass-spring system.
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Fig. 4.4. Pseudospectra of a 250 degree of freedom damped mass-spring system on a 100× 100
grid.

clusion is clear: in this example, the three solvent-based methods are much faster
than the SVD and transfer function methods. (The high speed of the SVD method
relative to its flop count is attributable to MATLAB’s very efficient svd function.)

4.3. Acoustic problem. Acoustic problems with damping can give rise to large
quadratic eigenvalue problems (4.2), where, again, M is the mass matrix, C is the
damping matrix, and K the stiffness matrix. We give in Figure 4.5 the sparsity
pattern of the three matrices M , C, and K of order 107 arising from a model of a
speaker box [1]. These matrices are symmetric and the sparsity patterns of M and
K are identical. There is a large variation in the norms: ‖M‖2 = 1, ‖C‖2 = 0.06,
‖K‖2 = 9.9× 106.

We plot in Figure 4.6 pseudospectra with perturbations measured in both an
absolute sense (α1 = α2 = α3 = 1) and a relative sense (α1 = ‖M‖2, α2 = ‖C‖2,
α3 = ‖K‖2), together with pseudospectra of the corresponding standard eigenvalue
problem of the form (4.1). The eigenvalues are all pure imaginary and are marked by
dots on the plot. The two first plots are similar, both showing that the most sensitive
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Table 4.1
Comparison in terms of flops and execution time of different techniques.

Method Estimated cost in flops Execution time
Golub–Reinsch SVD 26747n3 102 min
Transfer function 3408n3 106 min
Solvent: Newton 1589n3 39 min
Solvent: Bernoulli 1325n3 36 min
Solvent: Schur 1677n3 37 min
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Fig. 4.5. Sparsity patterns of the three 107× 107 matrices M,C, and K of an acoustic problem.

eigenvalues are located at the extremities of the spectrum; the contour lines differ
mainly around the zero eigenvalue. The last plot is very different; clearly it is the
eigenvalues close to zero that are the most sensitive to perturbations of the standard
eigenproblem form.

We mention that for this problem we have been unable to compute a solvent.

4.4. Closed loop system. In multi-input and multioutput systems in control
theory the location of the eigenvalues of matrix polynomials determine the stability
of the system. Figure 4.7 shows a closed-loop system with feedback with gains 1 and
1 + α, α > 0. The associated matrix polynomial is given by

P (z) = z2I + z

[
0 1 + α
1 0

]
+

[
1/2 0
0 1/4

]
.

We are interested in the values of α for which P (z) has all its eigenvalues inside the
unit circle. By direct calculation with det(P (z)), using the Routh array, for example,
it can be shown that P (z) has all its eigenvalues inside the unit circle if and only if
α < 0.875.

The matrix P (z) can be viewed as a perturbed matrix polynomial with structured
perturbations:

P (z) = P (z) |α=0 +DΘE(z),
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Fig. 4.6. Acoustic problem, n = 107, 70×70 grid. Perturbations measured in an absolute sense
(top left) and relative sense (top right). Pseudospectra of the equivalent standard eigenvalue problem
are shown at the bottom.

where

D =

[
1
0

]
, Θ = α, E(z) = [ 0 0 0 1 0 0 ]


 I
zI
z2I


 .

We show in Figure 4.8 the structured pseudospectra as defined by (2.17). The dashed
lines mark the unit circle. Since the outermost contour has value α = 0.875 and just
touches the unit circle, this picture confirms the value for the maximal α that we
obtained analytically.

4.5. The Orr–Sommerfeld equation. The Orr–Sommerfeld equation is a lin-
earization of the incompressible Navier–Stokes equations in which the perturbations
in velocity and pressure are assumed to take the form

Φ(x, y, t) = φ(y)ei(λx−ωt),
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Fig. 4.7. Closed-loop system with feedback gains 1 and 1 + α.
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Fig. 4.8. Structured pseudospectra of a closed-loop system with one-parameter feedback.

where λ is a wavenumber and ω is a radian frequency. For a given Reynolds number
R, the Orr–Sommerfeld equation may be written[(

d2

dy2
− λ2

)2

− iR

{
(λU − ω)

(
d2

dy2
− λ2

)
− λU ′′

}]
φ = 0.(4.3)

We consider plane Poiseuille flow between walls at y = ±1 and with velocity U(y) =
1− y2 in the streamwise x direction, for which the boundary conditions are

φ(±1) = 0, φ′(±1) = 0.

For a given real value of R, the boundary conditions will be satisfied only for certain
combinations of values of λ and ω. Two cases are of interest.

Case 1. Temporal stability. If λ is fixed and real, then (4.3) is linear in the
parameter ω and corresponds to a generalized eigenvalue problem. The perturbations
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are periodic in x and grow or decay in time depending on the sign of the imaginary
part of ω. This case has been studied with the help of pseudospectra by Reddy,
Schmid, and Henningson [32].

Case 2. Spatial stability. For most real flows, the perturbations are periodic in
time, which means that ω is real. Then the sign of the imaginary part of λ determines
whether the perturbations will grow or decay in space. In this case, the parameter
is λ, which appears to the fourth power in (4.3), so we obtain a quartic polynomial
eigenvalue problem. Bridges and Morris [2] calculated the spectrum of (4.3) using a
finite Chebyshev series expansion of φ combined with the Lanczos tau method and
they computed the spectrum of the quartic polynomial by two methods: the QR
algorithm applied to the corresponding standard eigenvalue problem in companion
form, and Bernoulli iteration applied to determine a minimal solvent and hence to
obtain the n eigenvalues of minimal modulus.

For our estimation of the pseudospectra of the Orr–Sommerfeld equation we use
a Chebyshev spectral discretization that combines an expansion in Chebyshev poly-
nomials and collocation at the Chebyshev points with explicit enforcement of the
boundary conditions. We are interested in the eigenvalues λ that are the closest to
the real axis, and we need Im(λ) > 0 for stability. The linear eigenvalue problem
(Case 1) has been solved by Orszag [29]. The critical neutral point corresponding
to λ and ω both real for minimum R was found at R = 5772 and λ = 1.02056 with
the frequency ω = 0.26943 [2], [29]. For our calculations we set R and ω to these
values and we computed the modes λ, taking N = 64, which gives matrices of order
N − 1. The first few modes are plotted in Figure 4.9. For the first mode we obtained
λ = 1.02056 + 9.7× 10−7i, which compares favorably with the result of Orszag. Fig-
ure 4.10 shows the pseudospectra in a region around the first few modes on a 100×100
grid, with αi = ‖Ai‖2 except that α4 = 0, since A4 is the identity matrix and is not
subject to uncertainty. The plot shows that the first mode is very sensitive. Interest-
ingly, the second and subsequent modes are almost as sensitive, with perturbations of
order 10−9 in the matrix coefficients being sufficient to move all these modes across
the real axis, making the flow unstable. The pseudospectra thus give a guide to the
accuracy with which computations must be carried out for the numerical approxima-
tions to the modes to correctly determine the location of the modes. For more on the
interpretation of pseudospectra for this problem, see [32] and [44].

Again, for comparison we computed the pseudospectra of the corresponding stan-
dard eigenvalue problem. The picture was qualitatively similar, but the contour levels
were several orders of magnitude smaller, thus not revealing the true sensitivity of the
problem.
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Fig. 4.9. The first few modes of the spectrum of the Orr–Sommerfeld equation for R = 5572
and ω = 0.26943.
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Abstract. We present a new accurate algorithm (REFUND) for computing the fundamental
matrix (or closely related group inverse matrix) of a finite regular Markov chain. This algorithm is
developed within the framework of the state reduction approach exemplified by the GTH (Grass-
mann, Taksar, Heyman)/S (Sheskin) algorithm for recursively finding invariant measure. The first
(reduction) stage of the GTH/S algorithm is shared by REFUND, as well as by an earlier algorithm
FUND developed for the fundamental matrix by Heyman in 1995, and by a modified version of
Heyman and O’Leary in 1998. Unlike FUND, REFUND is recursive, being based on an explicit
formula relating the group inverse matrix of an initial Markov chain and the group inverse matrix
of a Markov chain with one state removed. Operation counts are approximately the same: Θ( 7

3
n3)

for REFUND versus Θ( 8
3
n3) for FUND. Numerical tests indicate that REFUND is accurate. The

structure of REFUND makes it easily combined with the other algorithms based on the state reduc-
tion approach. We also discuss the general properties of this approach, as well as connections to the
optimal stopping problem and to tree decompositions of graphs related to Markov chains.

Key words. Markov chain, fundamental/group inverse matrix, recursive algorithm, GTH/S
algorithm
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PII. S0895479899351234

1. Introduction. Let P = [p(i, j)], i, j = 1, 2, . . . , n, be a stochastic (transition)
matrix. The calculation of various characteristics of a Markov chain specified by P
is an important part of applied probability theory and computational algebra. These
characteristics include the distribution of a Markov chain at the moment of the first
visit to a subset of its state space, the mean time spent at given states until such visit,
the invariant distribution, the fundamental matrices for both transient and regular
Markov chains, the covariance matrix, and many others. Mainly we will discuss two
of the most important ones, the invariant distribution and the fundamental matrix
for a regular Markov chain.

The invariant (steady state) distribution π is the solution of the system of linear
equations

πT = πTP,(1.1)

where T denotes transposition and all vectors are assumed to be column vectors. In
the regular (ergodic) case, i.e., when there is a k for which all elements of P k are
strictly positive, π is the limiting distribution for any initial point. The matrix

A = lim
n
Pn = eπT(1.2)

has all rows equal to the vector πT ; and e is a vector all of whose entries are ones.
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The fundamental matrix Z, for the regular case, is given (see [10]) by

Z = (I − (P −A))−1 = I +

∞∑
n=1

(P −A)n = I +

∞∑
n=1

(Pn −A).(1.3)

Instead of calculating Z, we will calculate the group (generalized) inverse matrix
V ,

V = Z −A =

∞∑
n=0

(Pn −A).(1.4)

This matrix has a simple relationship to Z, but it has its own important role. Its sig-
nificance was explained in a pioneering paper [15], which also discusses the relationship
between the group inverse and other generalized matrix inverses. For applications of
the group inverse to Markov decision processes, see [14] (and references therein) and
the comprehensive monograph [18] (especially Appendix A.5). The elements v(x, y)
of V have the following probabilistic interpretation (see [10]):

v(x, y) = lim
n
Ex[η

n(y)− nπ(y)],(1.5)

where ηn(y) is the number of visits to y during the first n moments; and Ex denotes
mathematical expectation, given that the Markov chain starts from the initial point
x. Thus the v(x, y) measure the expected deviation in the number of visits to state
y due to starting in state x instead of starting randomly according to the invariant
distribution π.

The classical formulas (closed form solutions) for V and π, as well as many other
related probabilistic quantities, are well known (see, e.g., [10]) and involve matrix
inversion or the solution of a system of linear equations.

There is a vast literature on methods for computing various characteristics of
Markov chains. We refer the reader to [16], [31], and the proceedings in which [29]
appears, which give a thorough description of the current situation in this field and
describe both traditional and some more recent methods to calculate characteristics
of Markov chains.

The development of a new class of algorithms was initiated in 1985 by two pio-
neering papers in which Sheskin [19], and Grassmann, Taksar, and Heyman [2] inde-
pendently proposed practically the same algorithm to calculate invariant distribution.
Later it became known as the GTH algorithm. Taking into account the short but very
precise paper of Sheskin [19], we refer to it as the GTH/S algorithm.

The algorithm constructs a sequence of stochastic matrices, each having dimension
one less than the previous, and has a simple and transparent probabilistic interpreta-
tion (see section 2). Numerous papers (see more references in section 2 and in volumes
[16] and [31]) have studied the computational properties of this algorithm, different
generalizations, and particular cases. It has been shown, among other things, that the
GTH/S algorithm has significant advantages over traditional methods to calculate π.

In 1995 on the basis of this algorithm, Heyman proposed an algorithm FUND [5]
for the sequential computation of the fundamental matrix of a regular Markov chain.
In 1998 it was improved and modified by Heyman and O’Leary in [8]. This algorithm
uses the idea, outlined by Grassmann in [3], of a triangular factorization of the matrix
(I − P ) that is produced by the first stage of the GTH/S algorithm.

The main goal of this paper is to present a new algorithm, REFUND, to calculate
the fundamental/group inverse matrix. This algorithm, like Heyman’s FUND, begins
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with the sequence of stochastic matrices constructed by the GTH/S algorithm. The
primary distinction is that we forego the triangular factorization, basing this algo-
rithm instead on an explicit formula that relates the group inverse matrices of two
stochastic matrices that are adjacent in the sequence of matrices produced by the
GTH/S algorithm. A very similar formula can be written for the fundamental ma-
trix. The repeated application of this formula recursively produces the sequence of
associated group inverse matrices.

This provides us with the opportunity to begin calculation with any submodel
for which the fundamental matrix or group inverse matrix is known, and to bring
probabilistic (in addition to numerical) techniques to bear in analyzing where accuracy
is lost; and it aids us in taking corrective steps. Like FUND, REFUND requires
O(n3) arithmetic operations to complete, where P is n×n, although REFUND, with
a leading constant of 7

3 versus 8
3 for FUND, is slightly faster. Like FUND, REFUND

can also be applied to calculate the fundamental matrix for a continuous time Markov
chain.

The GTH/S algorithm, Heyman’s FUND algorithm, REFUND, Sheskin’s algo-
rithm [22] to compute the fundamental matrix of a transient Markov chain, the algo-
rithm of optimal stopping of Markov chains proposed in [25] and some others can be
viewed as examples of the application of a more general approach, which can be called
the state reduction (SR) approach. The elements of the SR approach can be found in
the works of many authors, so we do not claim authorship. But we have found no at-
tempts, other than [26], to analyze these algorithms together in a general framework.
Since the approach itself has become important enough, the brief presentation of an
overview is another goal of our paper. We begin this in section 2. Although the read-
ing of that section is not strictly necessary to a purely formal understanding of the
REFUND algorithm, it does furnish a general framework in which all SR algorithms
can be compared. (Part of this description and related results were presented in [26].)
Section 2 also contains brief descriptions of the GTH/S and FUND algorithms. In
section 3 we present Theorem 3.1, which provides an auxiliary characterization of the
group inverse matrix, and our main result, Theorem 3.2, which provides the exact for-
mula(s) on which our algorithm is based. Section 4 specifies the REFUND algorithm,
gives operation counts, summarizes the results of numerical testing, interprets these
results, and compares REFUND to FUND. A detailed study of the computational
properties of REFUND and a comparison to FUND was presented in [29].

2. The GTH/S and FUND algorithms, the SR approach, and related
problems. In our subsequent presentation an important role is played by the trans-
formations of state spaces and transition matrices. So in what follows, instead of the
term “Markov chain,” we prefer to use the term “Markov model.” A Markov model
M is a pair (X,P ), where X is a finite or countable state space, and P is a stochastic
matrix, indexed by elements of X.

In his original paper, Sheskin [19] states that the GTH/S algorithm is motivated
by a result from Kemeny and Snell [10], while Grassmann [3] and Heyman [5] describe
GTH/S as a variant of Gaussian elimination. Though it is difficult to object to either
statement, at the same time (in our opinion) it can be said that the SR approach
is based on the following simple probabilistic idea that appeared in the pioneering
works of Kolmogorov and Döeblin more than sixty years ago. This idea, described in
Proposition 2.1 below, has been used since that time in probability theory in several
contexts on numerous occasions.
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Let us assume that a finite Markov model M1 = (X1, P1) is given and let (Zn),
n = 1, 2, . . . , be a Markov chain specified by the model M1. Let X2 ⊂ X1 and let
τ1, τ2, . . . , τn, . . . , be the sequence of Markov times of first, second, and so on visits
of (Zn) to the set X2, so that τ1 = min{k > 0 : Zk ∈ X2}, τn+1 = min{k : τn <
k,Zk ∈ X2}, 0 < τ1 < τ2 < . . . . Let uX2

1 (x, ·) be the distribution of Markov chain
(Zn) for the initial model M1 at the moment τ1 of first visit to set X2 (first exit
from X1 \ X2) starting at x, x ∈ X1 \ X2. Let us consider the random sequence
Yn = Zτn , n = 1, 2, . . . .

Proposition 2.1. (a) The random sequence (Yn) is a Markov chain in a model
M2 = (X2, P2), where (b) the transition matrix P2 = {p2(i, j)} is given by the formula

p2(i, j) = p1(i, j) +
∑

x∈X1\X2

p1(i, x)u
X2
1 (x, j), i, j ∈ X2.(2.1)

Part (a) is immediately implied by the strong Markov property for (Zn), while
the proof of part (b) is straightforward.

Formula (2.1) can be represented in matrix form. This representation is proved,
for example, in [10, pp. 114–116]. For the sake of brevity, we will call M2 the (X2-)
reduced model of M1. (Proposition 2.1 is also true for countable X, with minor
modifications.)

An important case is when the set X1 \X2 consists of one point z. In this case
formula (2.1) obviously takes the form

p2(i, j) = p1(i, j) +
p1(i, z)p1(z, j)

(1− p1(z, z))
, (i, j ∈ X2).(2.2)

According to this formula, each row-vector of the new stochastic matrix P2 is a
linear combination of two rows of P1 (with the z-column deleted). For a given row
of P2, these two rows are the corresponding row of P1 and the zth row of P1. This
transformation corresponds formally to one step of the Gaussian elimination method.

It is easy to understand that although the initial and reduced Markov models are
different, some of their characteristics will either coincide or be related in a simple
way.

The theoretical basis for the GTH/S algorithm is provided by Proposition 2.2,
which we formulate here for the case where the set X1 \X2 consists of one point z.
It shows the relation between the invariant distribution in the initial and the reduced
models.

Proposition 2.2. Let M1 = (X1, P1) be a Markov model, X1 = X2 ∪ {z}, and
let M2 = (X2, P2) be the corresponding X2-reduced Markov model with p2(i, j) defined
according to (2.2). Let set X2 and state z communicate in the model M1; i.e., there
are states i, j ∈ X2, such that p1(i, z) > 0, p1(z, j) > 0. Then

(a) if the invariant distribution π2(·) exists in model M2, the invariant distri-
bution π1(·) also exists (in M1) and can be calculated by the formulas(∑

y∈X2
=
∑

y

)
π1(j) = α1π2(j), j ∈ X2,(2.3)

π1(z) = α1

∑
i

π2(i)p1(i, z)/s1 ≡ 1− α1,(2.4)

where

α1 = 1/

(
1 +

∑
i

π2(i)p1(i, z)/s1

)
, s1 = 1− p1(z, z).(2.5)
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(b) If the invariant distribution π1(·) exists in model M1, then the invariant
distribution π2(·) also exists (in M2) and is given by formula (2.3), with
α1 = 1− π1(z).

Relations (2.3) and (2.4) have a transparent probabilistic meaning. The invariant
distribution is the long-term proportion of time spent at a state. Therefore, the
invariant distributions must be proportional on X2, i.e., equality (2.3) holds. Formula
(2.4) can be easily received from (2.3) and a balance equation for distribution π1 at
the point z. The formulations of Propositions 2.1 and 2.2, as well as a formal proof
of the latter, omitted here, were given in [26].

2.1. The GTH/S algorithm. We now describe briefly the GTH/S algorithm as
given in [2] and [19]. In contrast to those papers, we index the states to be eliminated
in the order that is customary for Gaussian elimination without pivoting, beginning
with state number one.

2.1.1. GTH/S reduction stage (generic for SR algorithms). Let an initial
Markov model (X,P ) = M ≡ M1 = (X1, P1) be given. A sequence of stochastic
matrices (Pk), k = 2, . . . , n, is calculated recursively on the basis of formula (2.2), in
which the subscripts “1” and “2” are replaced by “k” and “k+1,” respectively. Each
matrix Pk corresponds to a model Mk = (Xk, Pk), Xk = {k, k + 1, . . . , n}, and has
dimension (n − k + 1) × (n − k + 1), and Pn is an identity matrix of dimension 1.
A Markov chain in a model Mk is specified by a corresponding Markov chain in the
initial model at the moments of its visits to the reduced state space Xk. For the
subsequent recovery of π, only the first (scaled) columns of each of the matrices Pk

are used.
An important role in maintaining accuracy is played by the sequence s1, s2, . . . , sn−1,

where each sk (see (2.2) and (2.5), where the subscript “1” is again replaced by “k”)
is calculated as the sum

sk =
∑
j �=z

pk(z, j) = 1− pk(z, z)

rather than the mathematically equivalent difference. This choice avoids subtractive
cancellation without adding significantly to computational effort. The kth step (for
k = 1) of the reduction phase of the GTH/S algorithm can be represented as

P1 =

[
a pT

sq Q

]
, P2 = Q+ qpT , P 2 =

[
a pT

q P2

]
,(2.6)

where

s ≡ s1 = pTe =1− a,

and P 2 is the matrix stored after the first step of computation. Thus pT is the first
(zth) row, and q is the first column (scaled by s = s1) of the matrix P1, both without
the first element p1(z, z).

2.1.2. GTH/S second (recovery) stage. Three normalizations and tree
decomposition. Proposition 2.2 provides the possibility to compute the invariant
distribution πk for each of the models Mk on the basis of πk+1 in the model Mk+1,
beginning from the trivial invariant distribution πn = {1} of the model Mn. This
can be done in three different ways. The first way of normalizing is to use formulas



214 ISAAC SONIN AND JOHN THORNTON

(2.3) and (2.4), i.e., to receive each time vector πk. From (2.3) and (2.4), this can be
represented as follows:

π1 = α1

[
πT

2 q
π2

]
≡
[
1− α1

α1π2

]
.(2.7)

Notice that this way provides an extra opportunity to increase the accuracy of calcu-
lations because the sum of the elements of the obtained vector must equal one. This
is the formula used later by REFUND.

Because the goal of the GTH/S algorithm is to produce only the invariant distri-
bution π1 in the initial modelM1, that algorithm uses a second method of normalizing.
The first equality of (2.7) is used with αk being replaced by 1, i.e., each new vector is
calculated by appending a single element to its predecessor. Only the last vector in
the sequence is normalized to produce π1.

A third way to normalize is to use the first equality of (2.7) again with αk now
being replaced by sk. This gives valuable information about a tree decomposition of a
Markov chain as follows. In [26] the relationship between GTH/S and the interesting
formula discussed below was considered. In their 1979 book on large deviations [1],
Freidlin and Wentzell used the following interesting approach to calculate π on the
basis of a tree decomposition. Their book uses the formula π(x) = q(x)/

∑
y∈X q(y),

where q(y) is defined as follows. Let X be a finite set and P be a stochastic matrix.
Let T be a spanning tree directed to y. This means that T is a connected graph without
cycles (tree), that it contains all the vertices of X (spanning), and that a vertex y is
designated as a root. In any rooted tree with a root y there is a unique path, directed
to y, between any vertex v and y; this direction makes the tree a tree directed to y.
Let G(y) = {spanning trees on X directed to y}. Then q(y) =∑T∈G(y) r(T ), where

r(T ) =
∏

(u,v)∈T p(u, v).

Theorem 1 of [26] establishes that q(x) can be computed by normalizing the
recovery steps of the GTH/S algorithm by the replacements αk = sk, instead of
αk = 1 as in GTH/S. This opens the way to use results from Markov chain theory to
obtain some results in graph theory. Note also that in [26] the relationship between the
SR approach and graph-based computational methods in electrical engineering was
noted. In particular the formula mentioned above, which relates π to q, is well known
in electrical engineering as the star mesh transformation, though the interpretation is
quite different.

2.2. The two FUND algorithms. Based on the triangular factorization (LU =
I−P ) provided by the first stage of the GTH/S algorithm, Heyman proposed in (1995)
[5] the algorithm FUND to calculate the fundamental matrix Z (= V +A) of a regular
Markov chain. This led to a fast (O(n3) ) algorithm that performed accurately on test
problems. A paper of Heyman and O’Leary (1998) [8] gives examples for which the
factor U is badly ill-conditioned even though (I−P ) is not, and presents a new version
of FUND which avoids this instability by modifying U and by introducing pivoting.
Both versions of the algorithm are based on the equation

Z = A+ (I −A)X,(2.8)

where X is any solution to

(I − P )X = (I −A).(2.9)

The solution to the latter equation is not unique, as (I − P ) is rank-deficient by
1. In both versions, the triangular factorization produced by the GTH/S algorithm
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is used (but in somewhat different ways) to find an X which satisfies (2.9), and then
Z is found by substituting X into (2.8).

Notice also that the specific form taken by the triangular factorization depends on
the order in which states are eliminated: when states are eliminated beginning with the
largest indices (as in the usual presentation of the GTH/S algorithm), the triangular
factorization has the form (I −P ) = UL (upper followed by lower triangular factors);
however, when states are eliminated in the order 1, 2, . . . , then the factorization takes
the familiar LU form.

2.3. The SR approach. We have cited examples of algorithms (the GTH/S
algorithm [2], [19], the two FUND algorithms [5], [8], and the elimination algorithm
for optimal stopping [25], [26], [27]) that share a common feature: they are based on
a sequence of models in which each model (except the first) is constructed from its
predecessor by removing states and recalculating transition probabilities according to
Proposition 2.1. We will refer to such algorithms as SR algorithms, and to the general
approach to their development as the state reduction (SR) approach. Additional SR
algorithms include the algorithms to compute mean first passage times and absorption
probabilities in Markov and semi-Markov chains that are discussed by Kohlas in [12]
and by Sheskin in [21] and [23], the algorithm of Sheskin [22] for calculating the
fundamental matrix for a reducible Markov chain, and the algorithms that Lal and
Bhat discuss in [13]. (Sheskin also gives algorithms for matrix inversion [20] and for
solving linear systems [24], whose structures are similar to those of the above SR
algorithms, but no stochastic interpretation is given for them.) Although Proposition
2.1 does provide for the elimination of several, or even infinitely many, states in a single
reduction step, the majority of given examples eliminate one state at each reduction
step, and we will confine our discussion to those. Such algorithms must begin, up to
minor variation, with the reduction stage of the GTH/S algorithm, whose appearance
has stimulated an outpouring of works in recent years.

The algorithms under consideration differ only in their portions that follow the
standard reduction stage. In this regard, all of the given examples except one, FUND,
are recursive in the sense that the necessary reduction stage is followed by a stage
of backward iteration during which some characteristic of, or quantity related to,
the smallest model is deduced or calculated, and then the analogous characteristic
or quantity in each larger model is inferred or calculated from its counterpart in the
adjacent smaller model. (Whenever we use the term “recursive” in what follows, we
shall mean it in this sense.) The GTH/S algorithm is a good and well-known example
in which backward iteration (up to normalization) retraces all reduction steps.

Another example, also based on Proposition 2.1, is an algorithm for optimal
stopping proposed by Sonin in 1995 [25] (see also [26] and [27]). Briefly, it can be
described as the construction of a sequence of models where each time a set (often,
but not always of size one) of states, which have been shown not to belong to the
stopping set, is eliminated, and new transition probabilities are computed on the
basis of (2.1) or (2.2). The stopping sets in both models coincide, and this offers
the possibility of recursive calculation of the stopping set. In contrast to other state
reduction algorithms, in this algorithm the number of steps required is not known
in advance. In some SR algorithms (e.g., membership in an optimal stopping set,
mean time to reach a designated subset of states) the characteristic to be calculated
is preserved by reduction (i.e., coincides on the shared portions of the domains of
the initial and reduced models). In these cases part (e.g., mean times) or all (e.g.,
membership in an optimal stopping set) of the backward stage is trivial, but nearly
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all of the SR algorithms are recursive. In the sole exception, FUND, the quantity
to be calculated is obtained directly by solving a linear system using a triangular
factorization received as a byproduct of the GTH/S reduction stage. The algorithm
REFUND introduced in this paper is another example of a two-stage algorithm, with
the backward stage being nontrivial and based on an explicit formula.

3. Sequential calculation of the fundamental matrix. Let P be a regular
(i.e., irreducible, aperiodic with no transients states) finite stochastic matrix. Equiv-
alently, there is some k > 0 for which the matrix P k has all positive elements. We
have already defined π, A, Z, and V in (1.1), (1.2), (1.3), and (1.4), respectively. We
also have

PA = AP = A, An = A for any n = 1, 2, . . . .(3.1)

The following theorem provides a useful characterization of the matrix V.We will
substantially use this theorem in the construction of our main result. All elements of
this theorem are well known, but we fail to find such a formulation. (Formula (3.2)
below is equivalent to Theorem 2.3 in [15]. Compare this also with Theorem 1 in
[5] which is very similar but without the uniqueness, or compare it with results in
Appendix A.5 in [18].)

Theorem 3.1. Let M = (X,P ) be a regular Markov model, π be its invariant
measure, A = limn→∞ Pn, Z be the fundamental matrix, and V = Z −A. Then V is
the unique solution of the system of equations

V = (I −A) + PV = (I −A) + V P,(3.2)

πTV = 0, (AV = 0)(3.3)

and also satisfies

V e = 0, (V E = V A = 0).(3.4)

Note that the equations in (3.2) are of Bellman type in forward and backward
time, and that explains why the group inverse (fundamental) matrix plays a role in
the theory of Markov decision processes with average criterium. The formulas (3.3)
and (3.4) just say that a scalar product of the invariant vector and any column of V is
equal to zero, and the sum of every row of V is also equal to zero. Both relationships
have a simple probabilistic meaning according to (1.5).

Proof. Let V be the group inverse. Then from (1.4) and (3.1) we have PV =
P (I − A +

∑
n=1(P

n − A)) = (P − A) + (P 2 − A) + · · · = V + A − I, i.e., the first
of the formulas (3.2). The second formula in (3.2) is derived similarly. Formulas
(3.3) and (3.4) follow immediately from (1.5) since Eπη

n(y) = nπ(y) for all n, and∑
y Exη

n(y) = n =
∑

y nπ(y). (Formally, from (1.4) and (3.2) we have AV = A(I −
A) + A

∑
n=1(P

n − A) = 0, i.e., (3.3).) Similarly V A = 0, i.e., (3.4). To prove the
uniqueness of V, let V and V ′ be two solutions of (3.2). Then V − V ′ = P (V − V ′).
According to the well-known statement that for a regular matrix P any solution of
equation x = Px has the form ce, where c is a constant (see [10, Th. 4.1.7]), thus
each column of V − V ′ is ce for some constant c. By (3.3) πT (V − V ′) = 0, i.e., all
these constants are equal to zero.

Let Mi = (Xi, Pi), i = 1, 2 be two models with X1 = X2 ∪ {z}; M2 is an X2-
reduced model of M1, i.e., P2 is calculated by formula (2.2). Then according to
Proposition 2.2 the relation between invariant measures in these models is given by
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the formulas (2.3) and (2.4) with the constants defined by (2.5). Without loss of
generality X1 = {1, 2, . . . , n}, X2 = {2, 3, . . . , n}, i.e., z = 1, but we will continue to
use the letter z. Denote

∑
j ≡

∑
j∈X2

≡∑j≥2. Consider x, y ∈ X2 ⊂ X1. If in model
M1 state y can be reached from x in k steps, then obviously in M2 state y can be
reached from x in k or fewer steps. Therefore, if P1 is a regular matrix, then P2 will
also be a regular matrix.

Our aim is to express the group inverse V1 through the group inverse V2. We will
denote the row-vectors of matrix V2 as vi and the columns as vj , i.e., vi = (v(i, ·)),
vj = (v(·, j)). Let us denote vector π={π2(2), π2(3), . . . , π2(n)}.

For the model M1, let the constants s = s1 and α = α1 be given by (2.5); also
let vectors p and q be given by (2.6). The scalar product of vectors x and y will be
denoted by xTy.

We define the (column) vectors r, t, c and the constant c by

r = αV2q,(3.5)

tT =
(1− α)

s
pTV2,(3.6)

c =
(1− α)

s
(α+ pT r), and c = cπ2 − t.(3.7)

It is clear from (3.4) and (3.6) that tTe = 0; hence (3.7) implies that cTe = c.
Our main result is the following.
Theorem 3.2. Let M2 = (X1\{z}, P2) be the reduced model of M1 = (X1, P1),as

defined in section 2, with P2 related to P1 by (2.2). Denote their associated group
inverse matrices by V1, V2, and their invariant vectors by π1,π2. If states are indexed
so that z = 1, vectors r and c and constant c are as defined in (3.5) through (3.7),
α = α1 is given by (2.5), and q is given by (2.6), then the group inverse matrix V1

can be described in terms of four matrix blocks as follows:

V1 =

[
v11 vT

12

v21 W1

]
=

[
α

1−αc
−α
1−αc

T

r− ce V2 + U

]
, where U = −rπT

2 + ecT .(3.8)

Proof. It is possible to prove the result by checking that the matrix V1 given
in (3.8) satisfies Theorem 3.1. Instead, our proof will show explicitly how we arrive
at each block of (3.8). To simplify our notation we will omit the index “2” in all
references to the matrices P2, A2 = eπT

2 , V2, identity matrix I2 ≡ I, and to the
invariant measure π2=π.

The first step is to express v1(i, j) for i, j �= z in terms of the elements of matrix
V2 ≡ V . Formula (3.2) (the first of two equalities), applied to V1, implies (using the
Kronecker symbol δ(i, j))

v1(i, j) = δ(i, j)− π1(j) + p1(i, z)v1(z, j) +
∑
k �=z

p1(i, k)v1(k, j).(3.9)

Recall that z ≡ 1. When i = z, j �= z, formula (3.9), using 1− p1(z, z) = s becomes

sv1(z, j) = −π1(j) +
∑
k �=z

p1(z, k)v1(k, j).(3.10)

Substituting the expression for v1(z, j) from (3.10) into (3.9) we obtain for i ≥ 2,
j ≥ 2,

v1(i, j) = δ(i, j)− [1 + p1(i, z)/s]π1(j)(3.11)
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+
∑
k �=z

[p1(i, k) + p1(i, z)p1(z, k)/s]v1(k, j).

Now, replacing π1(j) by απ(j) (formula (2.3)) and the expression in the brackets in
the sum by p(i, k) (formula (2.2) with p2 ≡ p), we can rewrite formula (3.11) for i ≥ 2,
j ≥ 2 in matrix form (the restriction of V1 for i, j �= z is denoted by W1)

W1 = I − TA+ PW1,(3.12)

where T is a diagonal matrix with elements equal to α(1 + p1(i, z)/s), i ≥ 2.
Recall (see (3.8)) that U =W1−V2 ≡W1−V. Then subtracting V = (I−A)+PV

(formula (3.2) for V = V2) from (3.12) we obtain the equation for U

U = GA+ PU,(3.13)

where G = I − T is a diagonal matrix with elements (using α = 1− π1(z))

1− α(1 + p1(i, z)/s) = π1(z)− αp1(i, z)/s, i ≥ 2.(3.14)

Lemma 3.3. Any solution of (3.13) has the form

U = V GA+ C,(3.15)

where the jth column of C is c(j)e, c(j) a constant.
Proof of Lemma 1. As we mentioned earlier, it is well known that any matrix

solution of X = PX for a regular P is a matrix C with constant columns. Hence
any solution of (3.13) is a particular solution of this equation plus such a matrix
C. Therefore we need to show only that the matrix V GA is a solution of (3.13). By
formula (3.2) for modelM2, (P ≡ P2, A ≡ A2), we have V GA = GA−AGA+PV GA.
Let us show that AGA = 0. It is easy to see this is equivalent to πTg = 0, where g is a
vector of diagonal elements of G, i.e., given by (3.14). Using the equality

∑
i π(i) = 1

and formula (2.4), we obtain

πT g =
∑
i

π(i)(π1(z)− αp1(i, z)/s) = π1(z)− α
∑
i

π(i)p1(i, z)/s = 0,

which establishes Lemma 1.
Thus we have calculated W1 = V + U (the restriction of V1 for i, j �= z) up to

unknown constants c(j). To finish the calculation of V1 we need to show that unknown
constants c(j) (matrix C in (3.15)) coincide with the components of vector c defined
in (3.7), and to provide formulas for the first row and the first column of V1.

First, we can simplify V GA further, noticing that by (3.14)G = π1(z)I+D, where
d(i, z) = −αp1(i, z)/s, i ≥ 2, and V IA = 0 by formula (3.4). Therefore U = V DA+C,
and we have W1 = V (I +DA) + C. Thus, using d(i, z) and the definition of vector r
in (3.5), we obtain for k, j ≥ 2

v1(k, j) = v(k, j)− απ(j)
∑
i

v(k, i)p1(i, z)/s+ c(j)(3.16)

= v(k, j)− π(j)r(k) + c(j),(3.17)

which verifies that W1 = V + U , as claimed in (3.8).
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Using (3.16), we can rewrite the jth column of (3.3) for V = V1 as

π1(z)v1(z, j) +
∑
k

π1(k)[(k, j)− π(j)r(k) + c(j)] = 0, j ≥ 2.

Using the equalities π1(k) = απ(k),
∑

k π(k)v(k, j) = 0 (i.e., πTV = 0; see (3.3)
for V = V2),

∑
k π1(k) = 1 − π1(z) = α, and the equality πT r =α πT (V q) = α

(πTV )q = 0, we obtain

(1− α)v1(z, j) + αc(j) = 0, j ≥ 2,(3.18)

which is equivalent to vT
12 = −cT α

1−α given in (3.8).
It remains to be verified that c(j) satisfy (3.7). Substituting v1(k, j) from (3.16)

into (3.10) and using the equalities
∑

k p1(z, k) = 1− p1(z, z) = s, π1(j) = απ(j), the
definition of vector t (3.6), and the definition of constant c in (3.7), we can rewrite
(3.10) as

v1(z, j)− c(j) = (−cπ(j) + t(j))/(1− α), j ≥ 2.(3.19)

Using (3.18) to replace v1(z, j) in (3.19), we obtain (3.7).
Now the entries of v21 in (3.8) can be found using equality (3.4) as follows. For

i ≥ 2, using W1 = V − rπT
2 +ecT from (3.8) we obtain

v1(i, z) = −
∑
j

v1(i, j) = −
∑
j

v(i, j) + r(i)
∑
j

π(j)−
∑
j

c(j).

The first sum of the rightmost expression is equal to zero by (3.4) for V = V2. Using∑
πj = 1,

∑
c(j) = c, we obtain v21 = r−ce. The 1×1 block v11 is obtained similarly,

using (the now-established representation of v21 in) (3.8) and (3.4) for V = V1.
Remark. Note that only the first two expressions in (3.2) have been used in

this section and that an additional opportunity to check (increase) the accuracy of
computations of V = V1 is provided by considering the rightmost expression in that
equation.

4. The REFUND algorithm and numerical tests.

4.1. The REFUND algorithm. The results of the previous section lead to a
recursive algorithm, REFUND, to calculate the group inverse matrix V = V1 of n×n
stochastic matrix P = P1. The reduction stage implicitly produces a finite sequence
M = M1, M2, . . . ,Mn of models, where in each model Mk = (Xk, Pk), Xk is a state
space, and Pk is a stochastic matrix. A single step of reduction, in which P2 (and
P̄2) are calculated from P1, was depicted in (2.6), which also describes (with obvious
changes of index) any such step yielding Pk+1 from Pk. During computation, the
array in which P was originally stored is altered by repeated application of (2.6): at
each step Pk is replaced by P̄k+1. Thus the reduction stage duplicates (up to minor
variation in the order in which states are eliminated) that of the GTH/S algorithm
and is shared by all of the SR algorithms described in section 2. The output of the
reduction stage is the matrix/array P̄n = P̄ , containing (for k = 1, . . . , n − 1) the
vectors pT

k and qk given (without subscripts) by (2.6).
REFUND’s recovery stage is initialized with information from the smallest (one

state) model Mn: the stochastic matrix Pn = [1], invariant distribution πn= [1], and
group inverse matrix Vn = [0]. Each recovery step (k = n − 1, . . . , 1) begins with
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the pair (πk+1, Vk+1) and calculates (πk,Vk). The vector πk is obtained (with the
appropriate change of index) from (2.7); then the matrix Vk is calculated (with similar
reindexing) from (3.8), using information from (3.5) through (3.7).

Remark. As was mentioned above, to avoid unnecessary subtractive cancellation,
the GTH/S algorithm calculates sk (= s) (see the formula immediately above (2.6))
as the sum

∑
j �=z pk(z, j). Similarly, REFUND calculates the scalars α

1−α (in (3.8))

and 1−α
s (in (3.5) and (3.7)) as 1

πT
2 q

and
πT
2 q

s
(
1+πT

2 q
) , respectively. Thus in all division

operations, divisors are calculated without subtraction from the output of the GTH/S
algorithm, which contains no subtraction at all. Since the group inverse matrix and
fundamental matrix generally contain both positive and negative elements, any al-
gorithm calculating either must contain subtraction. Whether or not some of these
subtractions involve numbers that are “nearly equal” (thus reducing the number of
significant digits in some element) depends on the structure of the particular matrix
given as input. Note that the explicit formula on which REFUND is based provides an
opportunity to analyze this question directly. We are going to address the application
of REFUND to the NCD case in a separate paper.

Operation counts. The number of arithmetic operations encountered by the
REFUND algorithm is an O(n3) function f , where the stochastic matrix P = P1 is
n × n. Taken together, the calculations of the reduction stage, and those entailed in
the recovery of π, duplicate the GTH/S algorithm, which is Θ(2

3n
3). The additional

operations required to recover V contribute Θ(7
3n

3) to the dominant term of f, which
is affected only by the products V2q (in (3.5)), pTV (in (3.6)), rπT

2 (and not ecT )
in the lower right block of (3.8), and by the matrix addition and subtraction in that
block.

4.1.1. Example. We include the calculations for the well-known “Land of Oz”
example from Kemeny and Snell [10].

Reduction. Initialize: P̄0 = P (= P1).

P̄0 =


 1/2 1/4 1/4

1/2 0 1/2
1/4 1/4 1/2


→ P̄1 =


 1/2 1/4 1/4

1 1/4 3/4
1/2 3/8 5/8


→ P̄2 =


 1/2 1/4 1/4

1 1/4 3/4
1/2 1/2 1


 .

Recovery. Initialize: π3=
[
1
]
, V3 =

[
0
]
.

Step 1:

πT
3 q2 =

[
1
] [

1/2
]
= 1/2, α2 =

1

1+πT
3 q2

= 2/3, π2=α2

[
πT

3 q2

π3

]
= 1

3

[
1
2

]
;

r2 = α2V3q2 =
[
0
]
; t2 =

(
α2πT

3 q
2

s2

)
pT

2 V3 =
[
0
]
,

c2 =

(
α2πT

3 q
2

s2

)(
α2 + pT

2 r2

)
= 8/27, c2 = c2π3 − tT2 = 1

27

[
8
]
,

V2 =

[ α2

1−α2
c2

−α2

1−α2
cT2

r2 − c2e V3 − r2π
T
3 + ecT2

]
= 1

27

[
16 −16
−8 8

]
.
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Step 2:

πT
2 q1 = 2/3, α1 =

1

1+πT
2 q1

= 3/5, π1 = α1

[
πT

2 q1

π2

]
= 1

5


 2

1
2


 ;

r1 = α1V2q1 =
1
45

[
8
−4

]
, t1 =

(
α1πT

2 q1

s1

)
pT

1 V2 =
1

135

[
8 −8 ] ,

c1 =

(
α1πT

2 q1

s1

)(
α1 + pT

1 r1

)
= 112/225, c1 = c1π2 − tT1 = 1

225

[
24
88

]
,

V1 =

[ α1

1−α1
c1

−α1

1−α1
cT1

r1 − c1e V2 − r1π
T
2 + ecT1

]
= 1

75


 56 −12 −44
−24 48 −24
−44 −12 56


 .

4.2. Numerical tests.

4.2.1. Implementation. The REFUND algorithm was coded and run in MAT-
LAB, using IEEE arithmetic with 16 decimal digit working precision. Pivoting is easily
incorporated, but tabulated results are for tests runs with pivoting disabled.

4.2.2. Measures of accuracy. We define measures of residual error for all con-
ditions required in Theorem 3.1. So that these measures will continue to be appro-
priate during our later comparison of REFUND to FUND, we first let D = diag(Pe)
be the diagonal matrix whose nonzero entries are the rowsums of P ; thus (as now)

when P is stochastic, D = I. Define (block) matrices Φ =
[
(D − P )T π

]T
and

S = S(β) = [ (I −A)T βπ ]T . When β = 0, V is the unique solution to

ΦX = S(β),(4.1)

which combines the first equality of (3.2) with (3.3). Now let Ṽ denote the calculated
value for matrix V ; let H = ΦṼ − S(0); and (for each j = 1, . . . , n) hj will denote

the jth column of H. Let W = Ṽ P − PṼ , with jth column wj ; and let e denote a
vector of ones. We define measures δ1, δ2, δ3 by

δ1 = max
j
{||hj ||2}, δ2 = ||Ṽ e||∞, δ3 = max

j
{||wj ||2}.(4.2)

Condition number. The n×nmatrix (I−P ) in (3.2) has rank n−1, so its matrix
condition number is undefined. To compare relative error to problem condition, we
use

κ = σmax/σmin,(4.3)

where σmax and σmin are, respectively, the largest and smallest nonzero singular values
of (I − P ). Sonin and Thornton [29] remark that κ, rather than the analogous (and
larger) ratio of singular values of Φ in (4.1), is a true relative condition number for
the calculation of V . The ratio κ was used earlier by Heyman [5] and by Heyman and
O’Leary [8] for the problem of calculating the fundamental matrix.

4.2.3. Test problems. Two sets of test problems were used. The first problem
set consists of seven problems and comes from Harrod and Plemmons [4]. Although
the stochastic matrices in this set are not large, the set contains problems that are
numerically difficult and has provided test problems used in Heyman and Reeves [7],
Heyman and O’Leary [6], two examples in Heyman [5], and Sonin and Thornton [29].
Three of these problems have condition numbers of more than 105, and one exceeds
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107. The last four problems involve NCD chains. Such chains have subsets of states
between which transitions occur only rarely and are known to be ill-conditioned.
They are discussed in several works of Stewart, for example, in [30] and [32]. The test
matrices are available in any of the foregoing sources, and we omit them here.

The problems in the second set were used by Heyman and O’Leary [8] to test the
stabilized version of FUND and concern continuous time Markov chains. The matrix
entries represent transition rates, not probabilities, so these matrices, as given in [8],
are not stochastic. State spaces for these chains have the form {0, 1, 2, . . . , n}, so the
resulting matrices have dimension (n+1)×(n+1). All transition rates are zero except
pi,i+1 = λ (for 0 ≤ i < n) and pi,i−1 = i (for 0 < i ≤ n). As Heyman and O’Leary
do in [8], we solve these problems for n = 5, 10, 15, . . . , 50, and choose λ = n in each
problem.

4.2.4. Test results and interpretation. For each test problem of the first set
Sonin and Thornton [29] tabulate δ1, δ2, δ3 (given by (4.2)), and scaled measures
δ1/(κε), δ2/(κε), δ3/(κε), where κ is the condition number given by (4.3), and ε =
2.22 × 10−16 (reported by MATLAB) is the smallest positive floating point number
γ such that the floating point result 1 + γ �= 1. For all problems of the first set,
δ1/(κε) ≤ 0.48, δ2/(κε) ≤ 0.65, δ3/(κε) ≤ 0.74, indicating that all requirements of
Theorem 3.1 were satisfied as well as can be expected, given problem conditioning.
Now δ1 corresponds to conditions which were used in calculation. That both δ2/(κε)
and δ3/(κε) were consistently small is significant, since REFUND does not make
explicit use of either the rowsum conditions (3.4) or of the commutativity conditions
(second equality of (3.2)).

Similar results are also tabulated in [29] for a less well-known set of ten problems.
For all of these δ1/(κε) ≤ 0.95, δ2/(κε) ≤ 2.88, δ3/(κε) ≤ 1.52, still indicating close
agreement with all requirements.

4.3. Comparison with the FUND algorithms. The FUND algorithms de-
scribed in section 2.2 calculate the fundamental matrix Z defined in (1.3). Since both
algorithms require that π be calculated by the GTH/S algorithm, either V or Z can
be obtained accurately from the other by (1.4) at a cost that does not affect the
dominant term of the workload.

Speed. In addition to the Θ(2
3n

3) operations required by reduction, REFUND’s
Θ( 7

3n
3) operation count is slightly smaller than the comparable figure for FUND,

Θ( 8
3n

3).
Much more substantial savings in time are possible in some cases: because RE-

FUND is recursive while FUND is not, REFUND can reduce model (X,P ) to any
submodel (Xk, Pk) for which πk and Vk are available and begin recovery immediately.

Accuracy. To make a direct comparison between REFUND’s accuracy and that
of the stabilized (1998) FUND, Sonin and Thornton [29] tested REFUND using the
second problem set, which was used by Heyman and O’Leary in [8]. The measures of
accuracy that were defined in (4.2) remain appropriate, since V remains the unique
solution to (4.1) for β = 0. But for β = 1, (4.1) subsumes (2.8) and (2.9), and Z
becomes the unique solution. We let Z̃ denote the matrix computed by the stabilized
FUND. For each test problem, [29] tabulates δ1, measured for REFUND, beside a
comparable measure for FUND obtained from [8]. Their measure rimp = rimproved is
the norm (2-norm assumed) of the residual error in the last column z̃n of Z relative
to the first equality of (3.2) only: rimp = ‖en − πne−(D − P )z̃n‖.

Since δ1 measures residual errors in all columns and includes both conditions (3.2)
and (3.3), it is a (slightly) more sensitive measure of error than rimp is: If for the
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same matrix P, Ṽ is calculated by REFUND and δ1 is calculated from Ṽ as discussed,
and similarly Z̃ is calculated by FUND and rimp calculated from Z̃, and the residual

errors are identical (i.e., ΦṼ − S(0) = ΦZ̃ − S(1)), then δ1 ≥ rimp. But for every
test problem, δ1 < rimp; thus (at least for this problem set) REFUND appears to be
the more accurate algorithm. Also, the results tabulated for REFUND were obtained
without pivoting, while those tabulated for FUND come from the stabilized version,
which pivots in order to achieve stability.

Structure. Because REFUND is a recursive algorithm like most other SR al-
gorithms, which also share the reduction stage of the GTH/S algorithm, it can be
readily implemented along with other SR algorithms in computer code that produces
a variety of information in one run. When calculating several characteristics of a
system together in such a simultaneous recursion, it becomes possible to exploit any
known relationships among them, either to save time, to improve accuracy, or to de-
rive further information about the system under study. Of course REFUND produces
results for submodels and allows a user to reduce to and restart from any solved sub-
model. Also, the explicit formula on which REFUND is based provides a new means
by which to analyze and compare various cases, e.g., sparse matrices, NCD chains, or
decompositions required by parallel implementations.

REFERENCES

[1] M. I. Freidlin and A. D. Wentzell, Perturbations of Stochastic Dynamic Systems, Springer-
Verlag, New York, 1984.

[2] W. K. Grassmann, M. I. Taksar, and D. P. Heyman, Regenerative analysis and steady-state
distributions for Markov chains, Oper. Res., 33 (1985), pp. 1107–1116.

[3] W. K. Grassmann,Means and variances in Markov reward systems, in Linear Algebra, Markov
Chains, and Queueing Models, C. D. Meyer and R. J. Plemmons, eds., IMA Vol. Math.
Appl. 48, Springer-Verlag, New York, 1993, pp. 193–204.

[4] W. J. Harrod and R. J. Plemmons, Comparison of some direct methods for computing
stationary distributions of Markov chains, SIAM J. Sci. Statist. Comput., 5 (1984), pp.
453–469.

[5] D. P. Heyman, Accurate computation of the fundamental matrix of a Markov chain, SIAM J.
Matrix Anal. Appl., 16 (1995), pp. 954–963.

[6] D. P. Heyman and D. P. O’Leary, What is fundamental for Markov chains: First pas-
sage times, fundamental matrices, and group generalized inverses, in Computations with
Markov Chains, W. J. Stewart, ed., Kluwer, Boston, 1995, pp. 151–159.

[7] D. P. Heyman and A. Reeves, Numerical solution of linear equations arising in Markov chain
models, ORSA J. Comput., 1 (1989), pp. 52–60.

[8] D. P. Heyman and D. P. O’Leary, Overcoming instability in computing the fundamental
matrix for a Markov chain, SIAM J. Matrix Anal. Appl., 19 (1998), pp. 534–540.

[9] D. L. Isaacson and R. W. Madsen, Markov Chains: Theory and Applications, Wiley, New
York, 1976.

[10] J. G. Kemeny and J. L. Snell, Finite Markov Chains, Van Nostrand Reinhold, Princeton,
1960.

[11] J. G. Kemeny, J. L. Snell, and A. V. Knapp, Denumerable Markov Chains, Springer-Verlag,
New York, 1976.

[12] J. Kohlas, Numerical computation of mean passage times and absorption probabilities in
Markov and semi-Markov models, Z. Oper. Res., 30 (1986), pp. A197–A207.

[13] R. Lal and U. N. Bhat, Reduced systems algorithms for Markov chains, Management Sci., 34
(1988), pp. 1202–1220.

[14] B. F. Lamond and M. L. Puterman, Generalized inverses in discrete time Markov decision
processes, SIAM J. Matrix Anal. Appl., 10 (1989), pp. 118–134.

[15] C. D. Meyer, Jr., The role of the group generalized inverse in the theory of finite Markov
chains, SIAM Rev., 17 (1975), pp. 443–464.

[16] C. D. Meyer and R. J. Plemmons, eds., Linear Algebra, Markov Chains, and Queueing
Models, IMA Vol. Math. Appl. 48, Springer, New York, 1993.



224 ISAAC SONIN AND JOHN THORNTON

[17] C. O. O’Cinneide, Entrywise perturbation theory and error analysis for Markov chains, Nu-
mer. Math., 65 (1993), pp. 109–120.

[18] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming,
Wiley, New York, 1994.

[19] T. J. Sheskin, A Markov partitioning algorithm for computing steady-state probabilities, Oper.
Res., 33 (1985), pp. 228–235.

[20] T. J. Sheskin, Matrix inversion by augmentation and reduction, Internat. J. Math. Ed. Sci.
Tech., 22 (1991), pp. 103–110.

[21] T. J. Sheskin, Computing absorption probabilities for a Markov chain, Internat. J. Math. Ed.
Sci. Tech., 22 (1991), pp. 799–805.

[22] T. J. Sheskin, Computing the fundamental matrix for a reducible Markov chain, Math. Mag.,
68 (1995), pp. 393–398.

[23] T. J. Sheskin, Computing mean first passage times for a Markov chain, Internat. J. Math.
Ed. Sci. Tech., 26 (1995), pp. 729–735.

[24] T. J. Sheskin, A partitioning algorithm for solving systems of linear equations, Internat. J.
Math. Ed. Sci. Tech., 27 (1996), pp. 641–648.

[25] I. M. Sonin, Two simple theorems in the problems of optimal stopping, in Proceedings of the
Eighth INFORMS Applied Probability Conference, Atlanta, 1995, INFORMS, Linthicum,
MD, 1995.

[26] I. M. Sonin, The state reduction and related algorithms and their applications to the study of
Markov chains, graph theory and the optimal stopping problem, Adv. Math., 145 (1999),
pp. 159–188.

[27] I. M. Sonin, The Elimination Algorithm for the Problem of Optimal Stopping, Math. Methods
Oper. Res, 49 (1999), pp. 111–123.

[28] I. M. Sonin and J. R. Thornton, The elimination algorithm and its applications, in Proceed-
ings of the Ninth INFORMS Applied Probability Conference, Boston, 1997, INFORMS,
Linthicum, MD, 1997.

[29] I. M. Sonin and J. R. Thornton, Computational properties of algorithm REFUND for the
fundamental/group inverse matrix of a Markov chain, in Numerical Solution of Markov
Chains, B. Plateau, W. J. Stewart, and M. Silva, eds., Proceedings of the Third Interna-
tional Workshop, Prensas Universitarias de Zaragoza, Zaragoza, Spain, 1999, pp. 131–148.

[30] J. R. Koury, D. F. McAllister, and W. J. Stewart, Iterative methods for computing sta-
tionary distributions of nearly completely decomposable Markov chains, SIAM J. Algebraic
Discrete Methods, 5 (1984), pp. 164–186.

[31] W. J. Stewart, ed., Computations with Markov Chains, Kluwer, Boston, 1995.
[32] W. J. Stewart, Numerical methods for computing stationary distributions of finite irreducible

Markov Chains, in Advances in Computational Probability, W. Grassmann, ed., Kluwer,
Boston, to appear.



NONSYMMETRIC ALGEBRAIC RICCATI EQUATIONS AND
WIENER–HOPF FACTORIZATION FOR M -MATRICES∗

CHUN-HUA GUO†

SIAM J. MATRIX ANAL. APPL. c© 2001 Society for Industrial and Applied Mathematics
Vol. 23, No. 1, pp. 225–242

Abstract. We consider the nonsymmetric algebraic Riccati equation for which the four coef-
ficient matrices form an M -matrix. Nonsymmetric algebraic Riccati equations of this type appear
in applied probability and transport theory. The minimal nonnegative solution of these equations
can be found by Newton’s method and basic fixed-point iterations. The study of these equations is
also closely related to the so-called Wiener–Hopf factorization for M -matrices. We explain how the
minimal nonnegative solution can be found by the Schur method and compare the Schur method
with Newton’s method and some basic fixed-point iterations. The development in this paper parallels
that for symmetric algebraic Riccati equations arising in linear quadratic control.
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1. Introduction. Symmetric algebraic Riccati equations have been the topic of
extensive research. The theory, applications, and numerical solution of these equations
are the subject of the monographs [20] and [24]. The algebraic Riccati equation that
has received the most attention comes from linear quadratic control. It has the form

XDX −XA−ATX − C = 0,(1.1)

where A,C,D ∈ R
n×n; C,D are symmetric positive semidefinite; the pair (A,D)

is stabilizable, i.e., there is a K ∈ R
n×n such that A − BK is stable (a square

matrix is stable if all its eigenvalues are in the open left half-plane); and the pair
(C,A) is detectable, i.e., (AT , CT ) is stabilizable. It is well known that (1.1) has a
unique symmetric positive semidefinite solution X and the matrix A−DX is stable
(see [20], for example). This solution is the one required in applications and can be
found numerically by iterative methods [3, 7, 10, 12, 13, 19] and subspace methods
[4, 6, 22, 27, 32, 33].

In this paper we consider the nonsymmetric algebraic Riccati equation

R(X) = XCX −XD −AX + B = 0,(1.2)

where A,B,C,D are real matrices of sizes m×m,m× n, n×m,n× n, respectively.
Equation (1.2) in its general form has been studied in [8, 26, 30], for example. All
the solutions of (1.2) can be found, in theory, by finding all the Jordan chains of the
matrix

H =

(
D −C
B −A

)
(1.3)
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(see [20, Theorem 7.1.2]). However, as pointed out in [22], it would be more appro-
priate to use Schur vectors instead of Jordan vectors.

To get a nice theory for (1.2), we need to add some conditions on the matrices
A,B,C, and D, much the same as done for the symmetric equation (1.1).

For any matrices A,B ∈ R
m×n, we write A ≥ B(A > B) if aij ≥ bij(aij > bij)

for all i, j. We can then define positive matrices, nonnegative matrices, etc. A real
square matrix A is called a Z-matrix if all its off-diagonal elements are nonpositive.
It is clear that any Z-matrix A can be written as sI − B with B ≥ 0. A Z-matrix
A is called an M -matrix if s ≥ ρ(B), where ρ(·) is the spectral radius. It is called a
singular M -matrix if s = ρ(B); it is called a nonsingular M -matrix if s > ρ(B). Note
that only nonsingular M -matrices defined here are called M -matrices in [14]. The
slight change of definitions is made here for future convenience. The spectrum of a
square matrix A will be denoted by σ(A). The open left half-plane, the open right
half-plane, the closed left half-plane, and the closed right half-plane will be denoted
by C<, C>, C≤, and C≥, respectively.

In [14], iterative methods are studied for the numerical solution of (1.2) with the
condition

B > 0, C > 0, I ⊗A + DT ⊗ I is a nonsingular M -matrix,(1.4)

where ⊗ is the Kronecker product (for basic properties of the Kronecker product,
see [21], for example). It is shown there that Newton’s method and a class of basic
fixed-point iterations can be used to find its minimal positive solution whenever it has
a positive solution.

The condition (1.4) is motivated by a nonsymmetric algebraic Riccati equation
arising in transport theory. That equation has the form (1.2) with m = n and the
matrices A,B,C,D ∈ R

n×n have the following structures:

A =
1

β(1 + α)
W−1 − eqT , B = eeT , C = qqT , D =

1

β(1− α)
W−1 − qeT .(1.5)

In the above, 0 ≤ α < 1, 0 < β ≤ 1, and

e = (1, 1, . . . , 1)T , q =
1

2
W−1c,

where W = diag(w1, w2, . . . , wn), c = (c1, c2, . . . , cn)T > 0 with

0 < wn < · · · < w2 < w1 < 1, cT e = 1.

It is shown in [14] that I ⊗A + DT ⊗ I is a nonsingular M -matrix for this equation.
For descriptions on how the equation arises in transport theory, see [17] and references
cited therein. The existence of positive solutions of this equation has been shown in
[16] and [17]. However, only the minimal positive solution is physically meaningful.
Numerical methods for finding the minimal solution have also been discussed in [16]
and [17].

A more interesting equation of the form (1.2) has recently come to our attention.
The equation arises from the Wiener–Hopf factorization of Markov chains [1, 23,
28, 29, 35]. Let Q be the Q-matrix associated with an irreducible continuous-time
finite Markov chain (Xt)t≥0. (A Q-matrix has nonnegative off-diagonal elements and
nonpositive row sums; exp(tQ) is the transition matrix function of the Markov chain.)
We need to find a quadruple (Π1, Q1, Π2, Q2) such that(

A B
−C −D

)(
I Π2

Π1 I

)
=

(
I Π2

Π1 I

)(
Q1 0
0 −Q2

)
,(1.6)
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where

Q =

(
A B
C D

)

is a partitioning of Q with A,D being square matrices, and Q1, Q2 are Q-matrices. It
turns out that the matrices Π1 and Π2 of practical interest are the minimal nonnega-
tive solutions of the nonsymmetric algebraic Riccati equations ZBZ+ZA+DZ+C =
0 and ZCZ +ZD+AZ +B = 0, respectively (see [35]). The relation in (1.6) has been
called a Wiener–Hopf factorization of the leftmost matrix in (1.6). The factorization
(1.6) makes perfect sense for any Q-matrix, with or without probabilistic significance.
Barlow, Rogers, and Williams [1] noted that they did not know how to establish the
factorization without appealing to probability theory (and ultimately to martingale
theory). Rogers [28] studied the factorization in more detail, again using probabilistic
results and interpretations.

Note that −Q is an M -matrix for any Q-matrix Q. Thus, the Riccati equations
arising from the study of Markov chains are essentially special cases of the Riccati
equation (1.2) with condition (1.4). However, the strict positiveness of B and C could
be restrictive. We will thus relax the condition (1.4) to conditions

B,C ≥ 0, I ⊗A + DT ⊗ I is a nonsingular M -matrix,(1.7)

and

B,C 	= 0, (I ⊗A + DT ⊗ I)−1vecB > 0,(1.8)

where the vec operator stacks the columns of a matrix into one long vector. For some
of our discussions, condition (1.7) alone will be sufficient.

The theory of M -matrices will play an important role in our discussions. The
following result is well known (see [5] and [9], for example).

Theorem 1.1. For a Z-matrix A, the following are equivalent:
(1) A is a nonsingular M -matrix.
(2) A−1 ≥ 0.
(3) Av > 0 for some vector v > 0.
(4) σ(A) ⊂ C>.
The next result follows from the equivalence of statements (1) and (3) in Theorem

1.1 and can be found in [25], for example.
Theorem 1.2. Let A ∈ R

n×n be a nonsingular M -matrix. If the elements of
B ∈ R

n×n satisfy the relations

bii ≥ aii, aij ≤ bij ≤ 0, i 	= j, 1 ≤ i, j ≤ n,

then B is also a nonsingular M -matrix.
It is clear that I ⊗ A + DT ⊗ I is a Z-matrix if and only if both A and D are

Z-matrices. Since any eigenvalue of I ⊗ A + DT ⊗ I is the sum of an eigenvalue of
A and an eigenvalue of D (see [21], for example), it follows from the equivalence of
statements (1) and (4) in Theorem 1.1 that I⊗A+DT ⊗I is a nonsingular M -matrix
when A,D are both nonsingular M -matrices.

2. Iterative methods. Newton’s method and a class of basic fixed-point iter-
ations are studied in [14] for the numerical solution of (1.2) under condition (1.4).
In this section, we represent the main results in [14] under weaker conditions. These
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results will be needed in later discussions. For Newton’s method, we need (1.7) and
(1.8). For basic fixed-point iterations, condition (1.8) is not necessary.

We first consider the application of Newton’s method to (1.2). For any matrix
norm R

m×n is a Banach space, and the Riccati function R is a mapping from R
m×n

into itself. The first Fréchet derivative of R at a matrix X is a linear map R′
X :

R
m×n → R

m×n given by

R′
X(Z) = −((A−XC)Z + Z(D − CX)

)
.(2.1)

The Newton method for the solution of (1.2) is

Xi+1 = Xi − (R′
Xi

)−1R(Xi), i = 0, 1, . . . ,(2.2)

given that the maps R′
Xi

are all invertible. In view of (2.1), the iteration (2.2) is
equivalent to

(A−XiC)Xi+1 + Xi+1(D − CXi) = B −XiCXi, i = 0, 1, . . . .(2.3)

Theorem 2.1. Consider (1.2) with conditions (1.7) and (1.8). If there is a
positive matrix X such that R(X) ≤ 0, then (1.2) has a positive solution S such that
S ≤ X for every positive matrix X for which R(X) ≤ 0. In particular, S is the
minimal positive solution of (1.2). For the Newton iteration (2.3) with X0 = 0, the
sequence {Xi} is well defined, X0 < X1 < · · ·, and lim Xi = S. Furthermore, the
matrix S is such that

I ⊗ (A− SC) + (D − CS)T ⊗ I(2.4)

is an M -matrix.
The proof of the above theorem is exactly the same as that of [14, Theorem 2.1].

We do not have an analogous result for nonnegative solutions if the condition (1.8)
is dropped. Note that, under the conditions of Theorem 2.1, any nonnegative matrix
satisfying R(X) ≤ 0 must be positive (see the remark following Theorem 2.3).

Concerning the convergence rate of Newton’s method, we have the following re-
sult. The proof is again the same as in [14].

Theorem 2.2. Let the sequence {Xi} be as in Theorem 2.1. If the matrix (2.4)
is a nonsingular M -matrix, then {Xi} converges to S quadratically. If (2.4) is an ir-
reducible singular M -matrix, then {Xi} converges to S either quadratically or linearly
with rate 1/2.

We believe that quadratic convergence is impossible in the singular case, but we
have no proof for this.

We now consider a class of fixed-point iterations for (1.2) under condition (1.7)
only. If we write A = A1 −A2, D = D1 −D2, then (1.2) becomes

A1X + XD1 = XCX + XD2 + A2X + B.

We use only those splittings of A and D such that A2, D2 ≥ 0, and A1 and D1 are
Z-matrices. In these situations, the matrix I⊗A1 +DT

1 ⊗I is a nonsingular M -matrix
by Theorem 1.2. We then have a class of fixed-point iterations

Xk+1 = L−1(XkCXk + XkD2 + A2Xk + B),(2.5)

where the linear operator L is given by L(X) = A1X + XD1. Since I ⊗A1 + DT
1 ⊗ I

is a nonsingular M -matrix, the operator L is invertible and L−1(X) ≥ 0 for X ≥ 0.
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Theorem 2.3. Consider (1.2) with condition (1.7). For the fixed-point iterations
(2.5) and X0 = 0, we have Xk ≤ Xk+1 for any k ≥ 0. If R(X) ≤ 0 for some
nonnegative matrix X, then we also have Xk ≤ X for any k ≥ 0. Moreover, {Xk}
converges to the minimal nonnegative solution of (1.2).

Proof. It is easy to prove by induction that Xk ≤ Xk+1 for any k ≥ 0. When
R(X) ≤ 0 for some nonnegative matrix X, we can prove by induction that Xk ≤ X
for any k ≥ 0. The limit X∗ of {Xk} is then a solution of R(X) = 0 and must be the
minimal nonnegative solution, since X∗ ≤ X for any nonnegative matrix such that
R(X) ≤ 0.

Remark 2.1. If condition (1.8) is also satisfied, then the matrix X1 produced
by (2.5) with A1 = A and D1 = D is positive. This is because vecX1 = (I ⊗ A +
DT ⊗ I)−1vecB. Thus, for any nonnegative matrix X such that R(X) ≤ 0, we have
X ≥ X1 > 0.

The next comparison result follows easily from Theorem 2.3.
Theorem 2.4. Consider (1.2) with condition (1.7) and let S be the minimal

nonnegative solution of (1.2). If any element of B or C decreases but remains non-
negative, or if any diagonal element of I⊗A+DT ⊗I increases, or if any off-diagonal
element of I ⊗ A + DT ⊗ I increases but remains nonpositive, then the equation so
obtained also has a minimal nonnegative solution S̃. Moreover, S̃ ≤ S.

Proof. Let the new equation be

R̃(X) = XC̃X −XD̃ − ÃX + B̃ = 0.

It is clear that R̃(S) ≤ 0. Since I ⊗ Ã + D̃T ⊗ I is still a nonsingular M -matrix by
Theorem 1.2, the conclusions follow from Theorem 2.3.

The following result is concerned with the convergence rates of the fixed-point
iterations. It is a slight modification of Theorem 3.2 in [14]. The proof given there is
valid without change.

Theorem 2.5. Consider (1.2) with condition (1.7) and let S be the minimal
nonnegative solution of (1.2). For the fixed-point iterations (2.5) with X0 = 0, we
have

lim sup
k→∞

k
√
‖Xk − S‖ ≤ ρ

(
(I ⊗A1 + DT

1 ⊗ I)−1(I ⊗ (A2 + SC) + (D2 + CS)T ⊗ I)
)
.

Equality holds if S is positive.
Corollary 2.6. For (1.2) with condition (1.7), if the minimal nonnegative

solution S of (1.2) is positive, then the matrix (2.4) is an M -matrix.
Proof. Let A1 and D1 be the diagonal part of A and D, respectively. By Theorem

2.5, we have ρ
(
(I⊗A1+DT

1 ⊗I)−1(I⊗(A2+SC)+(D2+CS)T⊗I)
) ≤ 1. Therefore, for

any ε > 0, ρ
(
(I⊗(A1+εA1)+(D1+εD1)T⊗I)−1(I⊗(A2+SC)+(D2+CS)T⊗I)

)
< 1.

Thus, ε(I ⊗A1 +DT
1 ⊗ I) + I ⊗ (A−SC) + (D−CS)T ⊗ I is a nonsingular M -matrix

(see [5], for example). It follows that (2.4) is an M -matrix.
As in [14], we have the following result about the spectral radius in Theorem 2.5.
Theorem 2.7. Consider (1.2) with condition (1.7) and let S be the minimal

nonnegative solution of (1.2). If (2.4) is a singular M -matrix, then

ρ
(
(I ⊗A1 + DT

1 ⊗ I)−1(I ⊗ (A2 + SC) + (D2 + CS)T ⊗ I)
)

= 1.

If (2.4) is a nonsingular M -matrix, and A = Ã1 − Ã2, D = D̃1 − D̃2 are such that
0 ≤ Ã2 ≤ A2 and 0 ≤ D̃2 ≤ D2, then
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ρ
(
(I ⊗ Ã1 + D̃T

1 ⊗ I)−1(I ⊗ (Ã2 + SC) + (D̃2 + CS)T ⊗ I)
)

≤ ρ
(
(I ⊗A1 + DT

1 ⊗ I)−1(I ⊗ (A2 + SC) + (D2 + CS)T ⊗ I)
)

< 1.

Therefore, the convergence of these iterations is linear if (2.4) is a nonsingular
M -matrix. When (2.4) is a singular M -matrix, the convergence is sublinear. Within
this class of iterative methods, three iterations deserve special attention. The first one
is obtained when we take A1 and D1 to be the diagonal part of A and D, respectively.
This is the simplest iteration in the class and will be called FP1. The second one is
obtained when we take A1 to be the lower triangular part of A and take D1 to be
the upper triangular part of D. This iteration will be called FP2. The last one is
obtained when we take A1 = A and D1 = D. It will be called FP3.

3. A sufficient condition for the existence of nonnegative solutions. In
the last section, the existence of a nonnegative solution of (1.2) is guaranteed under the
assumption that there is a nonnegative matrix X such that R(X) ≤ 0. The usefulness
of this kind of assumption was evident in the ease we had in proving Theorem 2.4.
However, if (1.2) does not have a nonnegative solution, the search for a nonnegative
matrix X such that R(X) ≤ 0 will necessarily be fruitless. In this section, we will give
a sufficient condition of a different kind for the existence of nonnegative solutions of
(1.2). This condition is suggested by the Wiener–Hopf factorization of Markov chains.

Theorem 3.1. If the matrix

K =

(
D −C
−B A

)
(3.1)

is a nonsingular M -matrix, then (1.2) has a nonnegative solution S such that D−CS
is a nonsingular M -matrix. If (3.1) is an irreducible singular M -matrix, then (1.2)
has a nonnegative solution S such that D − CS is an M -matrix.

Proof. If (3.1) is a nonsingular M -matrix, then T = diag (D,A) is also a nonsin-
gular M -matrix by Theorem 1.2. If (3.1) is an irreducible singular M -matrix, then
T is a nonsingular M -matrix by the Perron–Frobenius theory (see [5] or [34]). Thus,
in either case, A and D are nonsingular M -matrices. Therefore, condition (1.7) is
satisfied. We take X0 = 0 and use FP1:

A1Xi+1 + Xi+1D1 = XiCXi + XiD2 + A2Xi + B, i = 0, 1, . . . .(3.2)

By Theorem 2.3, Xi ≤ Xi+1 for any i ≥ 0.
If (3.1) is a nonsingular M -matrix, we can find v1, v2 > 0 such that

D1v1 −D2v1 − Cv2 = u1 > 0, A1v2 −A2v2 −Bv1 = u2 > 0.(3.3)

We will show that Xkv1 ≤ v2 −A−1
1 u2 for all k ≥ 0. The inequality is true for k = 0

since v2 − A−1
1 u2 = A−1

1 (A2v2 + Bv1) ≥ 0 by the second equation in (3.3). Assume
that Xiv1 ≤ v2 −A−1

1 u2 (i ≥ 0). Then, by (3.2) and (3.3),

A1Xi+1v1 + Xi+1D1v1 = XiCXiv1 + XiD2v1 + A2Xiv1 + Bv1

≤ XiCv2 + XiD2v1 + A2v2 + Bv1

≤ XiD1v1 + A1v2 − u2.

Since Xi+1D1v1 ≥ XiD1v1, we have A1Xi+1v1 ≤ A1v2 − u2. Therefore, Xi+1v1 ≤
v2−A−1

1 u2. Thus, we have proved by induction that Xkv1 ≤ v2−A−1
1 u2 for all k ≥ 0.
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Now, the sequence {Xi} is monotonically increasing and bounded above, and hence
has a limit. Let S = limi→∞ Xi. It is clear that S is a nonnegative solution of (1.2)
and Sv1 ≤ v2 − A−1

1 u2 < v2. Thus, (D − CS)v1 ≥ Dv1 − Cv2 = u1 > 0. Therefore,
D−CS is a nonsingular M -matrix by Theorem 1.1. If (3.1) is an irreducible singular
M -matrix, there are v1, v2 > 0 (by the Perron–Frobenius theory) such that

D1v1 −D2v1 − Cv2 = 0, A1v2 −A2v2 −Bv1 = 0.

We can prove as before that the sequence {Xi} produced by FP1 is such that Xiv1 ≤
v2 for all i ≥ 0. The limit S of the sequence is a nonnegative solution of (1.2) with
Sv1 ≤ v2. Therefore, (D − CS)v1 ≥ Dv1 − Cv2 = 0. Thus, D − CS + εI is a
nonsingular M -matrix for any ε > 0. So, D − CS is an M -matrix.

Remark 3.1. We know from Theorem 2.3 that the matrix S in the proof is
the minimal nonnegative solution of (1.2). Note also that we have obtained in the
proof some additional information about the minimal solution. It will be seen later
(from Theorem 4.2) that the minimal solution S is the only solution X that makes
D − CX an M -matrix when the matrix (3.1) is a nonsingular M -matrix. If the
matrix (3.1) is an irreducible singular M -matrix, then (1.2) may have more than
one nonnegative solution X such that D − CX is an M -matrix. For example, for
A = B = 1 and C = D = 2, the scalar equation (1.2) has two positive solutions
X = 1 and X = 1/2. The first makes D − CX a singular M -matrix. The second
makes D − CX a nonsingular M -matrix.

We have seen in the proof of Theorem 3.1 that condition (1.7) is satisfied when
the matrix (3.1) is a nonsingular M -matrix or an irreducible singular M -matrix. It is
clear that (1.8) is not necessarily true when (3.1) is a nonsingular M -matrix. If (3.1)
is an irreducible singular M -matrix, we have B,C 	= 0. However,

(I ⊗A + DT ⊗ I)−1vecB > 0(3.4)

is not necessarily true.
Assume that (3.1) is an irreducible M -matrix. If (3.4) is true, then the minimal

nonnegative solution S of (1.2) must be positive. However, a more practical method
to verify the positivity of S is to apply FP1 with X0 = 0 to (1.2).

Example 3.1. For (1.2) with

A = C = D =

(
1 0
0 1

)
, B =

(
0 1
1 0

)
,

the matrix (3.1) is an irreducible singular M -matrix, but (3.4) is not true. However,
the minimal nonnegative solution S is still positive. In fact, if we apply FP1 with
X0 = 0 to (1.2), we get X2 > 0. Thus, S ≥ X2 > 0.

We also have the following sufficient condition for the positivity of S.
Proposition 3.2. If (3.1) is an M -matrix such that B,C 	= 0, and A,D are

irreducible, then (3.1) is irreducible, (3.4) is true, and S > 0.
Proof. The matrix (3.1) is irreducible by a graph argument (see Theorem 2.2.7 of

[5]). As shown in the proof of Theorem 3.1, the matrices A and D are now irreducible
nonsingular M -matrices. Thus, I⊗A+DT ⊗I is an irreducible nonsingular M -matrix
(the irreducibility is shown by a graph argument). Therefore, by Theorem 6.2.7 of
[5], (I ⊗A + DT ⊗ I)−1 > 0. Thus, (3.4) is true and S > 0.

More can be said about the matrix D−CS when the minimal nonnegative solution
S of (1.2) is positive.
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Theorem 3.3. If (3.1) is an irreducible M -matrix and the minimal nonnegative
solution S of (1.2) is positive, then D − CS is an irreducible M -matrix (we use the
convention that a 1× 1 zero matrix is irreducible).

Proof. We need only to prove that D − CS is irreducible for n ≥ 2. Write
D = (dij). Let V1 = {i | 1 ≤ i ≤ n, the ith row of C is zero} and V2 = {i | 1 ≤ i ≤
n, the ith row of C is not zero}. Since (3.1) is irreducible, its graph is strongly con-
nected (see Theorem 2.2.7 of [5]). Therefore, for any i ∈ V1 we can find i1, . . . , ik−1 ∈
V1 (void if k = 1) and ik ∈ V2 such that dii1 , di1i2 , . . . , dik−1ik are nonzero. Now, take
any i : 1 ≤ i ≤ n. If i ∈ V2, then the off-diagonal elements of D − CS in the ith row
are negative since S is positive; the diagonal element of D − CS in the ith row must
be positive since it is shown in the proof of Theorem 3.1 that (D − CS)v1 ≥ 0 for
some v1 > 0. If i ∈ V1, then the ith row of D − CS is the same as the ith row of
D. It follows readily that the graph of D −CS is strongly connected. So, D −CS is
irreducible.

Equation (1.2) with no prescribed sign structure for the matrices A,B,C, and D
has been considered in [8] and [30]. It is shown that the solution of (1.2) with minimal
Frobenius norm can be found by FP3 and Newton’s method starting with X0 = 0, if
κ < 1/4 for FP3 and κ < 1/12 for Newton’s method, where κ = ‖B‖F ‖C‖F /s2 and
s is the smallest singular value of I ⊗ A + DT ⊗ I. If the matrix (3.1) is a singular
M -matrix with no zero elements, for example, then the minimal positive solution can
be found by FP3 and Newton’s method with X0 = 0. It is interesting to see how
often the condition κ < 1/4 is satisfied when (3.1) is a singular M -matrix with no
zero elements. We use MATLAB to obtain a 4× 4 positive matrix R using rand(4,4),
so W = diag(Re)−R is a singular M -matrix with no zero elements. We let the matrix
W be in the form (3.1), so the 2×2 matrices A,B,C,D are determined. We find that
κ < 1/4 is satisfied 198 times for 10000 random matrices R (κ < 1/5 is satisfied 35
times). When we use rand(6,6) to get 3× 3 matrices A,B,C,D in the same way, we
find that κ < 1/4 is satisfied 2 times for 10000 random matrices.

It is interesting to note that (1.2) from transport theory also satisfies the condi-
tions in Theorem 3.1.

Proposition 3.4. Let the matrices A,B,C,D be defined by (1.5). Then the
matrix K given by (3.1) is irreducible. The matrix K is a nonsingular M -matrix for
0 < β < 1 and is a singular M -matrix for β = 1.

Proof. By definition,

K =

(
1

β(1−α)W
−1 − qeT −qqT

−eeT 1
β(1+α)W

−1 − eqT

)
.

It is clear that K is irreducible. Since K is a singular (nonsingular) M -matrix if and
only if

(
(1− α)W 0

0 (1 + α)W

)
K =

( 1
β I − (1− α)WqeT −(1− α)WqqT

−(1 + α)WeeT 1
β I − (1 + α)WeqT

)

is a singular (nonsingular) M -matrix, we need only to find a positive vector v such
that Qv = v for the positive matrix

Q =

(
(1− α)WqeT (1− α)WqqT

(1 + α)WeeT (1 + α)WeqT

)
=

(
1
2 (1− α)ceT 1

4 (1− α)ccTW−1

(1 + α)WeeT 1
2 (1 + α)WecTW−1

)
,
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where we have used q = 1
2W

−1c. Now, since eT c = cT e = 1, direct computation
shows that Qv = v for

v =

(
(1− α)c

2(1 + α)We

)
> 0.

This completes the proof.
Therefore, with Remark 2.1 in mind, the existence of positive solutions of (1.2)

with A,B,C,D given by (1.5) is established as a special case of Theorem 3.1. The
existence in this special case was proved in [16] using the degree theory and was proved
in [17] using the secular equation and other tools.

4. Wiener–Hopf factorization for M-matrices. The Wiener–Hopf factor-
ization for Q-matrices associated with finite Markov chains has been studied in [1, 23,
28, 29, 35]. The factorization was obtained by using probabilistic results and interpre-
tations. In this section, we will establish Wiener–Hopf factorization for M -matrices.
Our results include Wiener–Hopf factorization for Q-matrices as a special case. The
proof will be purely algebraic.

Theorem 4.1. If the matrix (3.1) is a nonsingular M -matrix or an irreducible
singular M -matrix, then there exist nonnegative matrices S1 and S2 such that(

D −C
B −A

)(
I S2

S1 I

)
=

(
I S2

S1 I

)(
G1 0
0 −G2

)
,(4.1)

where G1 and G2 are M -matrices.
Proof. By Theorem 3.1, (1.2) has a nonnegative solution S1 such that D − CS1

is an M -matrix. By taking G1 = D − CS1, we get

(
D −C
B −A

)(
I
S1

)
=

(
I
S1

)
G1.(4.2)

Since (
A −B
−C D

)

is also a nonsingular M -matrix or an irreducible singular M -matrix, Theorem 3.1
implies that the equation

XBX −XA−DX + C = 0(4.3)

has a nonnegative solution S2 such that A − BS2 is an M -matrix. Letting G2 =
A−BS2, we have

(
D −C
B −A

)(
S2

I

)
=

(
S2

I

)
(−G2).(4.4)

The factorization (4.1) is obtained by combining (4.2) and (4.4).
We can make stronger statements when the matrix (3.1) is a nonsingular M -

matrix.
Theorem 4.2. If the matrix (3.1) is a nonsingular M -matrix, then the only ma-

trices S1 and S2 satisfying (4.1) with G1 and G2 being M -matrices are the minimal
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nonnegative solution of (1.2) and the minimal nonnegative solution of (4.3), respec-
tively. In this case, G1 and G2 are nonsingular M -matrices and the matrix(

I S2

S1 I

)
(4.5)

is nonsingular.
Proof. Let S1 and S2 be the minimal nonnegative solutions of (1.2) and (4.3),

respectively. Let G1 = D − CS1 and G2 = A − BS2. Then (4.1) holds and G1, G2

are nonsingular M -matrices (see Theorem 3.1). Let v1, v2 > 0 be as in the proof of
Theorem 3.1. Then, S1v1 < v2 and S2v2 < v1. Since(

I −S2

−S1 I

)(
v1

v2

)
> 0,

the matrix (4.5) is a generalized strictly diagonally dominant matrix and hence non-
singular. Thus, (4.1) gives a similarity transformation and, as a result, the matrix
(1.3) has n eigenvalues in C> and m eigenvalues in C<. Now, if S̃1 ∈ R

m×n and
S̃2 ∈ R

n×m satisfy (4.1) with G̃1 and G̃2 being M -matrices, then(
D −C
B −A

)(
I

S̃1

)
=

(
I

S̃1

)
G̃1.

Therefore, the eigenvalues of G̃1 are precisely the n eigenvalues of (1.3) in C>. Since
the column spaces of (I S̃T

1 )T and (I ST
1 )T are the same invariant subspace associated

with these eigenvalues, we conclude that S̃1 = S1. Similarly, S̃2 = S2.
From the above theorem and its proof, it is already clear that we can find the

minimal solution using an appropriate invariant subspace (details will be provided in
the next section).

The rest of this section is devoted to the case where (3.1) is an irreducible singular
M -matrix. The minimal nonnegative solutions of (1.2) and (4.3) will be denoted by
S1 and S2, respectively.

Let v1, v2, u1, u2 be positive vectors such that(
D −C
−B A

)(
v1

v2

)
= 0,

(
uT

1 uT
2

)( D −C
−B A

)
= 0.(4.6)

Multiplying (4.1) by
(
uT

1 − uT
2

)
from the left gives

(uT
1 − uT

2 S1)G1 = 0, (uT
1 S2 − uT

2 )G2 = 0.

If G1 is nonsingular, then uT
1 − uT

2 S1 = 0. Moreover, we see from the proof of
Theorem 3.1 that S1v1 ≤ v2 and S1v1 	= v2. (If S1v1 = v2, we would have G1v1 =
(D − CS1)v1 = Dv1 − Cv2 = 0, which is contradictory to the nonsingularity of G1.)
So uT

1 v1 < uT
2 v2. Similarly, uT

1 v1 > uT
2 v2 when G2 is nonsingular. Therefore, the

following result is true.
Lemma 4.3. When (3.1) is an irreducible singular M -matrix, G1 is singular

if uT
1 v1 > uT

2 v2; G2 is singular if uT
1 v1 < uT

2 v2; both G1 and G2 are singular if
uT

1 v1 = uT
2 v2.

Further discussions will be dependent on the positivity of S1 and S2.
Lemma 4.4. Assume that (3.1) is an irreducible singular M -matrix and S1, S2 >

0. Then the matrix (1.3) has n − 1 eigenvalues in C>, m − 1 eigenvalues in C<,
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one zero eigenvalue, and one more eigenvalue which either is zero or has nonzero real
part.

Proof. By Theorem 3.3, G1 and G2 are irreducible M -matrices. Therefore,
G1(G2) has n(m) eigenvalues in C> when it is nonsingular; G1(G2) has a zero eigen-
value and n−1(m−1) eigenvalues in C> when it is singular. By (4.1), the eigenvalues
of G1(resp., −G2) are precisely the eigenvalues of the matrix (1.3) restricted to the
column space of (I ST

1 )T (resp., (ST
2 I)T ). The result follows immediately.

Lemma 4.5. Under the assumptions of Lemma 4.4, zero is a double eigenvalue
of (1.3) if and only if uT

1 v1 = uT
2 v2.

Proof. If zero is a double eigenvalue of (1.3), then the Jordan canonical form for
(1.3) is

P−1

(
D −C
B −A

)
P =

(
J1 0
0 J2

)
,

where J1 =
(

0
0

1
0

)
and J2 consists of Jordan blocks associated with nonzero eigenval-

ues. (Note that the null space of (1.3) is one-dimensional since (3.1) is an irreducible
M -matrix.) By (4.6), we get

(uT
1 − uT

2 )P = k1e
T
2 , P−1

(
v1

v2

)
= k2e1,(4.7)

where e1, e2 are the first two standard unit vectors and k1, k2 are nonzero constants.
Multiplying the two equations in (4.7) gives uT

1 v1 = uT
2 v2. If zero is a simple eigenvalue

of (1.3), then we have J1 = (0) instead and we have (4.7) with e2 replaced by e1. Thus,
uT

1 v1 	= uT
2 v2.

We will also need the following general result, which can be found in [26], for
example.

Lemma 4.6. If X is any solution of (1.2), then

(
I 0
X I

)−1(
D −C
B −A

)(
I 0
X I

)
=

(
D − CX −C

0 −(A−XC)

)
.

Thus, the eigenvalues of D − CX are eigenvalues of (1.3) and the eigenvalues of
A−XC are the negative of the remaining eigenvalues of (1.3).

The next result determines the signs of the real parts for all eigenvalues of the
matrix (1.3), and it also paves the way for finding S1 and S2 using subspace methods.

Theorem 4.7. Assume that the matrix (3.1) is an irreducible singular M -matrix
and S1, S2 > 0. Let the vectors u1, u2, v1, v2 be as in (4.6). Then we have the following.

(1) If uT
1 v1 = uT

2 v2, then (1.3) has n− 1 eigenvalues in C>, m− 1 eigenvalues in
C<, and two zero eigenvalues. Moreover, G1 and G2 are singularM -matrices.

(2) If uT
1 v1 > uT

2 v2, then (1.3) has n − 1 eigenvalues in C>, m eigenvalues in
C<, and one zero eigenvalue. Moreover, G1 is a singular M -matrix and G2

is a nonsingular M -matrix.
(3) If uT

1 v1 < uT
2 v2, then (1.3) has n eigenvalues in C>, m − 1 eigenvalues in

C<, and one zero eigenvalue. Moreover, G1 is a nonsingular M -matrix and
G2 is a singular M -matrix.

Proof. Assertion (1) follows from Lemmas 4.5, 4.4, and 4.3. We will prove as-
sertion (2) only since the proof of assertion (3) is very similar. When uT

1 v1 > uT
2 v2,

G1 = D − CS1 is singular by Lemma 4.3. The last-mentioned eigenvalue in Lemma
4.4 cannot be zero by Lemma 4.5, and we need to show that it is in C<. If this
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eigenvalue were in C>, the matrix A − S1C would have m − 1 eigenvalues in C>

and one eigenvalue in C<, in view of Lemma 4.6. Since the eigenvalues of G =
I ⊗ (A− S1C) + (D − CS1)T ⊗ I are the sums of eigenvalues of A− S1C and eigen-
values of D − CS1, the matrix G would then have an eigenvalue in C<. This is a
contradiction since G is an M -matrix by Corollary 2.6. A similar argument then shows
that the eigenvalues of G2 = A − BS2 must be the negative of the m eigenvalues of
(1.3) in C<. Therefore, G2 is a nonsingular M -matrix by Theorem 1.1.

Remark 4.1. Case (1) of Theorem 4.7 poses a great challenge to basic fixed-point
iterations. Since the matrix (2.4) is a singular M -matrix in this case, the convergence
of the fixed-point iterations for (1.2) is sublinear (see Theorems 2.5 and 2.7). The
convergence of Newton’s method for (1.2) is typically linear with rate 1/2 in this case
if condition (3.4) is also satisfied, but the performance of Newton’s method can be
improved by using a double Newton step (see discussions in [14]).

When the matrix (3.1) is an irreducible singular M -matrix, we know from the
proof of Theorem 3.1 that S1v1 ≤ v2 and S2v2 ≤ v1. With the additional assumption
that S1, S2 > 0, we can say something more about S1 and S2.

Theorem 4.8. Under the conditions of Theorem 4.7, we have the following:
(1) If uT

1 v1 = uT
2 v2, then CS1v1 = Cv2 and BS2v2 = Bv1. Consequently, S1v1 =

v2 and S2v2 = v1 if C and B have no zero columns.
(2) If uT

1 v1 > uT
2 v2, then S2v2 	= v1 and CS1v1 = Cv2. Consequently, S1v1 = v2

if C has no zero columns.
(3) If uT

1 v1 < uT
2 v2, then S1v1 	= v2 and BS2v2 = Bv1. Consequently, S2v2 = v1

if B has no zero columns.
Moreover, the matrix (4.5) is singular if and only if S1v1 = v2 and S2v2 = v1.

Proof. We will prove assertion (3). The proof of assertions (1) and (2) is similar.
If uT

1 v1 < uT
2 v2, then G1 is a nonsingular M -matrix and G2 is a singular M -matrix by

Theorem 4.7. That S1v1 	= v2 has been proved in the discussions leading to Lemma
4.3. Note that G2 is irreducible and G2v2 = (A − BS2)v2 ≥ Av2 − Bv1 = 0. If
BS2v2 	= Bv1, then G2v2 would be nonnegative and nonzero.

Therefore, G2 would be a nonsingular M -matrix by Theorem 6.2.7 of [5]. The
contradiction shows that BS2v2 = Bv1. Thus, B(v1 − S2v2) = 0. It follows that
v1 − S2v2 = 0 if B has no zero columns. The proof of assertion (3) is completed.

If S1v1 = v2 and S2v2 = v1, then

(
I S2

S1 I

)(
v1

−v2

)
= 0.

Thus, the matrix (4.5) is singular. If S1v1 = v2 and S2v2 = v1 are not both true, then

(
I −S2

−S1 I

)(
v1

v2

)
(4.8)

is nonnegative and nonzero. Since S1 and S2 are positive, the matrix on the left side
of (4.8) is irreducible. Therefore, it is a nonsingular M -matrix by Theorem 6.2.7 of
[5] and hence the matrix (4.5) is nonsingular.

For (1.2) from transport theory, the matrix (3.1) is an irreducible singular M -
matrix if β = 1 (see Proposition 3.4). The next result shows that, for this special
equation, only cases (1) and (3) are possible in Theorems 4.7 and 4.8.

Proposition 4.9. For (1.2) with A,B,C,D given by (1.5) with β = 1, we have
uT

1 v1 = uT
2 v2 for α = 0 and uT

1 v1 < uT
2 v2 for 0 < α < 1.



NONSYMMETRIC ALGEBRAIC RICCATI EQUATIONS 237

Proof. By the proof of Proposition 3.4, we can take v1 = (1 − α)c and v2 =
2(1 + α)We. Similarly, we can take u1 = 2(1 − α)We and u2 = (1 + α)c. The
conclusions follow immediately.

5. The Schur method. In this section, we will explain how to use the Schur
method to find the minimal nonnegative solution of (1.2).

Theorem 5.1. Assume that (3.1) is a nonsingular M -matrix or an irreducible
singular M -matrix such that the minimal nonnegative solutions of (1.2) and (4.3) are
positive. Let H be the matrix given by (1.3). Let U be an orthogonal matrix such that

UTHU = F

is a real Schur form of H, where the 1×1 or 2×2 diagonal blocks of F are arranged in
the order for which the real parts of the corresponding eigenvalues are nonincreasing.
If U is partitioned as

(
U11 U12

U21 U22

)
,

where U11 ∈ R
n×n, then U11 is nonsingular and U21U

−1
11 is the minimal nonnegative

solution of (1.2).
Proof. From the discussions in sections 3 and 4, we know that the minimal

nonnegative solution S exists and the n-dimensional column space of (I ST )T is either
the n-dimensional invariant subspace of H corresponding to the eigenvalues in C> or,
when the largest invariant subspace V of H corresponding to the eigenvalues in C> is
only (n−1)-dimensional, the direct sum of V and the one-dimensional eigenspace of H
corresponding to the zero eigenvalue. From HU = UF and the specified ordering of
the diagonal blocks of F , we can see that the column space of (UT

11 UT
21)T is the same

n-dimensional invariant subspace. (No difficulties will arise when H has a double zero
eigenvalue, since there is only one eigenvector (up to a factor) associated with the
zero eigenvalue.) So,

(
I
S

)
=

(
U11

U21

)
W

for some nonsingular W ∈ R
n×n. Thus, U11 is nonsingular and S = U21U

−1
11 .

Remark 5.1. A Wiener–Hopf factorization for (3.1) can also be obtained by
solving the dual equation (4.3).

We now consider (1.2) with conditions (1.7) and (1.8). In this case, any nonneg-
ative solution of (1.2) must be positive (see Remark 2.1).

Theorem 5.2. Consider (1.2) with conditions (1.7) and (1.8). Let H be the
matrix given by (1.3). Let U be an orthogonal matrix such that

UTHU = F

is a real Schur form of H, where the 1 × 1 or 2 × 2 diagonal blocks of F are ar-
ranged in the order for which the real parts of the corresponding n + m eigenvalues
are nonincreasing.

(1) Assume that λn and λn+1 are a conjugate pair corresponding to a 2 × 2
diagonal block, Re(λn−1) > Re(λn) (if n > 1 ), and Re(λn+1) > Re(λn+2) (if
m > 1). Then (1.2) has no positive solutions.
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(2) Assume that Re(λn) > Re(λn+1) and U is partitioned as

(
U11 U12

U21 U22

)
,

where U11 ∈ R
n×n. If U11 is nonsingular and S = U21U

−1
11 is positive, then

S is the minimal positive solution of (1.2). Otherwise, (1.2) has no positive
solutions.

(3) Assume that λn = λn+1 are real, Re(λn−1) > λn (if n > 1 ), and λn+1 >
Re(λn+2) (if m > 1). Assume further that there is only one eigenvector (up
to a factor) associated with λn = λn+1 and let U be partitioned as in part
(2). If U11 is nonsingular and S = U21U

−1
11 is positive, then S is the minimal

positive solution of (1.2). Otherwise, (1.2) has no positive solutions.
Proof. If (1.2) has a positive solution, then it has a minimal positive solution S

by Theorem 2.1. Since I ⊗ (A− SC) + (D − CS)T ⊗ I is an M -matrix by Theorem
2.1, the real part of each eigenvalue of D − CS must be greater than or equal to the
negative of the real part of each eigenvalue of A − SC. In other words, in view of
Lemma 4.6, the real part of each eigenvalue of D−CS must be greater than or equal
to the real part of each of the remaining m eigenvalues of H. Under the assumptions
of part (1), the eigenvalues of the real matrix D − CS must be λ1, . . . , λn−1 and one
of the eigenvalues λn and λn+1. This is impossible since λn and λn+1 are a conjugate
pair with nonzero imaginary parts. Part (1) is thus proved. Under the assumptions
of part (2), if (1.2) has a positive solution, then the column space of (I ST )T for
the minimal positive solution S must be the n-dimensional invariant subspace of H
corresponding to the eigenvalues λ1, . . . , λn. The proof can thus be completed as in
the proof of Theorem 5.1. Under the assumptions of part (3), if (1.2) has a positive
solution, then the column space of (I ST )T for the minimal positive solution S must
be the direct sum of the (n−1)-dimensional invariant subspace of H corresponding to
the eigenvalues λ1, . . . , λn−1 and the one-dimensional eigenspace of H corresponding
to λn = λn+1. The proof can again be completed as in the proof of Theorem 5.1.

Remark 5.2. If the minimal positive solution found by the Schur method in
Theorem 5.2, part (2) is not accurate enough, we can use Newton’s method as a
correction method. Local quadratic convergence of Newton’s method is guaranteed
since the Fréchet derivative at the solution is nonsingular in this case.

Remark 5.3. In Theorem 5.2, part (3), the additional assumption that there is
only one eigenvector associated with λn = λn+1 is essential. Without this assumption,
no definitive information can be obtained about positive solutions of (1.2) from the
real Schur form. Newton’s method can find the minimal positive solution of (1.2)
if it has a positive solution, with or without the additional assumption. However,
we cannot expect Newton’s method to have quadratic convergence since the Fréchet
derivative at the minimal solution is singular in this case.

As we can see from Theorems 5.1 and 5.2, the real Schur form with the prescribed
ordering of the diagonal blocks is essential for finding the minimal nonnegative solution
using the Schur method. This real Schur form can be obtained by using orthogonal
transformations to reduce H to upper Hessenberg form and then using a slight mod-
ification of Stewart’s algorithm HQR3 [31]. In Stewart’s HQR3, the 1 × 1 or 2 × 2
diagonal blocks of the real Schur form are arranged in the order for which the moduli
(not the real parts) of the corresponding eigenvalues are nonincreasing.

In Theorems 5.1 and 5.2, the minimal nonnegative solution S is found by solving
SU11 = U21. The accuracy of S is thus dependent on κ(U11), the condition number
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of the matrix U11.
Proposition 5.3. Let S = U21U

−1
11 be the minimal nonnegative solution of (1.2),

where U11 and U21 are as in Theorems 5.1 and 5.2. Then

κ2(U11) ≤ 1 + ‖S‖22.

Proof. The proof is omitted here since it is very similar to that of corresponding
results in [15] and [18].

6. Comparison of solution methods. For (1.2) with conditions (1.7) and
(1.8), the minimal positive solution can be found by FP1, FP2, FP3, Newton’s
method, or the Schur method whenever (1.2) has a positive solution. In this sec-
tion, we will compare these methods on a few test examples.

For the Newton iteration (2.2), the equation −R′
Xk

(H) = R(Xk), i.e., (A −
XkC)H + H(D − CXk) = R(Xk), can be solved by the algorithms described in [2]
and [11]. If we use the Bartels–Stewart algorithm [2] to solve the Sylvester equation,
the computational work for each Newton iteration is about 62n3 flops when m = n.
By comparison, FP1 and FP2 need about 8n3 flops for each iteration. For FP3 we
can use the Bartels–Stewart algorithm for the first iteration. It needs about 54n3

flops. For each subsequent iteration, it needs about 14n3 flops. The Schur method
needs roughly 200n3 flops to get an approximate solution.

Example 6.1. We generate (and save) a random 100 × 100 matrix R with no
zero elements using rand(100,100) in MATLAB. Let W = diag(Re) − R. So W is a
singular M -matrix with no zero elements. We introduce a real parameter α and let

αI + W =

(
D −C
−B A

)
,

where the matrices A,B,C,D are all 50× 50. The existence of a positive solution of
(1.2) is guaranteed for α ≥ 0. In Tables 6.1–6.3, we have recorded, for three values
of α, the number of iterations needed to have ‖R(Xk)‖∞ < ε for Newton’s method
(NM) and the three basic fixed-point iterations. For all four methods, we use X0 = 0.
The initial residual error is ‖R(X0)‖∞ = ‖B‖∞ = 0.2978 × 102. As predicted by
Theorem 2.7, FP2 has faster convergence than FP1, while FP3 has faster convergence
than FP2. With the required computational work per iteration in mind, we find
that, for this example, FP2 is the best among the three basic fixed-point iterations.
When α = 10, the fixed-point iterations are quite good. However, Newton’s method
is much better for α = 0. As shown in [14], we can also use Newton’s method
after any number of fixed-point iterations and still have the monotone convergence.
We now apply the Schur method to find the minimal solution. The method turns
out to be very successful. The residual norm for the approximate solution obtained
from the Schur method (SM) is listed in Table 6.4, along with the residual norm
for the approximate solution obtained by Newton’s method after 12, 6, 5 iterations
for α = 0, 1, 10, respectively. The accuracy achieved by the Schur method is very
impressive, although not as high as that achieved by Newton’s method. The good
performance of the Schur method is partly due to the small condition number of the
matrix U11. For α = 0, for example, we find that κ2(U11) = 1.4114 and ‖S‖2 = 0.9960.
A rough estimate can actually be obtained beforehand for any α ≥ 0. Since Se ≤ e
by the proof of Theorem 3.1, we have ‖S‖∞ ≤ 1. So, by Proposition 5.3, κ2(U11) ≤
1 + (

√
50‖S‖∞)2 ≤ 51. When α = 0, the Schur method is much better than the basic

fixed-point iterations. It is also considerably cheaper than Newton’s method, although
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Table 6.1
Iteration counts for Example 6.1, α = 0.

ε 10−2 10−4 10−6 10−8 10−10

NM 6 9 10 11 12

FP1 196 1515 4003 6564 9125

FP2 154 1173 3050 4977 6904

FP3 96 758 2017 3313 4609

Table 6.2
Iteration counts for Example 6.1, α = 1.

ε 10−2 10−4 10−6 10−8 10−10

NM 4 5 5 6 6

FP1 40 71 101 131 161

FP2 30 52 75 97 119

FP3 19 33 47 62 76

Table 6.3
Iteration counts for Example 6.1, α = 10.

ε 10−2 10−4 10−6 10−8 10−10

NM 3 4 4 4 5

FP1 14 23 32 41 49

FP2 11 17 23 29 35

FP3 6 10 14 18 22

Table 6.4
Residual errors for Example 6.1.

α 0 1 10

NM 0.1999× 10−13 0.1570× 10−13 0.1149× 10−13

SM 0.6419× 10−12 0.5715× 10−12 0.6984× 10−12

Newton’s method produces a more accurate approximation. When α = −10−4, the
equation also has a positive solution by Theorem 5.2, part (2). The residual norm for
the approximate solution obtained from the Schur method is 0.7463 × 10−12, while
the residual norm for the approximate solution obtained by Newton’s method after
13 iterations is 0.1955 × 10−13. By Theorem 2.4, (1.2) has a positive solution for all
α ≥ −10−4. When α = −10−3, the equation does not have a positive solution. In
this case, Newton’s method exhibits no convergence and the Schur method produces
a 2× 2 block in the middle of the real Schur form (see Theorem 5.2, part (1)). When
α = 0, the matrix (1.3) has 50 eigenvalues in C>, 49 eigenvalues in C<, and one zero
eigenvalue. The eigenvalue with the smallest positive real part is the real eigenvalue
λ50 = 0.1790. Thus, for all α ≥ 0, the convergence of Newton’s method is quadratic
and the convergence of basic fixed-point iterations is linear.

Example 6.1 is not particularly tough for the basic fixed-point iterations since
λ50 = 0.1790 is not too close to zero. The next example is.

Example 6.2. Let

R =

(
R11 R12

R21 R22

)
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be a doubly stochastic matrix (i.e., R ≥ 0, Re = e,RT e = e), where R11, R22 ∈ R
m×m

are irreducible and R21, R12 	= 0. Let W = a(I − R), where a is a given positive
number. So W is a singular M -matrix satisfying the assumptions in Proposition 3.2
and the situation in Theorem 4.7, part (1) happens. Let

W =

(
D −C
−B A

)
,

where A,B,C,D ∈ R
m×m. We will find the minimal positive solution of (1.2). As

noted in Remark 4.1, the convergence of basic fixed-point iterations will be sublin-
ear and the convergence of Newton’s method will typically be linear with rate 1/2.
However, the minimal positive solution can be found easily by the Schur method de-
scribed in Theorem 5.1. Since We = 0, we have Se ≤ e by the proof of Theorem 3.1.
Since WT e = 0, we can also get ST e ≤ e by taking transpose for (1.2) and applying
the proof of Theorem 3.1 to the new equation. Therefore, STSe ≤ ST e ≤ e. Thus,
ρ(STS) ≤ 1. Now, by Proposition 5.3, κ2(U11) ≤ 1 + ρ(STS) ≤ 2. We apply the
Schur method to a special example with m = 100, B = C = I, and

A = D =




2 −1

2
. . .

. . . −1
−1 2


 .

For this example, the minimal solution S must be doubly stochastic. In fact, Se = e
follows directly from Theorem 4.8, part (1) and ST e = e is obtained by taking trans-
pose for (1.2) and applying Theorem 4.8, part (1) to the new equation. The approxi-
mate minimal solution is found by the Schur method with residual error 0.9896×10−13.
We also apply Newton’s method to this equation. The residual error is 0.5683×10−13

after 22 iterations. The performance of Newton’s method can be improved signif-
icantly by using the double Newton strategy as described in [14]. After 6 Newton
iterations and 1 double Newton step, the residual error is 0.4649× 10−14. The basic
fixed-point iterations are indeed extremely slow. We apply FP1 to the special ex-
ample with m = 5 instead. It needs 399,985 iterations to make the residual error
less than 10−10. For this example, if an approximate solution has more digits than
needed, chopping is recommended. By using chopping instead of rounding, we will
have a much better chance to secure σ(D − CS) ⊂ C≥ by the theory of nonnegative
matrices.

Acknowledgment. The author thanks the referees for their very helpful com-
ments.
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Abstract. We explore the orthogonal decomposition of tensors (also known as multidimen-
sional arrays or n-way arrays) using two different definitions of orthogonality. We present numerous
examples to illustrate the difficulties in understanding such decompositions. We conclude with a
counterexample to a tensor extension of the Eckart–Young SVD approximation theorem by Leibovici
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1. Introduction. The problem of decomposing tensors (also called n-way arrays
or multidimensional arrays) is approached in a variety of ways by extending the SVD,
principal components analysis (PCA), and other methods to higher orders; see, e.g.,
[1, 3, 9, 10, 11, 12, 13, 14, 15]. Tensor decompositions are most often used for multi-
mode statistical analysis and clustering, but they may also be used for compression of
multidimensional arrays in ways similar to using a low-rank SVD for matrix compres-
sion. For example, color images are often stored as a sequence of RGB triplets, i.e.,
as separate red, green and blue overlays. An m × n pixel RGB image is represented
by an m × n × 3 array, and a collection of p such images is an m × n × 3 × p array
and can be compressed by a low-rank approximation.

The notation and basic properties of tensors are set forth in section 2. Several
definitions of orthogonality and several rank orthogonal decompositions for tensors are
given in section 3. Computational issues for orthogonal decompositions are discussed
in section 4. Finally in section 5, we present a counterexample to Leibovici and
Sabatier’s extension to tensors of the well-known Eckart–Young SVD approximation
theorem [13].

2. Tensors. Let A be an m1 ×m2 × · · · ×mn tensor over R. The order of A is
n. The jth dimension of A is mj . An element of A is specified as

Ai1i2···in ,

where ij ∈ {1, 2, . . . ,mj} for j = 1, . . . , n. The set of all tensors of size m1 ×m2 ×
· · ·×mn is denoted by T (m1,m2, . . . ,mn). The shorthand Tn may be used when only
the order needs to be specified, or just T may be used when the order and dimensions
are unambiguous.

∗Received by the editors March 1, 2000; accepted for publication (in revised form) by N. Higham
March 2, 2001; published electronically July 2, 2001. This work was supported by the Applied
Mathematical Sciences Research Program, Office of Energy Research, U.S. Department of Energy,
under contracts DE–AC05–96OR22464 with Lockheed Martin Energy Research Corporation and DE-
AC04-94AL85000 with Sandia Corporation. The U.S. Government retains a nonexclusive, royalty-
free license to publish or reproduce the published form of this contribution, or allow others to do
so, for U.S. Government purposes. Copyright is owned by SIAM to the extent not limited by these
rights.

http://www.siam.org/journals/simax/23-1/36835.html
†Computational Science and Mathematics Research Department, Sandia National Laboratories,

Livermore, CA 94551–9217 (tgkolda@sandia.gov).

243



244 TAMARA G. KOLDA

Let A,B ∈ T (m1,m2, . . . ,mn). The inner product 1 of A and B is defined as

A ·B ≡
m1∑
i1=1

m2∑
i2=1

· · ·
mn∑
in=1

Ai1i2···inBi1i2···in .

Correspondingly, the norm of A, ‖A‖, is defined as

‖A‖2 ≡ A ·A =
m1∑
i1=1

m2∑
i2=1

· · ·
mn∑
in=1

A2
i1i2···in .

We say A is a unit tensor if ‖A‖ = 1.
Example 2.1. Let x, y ∈ T (m); that is, x, y are vectors in R

m. Then x · y = xT y,
where the superscript T denotes transpose.

A decomposed tensor is a tensor U ∈ T (m1,m2, . . . ,mn) that can be written as

U = u(1) ⊗ u(2) ⊗ · · · ⊗ u(n),(2.1)

where ⊗ denotes the outer product and each u(j) ∈ R
mj for j = 1, . . . , n. The vectors

u(j) are called the components of U . In this case,

Ui1i2···in = u
(1)
i1
u

(2)
i2
· · ·u(n)

in
.

A decomposed tensor is a tensor of rank one for all the definitions of rank that we
present in the next section. Decomposed tensors form the building blocks for tensor
decompositions. The set of all decomposed tensors of size m1 × m2 × · · · × mn is
denoted by D(m1,m2, . . . ,mn) with shorthands analogous to T .

Lemma 2.2. Let U, V ∈ D, where U is defined as in (2.1) and V is defined by

V = v(1) ⊗ v(2) ⊗ · · · ⊗ v(n).(2.2)

Then

(a) U · V =
n∏

j=1

u(j) · v(j), (b) ‖U‖ =
n∏

j=1

‖u(j)‖2,

and (c) U + V ∈ D if and only if all but at most one of the components of U and V
are equal (within a scalar multiple).

Proof. Items (a) and (b) follow directly from the definitions. For item (c), consider
U, V ∈ D such that n−1 components are equal, i.e., u(i) = v(i) for i = 2, . . . , n. Then
W ≡ U + V can be written as

W = w(1) ⊗ u(2) ⊗ · · · ⊗ u(n),

where w(1) = u(1)+ v(1), so the “if” statement of (c) is true. Next we show the “only
if” statement of (c). First consider the special case where n = 2, m1 = m2 = 2,

U ≡
[
a
b

]
⊗
[
c
d

]
, V ≡

[
e
f

]
⊗
[
g
h

]
,

1In [13], the term is “contracted product” and the notation is 〈A,B〉.
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and W ≡ U + V ∈ D. Since W ∈ D, we can write it as

W ≡
[
p
q

]
⊗
[
r
s

]
.

Then, we have

pr = ac+ eg,(2.3)

ps = ad+ eh,(2.4)

qr = bc+ fg,(2.5)

qs = bd+ fh.(2.6)

Dividing (2.3) by (2.5) and (2.4) by (2.6) yields two ratios for p/q, and setting those
equal gives

ac+ eg

bd+ fh
=

bc+ fg

ad+ eh
.(2.7)

Cross-multiplying and simplifying (2.7) finally yields

(af − be)(ch− dg) = 0.

In other words, either u(1) = v(1) or u(2) = v(2) (within a scalar multiple). So, all but
at most one of the components of U and V must match if W ∈ D. This argument
can be extended to arbitrary n and mj .

We have shown that for two decomposed tensors to be combined to one decom-
posed tensor, they must match in all but at most one component. The same is not
necessarily true, however, when combining three or more decomposed tensors, as
shown in the next example.

Example 2.3. Consider the following example. Let a, b ∈ R
m with a⊥b and

‖a‖ = ‖b‖ = 1. Define c = 1√
2
(a+ b), and

U1 = a⊗ a⊗ a, U2 = a⊗ b⊗ c, U3 = a⊗ c⊗ b.

Then the sum of these three decomposed tensors can be rewritten as the sum of two
despite the fact that they only match in one component:

U1 + U2 + U3 =

√
3

2
(V1 + V2) ,

where

V1 = a⊗ d⊗ a, V2 = a⊗ e⊗ b,

with

d =

√
2

3
a+

√
1

3
b, e =

√
2

3
c+

√
1

3
b.

This is the result of splitting U2 into two pieces based on the third component.
We may also operate on tensors of different sizes. Specifically, tensors of different

orders may be multiplied as follows. Suppose C ∈ T (m1, . . . ,mj−1,mj+1, . . . ,mn) is



246 TAMARA G. KOLDA

a tensor of order n− 1 (note that mj is missing). Then the contracted product 2 of A
and C is a vector of length mj , and its ijth (1 ≤ ij ≤ mj) element is defined as

〈A · C〉(j)ij
≡

m1∑
i1=1

· · ·
mj−1∑
ij−1=1

mj+1∑
ij+1=1

· · ·
mn∑
in=1

Ai1···ij−1ijij+1···inCi1···ij−1ij+1···in .

Note that the superscript on the bracketed product indicates which dimension is
missing in the lower-order tensor C.

Example 2.4. Suppose A ∈ T (m1,m2) is a tensor of order two, i.e., A is a matrix.

If b ∈ T (m1), then 〈A · b〉(2) = AT b in matrix notation. Similarly, if c ∈ T (m2), then

〈A · c〉(1) = Ac.
Lemma 2.5. Let U ∈ D as defined in (2.1) and A ∈ T . Then

A · U =
〈
A · u(1) ⊗ · · · ⊗ u(j−1) ⊗ u(j+1) ⊗ · · · ⊗ u(n)

〉(j)

· u(j).

Proof. The proof follows from the definitions.

3. Orthogonal rank decompositions.

3.1. Notions of orthogonality. Let U, V ∈ D, be defined as in (2.1) and (2.2),
respectively. Without loss of generality, we assume ‖U‖ = ‖V ‖ = 1 and that the
components are unit vectors. We say that U and V are orthogonal (U⊥V ) if

U · V =
n∏

j=1

u(j) · v(j) = 0.

We say that U and V are completely orthogonal (U⊥cV ) if for every j = 1. . . . , n,

u(j)⊥v(j).

We say that U and V are strongly orthogonal (U⊥sV ) if U⊥V and for every j =
1, . . . , n,

u(j) = ± v(j) or u(j)⊥v(j).

From the definition of strong orthogonality, it follows that at least one pair must
satisfy u(j)⊥v(j) since we require U⊥V . Note that we could write u(j) = ± v(j) more
generally as u(j) = λj v

(j) for some λj �= 0, which is useful when ‖U‖ �= ‖V ‖.
The relationship between the different orthogonality definitions is given in the

following lemma.
Lemma 3.1. Let the decomposed tensors U and V of order n be defined as in

(2.1) and (2.2), respectively. Then

U⊥cV ⇒ U⊥sV ⇒ U⊥V.
3.2. Rank decompositions. Our goal is to express a tensor A ∈ T as a

weighted sum of decomposed tensors,

A =

r∑
i=1

σiUi,(3.1)

where σi > 0 for i = 1, . . . , r and each Ui ∈ D and ‖Ui‖ = 1 for i = 1, . . . , r.
2In [13], the notation A .. C is used for contracted products.
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• The rank ofA, denoted rank(A), is defined to be the minimal r such thatA can
be expressed as in (3.1). The decomposition is called the rank decomposition.
• The orthogonal rank of A, denoted rank⊥(A), is defined to be the minimal
r such that A can be expressed as in (3.1) and Ui⊥Uj for all i �= j. The
decomposition is called the orthogonal rank decomposition.

• The strong orthogonal rank of A, denoted rank⊥s
(A), is defined to be the

minimal r such that A can be expressed as in (3.1) and Ui⊥sUj for all i �= j.
The decomposition is called the strong orthogonal rank decomposition.3

As reported in [13], the definition of rank is due to Kruskal, although it was
proposed even earlier by Strassen and others (see [11] and references therein), and the
definitions of orthogonal and strong orthogonal rank is due to Franc [7]. The general
decomposition, orthogonal decomposition, and strong orthogonal decomposition satisfy
the orthogonality constraints (if any) but are not necessarily minimal in terms of r.
For matrices, all three rank decompositions are equivalent to the SVD.

Lemma 3.2. The rank, orthogonal rank, and strong orthogonal rank decomposi-
tion are each equivalent to the SVD for tensors of order two.

Proof. This follows from the properties of the SVD (cf. [8]).
In our discussion of rank decomposition, we did not present a completely orthogo-

nal decomposition. In fact, we are not in general guaranteed that such a decomposition
can be found, as we discuss later in this section.

A slightly different notion of rank that depends on special orthogonal decompo-
sition is the combinatorial orthogonal rank, denoted rank⊥t(A). It is defined as the
minimal r such that A can be written as

r∑
i1=1

r∑
i2=1

· · ·
r∑

in=1

σi1i2···in u
(1)
i1
⊗ u

(2)
i2
⊗ · · ·u(n)

in
,(3.2)

where σi1i2···in > 0; u
(j)
i ∈ R

mj with ‖u(j)
i ‖ = 1 for 1 ≤ i ≤ r and 1 ≤ j ≤ n; and

further, u
(j)
i1
⊥u(j)

i2
for all i1 �= i2, 1 ≤ i2, i2 ≤ r, 1 ≤ j ≤ n. Equivalently, let

Ui = u
(1)
i ⊗ u

(2)
i ⊗ · · · ⊗ u

(n)
i

and require Ui1⊥cUi2 for all i1 �= i2, 1 ≤ i1, i2 ≤ r, and ‖Ui‖ = 1, 1 ≤ i ≤ r. In other
words, the decomposition (3.2) is the result of combining the components of the Ui’s
in every possible way and is called the combinatorial orthogonal rank decomposition.
In this case, there are rn scalar multiples (i.e., σ-values) that are involved rather
than just r as in the other decompositions. This is the Tucker decomposition with
orthogonality constraints [14], hence the subscript in the notation. Note that the SVD
of a matrix is a combinatorial orthogonal rank decomposition, but the reverse is not
necessarily true.

Now we consider several examples that illustrate that the rank decompositions
are not necessarily unique.

Example 3.3. Let a, b ∈ R
m with a⊥b and ‖a‖ = ‖b‖ = 1, and let σ1 > σ2 > σ3 >

0. Define A ∈ T (m,m,m) as

A = σ1 a⊗ b⊗ b︸ ︷︷ ︸
U1

+ σ2 b⊗ b⊗ b︸ ︷︷ ︸
U2

+ σ3 a⊗ a⊗ a︸ ︷︷ ︸
U3

.(3.3)

3In [13], the terms “free orthogonal rank” and “free rank decomposition” are used rather than
“strong orthogonal rank” and “strong orthogonal rank decomposition.”
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Note that Ui⊥sUj for all i �= j, so (3.3) is a strong orthogonal decomposition of A.
Furthermore, A cannot be expressed as the sum of fewer weighted strong orthogonal
decomposed tensors, so the strong orthogonal rank of A is three. Observe that A can
also be expressed as

A = σ̂1 â⊗ b⊗ b︸ ︷︷ ︸
Û1

+ σ̂2 â⊗ a⊗ a︸ ︷︷ ︸
Û2

+ σ̂3 b̂⊗ a⊗ a︸ ︷︷ ︸
Û3

,(3.4)

where

σ̂1 =
√
σ2

1 + σ2
2 , σ̂2 =

σ1 σ3

σ̂1
, σ̂3 =

σ2 σ3

σ̂1
,

â =
σ1 a+ σ2 b

σ̂1
, and b̂ =

σ2 a− σ1 b

σ̂1
.

Since â⊥b̂, we have Ûi⊥sÛj for all i �= j. Therefore (3.4) is also a strong orthogonal
rank decomposition of A, and so the strong orthogonal rank decomposition is not
unique.

Example 3.4. Consider the tensor A as defined by (3.3); A can also be written as

A = σ̄Ū + σ3U3,(3.5)

where

σ̄ =
√
σ2

1 + σ2
2 and Ū =

σ1 a+ σ2 b

σ̄
⊗ b⊗ b.

Observe that Ū⊥U3; in fact, (3.5) is an orthogonal rank decomposition of A, and
therefore the orthogonal rank of A is two. An alternative orthogonal rank decompo-
sition of A is given by

A = σ̃ Ũ + σ2U2,(3.6)

where

σ̃ =
√
σ2

1 + σ2
3 and Ũ = a⊗ σ1 b+ σ3 a

σ̃
⊗ b.

Note that Ũ⊥Û2, so (3.6) is also an orthogonal rank decomposition of A and the
orthogonal rank decomposition is not unique.

Lemma 3.5. Neither the orthogonal rank, strong orthogonal rank, nor combina-
torial orthogonal rank decomposition is unique.

Proof. See Examples 3.3 and 3.4.
Although the SVD for matrices is known to be unique up to rotation [8], the rank

tensor decompositions are not. This is an important difference which we return to
later in this section.

Example 3.6. We show how to “orthogonalize” a tensor in a relatively simple
situation. Suppose that we have an order three tensor A ∈ T (m1,m2,m3) defined as
follows:

A = σ1U + σ2V,
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where σ1 ≥ σ2 and

U = u(1) ⊗ u(2) ⊗ u(3),

V = v(1) ⊗ v(2) ⊗ v(3)

with u(i), v(i) unequal, nonorthogonal unit vectors in R
mi for i = 1, 2, 3.

For i = 1, 2, 3, we can decompose v(i) as

v(i) = α(i)u(i) + α̂(i)û(i),

where

α(i) = v(i) · u(i),

α̂(i) = ‖v(i) − α(i)u(i)‖, and
û(i) = (v(i) − α(i)u(i))/α̂(i).

Then, we can rewrite A as

A = (σ1 + σ2 α
(1)α(2)α(3)) u(1) ⊗ u(2) ⊗ u(3)

+ σ2 α
(1)α(2)α̂(3) u(1) ⊗ u(2) ⊗ û(3)

+ σ2 α
(1)α̂(2)α(3) u(1) ⊗ û(2) ⊗ u(3)

+ σ2 α
(1)α̂(2)α̂(3) u(1) ⊗ û(2) ⊗ û(3)

+ σ2 α̂
(1)α(2)α(3) û(1) ⊗ u(2) ⊗ u(3)

+ σ2 α̂
(1)α(2)α̂(3) û(1) ⊗ u(2) ⊗ û(3)

+ σ2 α̂
(1)α̂(2)α(3) û(1) ⊗ û(2) ⊗ u(3)

+ σ2 α̂
(1)α̂(2)α̂(3) û(1) ⊗ û(2) ⊗ û(3).

(3.7)

Equation (3.7) shows that rank⊥s(A) ≤ 8. Because of the way U and V were chosen
(components neither equal nor orthogonal), (3.7) is a strong orthogonal rank decompo-
sition of A, and rank⊥s(A) = 8. (From (3.7), we can also deduce that rank⊥t(A) = 2.)
This is not, however, an orthogonal rank decomposition. Combining each pair of lines
in (3.7), we get

A =
√
γ2 + γ̂2 u(1) ⊗ u(2) ⊗ (γu(3) + γ̂û(3))/

√
γ2 + γ̂2

+ σ2 α
(1)α̂(2) u(1) ⊗ û(2) ⊗ v(3)

+ σ2 α̂
(1)α(2) û(1) ⊗ u(2) ⊗ v(3)

+ σ2 α̂
(1)α̂(2) û(1) ⊗ û(2) ⊗ v(3),

(3.8)

where

γ = σ1 + σ2 α
(1)α(2)α(3) and γ̂ = σ2 α

(1)α(2)α̂(3).

Finally, combining the last two lines of (3.8), we arrive at an orthogonal rank decom-
position

A =
√
γ2 + γ̂2 u(1) ⊗ u(2) ⊗ (γu(3) + γ̂û(3))/

√
γ2 + γ̂2

+ σ2 α
(1)α̂(2) u(1) ⊗ û(2) ⊗ v(3)

+ σ2 α̂
(1) û(1) ⊗ v(2) ⊗ v(3),

so rank⊥(A) = 3. Note that combining vectors from (3.7) in different order would
have resulted in a different orthogonal rank decomposition.
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We now see some relationship between the different ranks, stated formally in the
next theorem.

Theorem 3.7 (see [13]). For a given tensor A,

rank(A) ≤ rank⊥(A) ≤ rank⊥s
(A).(3.9)

Further, for any order n > 2, there exists A ∈ Tn such that strict inequality holds.
Proof. The first part follows from Lemma 3.1. An example of strict inequality

for a tensor of order three (n = 3) is given in Example 3.6, and that example can be
generalized to any order.

For a matrix, all four definitions of tensor rank reduce to the standard definition
of matrix rank.

Corollary 3.8 (see [13]). For any A ∈ T2,
rank(A) = rank⊥(A) = rank⊥s(A) = rank⊥t(A).

Proof. This follows from Lemma 3.2.
Earlier we mentioned the notion of a completely orthogonal decomposition; this

corresponds to a combinatorial orthogonal decomposition in which only the diago-
nal elements (σii···i) are nonzero; and so, in general, tensors cannot be diagonalized.
A similar observation was made by Denis and Dhorne [4]. When a tensor can be
diagonalized, all the ranks are equal.

Corollary 3.9 (see [13]). For any order n > 2, there exists A ∈ Tn such that
A cannot be decomposed as the weighted sum of completely orthogonal tensors. If a
tensor can be decomposed as the weighted sum of completely orthogonal decomposed
tensors, then equality holds in (3.9).

Proof. See the construction of the decompositions of A in Example 3.6 to prove
the first statement. The second statement follows intuitively from the fact that each
subspace has dimension r, and the rank of the tensor cannot be less than the smallest-
dimensional subspace.

Franc [6] made observations similar to Theorem 3.7 and Corollary 3.9. Matrices
(i.e., tensors of order two) are special cases that always have a completely orthogonal
decomposition, as follows from Corollaries 3.8 and 3.9.

We now return to the concept of uniqueness in the rank decomposition. We have
several examples illustrating that the strong orthogonal rank and orthogonal rank
decompositions are not unique. A partial “fix” for lack of uniqueness is the following.
Without loss of generality, assume that the σi’s in (3.1) are always ordered so that
σ1 ≥ σ2 ≥ · · · ≥ σr. Then define the unique (strong) orthogonal rank decomposition
to be the (strong) orthogonal rank decomposition that has the largest possible σ1, and
given that choice for σ1, has the largest possible σ2, and so forth. This decomposition
is unique in the sense that the weights are unique. The unit decomposed tensors are
unique if and only if no two σi’s are equal, similar to the fact that the SVD is unique
up to rotation. A unique combinatorial orthogonal rank decomposition can be defined
in a more complicated way by sequentially choosing each Uk so that

k∑
i1=1

k∑
i2=1

· · ·
k∑

in=1

σ2
i1i2···in

is maximized.
Example 3.10. In Example 3.3, the unique strong orthogonal rank decomposition

is given by (3.4). Similarly, in Example 3.4, the unique orthogonal rank decomposition
is given by (3.5).
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4. Greedy tensor decompositions. We now consider the computation of an
orthogonal decomposition and present a method for generating a greedy orthogonal
decomposition. Our goal is to compute a sequence (for p = 1, 2, . . .) of weighted
decomposed tensors such that

A =

p∑
i=1

σiUi,

where Ui⊥Uj for all i �= j and ‖Ui‖ = 1 for all i. We call this the greedy orthogonal
decomposition because the {σ, U} pairs are computed iteratively. We do not yet
make any claims as to whether or not this greedy orthogonal decomposition yields an
orthogonal rank decomposition.

In the greedy orthogonal decomposition, define the kth residual tensor as

Rk ≡ A−
k∑

i=1

σiUi

with R0 = A, and let the set of tensors Uk be defined as

Uk = {U1, U2, . . . , Uk}

with U0 = ∅. Our goal is to find the best rank one approximation to the current
residual subject to orthogonality constraints; that is, we wish to solve

min fk(σ, U) ≡ ‖Rk − σU‖2 subject to (s.t.) U ∈ D, ‖U‖ = 1, U⊥Uk.

We can rewrite fk as

fk(σ, U) = ‖Rk‖2 − 2σRk · U + σ2‖U‖2.

At the solution, we have

∂fk
∂σ
≡ −2Rk · U + 2σ‖U‖2 = 0,

so we can solve for σ and conclude that minimizing fk is the same as solving

max Rk · U s.t. U ∈ D, ‖U‖ = 1, U⊥Uk.(4.1)

We define Uk+1 to be the solution of (4.1) and let σk+1 = Rk · Uk+1. We repeat the
process until Rk+1 = 0.

A greedy strong orthogonal decomposition can be similarly described, and it re-
duces to solving

max Rk · U s.t. U ∈ D, ‖U‖ = 1, U⊥s Uk,(4.2)

at each iteration. Likewise, we may also construct a sort of greedy approach for the
combinatorial orthogonal decomposition.

Lemma 4.1. The greedy orthogonal, strong orthogonal, and combinatorial decom-
positions are finite.

Proof. This is a consequence of the fact that there are at most M =
∏n

j=1 mj

orthogonal or strong orthogonal decomposed tensors.
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Solving (4.1) or (4.2) is a very challenging task. For example, in order to solve
(4.1), we might use an alternating least squares (ALS) approach as follows. For ) =
1, . . . , n, fix all components of U but the )th and solve

max s · u(
) s.t. ‖U‖ = 1, U⊥Uk,

where

s =
〈
Rk · u(1) ⊗ · · · ⊗ u(
−1) ⊗ u(
+1) ⊗ · · · ⊗ u(n)

〉(
)

.

The difficulty with this approach is in enforcing the constraints.

Zhang and Golub [15] explore various computational techniques when the ten-
sor has a completely orthogonal decomposition, in which case the problem is much
simpler. In [13], the RPVSCC method uses ALS to find the modes, i.e., the com-
pletely orthogonal decomposed tensors, and then fills in the values associated with
the combinations of the components of the modes. De Lathauwer [3] presents several
ALS methods for computing the higher-order SVD. Kroonenberg and de Leeuw [10]

propose an ALS solution to (3.2) so that at each step an entire set {u(j)
i }mj

i=1 is solved
for some j while everything else is fixed. In other words, the method concentrates on
one subspace at a time.

5. Approximation of a tensor. The well-known Eckart–Young approximation
theorem [5, 8] says that if the SVD of a matrix is given by

A =
r∑

i=1

σiuiv
T
i ,

with σ1 ≥ σ2 ≥ · · · ≥ σr > 0, then the best rank-k approximation is given by

Ak ≡
k∑

i=1

σiuiv
T
i .

A consequence of this result is that the SVD can be computed via a greedy method
which calculates each triplet {σi, ui, vi} in sequence. Now we can ask whether or not
the Eckart–Young theorem can be extended to tensor rank decompositions; i.e., is the
best rank-k approximation of a tensor given by the sum of the first k terms in its
rank decomposition? This relates directly to whether or not the greedy orthogonal,
strong orthogonal, or combinatorial decompositions produce a corresponding rank
decomposition.

In the case of the strong orthogonal rank decomposition, the answer is definitely
no, contrary to the result stated in [13], as the following counterexample shows.

Example 5.1. Consider the strong orthogonal rank decomposition of a matrix
A ∈ T (m,m,m) defined by

A =

6∑
i=1

σiUi,

where the {σi, Ui} pairs are defined as follows. Let the vectors a, b, c, d ∈ R
m be
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two-by-two orthogonal; then let

σ1 = 1.00, U1 = a⊗ a⊗ a,
σ2 = 0.75, U2 = b⊗ b⊗ b,
σ3 = 0.70, U3 = a⊗ c⊗ d,
σ4 = 0.70, U4 = a⊗ d⊗ c,
σ5 = 0.65, U5 = b⊗ c⊗ d,
σ6 = 0.65, U6 = b⊗ d⊗ c.

Note that σ3U3 and σ5U5 can be combined to form the decomposed tensor

γ1V1 ≡
√
σ2

3 + σ2
5

σ3a+ σ5b√
σ2

3 + σ2
5

⊗ c⊗ d.(5.1)

Similarly, σ4U4 and σ6U6 can be combined to form

γ2V2 ≡
√
σ2

4 + σ2
6

σ4a+ σ6b√
σ2

4 + σ2
6

⊗ d⊗ c.(5.2)

However,

γ1 = γ2 ≈ 0.9552 < σ1 = 1,

so neither (5.1) nor (5.2) is the best rank one approximation to A; A1 ≡ σ1U1 is.
However, the best strong orthogonal rank two approximation is given by

A2 ≡ γ1V1 + γ2V2

because V1⊥sV2 and

γ2
1 + γ2

2 = 1.825 > σ2
1 + σ2

2 = 1.5625.

Thus, we have a counterexample to any Eckart–Young-type theorem for strong or-
thogonal rank decompositions.

Example 5.1 can be reworked as follows to show that the combinatorial orthogonal
rank decomposition does not yield a best rank-k approximation either.

Example 5.2. Consider the tensor defined in Example 5.1. Let e and f be any
vectors that are orthogonal to each other and also to a and b. We can express a
combinatorial orthogonal rank decomposition of A as follows:

A =

4∑
i1=1

4∑
i2=1

4∑
i3=1

σ̄i1i2i3 ū
(1)
i1
⊗ ū

(2)
i2
⊗ ū

(3)
i3
,

where

Ū1 = a⊗ a⊗ a, Ū3 = e⊗ c⊗ d,
Ū2 = b⊗ b⊗ b, Ū4 = f ⊗ d⊗ c,

and the only nonzero σ̄’s are

σ̄111 = σ1, σ̄222 = σ2, σ̄133 = σ3, σ̄233 = σ4, σ̄144 = σ5, σ̄244 = σ6.
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So, rank⊥t
(A) = 4. The best combinatorial orthogonal rank one approximation to A

is Ā1 = σ̄111Ū1 = σ1U1 (the same as the best strong orthogonal rank one approxima-
tion). However, the best combinatorial orthogonal rank two approximation is yielded
by

Ā2 =

2∑
i1=1

2∑
i2=1

2∑
i3=1

γ̄i1i2i3 v̄
(1)
i1
⊗ v̄

(2)
i2
⊗ v̄

(3)
i3
.

Here

V̄1 ≡ V1 and V̄2 ≡ g ⊗ d⊗ c,

where g is some vector orthogonal to v
(1)
1 , and the only nonzero γ̄’s are γ̄111 = γ1 and

γ̄122 = γ2.

The problem of whether or not the Eckart–Young result can be extended to the
orthogonal decomposition is still an open question. Example 2.3 shows that it is
possible to add an orthogonal decomposed tensor to a sum without increasing its
rank (U1 + U2 has rank 2 as does U1 + U2 + U3). This is contrary to a fundamental
assumption used in the proof of Theorem 2 in [13]. We also have the problem of
uniqueness since, by Example 3.4, we know that the orthogonal decomposition is not
unique. One possible solution to this problem is the definition proposed at the end of
section 3.2. We now seek either a proof or counterexample of the following.

Open Problem 5.3 (Eckart–Young extended). Let the unique orthogonal rank
decomposition of a tensor A be given as in (3.1) and assume that σ1 ≥ σ2 ≥ · · · ≥ σr.
Then the best orthogonal rank p (p < r) approximation to A satisfies

min
rank⊥Ap=p

‖A−Ap‖2 =
r∑

i=p+1

σ2
i

and is given by

Ap ≡
p∑

i=1

σiui.

6. Conclusions. There are multiple ways to orthogonally decompose tensors,
depending both on the definition of orthogonality as well as on the definitions of
decomposition and rank. An Eckart–Young type of best rank-k approximation theo-
rem for tensors continues to elude our investigations but can perhaps eventually be
attained by using a different norm or yet other definitions of orthogonality and rank.

Computing an orthogonal tensor decomposition is a challenge as well. Most meth-
ods are variations on ALS, a method which can be very slow to converge, although
recently several authors (cf. [3, 15]) have presented new ideas.
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Abstract. We derive an algorithm for real symmetric Toeplitz systems with an arbitrary right-
hand side, which differs from both the Levinson and the so-called “split Levinson” algorithms. While
exploiting ideas from the split Levinson approach, it also takes advantage of the even-odd properties
of Toeplitz matrices. For a system of order n, our algorithm achieves a complexity of 5

2
n2 + O(n)

flops on a sequential machine, compared to 3n2 + O(n) flops for the split Levinson algorithm and
4n2 +O(n) flops for the classical Levinson algorithm.
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1. Introduction. Toeplitz matrices occur in a host of applications in engineering
(signal and image processing), numerical analysis, and elsewhere. The most common
problems involving these matrices are the computation of some or all of their eigen-
values and the solution of systems of linear equations that have such matrices as their
coefficient matrix. A good overview of the many areas in which Toeplitz problems are
encountered can be found in [5].

Eigenvalue problems appear in certain signal processing problems such as har-
monic retrieval (see, e.g., [21]) and were considered, among many others, e.g., in [8]
and [22]. There is a wide range of applications of linear systems with a Toeplitz coef-
ficient matrix: the computation of Padé approximations is but one example. In signal
processing, such systems are ubiquitous, most notably in linear prediction (see, e.g.,
[19]). There exists a vast body of literature on Toeplitz matrices of which it would
be impossible to give a complete list. Let us just mention that many early general
results can be found in [14].

This work concentrates on real symmetric Toeplitz systems, and we restrict our-
selves to the important case where all principal submatrices are nonsingular. Such
cases are common in many physical applications in which the matrices involved are
positive-definite.

Two classes of methods, specially tailored for solving such systems, are the so-
called fast methods, with a complexity of O(n2) flops (for an overview, we refer the
reader to [13]) and the so-called superfast methods (see, e.g., [1], [2], [4]), which are
based on the fast Fourier transform and have a complexity of O(n log2 n) flops. (Fol-
lowing [13], we define a flop, or floating-point operation, as an addition, subtraction,
multiplication, or division.) However, for matrix dimensions of up to several hun-
dred, the fast methods need fewer operations, and it is on those methods that we will
concentrate.

A classical algorithm for solving symmetric Toeplitz systems with an arbitrary
right-hand side is the one by Levinson [18], which is related to the theory of orthog-
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onal polynomials on the unit circle (see, e.g., [15], [16]). This algorithm requires the
solution of a special system, the so-called Yule–Walker system, for which the right-
hand side contains part of the first row of the matrix. If Durbin’s method [12] is used
for this specialized system, the complexity of Levinson’s algorithm on a sequential
machine is 4n2 + O(n) flops for a system of order n. The complexity of Durbin’s
algorithm for the Yule–Walker system is 2n2 + O(n) flops. This algorithm was im-
proved by Delsarte and Genin in [10] by proposing the “split Levinson” method for
the Yule–Walker system, achieving a complexity of 3

2n
2 + O(n) flops. An algorithm

for a system with arbitrary right-hand side, proposed by the same authors in [11],
improved upon Levinson’s algorithm by achieving a complexity of 3n2 +O(n) flops.

However, Toeplitz matrices exhibit an interesting even-odd structure, which man-
ifests itself most clearly in their eigenvalues, of which there are two types: even and
odd, belonging to even and odd eigenvectors, respectively (see, e.g., [6]). Further-
more, this even-odd structure can be exploited for linear systems as well. This was
done in [20], where it led to yet another fast method for the general right-hand side
problem. Since this method is able to exploit even-odd properties of the right-hand
side, which the aforementioned methods cannot, we will call it the “even-odd Levinson
algorithm.” It has a complexity of 7

2n
2 +O(n) flops.

In this work we combine the even-odd Levinson algorithm with the split Levinson
algorithm from [11] to construct a method for the general right-hand side problem,
which we call the “even-odd split Levinson algorithm,” and which achieves a com-
plexity of 5

2n
2+O(n) flops. Moreover, it computes either the even or the odd part of

the solution with only 2n2 +O(n) flops, so that, if two independent processors were
available, the solution itself could also be obtained with only 2n2 +O(n) flops. This
contrasts with the Levinson and split Levinson methods, the complexity of which in
such cases remains the same at 4n2 +O(n) and 3n2 +O(n) flops, respectively.

We reported only the coefficient of n2 in all complexity results, which we consider
justified because of the relatively small coefficient of n (never more than roughly
20) and the negative constant term for all methods concerned. This means that for
n ≥ 15 the coefficient of n2 is an accurate indicator of which algorithm requires fewer
operations.

All aforementioned algorithms can be extended to the nonsymmetric case, al-
though this would be beyond the scope of the present paper, as would be possible
extensions to the complex case or to block Toeplitz systems. We also did not consider
numerical stability, though we expect the numerical behavior of all methods described
here to be similar to that of the Durbin algorithm (see [7]) and the split Levinson
algorithm (see [17]).

A substantial part of this paper is devoted to a review of previous algorithms
in a unified notation without which the new algorithm we propose would be difficult
to explain. The paper is organized as follows. In section 2 we present some basic
definitions and results, and then, in section 3, we introduce the classical Durbin and
Levinson algorithms. In section 4 the split Levinson algorithms are described, in
section 5 the same is done for the even-odd Levinson algorithm, and in section 6 the
new method, the even-odd split Levinson algorithm, is presented. Finally, in section 7,
we present a summary of the complexities for the different methods.

2. Preliminaries. A symmetric matrix Tn ∈ R
(n,n) is said to be Toeplitz if its

elements (Tn)ij satisfy (Tn)ij = ρ|j−i|, where {ρj}n−1
j=0 are the components of a vector

(ρ0, tn−1)
T ∈ R

n with tn−1 = (ρ1, . . . , ρn−1)
T ∈ R

n−1 so that
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Tn =




ρ0 ρ1 ρ2 . . . ρn−1

ρ1 ρ0 ρ1 . . . ρn−2

...
...

... . . .
...

ρn−2 ρn−3 ρn−4 . . . ρ1

ρn−1 ρn−2 ρn−3 . . . ρ0


 .(2.1)

Many early results about such matrices can be found in, e.g., [3], [6], [9], [12], and [18].
The identity matrix is denoted by I throughout this paper, and we will not specif-

ically indicate its dimension, which is assumed to be clear from the context. We denote
by J the matrix with ones on its southwest-northeast diagonal and zeros everywhere
else (the exchange matrix). As with I, we will not specifically indicate its dimension.

Toeplitz matrices are persymmetric, i.e., they are symmetric about their southwest-
northeast diagonal. For such a matrix Tn, this is the same as requiring that JT

T
n J =

Tn. It is easy to see that the inverse of a persymmetric matrix is also persymmetric.
A matrix that is both symmetric and persymmetric is called doubly symmetric.

An even (sometimes also referred to as symmetric) vector v is defined as a vector
satisfying Jv = v, and an odd (sometimes called antisymmetric or skew-symmetric)
vector w is defined as one that satisfies Jw = −w.

Throughout this paper, it will be assumed that the matrix Tn is strongly nonsin-
gular, i.e., that its principal submatrices Tk, k = 1, 2, . . . , n, are all nonsingular.

3. The Durbin and Levinson algorithms. For the sake of convenience, we
now briefly present both Durbin’s and Levinson’s algorithms, as the rest of this paper
builds heavily on these two methods. At the same time, it allows us to introduce the
notation we will need later on.

3.1. Durbin’s algorithm. The Yule–Walker equations we referred to in the in-
troduction are given by Tny

(n) = −tn, where Tn is as in (2.1) and tk = (ρ1, . . . , ρk)
T .

Durbin’s algorithm solves this system by recursively computing the solutions to lower-
dimensional systems. Let us now describe a basic step of Durbin’s algorithm, while re-
ferring to [13, pp. 194–196] for full details. Assuming that the solution to Tk−1y

(k−1) =
−tk−1 is available, the algorithm computes the solution to Tky

(k) = −tk as follows.
Compute ȳ(k−1), by which we denote the first k − 1 components of y(k), and αk−1,
the last component of y(k), from

(
Tk−1 Jtk−1

(Jtk−1)
T ρ0

)(
ȳ(k−1)

αk−1

)
= −

(
tk−1

ρk

)
,

which leads to

ȳ(k−1) = T−1
k−1(−tk−1 − αk−1Jtk−1) = y(k−1) + αk−1Jy

(k−1)(3.1)

and

αk−1 = −
ρk + t

T
k−1Jy

(k−1)

ρ0 + tTk−1y
(k−1)

·(3.2)

In addition, we define, as in [13], βk = ρ0+ t
T
k y

(k). The following recursion then holds
(see [13, p. 195]):

βk = (1− α2
k−1)βk−1.(3.3)
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The first step of the method consists of solving a trivial 1× 1 system, whereas in
the final step y(n) is computed from y(n−1), βn−1, and αn−1. The quantities αk are
called reflection coefficients, or Schur–Szegö parameters.

Complexity. The complexity of this algorithm can be calculated by observing
that to obtain y(k) from y(k−1), a scalar product needs to be computed, after which
y(k−1) is updated. All together, this requires k additions and k multiplications (not
counting a constant number of operations) for each step. This means that the al-
gorithm requires a total of n2 + O(n) additions and n2 + O(n) multiplications, or
2n2 +O(n) flops.

3.2. Levinson’s algorithm. We now turn to the general right-hand side prob-
lem Tnx

(n) = b(n), with b(k) = (b1, b2, . . . , bk)
T , and a method for solving it—

Levinson’s algorithm. It is very similar in structure to Durbin’s algorithm, and its
basic step is given as follows. Assuming that the solutions to Tk−1x

(k−1) = b(k−1) and
Tk−1y

(k−1) = −tk−1 are available, the algorithm computes the solution to Tkx
(k) =

b(k) as follows. Compute x̄(k−1), the first k − 1 components of x(k), and µk−1, by
which we denote the last component of x(k), from

(
Tk−1 Jtk−1

(Jtk−1)
T ρ0

)(
x̄(k−1)

µk−1

)
=

(
b(k−1)

bk

)
,

which leads to

x̄(k−1) = T−1
k−1(b

(k−1) − µk−1Jtk−1) = x(k−1) + µk−1Jy
(k−1)(3.4)

and

µk−1 =
bk − tTk−1Jx

(k−1)

ρ0 + tTk−1y
(k−1)

·(3.5)

Durbin’s algorithm is used “in parallel” for computing the solutions y(k) of the Yule–
Walker subsystems.

Complexity. Since for this algorithm it is assumed that the solutions to the Yule–
Walker subsystems are already available from Durbin’s algorithm, its complexity is
obtained by noting that, to calculate x(k) from x(k−1), a scalar product needs to be
computed, after which x(k−1) is updated. All together, this requires k additions and k
multiplications (not counting a constant number of operations) per step. Taking into
account the complexity of Durbin’s algorithm, this means that the algorithm requires
a total of 2n2 +O(n) additions and 2n2 +O(n) multiplications, or 4n2 +O(n) flops.

4. The split Durbin and split Levinson algorithms. The “split Levinson”
algorithms for the Yule–Walker equations and for the general case were introduced
in [10] and [11], respectively. We present those algorithms in quite some detail be-
cause we will need those details later on and because the different notation used in
the aforementioned references makes it difficult to interpret the results in our own
notation. We stress that we will merely rewrite known results from [10] and [11] in a
notation that is more useful for us. However, in the spirit of [13], we will call the split
Levinson algorithm for Yule–Walker equations from [10] the “split Durbin algorithm”
to distinguish it from the split Levinson algorithm for the general right-hand side case
in [11].
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4.1. The split Durbin algorithm for the Yule–Walker equations. We
start with the split Levinson algorithm from [10] for the Yule–Walker equations
Tny

(n) = −tn, from now on called the “split Durbin” algorithm. Defining an even
solution u(k) of these equations as the solution of Tku

(k) = −(tk + Jtk), or u
(k) =

y(k) + Jy(k), and an odd solution as the solution of Tkv
(k) = −(tk − Jtk), or v(k) =

y(k) − Jy(k), this algorithm is based on the remarkable observation that the solution
y(k) can be written either as a combination of the two successive even solutions u(k)

and u(k−1) or as a combination of the two successive odd solutions v(k) and v(k−1).
It is therefore sufficient to compute either the even or the odd solutions. As we shall
see, this can be achieved with fewer operations than Durbin’s algorithm.

In what follows, we concentrate on the even solutions and refer to [10] for the
corresponding (and almost entirely analogous) results for the odd solutions.

We begin by showing the relation between y(k) and the even solutions u(k) and
u(k−1). We recall that the first k − 1 components of y(k) were defined as ȳ(k−1), i.e.,
y(k) = ((ȳ(k−1))T , αk−1)

T , where αk−1 is defined by (3.2). We then have with (3.1)

ȳ(k−1) + Jȳ(k−1) = (y(k−1) + αk−1Jy
(k−1)) + (Jy(k−1) + αk−1y

(k−1))

= (1 + αk−1)(y
(k−1) + Jy(k−1))

= (1 + αk−1)u
(k−1).(4.1)

We can now use (4.1) to determine y(k) from u(k) and u(k−1):

u(k) = y(k) + Jy(k) =

(
ȳ(k−1)

αk−1

)
+

(
αk−1

Jȳ(k−1)

)

=

(
ȳ(k−1)

αk−1

)
+

(
αk−1

−ȳ(k−1) + (1 + αk−1)u
(k−1)

)

or

u
(k)
1 = u

(k)
k = ȳ

(k−1)
1 + αk−1,

u
(k)
j = ȳ

(k−1)
j − ȳ(k−1)

j−1 + (1 + αk−1)u
(k−1)
j−1 (2 ≤ j ≤ k − 1).

Taking into account the definitions of ȳ(k−1) and αk−1, we obtain y
(k) in terms of u(k)

and u(k−1):

y
(k)
1 = u

(k)
1 − αk−1,(4.2)

y
(k)
j = y

(k)
j−1 + u

(k)
j − (1 + αk−1)u

(k−1)
j−1 (2 ≤ j ≤ k).(4.3)

It is therefore possible to obtain y(n) by computing only the even solutions. Equations
(4.2) and (4.3) correspond to (14) in [10]. The odd versions of these results are
represented by (26) in [10].

Of course, a recursive algorithm which computes even solutions needs to be able
to express even solutions in terms of previous even solutions. Let us now show that
this is indeed possible. We start by observing that for 2 ≤ j ≤ k − 1

y
(k)
j = y

(k−1)
j + αk−1(Jy

(k−1))j = y
(k−1)
j + αk−1y

(k−1)
k−j ,(4.4)

and therefore

y
(k)
j−1 = y

(k−1)
j−1 + αk−1y

(k−1)
k−j+1.(4.5)
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Combining (4.4) and (4.5) with (4.3) yields for 2 ≤ j ≤ k − 1

y
(k)
j − y(k)

j−1 =
(
y
(k−1)
j − y(k−1)

j−1

)
− αk−1

(
y
(k−1)
k−j+1 − y(k−1)

k−j

)
=
(
u

(k−1)
j − (1 + αk−2)u

(k−2)
j−1

)
− αk−1

(
u

(k−1)
k−j+1 − (1 + αk−2)u

(k−2)
k−j

)
= u

(k−1)
j − (1 + αk−2)u

(k−2)
j−1 − αk−1

(
u

(k−1)
j−1 − (1 + αk−2)u

(k−2)
j−1

)
.

With (4.3), this gives for 2 ≤ j ≤ k − 1

u
(k)
j = (1 + αk−1)u

(k−1)
j−1 + u

(k−1)
j − (1 + αk−2)u

(k−2)
j−1

− αk−1

(
u

(k−1)
j−1 − (1 + αk−2)u

(k−2)
j−1

)
,

and therefore

u
(k)
j = u

(k−1)
j + u

(k−1)
j−1 + (αk−1 − 1)(1 + αk−2)u

(k−2)
j−1 .(4.6)

For the first and last components of u(k), we start from (4.3) for j = k. This
yields

u
(k)
k = y

(k)
k − y(k)

k−1 + (1 + αk−1)u
(k−1)
k−1

= y
(k)
k −

(
y
(k−1)
k−1 + αk−1(Jy

(k−1))k−1

)
+ (1 + αk−1)u

(k−1)
k−1

= y
(k)
k −

(
y
(k−1)
k−1 + αk−1u

(k−1)
k−1 − αk−1y

(k−1)
k−1

)
+ (1 + αk−1)u

(k−1)
k−1

= y
(k)
k + (αk−1 − 1)y(k−1)

k−1 + u
(k−1)
k−1 .

Because of the definition of αk and because u
(k) is an even vector, we can write

u
(k)
1 = u

(k)
k = u

(k−1)
1 + (αk−1 − 1)(1 + αk−2) + 1.(4.7)

We note that (4.6) and (4.7) correspond to (17) in [10], and the odd counterpart
is given by (25) in [10]. Expressions (4.6) and (4.7) form a three-term recurrence
relation, expressing u(k) in terms of u(k−1) and u(k−2). Together with (4.2) and (4.3),
they are the essence of the split Durbin algorithm for the Yule–Walker equations.

To make the algorithm practical, it should be possible to express the quantity
(αk−1−1)(1+αk−2) in terms of known “even” quantities. To that effect, we consider
the following:

tTk u
(k) = tTk

(
y(k) + Jy(k)

)
=
(
ρ0 + t

T
k y

(k)
)
+
(
ρk+1 + t

T
k Jy

(k)
)
− (ρ0 + ρk+1)

= βk + (−αkβk)− (ρ0 + ρk+1)

or

ρ0 + t
T
k u

(k) + ρk+1 = (1− αk)βk.(4.8)

Using (4.8) and recalling that βk =
(
1− α2

k−1

)
βk−1, we therefore have

(1− αk−1)(1 + αk−2) =
(1− αk−1)βk−1

βk−1
· (1− α

2
k−2)βk−2

(1− αk−2)βk−2



262 A. MELMAN

=
(1− αk−1)βk−1

βk−1
· βk−1

(1− αk−2)βk−2

=
ρ0 + t

T
k−1u

(k−1) + ρk

ρ0 + tTk−2u
(k−2) + ρk−1

·

As one can see, the right-hand side contains only “even” quantities, which are easily
computed. This is the first expression in (19) in [10]; the second one represents its odd
counterpart. That the denominator in the last expression can never be zero because
of the strong nonsingularity assumptions on the coefficient matrix was also explicitly
shown in [20, bottom of p. 148].

For the even solutions, the reflection coefficients αk can also be obtained from
(4.2) and (4.3), as follows:

y
(k)
1 +

k∑
j=2

(
y
(k)
j − y(k)

j−1

)
=

k∑
j=1

u
(k)
j − (1 + αk−1)

k−1∑
j=1

u
(k−1)
j − αk−1,

where we have used the fact that y
(k)
k = αk−1. Since the left-hand side telescopes into

y
(k)
k , solving for αk−1 then yields

αk−1 =

∑k
j=1 u

(k)
j −∑k−1

j=1 u
(k−1)
j∑k−1

j=1 u
(k−1)
j + 2

·(4.9)

This expression, which corresponds to (23) in [10], can be shown to be well defined
under the strong nonsingularity of Tn. It has no odd analogue: in the odd case the
reflection coefficients αk must be computed recursively (see (18) in [10]).

We summarize this algorithm for the even solutions (the odd case is analogous)
as follows.

Given u(k−2) and u(k−1), compute u(k) for k = 3, . . . , n from

u
(k)
1 = u

(k)
k = u

(k−1)
1 − ρ0 + t

T
k−1u

(k−1) + ρk

ρ0 + tTk−2u
(k−2) + ρk−1

+ 1,

u
(k)
j = u

(k−1)
j + u

(k−1)
j−1 −

(
ρ0 + t

T
k−1u

(k−1) + ρk

ρ0 + tTk−2u
(k−2) + ρk−1

)
u

(k−2)
j−1 (2 ≤ j ≤ k − 1).

After this, compute αn−1 from (4.9) and y(n) from

y
(n)
1 = u

(n)
1 − αn−1,

y
(n)
j = y

(n)
j−1 + u

(n)
j − (1 + αn−1)u

(n−1)
j−1 (2 ≤ j ≤ n).

All necessary quantities for k = 1, 2 are easily computed before starting the algo-
rithm. As was mentioned before, the reflection coefficients αk can also be computed
recursively (see (18) in [10]).

Of course, one needs only to compute roughly half of the components of the even
or odd vectors, and this was taken into consideration in the following complexity
calculations.

Complexity. Taking into account the fact that an even vector is determined by
roughly half of its components, the number of operations required to compute u(k)
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from u(k−1) and u(k−2) is given by 2k additions and k multiplications for each step
(once again, not counting a constant number of operations), which stem from the
computation of one scalar product and the update. The operation count for the odd
case is identical. The total number of operations is therefore n2+O(n) additions and
1
2n

2 +O(n) multiplications, or 3
2n

2 +O(n) flops.
4.2. The split Levinson algorithm for the general case. We now turn to

the general right-hand side problem Tnx
(n) = b(n), where b(k) = (b1, . . . , bk)

T . We
define the even vectors s(k) = b(k) + Jb(k) for k = 1, . . . , n. We also define an even
solution w(k) as the solution of Tkw

(k) = s(k) or w(k) = x(k) + Jx(k). As in the
case of the Yule–Walker equations, the solution x(k) can be written in terms of the
two successive even solutions w(k) and w(k−1). It is therefore sufficient, once again,
to compute only the even solutions, which requires fewer operations than Levinson’s
algorithm. Analogous results exist for the odd solutions, but we will discuss only
the even case as this is the case we will need in section 6. We begin by showing the
relation between the general solution and successive even solutions.

Defining the first k−1 components of x(k) as x̄(k−1), i.e., x(k) = ((x̄(k−1))T , µk−1)
T ,

we obtain from (3.4)

x̄(k−1) + Jx̄(k−1) =
(
x(k−1) + µk−1Jy

(k−1)
)
+
(
Jx(k−1) + µk−1y

(k−1)
)

= w(k−1) + µk−1u
(k−1).(4.10)

We now use (4.10) to determine x(k) from w(k) and w(k−1):

w(k) = x(k) + Jx(k) =

(
x̄(k−1)

µk−1

)
+

(
µk−1

Jx̄(k−1)

)

=

(
x̄(k−1)

µk−1

)
+

(
µk−1

−x̄(k−1) + w(k−1) + µk−1u
(k−1)

)

or

w
(k)
1 = w

(k)
k = x̄

(k−1)
1 + µk−1,

w
(k)
j = x̄

(k−1)
j − x̄(k−1)

j−1 + w
(k−1)
j−1 + µk−1u

(k−1)
j−1 (2 ≤ j ≤ k − 1).

Taking into account the definitions of x̄(k) and µk−1, these last two expressions
yield x(k) in terms of w(k), w(k−1), and u(k−1):

x
(k)
1 = w

(k)
1 − µk−1,(4.11)

x
(k)
j = x

(k)
j−1 + w

(k)
j − w(k−1)

j−1 − µk−1u
(k−1)
j−1 (2 ≤ j ≤ k).(4.12)

Once again, to be able to construct a useful recursive algorithm for a system with
an even right-hand side, we must be able to express even solutions in terms of previous
even solutions. We begin with the observation that, for 2 ≤ j ≤ k − 1,

x
(k)
j = x

(k−1)
j + µk−1(Jy

(k−1))j = x
(k−1)
j + µk−1y

(k−1)
k−j ,(4.13)

and therefore

x
(k)
j−1 = x

(k−1)
j−1 + µk−1y

(k−1)
k−j+1.(4.14)
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Combining (4.13) and (4.14) yields for 2 ≤ j ≤ k − 1

x
(k)
j − x(k)

j−1 =
(
x

(k−1)
j − x(k−1)

j−1

)
− µk−1

(
y
(k−1)
k−j+1 − y(k−1)

k−j

)
.

With (4.3) and (4.12) this becomes

x
(k)
j − x(k)

j−1 =
(
w

(k−1)
j − w(k−2)

j−1 − µk−2u
(k−2)
j−1

)
− µk−1

(
u

(k−1)
j−1 − (1 + αk−2)u

(k−2)
j−1

)
.

With the help of (4.12), we then obtain for 2 ≤ j ≤ k − 1

w
(k)
j = w

(k−1)
j−1 + µk−1u

(k−1)
j−1 +

(
w

(k−1)
j − w(k−2)

j−1 − µk−2u
(k−2)
j−1

)
− µk−1

(
u

(k−1)
j−1 − (1 + αk−2)u

(k−2)
j−1

)
,

and therefore

w
(k)
j = w

(k−1)
j + w

(k−1)
j−1 − w(k−2)

j−1 + (µk−1(1 + αk−2)− µk−2)u
(k−2)
j−1 .(4.15)

For the first and last components of w(k), we start from (4.12) for j = k. This gives

w
(k)
k = x

(k)
k − x(k)

k−1 + w
(k−1)
k−1 + µk−1u

(k−1)
k−1

= x
(k)
k −

(
x

(k−1)
k−1 + µk−1(Jy

(k−1))k−1

)
+ w

(k−1)
k−1 + µk−1

(
y
(k−1)
k−1 + (Jy(k−1))k−1

)
= x

(k)
k − x(k−1)

k−1 + w
(k−1)
k−1 + µk−1y

(k−1)
k−1 .

Because of the definition of µk and because w
(k) is an even vector, we can thus write

w
(k)
1 = w

(k)
k = w

(k−1)
1 + (µk−1(1 + αk−2)− µk−2) .(4.16)

Equations (4.15) and (4.16) correspond to (28) in [11]. These expressions form a recur-
rence relation, expressing w(k) in terms of w(k−1), w(k−2), and u(k−2). Together with
(4.11) and (4.12), they are the essence of the split Levinson algorithm for arbitrary
right-hand side.

To make this a working algorithm, we will now express (µk−1(1 + αk−2)− µk−2)
in terms of known “even” quantities. For that purpose, we consider the following for
1 ≤ k ≤ n− 1:

tTkw
(k) = tTk

(
x(k) + Jx(k)

)
= tTk x

(k) −
(
bk+1 − tTk Jx(k)

)
+ bk+1,

and therefore

tTk x
(k) = tTkw

(k) + µkβk − bk+1.(4.17)

On the other hand,

tTk x
(k) = tTk−1x̄

(k−1) + ρkx
(k)
k

= tTk−1x
(k−1) + µk−1t

T
k−1Jy

(k−1) + ρkµk−1

= tTk−1x
(k−1) + µk−1

(
ρk + t

T
k−1Jy

(k−1)
)

= tTk−1x
(k−1) − µk−1αk−1βk−1,
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where αk−1 and βk−1 are as defined in Durbin’s algorithm. Applying (4.17) with k−1
instead of k, this becomes

tTk x
(k) = tTk−1w

(k−1) + µk−1βk−1 − bk − µk−1αk−1βk−1

= tTk−1w
(k−1) + (1− αk−1)βk−1µk−1 − bk.(4.18)

Combining (4.17) with (4.18), we obtain

tTkw
(k) + µkβk − bk+1 = tTk−1w

(k−1) + (1− αk−1)βk−1µk−1 − bk,
which then yields

µk−1βk−1(1− αk−1)− µkβk = tTkw
(k) − tTk−1w

(k−1) − bk+1 + bk.(4.19)

With βk = (1− α2
k−1)βk−1, the left-hand side in (4.19) becomes

µk−1βk−1(1− αk−1)− µkβk = (1− αk−1)βk−1

(
µk−1 − µk

βk
(1− αk−1)βk−1

)

= (1− αk−1)βk−1

(
µk−1 − µk

(1− α2
k−1)βk−1

(1− αk−1)βk−1

)

= (1− αk−1)βk−1 (µk−1 − µk(1 + αk−1)) .

We recall from (4.8) that (1 − αk−1)βk−1 = ρ0 + tTk−1u
(k−1) + ρk, which, when sub-

stituted back into (4.19) for k − 1 instead of k, finally leads to

µk−2 − µk−1(1 + αk−2) =
tTk−1w

(k−1) − tTk−2w
(k−2) − bk + bk−1

ρ0 + tTk−2u
(k−2) + ρk−1

·(4.20)

The right-hand side now contains only computable “even” quantities. The expression
in (4.20) corresponds to (23) in [11].

The reflection coefficients µk can be obtained from (4.11) and (4.12) as follows:

x
(k)
1 +

k∑
j=2

(
x

(k)
j − x(k)

j−1

)
=

k∑
j=1

w
(k)
j −

k−1∑
j=1

w
(k−1)
j − µk−1

k−1∑
j=1

u
(k−1)
j − µk−1,

where we have used the fact that x
(k)
k = µk−1. Since the left-hand side telescopes into

x
(k)
k , solving for µk−1 then yields

µk−1 =

∑k
j=1 w

(k)
j −∑k−1

j=1 w
(k−1)
j

2 +
∑k−1

j=1 u
(k−1)
j

·(4.21)

This expression is, once again, well defined, and corresponds to (16) in [11].
The algorithm can be summarized in the following way. Given w(k−2), w(k−1),

u(k−2), and u(k−1), compute for k = 3, . . . , n, u(k) by using the split Durbin algorithm,
and compute w(k) from

w
(k)
1 = w

(k)
k = w

(k−1)
1 − tTk−1w

(k−1) − tTk−2w
(k−2) − bk + bk−1

ρ0 + tTk−2u
(k−2) + ρk−1

,

w
(k)
j = w

(k−1)
j + w

(k−1)
j−1 − w(k−2)

j−1 −
(
tTk−1w

(k−1) − tTk−2w
(k−2) − bk + bk−1

ρ0 + tTk−2u
(k−2) + ρk−1

)
u

(k−2)
j−1

(2 ≤ j ≤ k − 1).
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After this, compute µn−1 from (4.21), and compute x(n) from

x
(n)
1 = w

(n)
1 − µn−1,

x
(n)
j = x

(n)
j−1 + w

(n)
j − w(n−1)

j−1 − µn−1u
(n−1)
j−1 (2 ≤ j ≤ n).

All necessary quantities for k = 1, 2 are easily computed before starting the algorithm.
The reflection coefficients µk can also be computed recursively (see (26) in [11]).

Complexity. Since for this algorithm it is assumed that the solutions to the even
Yule–Walker subsystems are already available from the split Durbin algorithm in [10],
its complexity is determined by an additional scalar product per step and the update
from w(k−1) and w(k−2) to w(k). All this requires 2k additions and k multiplications
(not including a constant number of operations) for each step. Taking into account
the complexity of the split Durbin’s algorithm for the Yule–Walker equations, this
means that the algorithm requires a total of 2n2 + O(n) additions and n2 + O(n)
multiplications, or 3n2 +O(n) flops.

5. The even-odd Levinson algorithm. All previous algorithms are based on
recursions, derived from the following partition of Tk:(

Tk−1 Jtk−1

(Jtk−1)
T ρ0

)
.

However, such a partition is rather ill-suited for a matrix with all the symmetry
properties of a Toeplitz matrix. In [20] an algorithm was proposed for the general
right-hand side problem Tnx

(n) = b(n), based on a recursion derived from a different
and more appropriate partition, as we will see below. This algorithm, which we will
refer to as the “even-odd Levinson algorithm,” needs the solutions to the Yule–Walker
equations, just like Levinson’s algorithm and the split Levinson algorithm. In this
method, these are provided by Durbin’s algorithm. We summarize the basic properties
of this algorithm, and we refer the reader to [20] for the precise details.

We recall that s(k) = b(k) + Jb(k), w(k) = T−1
k s(k) and define a(k) = b(k) − Jb(k)

and z(k) = T−1
k a(k). With 
ξ� denoting the integer part of ξ when ξ is a nonnegative

number, we also define the even vectors p(k) = (s
(n)

�n−k
2 �+1

, . . . , s
(n)

�n+k
2 �)

T so that p(n) =

s(n), and h(k) = T−1
k p(k) so that h(n) = w(n). Analogously, we define the odd vectors

r(k) = (a
(n)

�n−k
2 �+1

, . . . , a
(n)

�n+k
2 �)

T , and g(k) = T−1
k r(k). We have r(n) = a(n) and g(n) =

z(n). By their construction, the vectors s(n) and a(n) satisfy

s
(n)

�n−k
2 �+1

= s
(n)

�n+k
2 � and a

(n)

�n−k
2 �+1

= −a(n)

�n+k
2 �.

We note that when k �= n, then, in general, p(k) �= s(k), r(k) �= a(k), h(k) �= w(k), and
g(k) �= z(k).

The even-odd Levinson algorithm computes the solutions of Tkh
(k) = p(k) and

Tkg
(k) = r(k) for k = 2, 4, . . . , n when n is even and for k = 1, 3, . . . , n when n is odd.

Let us now describe its basic step, referring to [20] for the details.
Assuming that the solutions of Tk−2h

(k−2) = p(k−2) and Tk−2g
(k−2) = r(k−2) are

available, along with the solution of Tk−2y
(k−2) = −tk−2, this method computes h

(k)

and g(k) from


 ρ0 tTk−2 ρk−1

tk−2 Tk−2 Jtk−2

ρk−1 (Jtk−2)
T ρ0




 λk−2

h̄(k−2)

λk−2


 =




s
(n)

�n−k
2 �+1

p(k−2)

s
(n)

�n+k
2 �


(5.1)
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and


 ρ0 tTk−2 ρk−1

tk−2 Tk−2 Jtk−2

ρk−1 (Jtk−2)
T ρ0




 θk−2

ḡ(k−2)

−θk−2


 =




a
(n)

�n−k
2 �+1

r(k−2)

a
(n)

�n+k
2 �


 ,(5.2)

where h̄(k−2) and ḡ(k−2) are vectors containing the k − 2 middle components of h(k)

and g(k), respectively, and λk−2 and θk−2 are the first components of h
(k) and g(k),

respectively (their last components are λk−2 and −θk−2, respectively). This leads to

h̄(k−2) = T−1
k−2

(
p(k−2) − λk−2(tk−2 + Jtk−2)

)
= h(k−2) + λk−2u

(k−2),

ḡ(k−2) = T−1
k−2

(
r(k−2) − θk−2(tk−2 − Jtk−2)

)
= g(k−2) + θk−2v

(k−2),

and

λk−2 =
s
(n)

�n−k
2 �+1

− tTk−2h
(k−2)

ρ0 + tTk−2u
(k−2) + ρk−1

, θk−2 =
a
(n)

�n−k
2 �+1

− tTk−2g
(k−2)

ρ0 + tTk−2v
(k−2) − ρk−1

·

We recall that u(k) and v(k) were defined as u(k) = y(k) + Jy(k) and v(k) =
y(k) − Jy(k). The algorithm starts with trivial 1× 1 or 2 × 2 systems, depending on
whether the dimension n is odd or even, respectively. The even and odd solutions
to the Yule–Walker equations are obtained from Durbin’s algorithm. The algorithm
ends with the even and odd solutions h(n) = w(n) and g(n) = z(n), respectively, after
which the solution x(n) is computed as 1

2

(
h(n) + g(n)

)
.

Complexity. Since it is assumed that the even and odd solutions are formed
from the solutions of the Yule–Walker subsystems, provided by Durbin’s algorithm,
the complexity is determined by an additional two scalar products and two updates
per step. This requires 4k additions and 2k multiplications, not including a constant
number of operations, per step. Since the recursion for this part of the algorithm
progresses in steps of two, this means that a total of n2 +O(n) additions and 1

2n
2 +

O(n) multiplications should be added to Durbin’s algorithm’s complexity, bringing
the total number of operations to 2n2+O(n) additions and 3

2n
2+O(n) multiplications

or 7
2n

2 +O(n) flops.
6. The even-odd split Levinson algorithm. In this section we combine the

split Durbin algorithm with the even-odd Levinson algorithm into a new method for
the general right-hand side problem Tnx

(n) = b(n), which we will call the “even-odd
split Levinson algorithm.” We saw in section 4.2 that to compute x(n) it is sufficient
to have available w(n), w(n−1), and u(n−1).

We now propose to use the even-odd Levinson algorithm to compute the even
solutions w(n) and w(n−2), while the even solutions to the Yule–Walker equations are
provided by the split Durbin algorithm from [10], which was summarized in section 4.1.
The even solutions w(n) and w(n−2) are then used to find w(n−1) from (4.15) and
(4.16), after which the solution x(n) is computed from (4.11) and (4.12). We consider
this in detail after describing the recursive structure of the algorithm.

Before proceeding with the latter, we define

p(k) =
(
s
(n)

�n−k
2 �+1

, . . . , s
(n)

�n+k
2 �

)T
,
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q(k) =
(
s
(n−2)

�n−k
2 �, . . . , s

(n−2)

�n+k
2 �−1

)T
,

h(k)
p = T−1

k p(k),

h(k)
q = T−1

k q(k).

This means that p(n) = s(n), q(n−2) = s(n−2), h
(n)
p = w(n), and h

(n−2)
q = w(n−2). We

also define h̄
(k−2)
p and h̄

(k−2)
q as the vectors containing the middle k − 2 components

of h
(k)
p and h

(k)
q , respectively, whereas λpk−2 and λ

q
k−2 are the first (and therefore also

last) components of h
(k)
p and h

(k)
q , respectively.

Assuming that h
(k−2)
p , h

(k−2)
q , and u(k−2) are available, the basic step is given as

follows. For k = 4, 6, . . . , n − 2 (n even), or k = 3, 5, 7, . . . , n − 2 (n odd), compute
the solution of

 ρ0 tTk−2 ρk−1

tk−2 Tk−2 Jtk−2

ρk−1 (Jtk−2)
T ρ0




 λpk−2

h̄
(k−2)
p

λpk−2


 =




s
(n)

�n−k
2 �+1

p(k−2)

s
(n)

�n+k
2 �


 ,(6.1)

which, as in the even-odd Levinson algorithm, leads to

h̄(k−2)
p = T−1

k−2

(
p(k−2) − λpk−2(tk−2 + Jtk−2)

)
= h(k−2)

p + λpk−2u
(k−2)(6.2)

and

λpk−2 =
s
(n)

�n−k
2 �+1

− tTk−2h
(k−2)
p

ρ0 + tTk−2u
(k−2) + ρk−1

·(6.3)

In addition, compute


 ρ0 tTk−2 ρk−1

tk−2 Tk−2 Jtk−2

ρk−1 (Jtk−2)
T ρ0




 λqk−2

h̄
(k−2)
q

λqk−2


 =




s
(n−2)

�n−k
2 �

q(k−2)

s
(n−2)

�n+k
2 �−1


 ,(6.4)

which leads to

h̄(k−2)
q = T−1

k−2

(
q(k−2) − λqk−2(tk−2 + Jtk−2)

)
= h(k−2)

q + λqk−2u
(k−2)(6.5)

and

λqk−2 =
s
(n−2)

�n−k
2 � − tTk−2h

(k−2)
q

ρ0 + tTk−2u
(k−2) + ρk−1

·(6.6)

This produces h
(n−2)
q = w(n−2). Perform (6.1), (6.2), and (6.3) once more, for k = n,

to obtain h
(n)
p = w(n). The algorithm is initialized by solving a trivial 1× 1 or 2× 2

system, depending on whether n is odd or even, respectively.
Let us now show how we can compute the remaining quantities, necessary to

calculate x(n), in O(n) operations. We start by computing w(n−1) from w(n) and
w(n−2). From (4.15) and (4.16), we have

w
(n−1)
1 = w

(n)
1 + η,(6.7)

w
(n−1)
j = −w(n−1)

j−1 + w
(n)
j + w

(n−2)
j−1 + ηu

(n−2)
j−1 (2 ≤ j ≤ n− 1),(6.8)

where
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η =
tTn−1w

(n−1) − tTn−2w
(n−2) − bn + bn−1

ρ0 + tTn−2u
(n−2) + ρn−1

·(6.9)

To compute w(n−1), we first compute η, for which we use the fact that

tTn−1w
(n−1) = tTn−1T

−1
n−1(b

(n−1) + Jb(b−1)) = (tn−1 + Jtn−1)
TT−1

n−1b
(n−1)

= −(u(n−1))T b(n−1).

The remaining components of w(n−1) then follow from (6.8).
Finally, we compute µn−1 from (4.21) and obtain for the solution x(n)

x
(n)
1 = w

(n)
1 − µn−1,

x
(n)
j = −x(n)

j−1 + w
(n)
j − w(n−1)

j−1 − µn−1u
(n−1)
j−1 (2 ≤ j ≤ n).

Therefore, the computation of w(n−1) and, subsequently, of x(n), requires an
additional O(n) flops.

We conclude the description of this new algorithm, the even-odd split Levinson
algorithm, by noting that we used the even solutions to obtain the general solution.
It would not be possible to do the same with the odd solutions because the reflection
coefficients µk are not computed by the even-odd Levinson algorithm. In the even
case this is not necessary because we can obtain these also from (4.21), as we did
at the end of the algorithm when we calculated µn−1 to obtain the general solution.
However, (4.21) has no analogue in the odd case. Of course, if one wants to compute
only the odd solution, then the reflection coefficients are not necessary.

Complexity. Since the even solutions of the Yule–Walker equations are assumed
to be available from the split Durbin algorithm, several quantities in the even-odd
Levinson algorithm need not be recomputed. The only remaining operations to be
carried out are two scalar products and two updates, representing k additions and k
multiplications, per step. Since k increases by two at every step, this means a total
of 1

2n
2 + O(n) additions and 1

2n
2 + O(n) multiplications. Taking into account the

complexity of the split Durbin algorithm, the complexity of this combined algorithm is
3
2n

2+O(n) additions and n2+O(n) multiplications or 5
2n

2+O(n) flops. To compute
only the even or only the odd solutions of a system with arbitrary right-hand side,
there is no need to compute w(n−2), so that the even-odd split Levinson method
requires 5

4n
2 + O(n) additions and 3

4n
2 + O(n) multiplications or 2n2 + O(n) flops.

This also means that if one has two independent processors available, rather than just
one, then the solution x(n) can be computed in only 2n2 +O(n) flops. We note that
the split Levinson algorithm in [11] cannot reduce its complexity in such cases.

7. Summary. Table 7.1 contains the number of floating point operations needed
by the different methods described in this work to solve an arbitrary right-hand side
problem on a sequential machine.

Table 7.1
Comparison of the complexity of methods for an arbitrary right-hand side problem.

Method Additions Multiplications Total number of flops

Levinson 2n2 +O(n) 2n2 +O(n) 4n2 +O(n)

Split Levinson 2n2 +O(n) n2 +O(n) 3n2 +O(n)

Even-odd Levinson 2n2 +O(n) 3
2
n2 +O(n) 7

2
n2 +O(n)

Even-odd split Levinson 3
2
n2 +O(n) n2 +O(n) 5

2
n2 +O(n)
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Abstract. When minimum orderings proved too difficult to deal with, Rose, Tarjan, and Lueker
instead studied minimal orderings and how to compute them [SIAM J. Comput., 5 (1976), pp. 266–
283]. This paper introduces an algorithm that is capable of computing much better minimal orderings
much more efficiently than the algorithm of Rose, Tarjan, and Lueker. The new insight is a way to
use certain structures and concepts from modern sparse Cholesky solvers to reexpress one of the basic
results of Rose, Tarjan, and Lueker. The new algorithm begins with any initial ordering and then
refines it until a minimal ordering is obtained. It is simple to obtain high-quality low-cost minimal
orderings by using fill-reducing heuristic orderings as initial orderings for the algorithm. We examine
several such initial orderings in some detail. Our results here and previous work by others indicate
that the improvements obtained over the initial heuristic orderings are relatively small because the
initial orderings are minimal or nearly minimal. Nested dissection orderings provide some significant
exceptions to this rule.

Key words. minimal orderings, minimal fill, LEX M algorithm, supernodes, minimum degree,
nested dissection, multisection, sparse matrix computations
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1. Introduction. Let A be an n × n symmetric positive definite matrix, let P
be an n × n permutation matrix, and let L be the Cholesky factor of PAPT . A
minimum ordering is any ordering P that minimizes the number of nonzero entries
in L, subject to the usual assumption that no lucky cancellation occurs. Rose, Tarjan,
and Lueker [19] conjectured that the problem of computing a minimum ordering
is NP-complete, and later Yannakakis [22] verified this conjecture. Rose, Tarjan,
and Lueker [19] turned their attention instead to the easier problem of computing a
minimal ordering. This paper revisits this problem: we give a new method for refining
any initial ordering to obtain a minimal ordering whose fill is a subset of the initial
ordering’s fill. Others [3, 4, 5, 6, 7] have revisited this problem previously and taken a
similar overall approach. The work of Blair, Heggernes, and Telle [5, 6] is particularly
relevant. How the work herein relates to previous work, especially [5] and [6], will be
discussed at various points throughout the paper, and also will be summarized in the
concluding remarks in section 6.

Following Rose, Tarjan, and Lueker, we use graphs to define minimal orderings.
Let G = (V,E) be the graph of PAPT ; that is, V = {1, 2, . . . , n} and an undirected
edge {i, j}, i �= j, belongs to E if and only if the (i, j)-entry of PAPT is not zero.
(Only the labeling of the vertices varies as P varies; the structure of the graph and of
course the number of edges, e = |E|, remain the same.) Define G+ to be the fill graph
associated with PAPT ; that is, G+ is the graph of L+LT under the usual assumption
that no lucky cancellation occurs. Note that G+ = (V,E ∪ F ), where F is composed
of the fill edges created by the elimination process; hence, G+ is a supergraph of G.

∗Received by the editors December 3, 1999; accepted for publication (in revised form) by S. Vavasis
December 15, 2000; published electronically July 2, 2001. This work was supported by the Applied
Mathematical Sciences subprogram of the Office of Science, U.S. Department of Energy contract
DE-AC05-00OR22725 with UT-Battelle, LLC.

http://www.siam.org/journals/simax/23-1/36443.html
†Computational Sciences Section, Computer Science and Mathematics Division, Oak Ridge Na-

tional Laboratory, P. O. Box 2008, Building 6012, Oak Ridge, TN 37831-6367 (peytonbw@ornl.gov).

271



272 BARRY W. PEYTON

A graph is chordal if every cycle of length greater than three has a chord, that is, an
edge joining two nonadjacent vertices in the cycle. It is well known [17, 18] that G+

is a chordal supergraph of G. A minimum ordering P minimizes the number of edges
in G+ over all orderings; in this case, G+ is a minimum chordal supergraph of G. For a
minimal chordal supergraph G∗ = (V,E∪F ∗) of G, every supergraph G′ = (V,E∪F ′)
of G such that F ′ ⊂ F ∗ is not chordal. A minimal ordering produces a fill graph G+

that is a minimal chordal supergraph of G.

We are motivated primarily, but not solely, by the application to sparse symmetric
positive definite factorization. At the most general level, we are interested simply in
computing minimal orderings with genuinely low fill as efficiently as possible. We are
also motivated by the following questions and issues.

1. We would like to investigate how close to minimal various heuristic orderings
are.

2. We would like to observe how much savings in factor storage and work can
be obtained by obtaining a minimal ordering from a good heuristic initial
ordering.

3. Sometimes a different perfect elimination ordering of the fill graph is desired.
Such an ordering is known as an equivalent ordering . If the fill graph is not
minimal, then an equivalent ordering may drop fill from the graph and hence
not be truly equivalent; the so-called equivalent ordering then perturbs the
original storage scheme. Minimal fill ensures that any equivalent ordering
does not drop fill and hence is truly equivalent.

4. More broadly speaking, a primary goal of this paper is to carry a few of the
key insights in Rose, Tarjan, and Lueker [19] back into the sparse factorization
setting in a fruitful way.

We use a key result in Rose, Tarjan, and Lueker [19] to lay the groundwork for
a new minimal ordering algorithm. Beginning with any initial ordering, the new al-
gorithm generates a sequence of reorderings, each removing additional fill from the
current fill graph, until a minimal chordal supergraph, and hence a minimal ordering,
is obtained. Several familiar concepts and algorithms from sparse Cholesky factoriza-
tions are used to formulate and implement the algorithm; these include elimination
trees, supernodes, supernodal elimination trees, topological orderings, the minimum
degree algorithm, and column counts. Although we assume that readers will have
some familiarity with these concepts and algorithms, we also include references and
a minimum of background material where needed.

Both the LEX M algorithm of Rose, Tarjan, and Lueker [19] and the algorithm
of Ohtsuki [16] compute a minimal ordering in O(ne) time; both the algorithm of
Berry [3] and the algorithm of Dahlhaus [7] also compute a minimal ordering in O(ne)
time. Let f = |F |. The algorithm of Blair, Heggernes, and Telle [5, 6] computes a
minimal ordering in O(f(e + f)) time. Partly because of the use of quotient graphs
and minimum degree in the new algorithm, the new algorithm’s time complexity
remains unknown; consequently, we rely exclusively on empirical testing to evaluate
the algorithm’s time efficiency. The first tests we conduct in section 5 confirm that
LEX M does not measure up to the new minimal ordering algorithm in either ordering
quality or ordering time. The same should hold true for the algorithm of Ohtsuki.
The algorithms of Berry and Dahlhaus also produce high-quality minimal orderings
from high-quality initial orderings, but we did not determine empirically how fast
they do it because

1. the algorithms of Berry and Dahlhaus also run in O(ne) time, and
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2. implementing these algorithms is significantly more difficult than implement-
ing LEX M.

However, an implementation of the algorithm of Blair, Heggernes, and Telle was made
available to us by the authors, so we were able to run some empirical tests for this
algorithm. The first tests for our algorithm use minimum degree with true degree
and no multiple elimination (MDtru) to produce the initial orderings. These initial
orderings are often minimal or very close to minimal; often the minimal ordering
algorithm serves merely as a relatively cheap means to verify that the initial ordering
is minimal.

Many of the tests in section 5 with other initial orderings produce similar results,
though there are some differences worth observing. The orderings tested include
random orderings, METIS nested dissection (ND) orderings [11], multisection (MS)
orderings [2, 10] based on METIS ND, and multiple minimum degree orderings with
external degree (MMDext) as introduced by Liu [13]. Roughly speaking, most of the
MDtru orderings are minimal, the MMDext orderings are very close to minimal,
and the MS orderings are close to minimal. The ND orderings are not as close
to minimal as the other ordering heuristics, and some of the ND orderings are far
from minimal. Finally, the random orderings are extremely far from minimal, but
the minimal orderings obtained from random initial orderings are poor fill-reducing
orderings and are expensive to compute. Blair, Heggernes, and Telle [6] first observed
that minimum degree orderings are far closer to minimal than ND orderings when
they applied their algorithm to MMDext and METIS ND initial orderings.

The following gives an outline of this paper. Section 2 presents background mate-
rial from Rose, Tarjan, and Lueker [19] and from the area of sparse Cholesky factor-
ization. It also uses a simple example to introduce the key idea behind the algorithm.
Section 3 presents the main result, which uses some concepts and tools from sparse
Cholesky factorization to recast one of the insights in Rose, Tarjan, and Lueker.
In section 4 the main result forms the basis for a new minimal ordering algorithm.
Section 5 compares the new algorithm with the LEX M algorithm, experiments with
various initial orderings, and finally compares the new algorithm with the algorithm
of Blair, Heggernes, and Telle. Section 6 summarizes and adds a few concluding
remarks.

2. Background. In section 2.1, we state a scheme for obtaining a minimal
chordal supergraph from a nonminimal chordal supergraph; the scheme is implicit in
a result of Rose, Tarjan, and Lueker [19]. With further development and refinement,
this scheme will become an algorithm for computing minimal orderings. Section 2.1
also states another key result from [19]. In section 2.2, we give some concepts and
tools from sparse Cholesky factorization that will be used to develop the new minimal
ordering algorithm. Section 2.3 highlights the key idea behind the algorithm as it
plays out on a very small example.

2.1. Computing minimal chordal supergraphs. Let G∗ be a chordal super-
graph of the graph G. A candidate edge {u, v} is any fill edge such that G∗ remains
chordal after {u, v} has been removed from the graph. Rose, Tarjan, and Lueker [19]
showed that every nonminimal chordal supergraph has a candidate edge. As an im-
mediate consequence of this result and the definition of candidate edges, we have the
following proposition.

Proposition 2.1 (Rose, Tarjan, and Lueker [19]). A chordal supergraph is
minimal if and only if it has no candidate edges.
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Input: a chordal supergraph G∗ of the graph G.
while there is a candidate edge in G∗ do

remove a candidate edge from the graph G∗;
endwhile;

Fig. 2.1. Scheme for generating a minimal chordal supergraph.

As an immediate consequence of Proposition 2.1, the scheme shown in Figure 2.1
will produce a minimal chordal supergraph. Both the algorithm introduced in this pa-
per and the algorithm in Blair, Heggernes, and Telle [5, 6] explicitly remove candidate
edges until minimality is achieved. The set of candidate edges changes as edges are
removed from the graph: some noncandidate fill edges may become candidate edges;
some candidate edges may cease to be candidate edges.

The following proposition from Rose, Tarjan, and Lueker [19] characterizes the
candidate edges.

Proposition 2.2 (Rose, Tarjan, and Lueker [19]). Let G∗, which is (V,E ∪ F ),
be a chordal supergraph of G, which is (V,E). A fill edge {u, v} ∈ F of G∗ is not a
candidate edge if and only if there exist two vertices a and z such that a and z are
both adjacent to u and v in G∗ but are not adjacent to one another in G∗.

In section 3, we use concepts and tools from sparse Cholesky factorization to
recast this characterization in the case where G∗ is the fill graph G+ associated with
the graph G of PAPT .

2.2. Concepts and tools from sparse factorization. The fill graph G+ is
obtained from the graph G of PAPT by an elimination process that models the
factorization elimination process. Let Gk be the graph obtained from G by adding
every edge needed to make the vertices adjacent to k (adjG[k]) a clique and then by
eliminating k and the edges incident upon k. The elimination process replaces G
with G1, G with G2, G with G3, and so on, until it finally replaces G with Gn−1. The
fill graph has the edges belonging to the original graph G along with the fill edges
generated by the elimination process. We also define an elimination graph GX for
an arbitrary subset of vertices X. This graph is obtained by using the elimination
process to eliminate in any order the vertices of X (and only the vertices of X). The
resulting graph is independent of the order in which the vertices of X are removed.

For a vertex k of a graph G′, let madjG′ [k] be the neighbors of k in G′ that
are numbered higher than k. The parent function of the elimination tree (or forest)
associated with a fill graph G+ is defined as follows: if madjG+ [k] is empty, then the
parent of k is null and k is a root in the forest; otherwise, the parent of k is the
lowest numbered member of madjG+ [k]. The following fact [15] proves useful later on.
Let c1, c2, . . . , ct be the children of a vertex p in the elimination tree. Then

{p} ∪madjG+ [p] =

(
t⋃

i=1

madjG+ [ci]

)
∪ {p} ∪madjG[p].(2.1)

Note that (2.1) holds only for fill graphs G+ and not for arbitrary chordal supergraphs.

A vertex a is an ancestor of vertex d (and d is a descendant of a) if a lies on the
path from d to the root of d’s tree in the elimination forest. The vertex a is a proper
ancestor of vertex d (and d is a proper descendant of a) if a is distinct from d and an
ancestor of d.



MINIMAL ORDERINGS REVISITED 275

Supernodes have become a familiar tool in various computations associated with
sparse factorizations. The fundamental supernode partition is commonly used and has
received some attention. Liu, Ng, and Peyton [12] give an algorithm that computes the
fundamental supernode partition in O(n+ e) time. The supernode partition defined
here and used by our algorithm is similar to supernode partitions used in practice,
but it does not consist of fundamental supernodes nor does it define the maximal
cliques of the chordal graph. This departure from the usual supernode partitions is
motivated entirely by the problem at hand; the reason for it will become apparent in
the proof of our main result, presented in section 3.

Definition 2.3. Let G+ be the fill graph associated with the graph G of PAPT .
We define a supernode partition as follows: a child-parent pair c and p in the elim-
ination tree belong to the same supernode if and only if c is the only child of p for
which madjG+ [c] = {p} ∪madjG+ [p].

For a given elimination tree, this supernode partition is unique. Note that each
supernode is a path in the elimination tree from a lowest vertex to an ancestor of the
lowest vertex. Unless stated otherwise, all references to supernodes in this paper are
to those defined by Definition 2.3.

We will also need the supernodal elimination tree associated with this supernode
partition. Each supernode S is a vertex in the supernodal elimination tree. Super-
node P is the parent of supernode C if the parent (in the elimination tree) of the
“top” vertex in C is a vertex in P . Supernode R is a root if the top vertex in R is a
root vertex in the elimination tree (or forest).

Let S = {f = u1, u2, . . . , ur} be a supernode with the vertices listed in elimination
order. A vertex v is a proper descendant of S if v �∈ S and v is a descendant of some
vertex in S in the elimination tree. Let T [S] be the subtree of the elimination tree
rooted at S; that is, T [S] includes the vertices of S and all vertices that are proper
descendants of S in the elimination tree. Let D[S] := T [S] \ S so that it contains
precisely the proper descendants of S in the elimination tree. Note that a supernode S′

is a proper descendant of a supernode S in the supernodal elimination tree if and only
if the vertices of S′ are proper descendants of S in the elimination tree.

From Definition 2.3 it follows that

madjG+ [u1] = {u2} ∪madjG+ [u2]

= {u2, u3} ∪madjG+ [u3]

...

= {u2, u3, . . . , ur} ∪madjG+ [ur].

Hence, {f}∪madjG+ [f ] is a clique in G+, S is a clique in G+, and S ⊆ {f}∪madjG+ [f ].
In sections 4.1 and 4.2, we need to know something about the impact of supernodes
on certain elimination graphs. For example, it follows from a basic result in Liu [15]
that

{f} ∪ adjGD[S]
[f ] = {f} ∪madjG+ [f ],

and for every i, 2 ≤ i ≤ r, it also follows that
{ui} ∪ adjGD[S]

[ui] ⊆ {f} ∪madjG+ [f ].

These and similar facts are used, and in some cases more closely argued, in sections 4.1
and 4.2.
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Fig. 2.2. A chordal graph, a minimum degree ordering of the graph, and the associated elimi-
nation tree. The single fill edge is a dashed line.

2.3. An example. The graph shown in the upper left-hand corner of Figure 2.2
is chordal, and hence it has a perfect elimination ordering, that is, a no-fill ordering.
It follows that any ordering of this graph is minimal if and only if it is a perfect
elimination ordering. Let us consider a minimum degree ordering of the graph. Any
minimum degree ordering will order vertex e first since degG(e), which is 2, is smallest
among the degrees; this creates fill edge {d, f}, and consequently, any minimum degree
ordering is not minimal.

The reader should verify that the numbering given in Figure 2.2 is a minimum
degree ordering of the original graph. Note the single fill edge {5, 9}, which is critical
and which our minimal ordering algorithm must eliminate. Implementations of the
minimum degree ordering algorithm find supernodes when they use mass elimination
and indistinguishable vertices to eliminate vertices together. For the example, the
supernode partition found by our minimum degree algorithm is {1}, {2, 3, 4}, {5},
{6, 7, 8}, and {9}. Some implementations of minimum degree find so-called funda-
mental supernodes; the only vertex in a supernode that can have more than one child
in the elimination tree is the first vertex in the supernode. These are not the super-
nodes of Definition 2.3. The key observation is that by Definition 2.3, {1, 5} is a
supernode; the reader should verify that this is the case.

It is well known that any topological ordering of the elimination tree produces
the same factor fill and work as the original topological ordering [15]. It is convenient
to change to a different topological ordering in order to number the vertices of each
supernode of Definition 2.3 together. For the example, a postordering of the elimina-
tion tree serves this purpose. Figure 2.3 displays this equivalent ordering of the fill
graph and elimination tree. Under the new ordering, the supernodes of Definition 2.3
are {1, 2, 3}, {4, 5}, {6, 7, 8}, and {9}, also shown in Figure 2.3.

The algorithm we detail in section 4 uses a topological ordering of the supernodal
elimination tree to eliminate the supernodes one after another. It uses the minimum
degree algorithm (with true degree) to order the vertices within supernodes. Note
that no new fill can be introduced by this process but old fill may disappear, and
this is what makes the algorithm work. The algorithm first uses minimum degree to
eliminate the vertices of {1, 2, 3} from the original graph. The vertices can be removed
in any order; let us say that the current order is retained. Note that no fill disappears.
The resulting elimination graph G{1,2,3} is shown in Figure 2.4.

Next the algorithm uses minimum degree to eliminate the vertices of {4, 5} from
G{1,2,3}. Note that vertex 5 has degree 1 and vertex 4 has degree 2; consequently,
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Fig. 2.3. A renumbering of the minimum degree fill graph and elimination tree using a postor-
dering of the tree. Displayed is the supernode partition of Definition 2.3.
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Fig. 2.4. On the left, the elimination graph G{1,2,3}; on the right, a perfect elimination ordering
generated by the algorithm.

they change places in the ordering and the fill edge disappears. Continuing, the
algorithm uses minimum degree to eliminate the vertices of {6, 7, 8} and then {9};
no fill disappears in either case. Suppose that the order of the vertices in {6, 7, 8} is
retained. Then the new ordering is shown in Figure 2.4. It is a perfect elimination
ordering, and hence minimal.

This small example shows how the algorithm applies a restricted (or blocked)
version of minimum degree to the supernodal elimination tree of Definition 2.3 to
make candidate edges disappear. The step described above is applied to a succession
of fill graphs that become smaller and smaller until there are no candidate edges left
to remove. Our main result in section 3 shows why we can count on the absence of
candidate edge {5, 9} from the elimination graph G{1,2,3} shown in Figure 2.4. This is
what ensures that the algorithm works. The algorithmic details are given in section 4.

3. A characterization of candidate edges. We now state and prove an al-
ternative characterization of the candidate edges, which is the basis for the algorithm
we sketched in section 2.3 and will detail in section 4.

Proposition 3.1. Let G+ be the fill graph associated with the graph G of PAPT .
Let S be a supernode in the supernode partition given by Definition 2.3. Assume that
(1) u ∈ S, (2) u < v in the elimination order, and (3) {u, v} is a fill edge. We then
have the following: {u, v} is a candidate edge if and only if {u, v} is not an edge in
the elimination graph GD[S].

Proof. Throughout the proof, let f be the first vertex (i.e., the lowest numbered
vertex) in supernode S.

Assume that {u, v} is not a candidate edge. By Proposition 2.2 there exist then
two vertices a and z that are adjacent to u and v in G+ but not adjacent to each other
in G+. Now, by assumption, u ∈ S and f is the first vertex in supernode S. It follows
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that madjG+ [u] ⊆ {f} ∪madjG+ [f ]. The lower-numbered neighbors of u in G+ must
be descendants of u in the elimination tree [15, 21]. Therefore, these lower-numbered
neighbors belong to T [S], which is S ∪ D[S]. Since S ⊆ {f} ∪ madjG+ [f ], we have
adjG+ [u] ⊆ D[S] ∪ {f} ∪ madjG+ [f ]. It then follows that both a and z belong to
D[S] ∪ {f} ∪madjG+ [f ]. Since {f} ∪madjG+ [f ] is a clique in G+, at least one of the
two nonadjacent vertices a and z belongs to D[S]. It follows that {u, v} is an edge in
the elimination graph GD[S].

To prove the other direction, assume that {u, v} is a candidate edge and that {u, v}
is a fill edge in the elimination graph GD[S]. It suffices to derive a contradiction from
these assumptions.

Since {u, v} is a fill edge in the elimination graph GD[S], there exists a vertex a ∈
D[S] that is adjacent to both u and v in G+. For the following reasons we may assume
without loss of generality that a is a child of a vertex in S. Any descendant vertex d
of S has as one of its ancestors a vertex c that is a child of some vertex in S; moreover,
for any child c of a vertex in S and any descendant d of c, we have

madjG+ [d] ∩ ({f} ∪madjG+ [f ]
) ⊆ madjG+ [c] ∩ ({f} ∪madjG+ [f ]

)
.

Now, since {u, v} is a candidate edge by assumption, it follows that any pair of
vertices adjacent to both u and v are adjacent to one another. Since u and v are
both adjacent in G+ to every vertex in {f} ∪madjG+ [f ] \ {u, v}, it follows that a is
adjacent in G+ to every vertex in {f}∪madjG+ [f ], so we can write {f}∪madjG+ [f ] ⊆
madjG+ [a]. Moreover, it follows that a is a child of f because if it were a child of some
other vertex of S, then it could not be adjacent in G+ to f because f would then be
neither an ancestor nor a descendant of a. Furthermore, madjG+ [a] = {f}∪madjG+ [f ]
because by (2.1), madjG+ [a] ⊆ {f} ∪madjG+ [f ].

Now, supernode S begins at vertex f ; that is, no descendants of f belong to S.
Consequently, existence of the child a of f for which madjG+ [a] = {f} ∪ madjG+ [f ]
implies the existence of another child z of f for which madjG+ [z] = {f} ∪madjG+ [f ];
were there no such vertex z, vertex a would have been incorporated into the super-
node S and S would not begin at f . Vertices a and z clearly are adjacent to u
and v in G+, but they are not adjacent to each other because they are siblings in the
elimination tree. From Proposition 2.2 it follows that {u, v} is not a candidate edge,
contrary to our assumption that it is a candidate edge. The result follows from this
contradiction.

4. A minimal ordering algorithm. Let G+ be the fill graph associated with
the graph G of PAPT , and consider the supernode partition given by Definition 2.3.
In the following definition, we explicitly partition the candidate edges among the
supernodes, as suggested in the statement of Proposition 3.1. The vertices of S are
listed in elimination order.

Definition 4.1. Let S = {f = u1, u2, . . . , ur} be a supernode in the supernode
partition given by Definition 2.3. The candidate edges of S in G+ include every
candidate edge {u, v} for which u ∈ S and v ≥ f .

Proposition 3.1 says that the candidate edges of S are missing from the elimination
graph GD[S]. If S has any candidate edges, then some of them can be removed simply
by reordering the vertices of S; what follows in sections 4.1 and 4.2 expands on and
justifies the preceding statement. The algorithm is presented in section 4.3.

4.1. Candidate edges and degrees in an elimination graph. First, we need
two more definitions. Define the true degree of a vertex v in a graph G′ to be the
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number of neighbors of v in G′, that is, degG′(v) :=
∣∣adjG′ [v]

∣∣. Two vertices v and w
in a graph G′ are said to be indistinguishable if

{v} ∪ adjG′ [v] = {w} ∪ adjG′ [w].

Let S = {f = u1, u2, . . . , ur} be a supernode in the supernode partition given by
Definition 2.3. Again, the vertices of S are listed in elimination order. Consider the
elimination graph GD[S]. Recall that for each vertex in S the set D[S] contains every
descendant in the elimination tree that does not belong to S. Since vertex f has no
proper descendant that belongs to S, every proper descendant of f belongs to D[S].
Note also that none of the ancestors of f are included in D[S]. It follows [15] that

{f} ∪ adjGD[S]
[f ] = {f} ∪madjG+ [f ].(4.1)

Now, consider the elimination graph obtained by eliminating f fromGD[S], that is,
the elimination graph GX whereX = {f}∪D[S]. From (4.1) it follows that madjG+ [f ]
is a clique in GX . Since {u2, . . . , ur} ⊆ madjG+ [f ], it follows that for i, 2 ≤ i ≤ r,

{ui} ∪ adjGX
[ui] ⊇ madjG+ [f ].(4.2)

From (4.2) and the fact that S is a supernode in G+, it follows that for i, 2 ≤ i ≤ r,

{ui} ∪ adjGX
[ui] = madjG+ [f ].(4.3)

In other words, the vertices u2, . . . , ur become indistinguishable from one another
after f is removed from GD[S] to obtain GX , as described previously. But the ver-
tices f, u2, . . . , ur are not necessarily indistinguishable from one another in GD[S], and
this is the key to the algorithm.

Now we shift the focus back to GD[S]. It follows directly from (4.3) that for
every i, 2 ≤ i ≤ r, we have

{ui} ∪ adjGD[S]
[ui] ⊆ {f} ∪madjG+ [f ].(4.4)

Note that since {f}∪madjG+ [f ] is a clique in G+, any pair of vertices from this clique
that is not joined by an edge in the original graph is joined by a fill edge in G+.
From (4.1) and Proposition 3.1, it follows that S has no candidate edges incident
upon f . It follows from (4.4), Proposition 3.1, and the preceding comment on fill
edges that the candidate edges of S incident upon ui (2 ≤ i ≤ r) are precisely those
joining ui to any vertex in({f} ∪madjG+ [f ]

) \ ({ui} ∪ adjGD[S]
[ui]
)
.(4.5)

It follows from (4.1) and the preceding statement that the number of candidate edges
of S incident upon ui is

degGD[S]
(f)− degGD[S]

(ui).(4.6)

4.2. Using minimum degree to remove candidate edges. From the last
statement of the preceding subsection, it follows that a vertex ui ∈ S with minimum
true degree degGD[S]

(ui) has the most candidate edges of S incident upon it in G
+.

Select such a vertex ui to be eliminated from GD[S]. The set adjGD[S]
[ui] will be the
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monotone adjacency set of ui no matter how the elimination process is completed.
The candidate edges of S incident upon ui in G

+ join ui with the vertices of({f} ∪madjG+ [f ]
) \ ({ui} ∪ adjGD[S]

[ui]
)
;

such candidate edges exist if and only if degGD[S]
(ui) < degGD[S]

(f). Since the set

adjGD[S]
[ui] will be the monotone adjacency set of ui, it follows that all the candidate

edges of S incident upon ui do not appear in the new elimination graph; moreover,
these candidate edges are the only edges to disappear from the monotone adjacency
set of ui. Note that no new edges that are not in G

+ are introduced since

adjGD[S]
[ui] ⊆ {f} ∪madjG+ [f ] \ {ui}.

We then repeat the process. Let X = {ui} ∪D[S], and consider the elimination
graph GX . Choose from the uneliminated vertices of S a vertex uj with minimum
true degree degGX

(uj). Vertex uj has the most candidate edges of S incident upon
it in G+ that were not filled in by the previous elimination of ui. The vertex uj will
be eliminated from GX ; hence, the set adjGX

[uj ] will be the monotone adjacency set
of uj no matter how the elimination process is completed. Any nonfilled candidate
edges of S incident upon uj in G

+ join uj with the vertices of({f} ∪madjGD[S]
[f ]
) \ ({ui, uj} ∪ adjGX

[uj ]
)
;

such candidate edges exist if and only if degGX
(uj) < degGX

(f). Since the set
adjGX

[uj ] will be the monotone adjacency set of uj in the new elimination graph,
it follows that all the nonfilled candidate edges of S incident upon ui do not appear
in the new elimination graph; moreover, these candidate edges are the only edges to
disappear from the monotone adjacency set. Note that no new edges that are not
in G+ are introduced since

adjGX
[uj ] ⊆ {f} ∪madjG+ [f ] \ {ui, uj}.

We continue this process until all the vertices of S are removed from the original
elimination graphGD[S]. If S has any candidate edges at all, then some are removed by
applying the minimum degree ordering heuristic to the vertices of S in the elimination
graph GD[S], as we just did. Moreover, only candidate edges of S are removed by
this process. If S has no candidate edges, then the vertices of S are indistinguishable
from one another in GD[S], and applying the minimum degree ordering heuristic to
the vertices of S in the elimination graph GD[S] produces an arbitrary ordering of S
and does not change the fill. In this case, the sequence of true degrees is degGD[S]

(f),

degGD[S]
(f)−1, . . . , and degGD[S]

(f)−r+1; moreover, if ui1 , ui2 , . . . , uir is any ordering
of S, then the monotone adjacency sets are {f}∪madjG+ [f ]\{ui1}, {f}∪madjG+ [f ]\
{ui1 , ui2}, . . . , and {f} ∪madjG+ [f ] \ {ui1 , ui2 , . . . , uir}.

4.3. The algorithm. The algorithm for computing a minimal ordering, includ-
ing some implementation details, appears in Figure 4.1. The algorithm requires an
initial ordering; it will work with any initial ordering, including a random one. The
algorithm repeats the major step until there is no reduction in the factor nonzero
count (i.e., the fill edges). A major step breaks into the following two parts:

1. symbolic processing using the current ordering, and
2. a block elimination process with minimum degree refinement on each block
(supernode) to obtain a new ordering.
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[Initial ordering: can be any ordering]

[Repeat ordering refinement step until no progress is encountered]
until the total factor nonzero count is not reduced do

[Symbolic preprocessing using current ordering]
Compute elimination tree and postorder it [15];
Compute column factor nonzero counts [9];
Compute the supernodes (Definition 2.3);
Compute supernodal elimination tree and a topological ordering
of this tree;

[block elimination process in block topological order and with
minimum degree refinement to obtain new refinement of old ordering]
Begin elimination process with original graph;
for each supernode S (in topological order) do

until all vertices in S have been eliminated do
Select a vertex v ∈ S whose true degree in the
current elimination graph is minimum among the
uneliminated vertices in S;
Eliminate v and form the quotient graph
representation of the new elimination graph;

end until;
end for;

Replace old ordering with new ordering;
[Here we check new total factor nonzero count against old]

end until;

Fig. 4.1. Algorithm for computing a minimal ordering, including some implementation details.

During the symbolic part of a major step, the algorithm first computes the elimi-
nation tree, and then postorders it. We use the fast algorithm in [15] to compute the
elimination tree; the postordering is needed to compute the column factor nonzero
counts. (Column factor nonzero counts refer to the number of nonzero entries in
each column of the Cholesky factor under the current postordering of the elimina-
tion tree.) Computing the column factor nonzero counts is achieved using the fast
algorithm in [9]. With the elimination tree and column counts in hand, it is trivial
to compute the supernodes of Definition 2.3 and the associated supernodal elimina-
tion tree. Finally, the algorithm computes a topological ordering of the supernodal
elimination tree; this also is trivial.

During the elimination part of a major step, the algorithm processes the super-
nodes in the given topological order of the current supernodal elimination tree. The
elimination process is a block elimination process; for any supernode S, the algorithm
uses the minimum degree algorithm to eliminate the vertices of S together, and only
after it has removed in the same fashion, supernode by supernode, the descendant
vertices of S, D[S]. The topological ordering also ensures that no vertex from an
ancestor supernode is removed before the vertices of the supernode and its descen-
dants. In short, the analysis presented in sections 4.1 and 4.2 applies directly to the
elimination graphs generated by the algorithm. That is, any supernode S that has
candidate edges will have some of the candidate edges removed with no edges added
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beyond the fill generated by the current ordering. Moreover, any edges removed are
candidate edges.

The elimination process generates a new ordering. During the elimination process,
the algorithm accumulates the amount of fill incurred by this ordering, and when the
elimination process is finished, the algorithm compares it with the amount of fill
incurred by the old ordering. If there is no reduction, then the algorithm stops. From
the argument in the previous paragraph, a major step of the algorithm removes only
candidate edges and removes them if and only if there exist such edges in the current
fill graph. Since there are a finite number of edges, the algorithm must terminate at
some point, and clearly it will be at the point where there are no candidate edges
in the old fill graph and no candidate edges in the new fill graph. It follows from
Proposition 2.1 that the algorithm terminates with a minimal ordering and minimal
chordal supergraph. The algorithm is, indeed, merely an elaboration of the scheme
shown in Figure 2.1.

As mentioned earlier, the algorithm of Blair, Heggernes, and Telle [5, 6] is also
an elaboration of the scheme shown in Figure 2.1. They take a more direct approach:
processing the fill edges in reverse the order they were introduced, they compute
which examined fill edges are candidate edges in the current chordal supergraph; they
use LEX M on subgraphs to compute which candidate edges need to be kept as fill.
Processing the fill edges in reverse enables them to consider a fill edge as a candidate
edge once, and this is the key to their O(f(e+ f)) time efficiency.

Modern implementations of the minimum degree algorithm improve ordering qual-
ity by using external degree rather than true degree [8, 13]. External degree counts
only the neighbors outside the current indistinguishable set to be “mass eliminated.”
Note that it is important for our minimal ordering algorithm to use true degree rather
than external degree during the block elimination process. True degree gives priority
to vertices incident upon the most candidate edges, as desired. External degree may
give priority to a vertex incident upon no candidate edges even though there are ver-
tices available that are incident upon candidate edges. Consequently, external degree
could fail to detect candidate edges for a supernode that has some, while true degree
is sure to detect and remove some candidate edges from any supernode that has some.

Note also that we have adapted a minimum degree code to perform the supernode-
by-supernode elimination process. The adapted code inherits several of the standard
enhancements that have been incorporated into such codes [8, 13]; these include mass
elimination, indistinguishable nodes, incomplete degree update, and the generalized
element storage scheme. Because any two vertices from distinct supernodes must
be treated as separate vertices, some opportunities for mass elimination or detecting
indistinguishability must be passed over. On the other hand, because the elimination
process needs to know degrees of vertices in one supernode at a time, we can greatly
reduce the number of degree calculations needed. Our timings indicate that the gains
from the latter typically far outweigh the costs from the former.

5. Test results. We wrote Fortran 77 implementations of the new minimal or-
dering algorithm described in the previous section and the LEXM algorithm described
in Rose, Tarjan, and Lueker [19, pp. 273, 280–281]. We used Fortran compiler f77
with compiler optimization level -O, and we ran the tests on a SUN Sparc 20 work-
station (model 41).

The primary purpose of section 5.1 is to provide a simple empirical proof of con-
cept for the new algorithm. To achieve this goal it suffices to show that, in practice,
the new algorithm can produce high-quality minimal orderings very efficiently com-
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Table 5.1
Average factor floating point operations associated with MDtru/new-minimal, random/new-

minimal, and LEX M. Averages are taken over ten runs with randomly permuted adjacency struc-
tures.

MDtru/new-minimal Random/new-minimal
% Final % Final LEX M

Matrix decrease flops decrease flops flops

DIS060 none 1.16× 107 99.2 3.77× 107 2.05× 107

DIS090 none 4.93× 107 99.6 2.21× 108 1.15× 108

DIS120 none 1.33× 108 99.8 7.56× 108 3.46× 108

NASA1824 none 5.59× 106 96.0 4.23× 107 4.98× 107

NASA2910 none 3.22× 107 97.8 1.43× 108 9.65× 107

NASA4704 none 4.42× 107 97.9 3.84× 108 3.42× 108

SPA060 none 1.88× 107 98.7 6.29× 107 3.57× 107

SPA090 none 8.11× 107 99.4 3.39× 108 1.87× 108

SPA120 none 2.14× 108 99.7 1.11× 109 6.18× 108

BCSSTK13 none 6.87× 107 85.2 2.77× 108 1.45× 108

BCSSTK14 none 1.04× 107 97.4 3.20× 107 2.84× 107

BCSSTK15 none 1.94× 108 92.3 1.05× 109 4.82× 108

BCSSTK16 none 1.69× 108 98.1 5.53× 108 1.45× 108

BCSSTK17 0.3 2.19× 108 99.5 1.36× 109 6.37× 108

BCSSTK18 none 1.56× 108 97.1 4.01× 109 2.01× 109

BCSSTK19 3.4 1.17× 105 98.5 1.98× 105 1.27× 105

BCSSTK23 none 1.60× 108 75.5 1.17× 109 3.04× 108

BCSSTK24 none 4.02× 107 99.1 9.51× 107 1.07× 108

BCSSTK25 none 4.00× 108 96.3 2.04× 1010 5.26× 108

BCSSTK26 0.0 1.65× 106 98.9 9.27× 106 1.47× 107

pared with the LEX M algorithm. Since we are interested in obtaining high-quality
minimal orderings as efficiently as possible, we chose minimum degree orderings to
be the initial orderings in section 5.1. To be consistent with the later use of true
degree in the refinement step, we use true degree rather than the superior external
degree [13] to compute the initial ordering, too. For the same reason we do not use
multiple elimination; we use MDtru. While establishing proof of concept, we will also
observe that MDtru often computes minimal orderings.

We examine random initial orderings in section 5.2, MMDext in section 5.3,
METIS ND initial orderings in section 5.4, and MS initial orderings based on METIS
ND in section 5.5. Some comparisons with the algorithm of Blair, Heggernes, and
Telle are presented in section 5.6.

5.1. Proof of concept. The large run times of LEX M limited us to relatively
small matrices for our test runs. Despite their limited size, the test matrices suffice for
our purposes. For more accurate comparisons we computed ten random permutations
for each graph, we computed ten permuted versions of the adjacency structure for each
graph, and we ran both algorithms on each of the ten permuted adjacency structures
for each of the matrices. We then averaged the reported statistics over the ten runs
for each matrix. We report factor floating point operations rather than fill because
comparing factor flops usually emphasizes the differences between orderings more than
comparing factor nonzero counts. Table 5.1 reports average factor flops associated
with the LEX M and the MDtru/new-minimal orderings. Table 5.2 reports average
run times for both algorithms and the average number of major iterations taken by
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Table 5.2
Average ordering times (in CPU seconds) and average number of major iterations for

MDtru/new-minimal and for LEX M. Averages are taken over ten runs with randomly permuted
adjacency structures.

MDtru/new-minimal
MDtru Major Minimal Total LEX M

Matrix time iter. time time time

DIS060 0.23 1.0 0.21 0.44 22.30
DIS090 0.80 1.0 0.54 1.34 134.27
DIS120 1.44 1.0 1.07 2.51 440.42
NASA1824 0.08 1.0 0.08 0.16 6.09
NASA2910 0.22 1.0 0.28 0.50 31.02
NASA4704 0.28 1.0 0.24 0.52 47.88
SPA060 0.18 1.0 0.15 0.33 18.89
SPA090 0.62 1.0 0.48 1.10 126.72
SPA120 1.17 1.0 0.92 2.09 452.17
BCSSTK13 0.24 1.0 0.15 0.39 11.88
BCSSTK14 0.10 1.0 0.09 0.19 7.87
BCSSTK15 0.54 1.0 0.28 0.82 37.15
BCSSTK16 0.40 1.0 0.43 0.83 90.07
BCSSTK17 1.02 2.1 1.80 2.82 331.14
BCSSTK18 1.15 1.0 0.70 1.85 138.01
BCSSTK19 0.02 8.1 0.17 0.19 0.37
BCSSTK23 0.53 1.0 0.18 0.71 12.84
BCSSTK24 0.13 1.0 0.19 0.32 37.98
BCSSTK25 3.35 1.0 1.58 4.93 565.62
BCSSTK26 0.11 1.3 0.12 0.23 4.43

the new algorithm.

A “1.0” in column three of Table 5.2, or equivalently a “none” in column two of
Table 5.1, means that for all 10 permutations of the adjacency structure the initial
MDtru ordering is minimal. Consequently, for all 10 permutations of the adjacency
structure the new minimal ordering algorithm takes one major step. For 17 of the
20 problems, the initial MDtru ordering is minimal for all 10 permutations of the
adjacency structure. For these problems, the initial factor flops and the final factor
flops are identical. For BCSSTK17 and BCSSTK26, there is, on average, a small
change: less than a 0.5% reduction in factor flops. The largest change is for the very
small problem BCSSTK19, but it is still only a 3.4% reduction in factor flops. Clearly,
the new minimal ordering algorithm serves most often merely to verify that the initial
MDtru ordering is minimal; in the other three cases, it trims away fill (and factor
flops) from nearly minimal MDtru orderings until minimality is achieved. In short,
the MDtru ordering heuristic comes very close to being a minimal ordering algorithm
in our tests.

Also note in Table 5.1 that the MDtru/new-minimal orderings consistently cost
far fewer factor floating point operations than the LEX M orderings. For only one
problem, BCSSTK16, does LEX M outperform MDtru/new-minimal in this regard.
Typically, LEX M requires anywhere from a factor of two to a factor of four more
factor flops than MDtru/new-minimal; sometimes LEX M requires a factor of eight
or nine more factor flops than MDtru/new-minimal. This superiority of MDtru/new-
minimal is not surprising; LEX M, which is a breadth-first search ordering, has much
in common with bandwidth and profile reducing orderings, and hence a good general
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sparse ordering like MDtru is naturally expected to reduce factor flops better than
LEX M. The tests serve merely to confirm this expectation.

In Table 5.2, the total run times of the MDtru/new-minimal algorithm are, with
one exception (BCSSTK19), a very small fraction of the corresponding run times of
the LEX M algorithm. This is not surprising; the time complexity for LEX M is
O(ne), and the O(ne) time complexity is fully realized by the implementation [19].
Although the time complexity of the minimum degree heuristic is unknown, the em-
pirical efficiency of modern implementations of this heuristic is well established [8, 13];
it would be somewhat surprising to see minimum degree ordering times exceed any
significant fraction of the corresponding LEX M ordering times.

There are known problems with the time efficiency of the minimum degree algo-
rithm. For example, it is well known that a dense or near-dense row in the matrix
seriously degrades the time efficiency of conventional implementations. Such rows
are rare in practice and rare in most test collections; we apparently included no test
problems on which the minimum degree algorithm runs very inefficiently.

In the cases where the new minimal ordering algorithm merely confirms the mini-
mality of the initial MDtru ordering, the time to confirm minimality is usually smaller
than, but comparable to, the MDtru ordering time. Exceptions include BCSSTK23
and BCSSTK25, for which the time to confirm minimality is unusually small, and
NASA2910 and BCSSTK24, for which the time to confirm minimality is significantly
greater than the MDtru ordering time. For BCSSTK17, BCSSTK19, and BCSSTK26,
the average time to compute the minimal ordering divided by the average number of
major iterations gives the average time per major iteration, which for each of these
problems is less than but roughly comparable to the MDtru ordering time. Only
BCSSTK19, with its 8.1 major iterations, has an MDtru/new-minimal time (0.19)
that approaches in magnitude the time for LEX M (0.37).

5.2. Random. In the previous subsection, on the whole, the MDtru initial or-
dering did the work of computing minimal orderings, while the new minimal ordering
algorithm merely detected minimality. In this subsection we look at the opposite
extreme: the initial orderings are random, and the effort to achieve minimality is
exerted solely by the new minimal ordering algorithm. Because of large run times,
we run tests on the same test set of relatively small problems used in the previous
subsection. The results of the random/new-minimal runs are presented in Tables 5.1
and 5.3.

The initial random orderings are very poor, as expected; the factor flops for
the random orderings are one or two orders of magnitude larger than the factor
flops for the corresponding final minimal orderings. The large reductions in factor
flops require many major iterations; generally, hundreds of iterations are required,
with over a thousand iterations required for BCSSTK18 and BCSSTK25. Though
the final orderings greatly improve upon the initial random orderings, the final or-
derings are poor compared with the MDtru orderings; moreover, the random/new-
minimal orderings are poor compared with the LEX M orderings, with random/new-
minimal orderings producing more factor flops than LEX M for 17 of the 20 prob-
lems. For the following matrices, the random/new-minimal ordering produces over
twice as many factor flops as LEX M: DIS120, BCSSTK15, BCSSTK16, BCSSTK17,
BCSSTK23, and BCSSTK25. The three matrices where random/new-minimal out-
performs LEX M are small (NASA1824, BCSSTK24, and BCSSTK26), and the im-
provement of random/new-minimal over LEX M orderings for these matrices is rela-
tively small.
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Table 5.3
Average ordering times (in CPU seconds) and average number of major iterations for

random/new-minimal and for LEX M. Averages are taken over ten runs with randomly permuted
adjacency structures.

Random/new-minimal
Random Major Minimal Total LEX M

Matrix time iter. time time time

DIS060 0.02 178.8 50.30 50.32 22.30
DIS090 0.05 371.4 383.54 383.59 134.27
DIS120 0.09 570.5 1665.96 1666.05 440.42
NASA1824 0.01 112.9 15.36 15.37 6.09
NASA2910 0.02 83.6 25.37 25.39 31.02
NASA4704 0.03 232.6 133.07 133.10 47.88
SPA060 0.02 188.1 52.46 52.48 18.89
SPA090 0.05 380.5 403.84 403.89 126.72
SPA120 0.09 591.8 1766.61 1766.70 452.17
BCSSTK13 0.01 188.4 52.60 52.61 11.88
BCSSTK14 0.01 69.0 8.45 8.46 7.87
BCSSTK15 0.02 291.5 190.56 190.58 37.15
BCSSTK16 0.03 133.3 84.36 84.39 90.07
BCSSTK17 0.07 410.1 1315.54 1315.61 331.14
BCSSTK18 0.07 1171.7 9608.18 9608.25 138.01
BCSSTK19 0.01 45.1 1.20 1.21 0.37
BCSSTK23 0.02 473.5 350.30 350.32 12.84
BCSSTK24 0.02 103.3 31.20 31.22 37.98
BCSSTK25 0.09 1441.3 17374.76 17374.85 565.62
BCSSTK26 0.01 120.1 16.11 16.12 4.43

It is not surprising that the run times to compute the initial random orderings
are extremely small compared with the large run times to compute the associated
minimal orderings. After all, a random ordering is obtained by a single O(n log n)
sort. Several factors contribute to the exceptionally large run times for random/new-
minimal orderings. First, and most obvious, is the large number of major iterations
required for each problem. Second, the cost of each iteration is increased by the large
amounts of fill that must be represented by the sequence of quotient graphs. Third,
random orderings lead to relatively small supernodes, so the minimum degree refine-
ment algorithm enjoys limited compression from supernodes. Fourth, the minimum
degree refinement code uses the trick described by Amestoy, Davis, and Duff [1] of
recompressing the quotient graphs when space is exhausted; the large amounts of fill
and relatively small supernodes lead to many recompressions.

The run times for random/new-minimal are often poor compared with the LEX M
orderings, with 17 out of 20 problems requiring more run time than LEX M. For many
of the matrices, it requires a factor of two up to a factor of four more time. The results
in this subsection, along with the rest of the results in this section, indicate that the
new minimal ordering algorithm depends on a high-quality initial ordering to obtain
a high-quality minimal ordering using small run time.

5.3. Multiple minimum degree with external degree. Next, we obtained
initial orderings from Liu’s MMDext [13]. We include it because it has become a
standard by which other orderings are evaluated and because we wish to compare it
with MDtru. We include all the test matrices used in the previous two subsections and
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Table 5.4
Average factor floating point operations, average ordering times (in CPU seconds), and average

number of major iterations for MMDext/new-minimal. Averages are taken over ten runs with
randomly permuted adjacency structures.

MMDext/new-minimal
% Final MMDext Major Minimal Total

Matrix decrease flops time iter. time time

CRY01 0.0 3.18× 108 0.51 1.3 0.60 1.11
CRY02 0.0 4.04× 109 2.11 1.2 2.15 4.26
CRY03 0.0 1.34× 1010 5.46 1.3 4.91 10.37
DIS060 none 9.85× 106 0.13 1.0 0.13 0.26
DIS090 none 4.05× 107 0.34 1.0 0.35 0.69
DIS120 none 1.13× 108 0.73 1.0 0.83 1.56
NASA1824 0.2 4.91× 106 0.08 1.2 0.08 0.16
NASA2910 0.1 2.30× 107 0.23 2.0 0.51 0.74
NASA4704 none 3.62× 107 0.24 1.0 0.24 0.48
SPA060 none 1.68× 107 0.13 1.0 0.13 0.26
SPA090 none 6.63× 107 0.34 1.0 0.36 0.70
SPA120 none 1.81× 108 0.72 1.0 0.80 1.52
BCSSTK13 0.2 5.94× 107 0.30 1.2 0.19 0.49
BCSSTK14 none 9.28× 106 0.13 1.0 0.09 0.22
BCSSTK15 0.0 1.70× 108 0.77 1.1 0.35 1.12
BCSSTK16 0.1 1.40× 108 0.43 1.6 0.71 1.14
BCSSTK17 0.1 1.98× 108 1.13 1.5 1.43 2.56
BCSSTK18 0.4 1.34× 108 1.13 2.2 1.60 2.73
BCSSTK19 2.1 9.89× 104 0.01 5.6 0.12 0.13
BCSSTK23 0.1 1.41× 108 0.65 1.3 0.25 0.90
BCSSTK24 none 3.62× 107 0.16 1.0 0.19 0.35
BCSSTK25 1.0 3.23× 108 2.48 3.0 4.12 6.60
BCSSTK26 0.0 1.73× 106 0.11 2.0 0.14 0.25
BCSSTK28 0.0 3.88× 107 0.21 2.0 0.53 0.74
BCSSTK29 0.4 4.27× 108 2.00 2.0 2.78 4.78
BCSSTK30 none 9.34× 108 4.20 1.0 3.71 7.91
BCSSTK31 0.0 2.51× 109 6.03 2.0 7.60 13.63
BCSSTK32 0.2 1.06× 109 6.76 2.3 11.71 18.47
BCSSTK33 0.0 1.32× 109 1.38 1.5 1.53 2.91
BCSSTK35 0.3 3.99× 108 3.54 3.1 8.94 12.48
BCSSTK36 0.0 6.20× 108 2.08 1.4 2.80 4.88
BCSSTK37 0.0 5.56× 108 2.43 2.0 4.42 6.85

add some larger matrices to the test set, increasing the total from 20 to 33 matrices.
Table 5.4 presents the results of our tests.

The results are quite similar to those obtained with initial orderings from MDtru.
However, among the 20 smaller problems used in the previous two subsections, only
9 have all 10 initial orderings minimal, in contrast to 17 when the initial orderings
are produced by MDtru. Nonetheless, for every matrix but 2, the reduction in factor
flops from initial to final ordering is less than 0.5%. For BCSSTK25, an average of 3
major iterations leads to an average of 1% reduction in factor flops; for the extremely
small problem BCSSTK19, an average of 5.6 major iterations leads to an average of
2.1% reduction in factor flops. The initial MMDext orderings are very nearly minimal
and stand to gain very little reduction in factor storage and work by trying to squeeze
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out critical edges.

5.4. Nested dissection. An ND ordering finds a node bisector of the graph of
A and numbers these vertices last in the ordering. It applies this numbering process
recursively to the remaining pieces (i.e., connected components) of the graph. Current
implementations apply this numbering process to the graph until each of the remaining
pieces has fewer than some given number of vertices. (The ordering package we use
subdivides no piece with 200 or fewer vertices.) Following Ashcraft and Liu [2], we
call these small pieces that remain to be labeled domains.

We obtained initial ND orderings from the METIS ND algorithm [11]. We exe-
cuted routine METIS NODEND in version 3.0.3 of METIS with the default user-supplied
options (option(0)=0). We made one change to the algorithm in METIS; we post-
processed the ordering obtained from METIS so that each domain is ordered us-
ing the constrained minimum degree algorithm (with external degrees). Constrained
minimum degree was introduced by Liu [14] and has been used in the ND algorithms
of Hendrickson and Rothberg [10] and Ashcraft and Liu [2]. Constrained minimum
degree applies minimum degree to the vertices of a domain, using degrees in the
complete elimination graph.

The results of our tests are shown in Table 5.5.
None of the initial ND orderings are minimal; some are quite close to minimal,

while others are quite far from minimal (as measured by the percent decrease in
factor flops from the initial to the final orderings). For 20 of the 32 matrices there is a
decrease in factor flops of 2% or greater; for 12 of the 32 matrices there is a decrease
in factor flops of 4% or greater; for 5 of the 32 matrices there is a decrease in factor
flops of 11% or greater. Note that the number of major iterations is only loosely
connected with the percent reduction in factor flops: for example, BCSSTK16 has a
14.1% reduction in 4.7 major iterations, while BCSSTK13 has a 0.7% reduction in
6.3 major iterations.

It is known that ND does not necessarily order the vertices of the separators in
the most efficient manner [2, 10, 20]. The vertices within a separator are numbered
arbitrarily by ND even though one ordering of the separator may reduce fill better
than another. On a more global level, an ND ordering may create significant amounts
of extra fill when it is used to order matrices arising from long, narrow structures.
A canonical example of this is ND applied to a path: minimum degree successively
numbers leaves on the path creating no fill, while ND imposes an order on the singleton
separators that creates fill. The matrix BCSSTK25 in our test set is an example of
this phenomenon. It arises from a finite element model of a long narrow structure,
namely, a 76-story skyscraper, and it incurs by far the greatest reduction in factor
flops: 31.4%.

The times for the ND orderings are greater than those for the MMDext orderings,
but they are still quite reasonable. Because the ND orderings are not so nearly
minimal, the number of major iterations for the initial ND orderings are much greater
than the number of major iterations for the initial MMDext orderings. Rising with
the number of major iterations is the time to compute the minimal orderings, which
can be quite substantial. Neither the number of major iterations nor the run times,
however, approaches in magnitude the number of major iterations or the run times,
respectively, for random/new-minimal.

5.5. Multisection. The MS ordering algorithm was a response to difficulties
encountered using the ND ordering algorithm. An MS ordering is obtained from an
ND algorithm as follows. The set of separators and domains is computed as before,
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Table 5.5
Average factor floating point operations, average ordering times (in CPU seconds), and average

number of major iterations for ND/new-minimal. Averages are taken over ten runs with randomly
permuted adjacency structures.

ND/new-minimal
% Final ND Major Minimal Total

Matrix decrease flops time iter. time time

CRY01 2.6 2.63× 108 0.69 2.0 0.92 1.61
CRY02 0.3 1.87× 109 3.09 2.0 3.33 6.42
CRY03 4.5 5.32× 109 6.20 2.0 7.14 13.34
DIS060 2.6 1.11× 107 0.65 2.3 0.30 0.95
DIS090 2.4 4.10× 107 1.85 3.6 1.27 3.12
DIS120 3.5 1.05× 108 3.73 2.9 2.31 6.04
NASA1 1.5 5.70× 106 0.16 3.0 0.24 0.40
NASA2 1.9 2.27× 107 0.73 5.0 1.19 1.92
NASA4 2.3 3.48× 107 0.65 4.1 0.84 1.49
SPA060 0.0 1.52× 107 0.62 1.6 0.21 0.83
SPA090 0.5 5.56× 107 1.88 2.1 0.72 2.60
SPA120 0.1 1.38× 108 3.54 2.7 2.14 5.68
BCSSTK13 0.7 5.22× 107 0.58 6.3 0.94 1.52
BCSSTK14 0.4 7.96× 106 0.38 1.2 0.11 0.49
BCSSTK15 1.5 8.48× 107 1.75 6.0 1.69 3.44
BCSSTK16 14.1 1.30× 108 0.66 4.7 2.01 2.67
BCSSTK17 14.9 1.61× 108 2.40 6.9 5.99 8.39
BCSSTK18 2.4 8.48× 107 3.48 11.7 8.18 11.66
BCSSTK19 14.6 9.98× 104 0.04 19.9 0.43 0.47
BCSSTK23 1.7 9.41× 107 0.84 10.2 2.08 2.92
BCSSTK24 2.1 3.63× 107 0.20 2.3 0.44 0.64
BCSSTK25 31.4 2.56× 108 5.56 12.4 15.76 21.32
BCSSTK26 6.1 1.93× 106 0.19 7.6 0.53 0.72
BCSSTK28 4.1 4.52× 107 0.19 5.5 1.57 1.76
BCSSTK29 4.5 3.15× 108 5.54 8.8 12.13 17.67
BCSSTK30 11.2 1.03× 109 7.47 8.5 30.53 38.00
BCSSTK31 1.4 1.17× 109 11.42 8.3 32.92 44.34
BCSSTK32 5.5 1.26× 109 9.96 9.0 46.97 56.93
BCSSTK33 1.1 8.39× 108 3.59 2.5 2.56 6.15
BCSSTK35 5.4 4.61× 108 3.35 11.9 34.93 38.28
BCSSTK36 2.1 6.39× 108 1.97 6.0 11.91 13.88
BCSSTK37 7.2 5.95× 108 3.44 7.6 17.56 21.00

and the vertices of the domains are to be ordered before the vertices of the separators
as before. The domains are again eliminated using constrained minimum degree. Let
X be the set of vertices obtained by forming the union of all the domains. An MS
ordering is then obtained by applying minimum degree to the quotient graph repre-
sentation of the elimination graph GX . This strategy for ordering the separators has
appeared in [2, 10, 20]. Our results using an MS initial ordering appear in Table 5.6.

Our results with MS ordering corroborate those reported in Ashcraft and Liu [2].
Overall, the MS ordering reduces factor flops better than either the MMDext or ND
orderings. For four of the matrices, the MS initial ordering is a minimal ordering.
Overall, the number of major iterations lies between the number of major iterations
for the MMDext ordering and the number of major iterations for the ND ordering.
Applying minimum degree to the elimination graph GX causes the initial MS order-
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Table 5.6
Average factor floating point operations, average ordering times (in CPU seconds), and average

number of major iterations for MS/new-minimal. Averages are taken over ten runs with randomly
permuted adjacency structures.

MS/new-minimal
% Final MS Major Minimal Total

Matrix decrease flops time iter. time time

CRY01 0.0 2.48× 108 1.21 1.2 0.58 1.79
CRY02 none 1.88× 109 4.96 1.0 1.74 6.70
CRY03 0.0 5.59× 109 10.15 1.1 3.95 14.10
DIS060 0.0 9.42× 106 0.80 1.1 0.14 0.94
DIS090 0.0 3.26× 107 2.34 1.6 0.56 2.90
DIS120 0.0 8.21× 107 4.48 1.5 1.17 5.65
NASA1 0.1 5.43× 106 0.23 1.8 0.12 0.35
NASA2 1.1 2.27× 107 1.05 3.7 0.86 1.91
NASA4 0.1 3.52× 107 0.86 2.4 0.49 1.35
SPA060 none 1.42× 107 0.79 1.0 0.13 0.92
SPA090 none 5.05× 107 2.31 1.0 0.33 2.64
SPA120 0.0 1.25× 108 4.55 1.8 1.47 6.02
BCSSTK13 0.1 5.11× 107 0.76 1.6 0.23 0.99
BCSSTK14 0.3 7.95× 106 0.49 1.2 0.11 0.60
BCSSTK15 0.1 8.51× 107 2.23 2.7 0.85 3.08
BCSSTK16 0.6 1.25× 108 1.13 2.6 1.11 2.24
BCSSTK17 0.5 1.46× 108 3.38 3.3 3.03 6.41
BCSSTK18 0.7 8.37× 107 4.42 7.8 5.74 10.16
BCSSTK19 14.6 9.98× 104 0.07 19.9 0.47 0.54
BCSSTK23 0.2 9.67× 107 1.08 5.9 1.16 2.24
BCSSTK24 none 3.47× 107 0.40 1.0 0.19 0.59
BCSSTK25 1.3 2.39× 108 7.48 8.7 11.42 18.90
BCSSTK26 3.4 1.91× 106 0.28 6.3 0.43 0.71
BCSSTK28 0.1 3.62× 107 0.45 2.6 0.70 1.15
BCSSTK29 0.5 3.41× 108 7.19 7.0 9.89 17.08
BCSSTK30 0.0 8.67× 108 11.21 4.6 15.79 27.00
BCSSTK31 0.1 1.46× 109 15.71 5.3 20.45 36.16
BCSSTK32 0.2 9.22× 108 14.94 5.0 24.57 39.51
BCSSTK33 0.0 7.55× 108 4.61 1.2 1.22 5.83
BCSSTK35 0.4 3.77× 108 6.24 4.4 13.15 19.39
BCSSTK36 0.0 4.99× 108 4.12 2.9 5.77 9.89
BCSSTK37 0.1 4.66× 108 5.87 4.4 9.90 15.77

ings to be much closer to minimal than the initial ND orderings were. For all but
four matrices, the reduction in factor flops is under 1.0%. For three of these four
matrices the reduction is small: 1.1% for NASA2910, 1.3% for BCSSTK25, and 3.4%
for BCSSTK26. The only problem for which there is a large reduction is the tiny
problem BCSSTK19, and here we are merely obtaining exactly the same results that
we obtained for the initial ND ordering.

The MS run times are simply ND run times with the time for ordering GX by
minimum degree added in. The code was written for ease of programming and not
for optimal time efficiency; still the MS run times are reasonably small. Because the
major iterations are reduced in number, the total run times are generally smaller than
those for ND/new-minimal.
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Table 5.7
Ordering times (in CPU seconds) for MMDext/new-minimal and MMDext/Blair-et-al. Times

are for one run without permuting adjacency structure.

MMDext/new-minimal MMDext/Blair-et-al
MMDext Minimal MMDext Minimal

Matrix time time time time

DIS060 0.01 0.01 0.01 0.37
DIS090 0.02 0.03 0.03 1.40
DIS120 0.03 0.05 0.05 3.44
NASA1824 0.01 0.01 0.01 0.18
NASA2910 0.01 0.04 0.02 0.67
NASA4704 0.02 0.02 0.03 1.17
SPA060 0.01 0.01 0.01 0.52
SPA090 0.02 0.03 0.03 1.99
SPA120 0.03 0.05 0.05 5.09
BCSSTK13 0.02 0.01 0.03 1.42
BCSSTK14 0.01 0.01 0.01 0.33
BCSSTK15 0.05 0.05 0.07 4.96
BCSSTK16 0.02 0.06 0.03 4.52
BCSSTK17 0.06 0.11 0.08 4.94
BCSSTK18 0.08 0.11 0.11 4.57
BCSSTK19 0.00 0.01 0.00 0.01
BCSSTK23 0.05 0.02 0.08 2.86
BCSSTK24 0.01 0.02 0.01 1.11
BCSSTK25 0.14 0.24 0.20 10.44
BCSSTK26 0.01 0.01 0.01 0.08

5.6. Comparison with algorithm of Blair, Heggernes, and Telle. Because
the algorithm of Blair, Heggernes, and Telle is implemented as a Fortran 90 code, we
moved the codes to a machine that has a modern Fortran 90 compiler. We ran the
tests on a Compaq Alphaserver SC; we used Fortran compiler f77 to compile the
new code developed for this paper, and we used Fortran compiler f90 to compile the
code of Blair, Heggernes, and Telle. We used compiler optimization level -O for all
compilations.

Timings for both methods applied to MMDext and ND initial orderings appear
in Tables 5.7 and 5.8, respectively. We use the same set of 20 smaller test problems
used earlier in this section. To make corresponding initial orderings identical for the
two codes, it was necessary to remove random reordering of the adjacency structure
from the new code. Moreover, to make corresponding initial ND orderings identical
for the two codes, it was necessary to remove the reordering of domains by minimum
degree from the new code. We focus solely on timings; the fill for corresponding
initial orderings is always identical, and the fill for corresponding final orderings is
always quite close to one another. The ND initial orderings are computed by the
same METIS routine. By contrast, the MMDext initial orderings are computed using
separate routines (one a Fortran 77 routine and the other a Fortran 90 routine). Note,
however, that they compute identical corresponding initial orderings. Observe in
Table 5.7 that Fortran 77 MMDext orderings are obtained somewhat more efficiently
than Fortran 90 MMDext orderings.

The primary observation in the tables is that, for these problems, the new minimal
ordering code is much faster than the minimal ordering code of Blair, Heggernes, and
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Table 5.8
Ordering times (in CPU seconds) for ND/new-minimal and ND/Blair-et-al. Times are for one

run without permuting adjacency structure.

ND/new-minimal ND/Blair-et-al
ND Minimal ND Minimal

Matrix time time time time

DIS060 0.07 0.06 0.06 0.59
DIS090 0.20 0.18 0.20 2.23
DIS120 0.33 0.28 0.33 5.49
NASA1824 0.02 0.01 0.02 0.21
NASA2910 0.08 0.04 0.08 0.72
NASA4704 0.06 0.05 0.05 1.40
SPA060 0.07 0.04 0.06 0.71
SPA090 0.21 0.14 0.20 2.78
SPA120 0.35 0.22 0.34 5.80
BCSSTK13 0.07 0.04 0.07 1.84
BCSSTK14 0.04 0.04 0.04 0.39
BCSSTK15 0.16 0.10 0.17 4.26
BCSSTK16 0.07 0.10 0.07 4.69
BCSSTK17 0.26 0.33 0.26 7.32
BCSSTK18 0.34 0.59 0.33 4.94
BCSSTK19 0.00 0.04 0.00 0.02
BCSSTK23 0.08 0.18 0.08 4.08
BCSSTK24 0.02 0.06 0.02 1.16
BCSSTK25 0.52 1.10 0.51 20.19
BCSSTK26 0.02 0.06 0.02 0.13

Telle. For these problems, the new minimal ordering code runs in time comparable to
the initial ordering time, while the code of Blair, Heggernes, and Telle runs in time
consistently one order of magnitude to one-and-a-half orders of magnitude larger than
the initial ordering time. The comparison, however, is very preliminary. The minimum
degree algorithm, on which the new algorithm is based, has been scrutinized for years
for ways to improve its efficiency; by contrast, the code of Blair, Heggernes, and Telle
is a straightforward first cut at implementing their algorithm. It is likely that its
performance can be significantly improved. One obvious notion to explore is the use
of supernodes.

6. Concluding remarks. We devised a new characterization of candidate edges
that leads to a simple “block-restricted minimum degree” elimination process to re-
move candidate edges. We then devised an algorithm that removes candidate edges
until a minimal chordal supergraph and a minimal ordering are obtained. Empiri-
cally, the method MDtru/new-minimal improves on both the ordering quality and the
ordering time of the old method LEX M.

In the past, minimal orderings were not good heuristic orderings; they did not
approximate minimum orderings well [19, p. 282]. A new approach seen in earlier
work [3, 5, 6, 7] and also used in this paper deals with this shortcoming of past
minimal ordering algorithms. Because it starts with any initial fill graph and refines
that fill graph until minimality is achieved, the new approach can turn good heuristic
orderings into good minimal orderings.

However, we saw that this capability makes little or no difference when the initial
ordering is produced by MDtru. It also makes little difference when the initial ordering
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is produced by MS or MMDext. Each of these ordering heuristics produces orderings
that are nearly minimal, and trying to improve them by making them minimal is
justified solely by ensuring that equivalent orderings are truly equivalent. We did see,
however, that initial ND orderings can be quite far from minimal. MS can be viewed
as a way to fix this problem with ND.

The algorithms in Berry [3] and Dahlhaus [7] are quite distinct from those in
Blair, Heggernes, and Telle [5, 6] and this paper. The former arise from links between
minimal vertex separators and minimal fill graphs, while the latter arise explicitly
from the existence of critical edges in nonminimal fill graphs. One of the variants
mentioned in Berry [3] promises much better run times than LEX M [4].

Among the contributions of this work are the following. The algorithm runs
quite fast in our tests. This has enabled computation of minimal orderings using
several different initial orderings of many large, standard test problems. Hence we
were able to confirm and extend the range of the results reported by Blair, Heggernes,
and Telle [6] for MMDext and METIS ND initial orderings. The algorithm is most
efficient when the initial ordering is very close to minimal. This is due in large part to
the fact that the number of major steps cannot exceed the total number of candidate
edges removed. When the initial ordering is minimal, only one major step is required
to detect minimality. This is one of the more distinct and appealing features of the
algorithm.

The time complexity of the new minimal ordering algorithm is unknown, in part
because of the use of minimum degree and quotient graphs, and in part because a
bound on the number of major steps in the new algorithm is unknown. We conjecture
that the number of major steps is O(n). We also conjecture that it may be worthwhile
to explore more efficient implementations of the algorithm, especially in the case where
the initial ordering is MDint or MMDext. It may be possible to exploit features of
the minimum degree ordering process to know in advance that a supernode has no
candidate edges, and hence there is no need to order vertices within such a supernode.
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Abstract. We prove a convergence result for an iterative method, proposed recently by Meini,
for finding the maximal Hermitian positive definite solution of the matrix equationX+A∗X−1A = Q,
where Q is Hermitian positive definite.
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1. Introduction. Nonlinear matrix equations occur in many applications. Ex-
amples of these equations are algebraic Riccati equations of continuous or discrete
type, which have been studied extensively and have been the subject of the mono-
graphs [12] and [13]. Another example is the quadratic matrix equation

AX2 +BX + C = 0,(1.1)

where A,B,C are given coefficient matrices. This equation has also been the topic of
many papers, including two recent papers by Higham and Kim (see [9] and [10]). In
this paper, our interest is in the matrix equation

X +A∗X−1A = Q,(1.2)

where A,Q ∈ C
m×m with Q Hermitian positive definite and a Hermitian positive def-

inite solution is required. This equation has been studied recently by several authors
(see [1], [4], [5], [8], [14], [16], [17]). For the application areas in which the equation
arises, see the references given in [1]. Note also that a solution X of (1.2) is such that
the Schur complement of X in the matrix

(
X A
A∗ Q

)

is X itself (see [1]).
There is some connection between (1.2) and (1.1). For example, if X is a solution

of (1.2), then X−1A is a solution of A∗Y 2 − QY + A = 0. Equation (1.2) is also a
special case of the discrete algebraic Riccati equation

−X + C∗XC +Q− (A+B∗XC)∗(R+B∗XB)−1(A+B∗XC) = 0(1.3)

with C = R = 0 and B = I.
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For Hermitian matrices X and Y , we write X ≥ Y (X > Y ) if X − Y is posi-
tive semidefinite (definite). A Hermitian solution X+ of a matrix equation is called
maximal if X+ ≥ X for any Hermitian solution X of the matrix equation.

For algebraic Riccati equations, it is well known that the desirable solution is the
maximal solution. For (1.2), the maximal solution is also the right choice in view of
the presence of X−1 in the equation.

The main purpose of the paper is to prove a convergence result for an iterative
method proposed by Meini [14] for finding the maximal solution of (1.2). Roughly
speaking, our new result together with the results obtained in [14] shows that the
convergence of Meini’s method is no slower than Newton’s method. Meini’s method
is thus preferable when we try to find the maximal solution of (1.2), since the com-
putational work per iteration for Newton’s method is 5 ∼ 10 times that for Meini’s
method. To put our result in a proper setting, we review in section 2 some theoret-
ical results for the solution of (1.2) and present in section 3 three iterative methods,
with emphasis on Meini’s method. Our convergence result for Meini’s method is then
presented in section 4. The paper ends with some discussions in section 5.

2. Theoretical background. Necessary and sufficient conditions for the exis-
tence of a positive definite solution of (1.2) have been given in [5].
Theorem 2.1. Equation (1.2) has a positive definite solution if and only if the

rational matrix function ψ(λ) = λA+Q+ λ−1A∗ is regular (i.e., the determinant of
ψ(λ) is not identically zero) and ψ(λ) ≥ 0 for all λ on the unit circle.

The existence of the maximal solution of (1.2) has also been established in [5],
along with a characterization of the maximal solution.
Theorem 2.2. If (1.2) has a positive definite solution, then it has a maximal

solution X+. Moreover, X+ is the unique positive definite solution such that X + λA
is nonsingular for all λ with |λ| < 1.

This result has the following immediate corollary, where ρ(·) is the spectral radius.
Corollary 2.3. For the maximal solution X+ of (1.2), ρ(X−1

+ A) ≤ 1; for any
other positive definite solution X, ρ(X−1A) > 1.

We also have the following characterization for the eigenvalues of the matrix
X−1

+ A (see [8]).

Theorem 2.4. For (1.2), the eigenvalues of X−1
+ A are precisely the eigenvalues

of the matrix pencil

λ


 I 0 0

0 0 0
0 −I 0


−


 0 0 −I

Q −I A∗

−A 0 0




inside or on the unit circle, with half of the partial multiplicities for each eigenvalue
on the unit circle.

3. Iterative methods. The maximal solution X+ of (1.2) can be found by the
following basic fixed point iteration.
Algorithm 3.1.

X0 = Q,

Xn+1 = Q−A∗X−1
n A, n = 0, 1, . . . .

For Algorithm 3.1, we have X0 ≥ X1 ≥ · · · , and limn→∞ Xn = X+ (see, e.g., [5]).
Moreover, the following result is proved in [8].
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Theorem 3.2. Let {Xn} be given by Algorithm 3.1. Then

lim sup
n→∞

n
√
‖Xn −X+‖ ≤ (ρ(X−1

+ A))2,

where ‖ · ‖ is any matrix norm.
Note that ρ(X−1

+ A) ≤ 1 is always true by Corollary 2.3. From the above re-
sult, we know that the convergence of the fixed point iteration is R-linear when-
ever ρ(X−1

+ A) < 1. For detailed definitions of the rates of convergence, see [15].

If ρ(X−1
+ A) = 1, the convergence of the fixed point iteration is typically sublinear.

Therefore, the convergence of Algorithm 3.1 would be excruciatingly slow when X−1
+ A

has eigenvalues on, or near, the unit circle. Naturally, one would turn to Newton’s
method for help with this situation.

Newton’s method is studied in [7] for the discrete algebraic Riccati equation of
the form (1.3). For (1.2), a special case of (1.3), Newton’s method is as follows (see
[8]).
Algorithm 3.3 (Newton’s method for (1.2)). Take X0 = Q. For n = 1, 2, . . . ,

compute Ln = X−1
n−1A and solve

Xn − L∗
nXnLn = Q− 2L∗

nA.(3.1)

Note that the Stein equation (3.1) is uniquely solvable when ρ(Ln) < 1. The
convergence behavior of Algorithm 3.3 is described in [8].
Theorem 3.4. If (1.2) has a positive definite solution, then Algorithm 3.3

determines a sequence of Hermitian matrices {Xn}∞n=0 for which ρ(Ln) < 1 for
n = 0, 1, . . . , X0 ≥ X1 ≥ · · · , and limn→∞ Xn = X+. The convergence is quadratic if
ρ(X−1

+ A) < 1. If ρ(X−1
+ A) = 1 and all eigenvalues of X−1

+ A on the unit circle are
semisimple (i.e., all elementary divisors associated with these eigenvalues are linear),
then the convergence is either quadratic or linear with rate 1/2.

Recently, Meini proposed a new algorithm by following the strategy successfully
devised in [2], [3] for solving nonlinear matrix equations arising in Markov chains. Her
algorithm is described below.

For the maximal solution X+ of (1.2),

−I +QX−1
+ −A∗X−1

+ AX−1
+ = 0,(3.2)

and the matrix G+ = X−1
+ A satisfies

−A+QG+ −A∗G2
+ = 0.(3.3)

Equations (3.2) and (3.3) can be rewritten as




Q −A∗ 0
−A Q −A∗

−A Q
. . .

0
. . .

. . .







I
G+

G2
+
...


X−1

+ =




I
0
0
...


 .(3.4)

The cyclic reduction algorithm is then applied to (3.4). This consists of performing
an even-odd permutation of the block rows and columns, followed by one step of block
Gaussian elimination on the resulting 2 × 2 block system. This results in a reduced
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system with a structure similar to (3.4). Repeated application of the cyclic reduction
algorithm generates the following sequence of systems:




Xn −A∗
n 0

−An Qn −A∗
n

−An Qn
. . .

0
. . .

. . .







I
G2n

+

G2·2n

+
...


X−1

+ =




I
0
0
...


 , n = 0, 1, . . . ,(3.5)

where the matrices An, Qn, and Xn are recursively defined as follows.
Algorithm 3.5.

A0 = A, Q0 = X0 = Q,

An+1 = AnQ
−1
n An,

Qn+1 = Qn −AnQ
−1
n A∗

n −A∗
nQ

−1
n An,

Xn+1 = Xn −A∗
nQ

−1
n An, n = 0, 1, . . . .

Meini proposed using the above algorithm to find the maximal solution X+ and
she proved the following result (see [14]).
Theorem 3.6. For the matrices Qn and Xn in Algorithm 3.5, it holds that

Qn ≥ Qn+1 > 0, Xn ≥ Xn+1 > 0 (n = 0, 1, . . .). Moreover, if ρ(X−1
+ A) < 1, then the

sequence {Xn} converges to X+ quadratically.
Meini’s method and Newton’s method are most useful when ρ(X−1

+ A) is close to
1, since otherwise the basic fixed point iteration is adequate. It is therefore important
to investigate the convergence behavior of Meini’s method when ρ(X−1

+ A) = 1.

4. Convergence rate. In this section, we prove a convergence result for Algo-
rithm 3.5 when ρ(X−1

+ A) = 1. In our proof, we will need the following two equations
from (3.5):

Xn −X+ = A∗
nG

2n

+ ,(4.1)

−An +QnG
2n

+ −A∗
nG

2·2n

+ = 0.(4.2)

These two equations were also used in Meini’s proof of Theorem 3.6.
Theorem 4.1. If ρ(X−1

+ A) = 1 and all eigenvalues of X−1
+ A on the unit circle

are semisimple, then the sequence {Xn} produced by Algorithm 3.5 converges to X+

and the convergence is at least linear with rate 1/2.
Proof. By Theorem 3.6 the sequence {Xn} is monotonically decreasing and

bounded below and hence has a limit. Therefore, limn→∞ A∗
nQ

−1
n An = 0 by the

last equation in Algorithm 3.5. Since ‖Q‖2I ≥ Q ≥ Qn > 0, Q−1
n ≥ I/‖Q‖2. Thus,

0 ≤ A∗
nAn/‖Q‖2 ≤ A∗

nQ
−1
n An.

Therefore, limn→∞ An = 0. Since all eigenvalues of G+ = X−1
+ A on the unit circle

are semisimple by assumption, the sequence {G2n

+ } is bounded. It follows from (4.1)
that limn→∞ Xn = X+. As a result, Xn ≥ X+ for each n ≥ 0.

To prove the assertion about the convergence rate, we need to make some sim-
plifications. Let P−1G+P = J be the Jordan canonical form of G+. Accordingly,
let

Bn = P ∗AnP, Rn = P ∗QnP, Yn = P ∗XnP, Y+ = P ∗X+P.
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It is easily verified that for n = 0, 1, . . . ,

Bn+1 = BnR
−1
n Bn,(4.3)

Rn+1 = Rn −BnR
−1
n B∗

n −B∗
nR

−1
n Bn,(4.4)

Yn+1 = Yn −B∗
nR

−1
n Bn,(4.5)

and

Yn − Y+ = B∗
nJ

2n

,(4.6)

−Bn +RnJ
2n −B∗

nJ
2·2n

= 0.(4.7)

We may assume that

J = diag(eiθ1 , . . . , eiθk , J<),

where eiθ1 , . . . , eiθk are the eigenvalues of G+ on the unit circle (not necessarily dis-
tinct) and J< consists of Jordan blocks associated with the eigenvalues of G+ inside
the unit disk. Let the corresponding block diagonals of Yn − Y+ and Bn be

diag(α(1)
n , . . . , α(k)

n , Zn)(4.8)

and

diag(β(1)
n , . . . , β(k)

n , Cn),

respectively. Since Yn − Y+ = P ∗(Xn − X+)P is positive semidefinite, α
(i)
n ≥ 0 for

i = 1, . . . , k.

We first examine how fast α
(1)
n converges to zero. By (4.6) we have

α(1)
n = β

(1)
n ei2

nθ1 .(4.9)

To find the relation between β
(1)
n+1 and β

(1)
n from (4.3), we let

Bn =

(
β

(1)
n t∗n
sn Un

)
, Rn =

(
γn v∗n
vn Wn

)
,

where sn, tn, vn ∈ C
m−1 and Un,Wn ∈ C

(m−1)×(m−1). Since Rn is positive definite, it
is well known (see [11], for example) that Hn = Wn− 1

γn
vnv

∗
n, the Schur complement

of γn in Rn, is also positive definite, and

R−1
n =

(
1
γn

+ 1
γ2
n
v∗nH

−1
n vn − 1

γn
v∗nH

−1
n

− 1
γn

H−1
n vn H−1

n

)
.

Now, a straightforward computation shows that

β
(1)
n+1 =

(β
(1)
n )2

γn
+

(β
(1)
n )2

γ2
n

v∗nH
−1
n vn − β

(1)
n

γn
v∗nH

−1
n sn − β

(1)
n

γn
t∗nH

−1
n vn + t∗nH

−1
n sn.

By (4.7), we have

−β(1)
n + γne

i2nθ1 − β
(1)
n ei2·2

nθ1 = 0(4.10)
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and

−sn + vne
i2nθ1 − tne

i2·2nθ1 = 0.(4.11)

Since α
(1)
n is real, we have by (4.9) β

(1)
n ei2

nθ1 = β
(1)
n e−i2nθ1 . Thus, β

(1)
n ei2·2

nθ1 = β
(1)
n .

It follows from (4.10) that

β
(1)
n

γn
=

1

2
ei2

nθ1 .

The relation between β
(1)
n+1 and β

(1)
n is thus simplified to

β
(1)
n+1 =

1

2
ei2

nθ1β(1)
n +

1

4
ei2·2

nθ1v∗nH
−1
n vn − 1

2
ei2

nθ1v∗nH
−1
n sn

−1

2
ei2

nθ1t∗nH
−1
n vn + t∗nH

−1
n sn.

Multiplying both sides by e−i2n+1θ1 , we get

α
(1)
n+1 =

1

2
α(1)
n +

1

4
v∗nH

−1
n vn − 1

2
e−i2nθ1v∗nH

−1
n sn

−1

2
e−i2nθ1t∗nH

−1
n vn + e−i2·2nθ1t∗nH

−1
n sn.

Substituting sn = vne
i2nθ1 − tne

i2·2nθ1 (from (4.11)) into the above identity, we get
after some manipulations that

α
(1)
n+1 =

1

2
α(1)
n −

(
tn − 1

2
e−i2nθ1vn

)∗
H−1

n

(
tn − 1

2
e−i2nθ1vn

)
.

Therefore, α
(1)
n+1 ≤ 1

2α
(1)
n for each n ≥ 0. Thus,

α(1)
n ≤ 1

2n
α

(1)
0 , n = 0, 1, . . . .

Using appropriate permutations, we can show that, for i = 2, . . . , k,

α(i)
n ≤

1

2n
α

(i)
0 , n = 0, 1, . . . .

The matrices Zn in (4.8) are positive semidefinite and it is shown below that {Zn}
converges to the zero matrix quadratically. Note that Zn = C∗

nJ
2n

< by (4.6). Fix an
ε > 0 such that ρ(J<) + ε < 1 and choose a norm ‖ · ‖ε such that ‖J<‖ε ≤ ρ(J<) + ε.
Since limn→∞ Cn = 0 and all matrix norms are equivalent, ‖Zn‖2 ≤ c1(ρ(J<) + ε)2

n

for some constant c1.
Now, noting that trace(Zn) ≤ (m− k)‖Zn‖2,

‖Xn −X+‖2 = ‖P−∗(Yn − Y+)P
−1‖2

≤ ‖P−∗‖2‖Yn − Y+‖2‖P−1‖2
≤ ‖P−∗‖2‖P−1‖2 trace(Yn − Y+)

= ‖P−∗‖2‖P−1‖2
(
α(1)
n + · · ·+ α(k)

n + trace(Zn)
)

≤ c2

(
1

2n
+ (ρ(J<) + ε)2

n

)
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for some constant c2. Thus,

lim sup
n→∞

n
√
‖Xn −X+‖ ≤ 1

2

for any matrix norm ‖ · ‖.
5. Discussions. In section 3, we reviewed three iterative methods for finding the

maximal solution of (1.2). For Newton’s method, (3.1) can be solved by a complex
version of the algorithm described in [6]. Meini’s method and the basic fixed point
iteration can be implemented easily. The computational work per iteration for Meini’s
method is roughly twice that for the fixed point iteration, while the computational
work per iteration for Newton’s method is about 15 times that for the fixed point iter-
ation. With the establishment of Theorem 4.1, we have had a much better picture for
the convergence behavior of all three methods. When ρ(X−1

+ A) < 1, the convergence
of the fixed point iteration is linear and the convergence of Newton’s method and
Meini’s method is quadratic. When ρ(X−1

+ A) = 1, the convergence of the fixed point
iteration is typically sublinear, while the convergence of Newton’s method and Meini’s
method is at least linear with rate 1/2 provided that all unimodular eigenvalues of
X−1

+ A are semisimple. (We conjecture that the convergence is exactly linear with

rate 1/2 for both methods.) When X−1
+ A has nonsemisimple unimodular eigenvalues,

Newton’s method is still convergent, but the rate of convergence is only conjectured to
be 1/ p

√
2, where p is the size of the largest Jordan blocks associated with unimodular

eigenvalues of X−1
+ A. The conjecture was made in [7] for (1.3), which includes (1.2)

as a special case. Also, when X−1
+ A has nonsemisimple unimodular eigenvalues, it is

still not known whether the sequence {Xn} produced by Meini’s method will converge
to X+.

When ρ(X−1
+ A) = 1, we cannot expect Newton’s method to approximate X+

with full accuracy since the linear system (3.1) is eventually nearly singular. Meini’s
method has the same problem in this case: Q̃ = limn→∞ Qn is necessarily singular
in this case. In fact, it follows easily from (4.7) that R̃ = limn→∞ Rn is singular.
Therefore, Q̃ = P−∗R̃P−1 is singular as well.

Our final comments are about test examples for the iterative methods we dis-
cussed. In [14], Meini gives an example of (1.2) with Q = I and A Hermitian, in
which case an analytical expression is available for the maximal solution. More in-
formative examples can be generated as follows. First note that we may assume that

X+ = I (otherwise we can premultiply and postmultiply the equation by X
−1/2
+ ). The

test examples will thus be of the form X +A∗X−1A = I +A∗A. By Corollary 2.3, I
is the maximal solution of this equation if and only if ρ(A) ≤ 1. We can then produce
a lot of test examples by taking A = S/r with r ≥ ρ(S) and S a random matrix. For
test examples generated in this way, the convergence behavior of the three methods
is very much similar to that reported by Meini [14] for her example. In fact, it is all
but certain that all those examples are covered by the theory we have available by
now. Note, however, that all three methods will run into difficulties when A is a large
Jordan block with eigenvalue 1, for example.
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Abstract. We show how to incorporate exact line searches into Newton’s method for solving
the quadratic matrix equation AX2 + BX + C = 0, where A, B and C are square matrices. The
line searches are relatively inexpensive and improve the global convergence properties of Newton’s
method in theory and in practice. We also derive a condition number for the problem and show how
to compute the backward error of an approximate solution.

Key words. quadratic matrix equation, solvent, Newton’s method, generalized Sylvester equa-
tion, exact line searches, quadratic eigenvalue problem, condition number, backward error
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1. Introduction. Nonlinear matrix equations occur in a variety of applications.
An important class of examples, arising in control theory, is algebraic Riccati equa-
tions, such as XBX +XA+ A∗X + C = 0, where A, B, and C are given coefficient
matrices. Theory of Riccati equations and numerical methods for their solution are
well developed [1], [4], [31]. Our interest here is in the quadratic matrix equation

Q(X) = AX2 +BX + C = 0, A,B,C ∈ C
n×n.(1.1)

Although some Riccati equations are quadratic matrix equations, and vice versa,
the two classes of equations require different techniques for analysis and solution in
general.

Motivation for studying the quadratic matrix equation comes from the quadratic
eigenvalue problem

Q(λ)x = λ2Ax+ λBx+ Cx = 0, A,B,C ∈ C
n×n,(1.2)

which arises in the analysis of structural systems and vibration problems [30], [36],
[37]. The standard approach is to reduce (1.2) to a generalized eigenproblem (GEP)
Gx = λHx of twice the dimension, 2n. However, as is well known [7], [10], [30], if we
can find a solution X of the associated quadratic matrix equation (1.1) then we can
write

λ2A+ λB + C = −(B +AX + λA)(X − λI)(1.3)

and so the eigenvalues of (1.2) are those of X together with those of the GEP (B +
AX)x = −λAx, both of which are n × n problems. Bridges and Morris [5] employ
this approach in the solution of differential eigenproblems.

A solution X of (1.1) is called a solvent [10]. More precisely, X is called a right
solvent to distinguish it from a left solvent, which is a solution of X2A+XB+C = 0.
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Transposing the latter equation yields one of the form (1.1), so we concentrate on
(1.1) here.

A dominant (minimal) solvent X is one for which every eigenvalue is greater (less
than) in modulus than all the eigenvalues of the quotient B + AX + λA in (1.3). In
earlier work, Dennis, Traub, and Weber gave two linearly convergent algorithms for
computing a dominant solvent of an arbitrary degree matrix polynomial [11]. One
of these is a generalization of Bernoulli’s method for scalar polynomials and is also
described by Gohberg, Lancaster, and Rodman [20, sec. 4.2]. These algorithms have
the drawbacks that it is difficult to check in advance whether a dominant solvent exists
and the convergence can be extremely slow (see [27] for more details). Davis [7], [8]
applied Newton’s method to the quadratic matrix equation, giving supporting theory
and implementation details. Kratz and Stickel [29] investigated Newton’s method for
the general matrix polynomial.

This work has two main contributions. First, following an idea of Benner and
Byers [2] (and, much earlier, of Man [33]) in the context of the algebraic Riccati equa-
tion, we incorporate exact line searches into Newton’s method for the quadratic matrix
equation in order to improve the global convergence properties. We show experimen-
tally that exact line searches improve the reliability of Newton’s method, leading to
more frequent convergence and, often, faster convergence. Our second contribution is
to derive the true condition number for the quadratic matrix equation, thus obtaining
a sharper perturbation bound than Davis [7], and to obtain the backward error of an
approximate solution.

Solving even the scalar quadratic equation reliably in floating point arithmetic is
a difficult problem, as pointed out by Forsythe [15], principally due to the difficulty of
handling underflow and overflow. We do not consider here the effects of underflow and
overflow, but rather concentrate on the difficulties present with exact computation.

2. Theory. Before considering numerical solution of the quadratic matrix equa-
tion we examine the existence and enumeration of solvents. The fundamental theorem
of algebra does not hold for matrix polynomials, as is shown by the special case of
the matrix square root problem X2 = A, which does not always have a solution when
A is singular [28, sec. 6.4].

The quadratic matrix equation can be solved explicitly when A = I, B commutes
with C, and B2−4C has a square root. We can complete the square in the usual way
to obtain the solution

X = − 1
2B + 1

2 (B
2 − 4C)1/2,

where A1/2 denotes any square root that is a polynomial in A. This case pertains,
for example, when A and B are scalar multiples of the identity and B2 − 4AC is
nonsingular, after scaling though by A−1. However, no generalization of the formula
for the solution of a scalar quadratic is available for general A, B, and C.

Various sufficient conditions for the existence of a solvent are given by Eisen-
feld [12] and Lancaster and Rokne [32]. In the former paper the results are obtained
using the contraction mapping principle and in the latter paper using the Newton–
Kantorovich theorem. Roughly speaking, all these results require that B or B−1 be
small in norm compared with A and C, so they are of limited practical applicability.

The existence of dominant and minimal solvents is guaranteed for problems com-
ing from overdamped quadratic eigenvalue problems (1.2): those for which A, B, and
C are all symmetric positive definite and (xTBx)2 > 4(xTAx)(xTCx) for all nonzero
x; see Lancaster [30, sec. 7.6].
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General information about existence of solvents comes from the connection be-
tween the quadratic matrix equation and the quadratic eigenvalue problem (1.2).
Note, first, that if A is nonsingular then det(Q(λ)) = det(A) det(λ2I + A−1Bλ +
A−1C), so det(Q(λ)) has degree exactly 2n and hence Q(λ) has 2n eigenvalues, all of
which are finite. If A is singular then det(Q(λ)) has degree less than 2n and hence
Q(λ) has either less than 2n finite eigenvalues or infinitely many if det(Q(λ)) ≡ 0.

The next result gives information on the number of solvents of Q(X); it general-
izes [10, Cor. 4.1].

Theorem 2.1. Suppose Q(λ) has p distinct eigenvalues {λi}pi=1, with n ≤ p ≤ 2n,
and that the corresponding set of p eigenvectors {vi}pi=1 satisfies the Haar condition
(that is, every subset of n of them is linearly independent). Then there are at least(
p
n

)
different solvents of Q(X), and exactly this many if p = 2n, which are given by

X = W diag(µi)W
−1, W = [w1, . . . , wn ] ,(2.1)

where the eigenpairs (µi, wi)
n
i=1 are chosen from among the eigenpairs (λi, vi)

p
i=1

of Q.
Proof. There are clearly

(
p
n

)
choices ofX in (2.1). Since µ2

iAwi+µiBwi+Cwi = 0,
we have AW diag(µi)

2 + BW diag(µi) + CW = 0 and thence, on postmultiplying by
W−1, Q(X) = 0. That the

(
p
n

)
solvents are different follows from the fact that no two

have the same eigenvalues. Now suppose that p = 2n. From (1.3), every eigenpair of
X is also an eigenpair of Q, and it follows that X is diagonalizable and of the form
(2.1).

When p = n in Theorem 2.1 the distinctness of the eigenvalues is not needed in
the proof, and we obtain a sufficient condition for the existence of a solvent.

Corollary 2.2. If Q(λ) has n linearly independent eigenvectors v1, . . . , vn then
Q(X) has a solvent.

An example helps to clarify the theory. Consider the quadratic [10]

Q(X) = X2 +

[−1 −6
2 −9

]
X +

[
0 12
−2 14

]
.

Q(λ) has four distinct eigenvalues, with eigenpairs (λi, vi) given by

i 1 2 3 4
λi 1 2 3 4

vi
[
1
0

] [
0
1

] [
1
1

] [
1
1

]
To apply Theorem 2.1 we can take p no bigger than 3, in view of the Haar condition. If
we take eigenvalues 1, 2, 3, then the theorem gives three solvents, having eigenvalues
1 and 2, 1 and 3, and 2 and 3. But the eigenvectors corresponding to eigenvalues
1, 2, 4 also satisfy the Haar condition and this gives us another two solvents, having
eigenvalues 1 and 4, and 2 and 4. Note that there is no dominant solvent, which
would have to have eigenvalues 3 and 4. The complete set of solvents is[

1 0
0 2

]
,

[
1 2
0 3

]
,

[
3 0
1 2

]
,

[
1 3
0 4

]
,

[
4 0
2 2

]
.

We were able to find all these solvents using the solve command of Matlab’s Sym-
bolic Math Toolbox [34], but symbolic solution is clearly impractical for large n.

For a characterization of solvents via the generalized Schur decomposition of an
associated matrix pencil, see [27].
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3. Newton’s method. Newton’s method for solving the quadratic matrix equa-
tion (1.1) is readily obtained from the expansion

Q(X + E) = Q(X) +
(
AEX + (AX +B)E

)
+AE2

= Q(X) +DX(E) +AE2,(3.1)

where DX(E) : C
n×n → C

n×n is the Fréchet derivative of Q at X in the direction E.
Newton’s method drops the second order term, defines E as the solution of Q(X) +
DX(E) = 0, and replaces X by X+E. Each step of Newton’s method involves finding
the solution E of

AEX + (AX +B)E = −Q(X),(3.2)

which is a special case of the generalized Sylvester equation “AXB + CXD = E.”
We would like to know when the Fréchet derivative DX is nonsingular, both at

a solvent and at an iterate X, so that (3.2) has a solution. From a result of Chu [6]
on the generalized Sylvester equation it follows that DX is nonsingular if and only if
the pair (−A,AX + B) is regular (that is, det(−A − λ(AX + B)) is not identically
zero in λ) and the eigenvalues of the pair are distinct from the eigenvalues of X. If
A is nonsingular, the regularity condition holds. When X is a solvent, we see from
(1.3) that the second condition is equivalent to the eigenvalues of X being distinct
from the remaining n eigenvalues of Q(λ). We can therefore identify some sufficient
conditions for nonsingularity of DX at a solvent.

Lemma 3.1. If A is nonsingular then DX is nonsingular at
1. a dominant or minimal solvent X,
2. all solvents X if the eigenvalues of Q(λ) are distinct.
For efficiency, Q(X) should be calculated by nested multiplication as (AX+B)X+

C, which requires two matrix multiplications instead of the three if X2 is explicitly
formed and provides the coefficient matrix AX +B in (3.2) as a byproduct.

To solve (3.2) we can adapt methods for solving the generalized Sylvester equation
described by Golub, Nash, and Van Loan [21] and Epton [13] (see also Chu [6] and
Gardiner et al. [17], [18]). First we consider a Schur algorithm.

Compute the generalized Schur decomposition of A and AX+B [22, Thm. 7.7.1],

W ∗AZ = T, W ∗(AX +B)Z = S,(3.3)

where W and Z are unitary and T and S are upper triangular, and the Schur decom-
position of X, U∗XU = R, where U is unitary and R is upper triangular. Then, pre-
and postmultiplying (3.2) by W ∗ and U , respectively, transforms the system to

TY R+ SY = F, F = −W ∗Q(X)U, Y = Z∗EU.(3.4)

Equating kth columns and rearranging leads to

(S + rkkT )yk = fk −
k−1∑
i=1

rikTyi, Y = [y1, y2, . . . , yn].(3.5)

By solving these upper triangular systems in the order k = 1:n, Y can be computed
a column at a time. The cost of this algorithm is as follows, where a flop denotes
a floating point operation. The generalized Schur decomposition requires 66n3 flops
[22, sec. 7.7.6] and the Schur decomposition 25n3 flops [22, sec. 7.5.6]. Forming F
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and transforming from Y to E in (3.4) costs 8n3 flops, and solving (3.5) requires 3n3

flops. The total is therefore 102n3 flops.
The Schur algorithm is used by Davis [7]. However, as noted by Golub, Nash, and

Van Loan [21], Epton [13], and Gardiner et al. [17], one of the Schur decompositions
can be replaced by a Hessenberg-triangular decomposition with a potentially sub-
stantial computational saving. Suppose we replace (3.3) by the Hessenberg-triangular
decomposition [22, sec. 7.7.4]

W ∗AZ = T, W ∗(AX +B)Z = H,

where the only difference from (3.3) is thatH is upper Hessenberg (this decomposition
is a preliminary step to computing (3.3) by the QZ algorithm). The analogue of (3.5)
is

(H + rkkT )yk = fk −
k−1∑
i=1

rikTyi,(3.6)

which is an upper Hessenberg system. The Hessenberg-triangular decomposition re-
quires 15n3 flops [22, sec. 7.7.6] and the systems (3.6) can be solved in 4n3 flops.
Hence the total cost of the Hessenberg–Schur algorithm is 52n3 flops, which is a 51
percent saving compared with the Schur algorithm.

Versions of the Schur and Hessenberg–Schur algorithms that employ real Schur
decompositions and so use only real arithmetic can be developed; see [17] for details.

Standard convergence results for Newton’s method apply [9, Thm. 5.2.1], as de-
tailed in [29, Thm. 1]. In particular, if Newton’s method is started sufficiently close
to a solvent for which the Fréchet derivative is nonsingular, the iteration converges
and at a quadratic rate. The Kantorovich theorem can also be applied to provide
sufficient conditions for existence of a solvent and convergence of Newton’s method
to that solvent [9, Thm. 5.3.1].

4. Incorporating line searches. In the solution of unconstrained optimization
problems by Newton or quasi-Newton methods it is common to use the Newton direc-
tion as a search direction and to define the next iterate by (approximately or exactly)
minimizing the objective function along this direction [35, Chap. 3]; the minimization
is called a line search. Line searches can also be used on nonlinear equation problems,
given a suitable function for the line search to minimize. Benner and Byers [2] (see
also [3]) investigate the use of exact line searches in Newton’s method for solving
the algebraic Riccati equation. (Man [33] had earlier used exact line searches in a
quasi-Newton method for the same problem, but did not give any details.) Here, we
apply exact line searches with Newton’s method for the quadratic matrix equation.

The motivation for line searches is that, far from a solution, the linear model of
Q(X) on which Newton’s method is based may be inaccurate, and so the Newton step
E may not be a good one. Line searches are expected to give better global convergence
(that is, convergence from arbitrary starting points). An example adapted from [2]
illustrates the point. Consider the quadratic matrix equation

X2 −
[
1 0
0 δ1/2

]
= 0, 0 < δ 	 1,

which has solutions X = diag(±1,±δ1/4). With X0 = diag(1, δ), Newton’s method
gives E = diag(0, (δ−1/2 − δ)/2), so that X1 = X0 + E is a much worse approximate



308 NICHOLAS J. HIGHAM AND HYUN-MIN KIM

solvent than X0. However, it is clear that X0 + tE is a solvent for suitable choice of
the scalar t.

In our Newton method with line searches we take a multiple of the Newton step
that minimizes the merit function

p(t) = ‖Q(X + tE)‖2F ,(4.1)

where the Frobenius norm ‖A‖F = (trace(A∗A))1/2. Other choices of merit function
could be tried (for example, based on other norms of Q), but this one is convenient
to work with and has some theoretical backing, as explained below. Recalling that
Newton’s method defines E by Q(X) +DX(E) = 0, from (3.1) we have, for this E,

Q(X + tE) = Q(X) + tDX(E) + t2AE2

= (1− t)Q(X) + t2AE2.(4.2)

Thus

p(t) = (1− t)2‖Q(X)‖2F + t4‖AE2‖2F
+ (1− t)t2 trace

(
Q(X)∗AE2(AE2)∗Q(X)

)
≡ α(1− t)2 + γt4 + β(1− t)t2

= γt4 − βt3 + (α+ β)t2 − 2αt+ α.(4.3)

If γ = ‖AE2‖F = 0 then p(t) = α(1 − t)2, which attains its global minimum at
t = 1, yielding the standard Newton step. If α = 0 then X is a solvent. We can
therefore assume that γ > 0 and α > 0.

We have a quartic polynomial p of which we wish to find the global minimum. A
quartic has at most two minima, of which one is the global minimum. We have

p′(t) = 2α(t− 1) + β(2t− 3t2) + 4γt3.

Hence

p′(0) = −2α < 0,(4.4)

and

p′(2) = 2(α− 4β + 16γ)

= 2 trace
(
Q(X)∗Q(X)− 4(Q(X)∗AE2 + (AE2)∗Q(X)) + 16(AE2)∗AE2

)
= 2 trace

(
(Q(X)− 4AE2)∗(Q(X)− 4AE2)

)
≥ 0.

Since p′(0) < 0 and p′(2) ≥ 0, p′ has a real zero in the interval (0, 2], and this zero
corresponds to a minimum or a point of inflection of p. Since t = 1 corresponds to a
pure Newton step, it is therefore reasonable to restrict our attention to the interval
[0, 2], although there is no guarantee that there is a minimum of p in this interval
when we are far from a solution. Thus we define t by

p(t) = min
x∈[0,2]

p(x).(4.5)

There are two cases to consider.
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(1) If p′ has one real zero and a (nonreal) complex conjugate pair of roots then
the real zero, which must lie in (0, 2], is the desired global minimum.

(2) If p′ has three real zeros then at most two are minima of p. If the global
minimum lies outside (0, 2] then t = 2 needs to be checked, as it may yield a smaller
value of p than the zero of p′ in (0, 2].

Knowing these cases, it is easy to implement the choice of t in (4.5), since the
zeros of the cubic p′ and the values of p at these zeros are easily computed.

The question arises of whether the exact line searches interfere with the quadratic
convergence of Newton’s method, necessitating the explicit setting of t = 1 once
convergence is approached. The answer is no, under a mild assumption, as we now
show. Assume that Xj is within a region where quadratic convergence to X occurs,

and let Xj+1 = Xj + Ej and X̃j+1 = Xj + tEj be the standard Newton update and
the update with exact line search, respectively. Defining ∆j = X −Xj , we have

‖∆j+1‖ = O
(‖∆j‖2

)
.

The definition of t ensures that, using (4.2),

‖(1− t)Q(Xj) + t2AE2
j ‖ = ‖Q(Xj + tEj)‖ ≤ ‖Q(Xj + Ej)‖

= ‖Q(Xj+1)‖ = ‖Q(X −∆j+1)‖
= ‖Q(X)‖+O(‖∆j+1‖)
= O

(‖∆j‖2
)
.(4.6)

Now Ej = −∆j+1 +∆j , so ‖Ej‖ = O(‖∆j‖) and, by (3.1),

Q(Xj) = Q(X −∆j) = −DX(∆j) +O(‖∆j‖2).
Hence, as long as the Fréchet derivative is nonsingular atX, (4.6) implies that |1−t| =
O(‖∆j‖). Thus

X − X̃j+1 = X −Xj+1 +Xj+1 − X̃j+1 = O
(‖∆j‖2

)
+ (1− t)Ej = O

(‖∆j‖2
)
,

as required.
The global convergence properties of Newton’s method with exact line searches

can be obtained from standard theory. We are effectively solving a nonlinear system
f(x) = 0 by Newton’s method, where f : R

n2 → R
n2

, doing line searches on the
function F (x) = f(x)T f(x), as advocated by Dennis and Schnabel [9, sec. 6.5] and
Fletcher [14, sec. 6.2]. The global convergence results of [9, sec. 6.3], [14, sec. 2.5]
apply provided that certain restrictions known as the Armijo–Goldstein conditions
are imposed on the line search. In our notation these conditions may be written as

p(t) ≤ p(0) + c1tp
′(0),(4.7a)

p′(t) ≥ c2p
′(0),(4.7b)

where c1 and c2 are parameters with 0 < c1 < c2 < 1. The first condition ensures that
the reduction in p is at least as big as that predicted by a first order model, while the
second ensures that the step is not too small, by requiring that the derivative at t be
at least some fraction of the derivative at 0. It is easy to see using (4.4) that (4.7a)
is equivalent to

‖Q(X + tE)‖2F ≤ (1− 2c1t)‖Q(X)‖2F ,
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which requires a sufficient decrease in the merit function. The use of exact line searches
does not necessarily imply that the conditions (4.7) are satisfied. However, (4.7b)
certainly holds in the usual case when the optimal t is a zero of p′(t), since p′(0) < 0.
Both conditions have been checked and found to be satisfied in all our numerical tests
(with c1 = 1/4, c2 = 1/2), so we have not considered any modifications to the exact
line search.

The line search requires three matrix multiplications to compute the coefficients
of p in (4.3) (Q(X) is already available), the remaining computations being scalar
ones. The total cost of the line search is 5n3 flops, which is negligible compared with
the cost of computing the Newton direction E (at least 56n3 flops).

5. Conditioning. We now derive a condition number for a solvent of the quadratic
matrix equation (1.1). The analyses in this section and the next have close connec-
tions with analyses for Sylvester and algebraic Riccati equations in [19], [23], [25],
[26].

Consider the perturbed equation

(A+∆A)(X +∆X)2 + (B +∆B)(X +∆X) + C +∆C = 0.(5.1)

We will measure the perturbations normwise by

ε = ‖ [α−1∆A, β−1∆B, γ−1∆C ] ‖F ,
where α, β, and γ are nonnegative parameters. A zero value of α, say, simply forces
the corresponding perturbation ∆A to be zero. Expanding (5.1) we obtain

AX∆X +A∆XX +B∆X = −∆AX2 −∆BX −∆C +O(ε2).(5.2)

We now use the vec operator, which stacks the columns of a matrix into one long vec-
tor, and the Kronecker product A⊗B = (aijB), and we use the property vec(AXB) =
(BT ⊗A) vec(X) [28, Chap. 4]. Applying the vec operator to (5.2) we obtain

P vec(∆X) = −((X2)T ⊗ In) vec(∆A)− (XT ⊗ In) vec(∆B)− vec(∆C) +O(ε2)

= − [α(X2)T ⊗ In, βXT ⊗ In, γIn2 ]


 vec(∆A)/α
vec(∆B)/β
vec(∆C)/γ


+O(ε2),

where

P = In ⊗AX +XT ⊗A+ In ⊗B.

Multiplying by P−1, taking 2-norms, and using ‖ vec(X)‖2 = ‖X‖F , we obtain the
bound

‖∆X‖F
‖X‖F ≤ Ψ(X)ε+O(ε2),(5.3)

where

Ψ(X) = ‖P−1 [α(X2)T ⊗ In, βXT ⊗ In, γIn2 ] ‖2/‖X‖F .
This is a sharp bound, to first order in ε, so Ψ(X) is the condition number of X. Note
that P is nonsingular, and hence Ψ(X) finite, precisely when the Fréchet derivative
DX in (3.1) is nonsingular.
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An upper bound for Ψ(X) involving ‖P−1‖2 can of course be obtained by bound-
ing the norm of the product by the product of the norms, but this bound can be
arbitrarily weaker than (5.3). A perturbation bound for (1.1) that contains a factor
‖D−1

X ‖F is derived by Davis [7], and it is easy to show that ‖P−1‖2 = ‖D−1
X ‖F .

For the special case of the matrix square root we have A = I, B = 0, α = β = 0,
and the condition number Ψ simplifies to

Ψ(X) =
‖P−1‖2γ
‖X‖F , P = In ⊗X +XT ⊗ In,

which is the matrix square root condition number identified in [25].
We give an illustrative example from [20, Ex. 4.4], with

A = I2, B =

[
0 0
1 0

]
, C =

[−1 0
−1 0

]
.

The eigenvalues of Q(λ) are −1, 0, 0, 1 and there are three solvents:

X1 =

[
1 −1
0 −1

]
, X2 =

[
1 0
0 0

]
, X3 =

[−1 0
−2 0

]
.

The solvent X1 is dominant and so Theorem 3.1 implies it has a finite condition
number; in fact Ψ(X1) = 3.64. The other two solvents are both easily seen to have
singular P and hence infinite condition numbers.

6. Backward error. We define the backward error of an approximate solution
Y to (1.1) by

η(Y ) = min
{
ε : (A+∆A)Y 2 + (B +∆B)Y + C +∆C = 0,

‖ [α−1∆A, β−1∆B, γ−1∆C ] ‖F ≤ ε
}
.(6.1)

Defining

R = AY 2 +BY + C,

the constraint equation in (6.1) can be written as

−R = ∆AY 2 +∆BY +∆C

= [α−1∆A, β−1∆B, γ−1∆C ]


αY 2

βY
γIn


 .(6.2)

Taking Frobenius norms leads to the lower bound for the backward error

η(Y ) ≥ ‖R‖F
(α2‖Y 2‖2F + β2‖Y ‖2F + nγ2)1/2

.

Applying the vec operator to (6.2) gives

[α(Y 2)T ⊗ In, βY T ⊗ In, γIn2 ]


 vec(∆A)/α,
vec(∆B)/β,
vec(∆C)/γ


 = − vec(R),(6.3)
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which we write as

Hz = r, H ∈ R
n2×3n2

.

We assume that H is of full rank, which guarantees that (6.3) has a solution, that is,
that the backward error is finite. The backward error is the minimum 2-norm solution
to this underdetermined system:

η(Y ) = ‖H+r‖2,
where a superscript “+” denotes the pseudoinverse. To obtain an upper bound for
η(Y ) we use

η(Y ) ≤ ‖H+‖2‖r‖2 = ‖r‖2
σmin(H)

,

where σmin denotes the smallest singular value, which is nonzero by assumption. Now

σmin(H)2 = λmin(HH∗)
= λmin(α

2(Y 2)TY 2 ⊗ In + β2Y TY ⊗ In + γ2In2)

= λmin(α
2(Y 2)∗Y 2 ⊗ In + β2Y ∗Y ⊗ In + γ2In2)

≥ α2σmin(Y
2)2 + β2σmin(Y )

2 + γ2.

Thus

η(Y ) ≤ ‖R‖F
(α2σmin(Y 2)2 + β2σmin(Y )2 + γ2)1/2

.

We conclude from this analysis that a small relative residual does not necessarily
imply a small backward error for the quadratic matrix equation. The same is true for
the Sylvester equation [26] and, more generally, the algebraic Riccati equation [19].

7. Numerical experiments. Davis [7], [8] demonstrated the usefulness of New-
ton’s method for solving the quadratic matrix equation. Our purpose in this section
is to show experimentally the benefits of exact line searches in Newton’s method. Our
experiments were done in Matlab, which has unit roundoff u = 2−53 ≈ 1.1× 10−16.

First, we give a few details about our Newton implementation. The default start-
ing matrix is, as in [7],

X0 =

(‖B‖F +
√‖B‖2F + 4‖A‖F ‖C‖F

2‖A‖F

)
I,

which is designed to have norm roughly of the same order of magnitude as a solvent.
We terminate the iteration when the residual Q(Xk) is of the same order of magni-
tude as the rounding error in computing it, namely, when the relative residual ρ(Xk)
satisfies

ρ(Xk) =
‖fl(Q(Xk))‖F

‖A‖F ‖Xk‖2F + ‖B‖F ‖Xk‖F + ‖C‖F ≤ nu.(7.1)

OurMatlab code has an option to choose whether to use line searches. When line
searches are being used, they are turned off (t is set to 1) once ρ(Xk) ≤ 10−7; this is
not necessary in theory (see section 4), but is done to save work and as a precaution to
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avoid rounding errors destroying the quadratic convergence. In evaluating backward
errors and condition numbers we took α = ‖A‖F , β = ‖B‖F , γ = ‖C‖F .

The potential benefits of exact line searches are easily demonstrated. Consider
the quadratic matrix equation with

A = I2, B =

[−1 −1
1 −1

]
, C =

[
0 1
−1 0

]
.(7.2)

As noted in [8] there are real solvents I2 and
[

0
−1

1
0

]
and an infinite number of complex

solvents. Applying Newton’s method with and without line searches for the defaultX0

and X0 = 10jI, j = 1, 5, 10, gave the results in Table 7.1, which show the substantial
reduction in iterations that exact line searches can bring. In each case the computed
solvent X̂ was within roundoff of I2, with condition number Ψ(X̂) = 1.4 and backward

error η(X̂) ≈ u.
Our next example is the quadratic matrix equation with

A = B = I2, C =

[ −8 −12
−18 −26

]
,(7.3)

again from [8], which has four solvents, all real and well conditioned. With the default
starting matrix, convergence was obtained in 6 iterations with line searches and 10
without line searches, to the same matrix. We chose starting matrices

X0 =

[
1 x
y 1

]
, −1000 ≤ x, y ≤ 1000,

with an equally spaced grid of 100 points (x, y). Table 7.2 shows how many times
a solvent was produced within 30, 50, and 100 iterations, respectively. Convergence
was obtained to all four solvents, depending on the starting matrix, and a different
solvent was sometimes obtained with exact line searches than without. Exact line
searches result in more frequent convergence, though in 10 of the cases convergence
was obtained without line searches but not with them, and in another 22 cases where
both gave convergence faster convergence was obtained without line searches. Thus
exact line searches do not lead to uniformly better convergence than when no line
searches are used. An interesting phenomenon is that in 48 cases when line searches
were not used the test (7.1) was satisfied within 100 iterations, but with ‖X‖F � u−1,
so that X was far from a solvent (these cases were counted as failure to converge for
the statistics). This behavior did not happen with line searches: the line searches
force ‖Q(Xk)‖F to be a decreasing sequence, which tends to keep Xk from becoming
large if there is no large solvent.

Our final example is based on a quadratic eigenvalue problem (1.2) from [16,
sec. 10.11], with numerical values modified as in [30, sec. 5.3], modelling oscillations
in an airplane wing:

A =


 17.6 1.28 2.89
1.28 0.824 0.413
2.89 0.413 0.725


 , B =


 7.66 2.45 2.1
0.23 1.04 0.223
0.6 0.756 0.658


 ,

C =


 121 18.9 15.9

0 2.7 0.145
11.9 3.64 15.5


 .

(7.4)
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Table 7.1
Number of iterations for convergence for problem (7.2).

X0 Without line searches With exact line searches
Default 6 5

10I 9 6
105I 22 6
1010I 39 7

Table 7.2
Number of times convergence obtained for problem (7.3) with 100 different starting matrices.

No. iterations allowed Without line searches With exact line searches
30 46 54
50 52 73
100 53 88

The 6 eigenvalues are distinct and come in 3 complex conjugate pairs; since any
solvent must have 3 eigenvalues chosen from the 6, it follows that there are no real
solvents. Starting Newton’s method with X0 = iI we obtained the results displayed
in Figure 7.1. Convergence was obtained to the same solvent with and without line
searches, with condition number Ψ(X̂) = 50 and backward error η(X̂) ≈ u. The
eigenvalues of the computed solvent are

-8.8483e-001+ 8.4415e+000i,

9.4722e-002+ 2.5229e+000i,

-9.1800e-001+ 1.7606e+000i,

and these and their conjugates are the eigenvalues of the quadratic eigenvalue problem.
Finally, we note that in all our tests the global minimum of the merit function p

in (4.1) was in (0, 2] and never to the right of 2.
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Fig. 7.1. Convergence for problem (7.4).



SOLVING A QUADRATIC MATRIX EQUATION 315

8. Concluding remarks. Newton’s method is a useful tool in our stock of
methods for solving quadratic matrix equations. In its favor is its applicability to
the whole class of problems and its quadratic convergence, the latter making it a
useful way to refine approximate solvents obtained with other methods. On the other
hand each iteration is relatively expensive. The exact line searches introduced here
frequently reduce the number of iterations and make standard global convergence
results from optimization applicable.

A number of open problems remain, including guaranteeing convergence for par-
ticular starting matrices, determining to which solvent Newton’s method will converge,
and improving the convergence to solvents at which the Fréchet derivative is singu-
lar. These questions have been answered for certain types of Riccati equations, by
exploiting their structure [2], [24], but the lack of structure in the quadratic matrix
equation has so far precluded any useful results.

Acknowledgments. We thank Françoise Tisseur and the referees for their help-
ful suggestions.
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Abstract. In this paper, we propose an inexact Uzawa method with variable relaxation parame-
ters for iteratively solving linear saddle-point problems. The method involves two variable relaxation
parameters, which can be updated easily in each iteration, similar to the evaluation of the two it-
eration parameters in the conjugate gradient method. This new algorithm has an advantage over
most existing Uzawa-type algorithms: it is always convergent without any a priori estimates on the
spectrum of the preconditioned Schur complement matrix, which may not be easy to achieve in ap-
plications. The rate of the convergence of the inexact Uzawa method is analyzed. Numerical results
of the algorithm applied for the Stokes problem and a purely linear system of algebraic equations
are presented.
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1. Introduction. The major interest of this paper is to solve the indefinite
system of equations

(
A B
Bt 0

)(
x
y

)
=

(
f
g

)
,(1.1)

where A is a symmetric and positive definite n×n matrix, and B is an n×m matrix
with m ≤ n. We assume that the global coefficient matrix

M =

(
A B
Bt 0

)

is nonsingular, which is equivalent to the positive definiteness of the Schur complement
matrix

C = BtA−1B.(1.2)

Linear systems such as (1.1) are called saddle-point problems, which may arise from
finite element discretizations of Stokes equations and Maxwell equations [6], [8], [12];
mixed finite element formulations for second order elliptic problems [2], [6]; or from
Lagrange multiplier formulations for optimization problems [1], [13], for parameter
identification, and domain decomposition problems [9], [14], [15].
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In recent years, there has been a rapidly growing interest in preconditioned iter-
ative methods for solving the indefinite system of equations like (1.1); see [3], [4], [5],
[7], [11], [14], [16], [17], and [18]. In particular, the inexact Uzawa-type algorithms
have attracted wide attention; see [3], [4], [7], [11], [17], and the references therein.
The main merit of these Uzawa-type algorithms is that they preserve the minimal
memory requirement and do not need actions of the inverse matrix A−1.
Let Â and Ĉ be two positive definite matrices, which are assumed to be the

preconditioners of the matrices A and C, respectively. Also let Rl be the usual l-
dimensional Euclidean space. For any l × l positive definite matrix G, we use ‖x‖G
to denote the G-induced norm, i.e., ‖x‖G = (Gx, x)1/2 for all x ∈ Rl. However, we
write ‖x‖ (the Euclidean norm) when G is the identity. Then the standard inexact
Uzawa algorithm can be described as follows (cf. [4] and [11]).

Algorithm 1.1 (inexact Uzawa). Given x0 ∈ Rn and y0 ∈ Rm, the sequence
{xi, yi} ⊂ Rn ×Rm is defined for i = 1, 2, . . . by

xi+1 = xi + Â
−1[f − (Axi +Byi)](1.3)

and

yi+1 = yi + Ĉ
−1(Btxi+1 − g).(1.4)

There are several earlier versions of the above algorithm; see, e.g., [3] and [17]. The
existing convergence results indicate that these algorithms are convergent by assuming
some good knowledge of the spectrum of the preconditioned matrices Â−1A and Ĉ−1C
or under some proper scalings of the preconditioners Â and Ĉ. This “preprocessing”
may not be easy to achieve in some applications.
To avoid the proper estimate of the generalized eigenvalues of Ĉ with respect

to BtÂ−1B, the Uzawa-type algorithm proposed in [3] introduced a preconditioned
conjugate gradient (PCG) algorithm as an inner iteration of (1.4) and proved that
when the number of the PCG iteration is suitably large this Uzawa-type algorithm
converges. However, it requires subtle skill in implementations to determine when to
terminate this inner iteration.
The preconditioned minimal residual method is always convergent, but its con-

vergence depends on the ratio of the smallest eigenvalue of Â−1A over the smallest
eigenvalue of Ĉ−1(BtÂ−1B) (cf. [18]). Hence one should have some good knowledge
of the smallest eigenvalues of these preconditioned matrices in order to achieve a
practical convergence rate. Without a good scaling based on some a priori estimate
of these smallest eigenvalues, the condition number of the (global) preconditioned
system still may be very large even if the condition numbers of the matrices Â−1A
and Ĉ−1(BtÂ−1B) are small (cf. [18]). In this case, the convergence of this iterative
method may be slow (see section 4).
In this paper we propose a new variant of the inexact Uzawa algorithm to relax

some aforementioned drawbacks by introducing two variable relaxation parameters in
the algorithm (1.3)–(1.4). That is, we define the sequence {xi, yi} for i = 1, 2, . . . by

xi+1 = xi + ωiÂ
−1[f − (Axi +Byi)](1.5)

and

yi+1 = yi + τiĈ
−1(Btxi+1 − g).(1.6)

The parameters ωi and τi above can be computed effectively, similar to the evaluation
of the two iteration parameters in the conjugate gradient method. It will be shown
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that our algorithm always converges provided the preconditioner Â for A is properly
scaled so that the eigenvalues of A−1Â are bounded by one. It is very interesting to
know whether this is a technical or necessary assumption, a question to which we still
do not have a definite answer. But the numerical experiments of section 4 seem to
imply that the proposed algorithm converges even when this assumption is violated.
Furthermore, it is important to remark that the convergence of the new algorithm is
independent of the constant scalings of the preconditioners Â and Ĉ while the con-
vergences of the preconditioned minimum residual (MINRES) method and Algorithm
1.1 are strongly affected by such constant scalings; see section 4 for some numerical
verifications. Also the new algorithm is always convergent for general precondition-
ers Ĉ, while the convergences of most existing Uzawa-type algorithms are guaranteed
only under certain conditions on the extreme eigenvalues of the preconditioned matrix
Ĉ−1C or Ĉ−1H (cf. [3] and [4]).
The rest of the paper is arranged as follows. In section 2, we describe the algorithm

and its convergence results, which indicate that the algorithm converges with an
optimal rate (independent of mesh sizes) if the preconditioned matrices Â−1A and
Ĉ−1C or Ĉ−1(BtÂ−1B) are well-conditioned. The analysis of convergence rates will
be given in section 3. In section 4, we apply the proposed algorithm for solving the
Stokes problem and a linear system of purely algebraic equations.

2. Algorithm and main results. We start with some illustrations about how
to choose the relaxation parameters ωi and τi in (1.5)–(1.6). We first claim that it
is impractical to determine these two parameters by the standard steepest descent
method. To see this, let {x, y} be the true solution of the saddle-point problem (1.1)
and set

exi = x− xi, eyi = y − yi,

fi = f − (Axi +Byi), gi = B
txi+1 − g.

Consider two arbitrary symmetric and positive definite n×n and m×m matrices A0

and C0. Suppose we choose the parameters ωi and τi such that the errors

‖exi+1‖2A0
= ‖exi ‖2A0

− 2ωi(e
x
i , Â

−1fi)A0 + ω
2
i ‖Â−1fi‖2A0

and

‖eyi+1‖2C0
= ‖eyi ‖2C0

− 2 τi(eyi , Ĉ−1gi)C0 + τ
2
i ‖Ĉ−1gi‖2C0

are minimized; then we have

ωi =
(A0e

x
i , Â

−1fi)

‖Â−1fi‖2A0

, fi 	= 0; τi =
(C0e

y
i , Ĉ

−1gi)

‖Ĉ−1gi‖2C0

, gi 	= 0.

This requires the evaluations of A0e
x
i = A0x−A0xi and C0e

y
i = C0y −C0yi. Clearly

such evaluations are usually very expensive no matter how we choose A0 and C0, since
the action of A−1 is always involved. This verifies our claim.
Now, we are going to find a more efficient way to compute the parameters ωi and

τi. Note that the exact version of the inner iteration (1.3) is

xi+1 = xi +A
−1fi.
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Comparing this with the inexact iteration (1.5), we see that ωi may be chosen such
that the norm

‖A−1fi − ωiÂ
−1fi‖2A

is minimized. A direct computation yields that

ωi =

{
(fi,Â

−1fi)

‖Â−1fi‖2
A

, fi 	= 0,
1, fi = 0.

(2.1)

With this parameter ωi, the outer iteration (1.4) is changed to

yi+1 = yi + Ĉ
−1(bi − ωiB

tÂ−1Byi)

with

bi = B
txi + ωiB

tÂ−1(f −Axi)− g,
which is independent of yi. When replacing Ĉ by ωiB

tÂ−1B, we get the exact version
of this outer iteration:

yi+1 = yi + (ωiB
tÂ−1B)−1gi.

Comparing this with the inexact form (1.6), we see that the parameter τi may be
chosen such that the norm

‖(ωiB
tÂ−1B)−1gi − τiĈ−1gi‖2(ωiBtÂ−1B)

is minimized. A direct calculation gives

τi =

{
ω−1
i

(Ĉ−1gi, gi)

‖Ĉ−1gi‖2

BtÂ−1B

, gi 	= 0;
1, gi = 0.

or τi =

{
ω−1
i

(Ĉ−1gi, gi)

‖BĈ−1gi‖2

Â−1

, gi 	= 0;
1, gi = 0.

(2.2)

Unfortunately, such a relaxation parameter τi chosen as in (2.2) may cause the corre-
sponding algorithm (1.5)–(1.6) to diverge, especially when ωi is very small. This has
been confirmed by our numerical experiments. Also we will see from the subsequent
analysis that the factor ω−1

i in (2.2) needs to be corrected appropriately to guarantee
the convergence.
With the above preparations, we are now ready to formulate a new inexact Uzawa

algorithm.
Algorithm 2.1 (Uzawa algorithm with variable relaxation parameters). Given

the initial guesses x0 ∈ Rn and y0 ∈ Rm, compute the sequences {xi, yi} for i =
1, 2, . . . as follows.

Step 1. Compute fi = f − (Axi +Byi), ri = Â−1fi, and

ωi =

{
(fi, ri)
(Ari,ri)

, fi 	= 0,
1, fi = 0.

Set

xi+1 = xi + ωi ri .(2.3)
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Step 2. Compute gi = B
txi+1 − g, di = Ĉ−1gi, and

τi =

{
(gi, di)

(Â−1Bdi, Bdi)
, gi 	= 0,

1, gi = 0 .

Set

yi+1 = yi + θiτi di(2.4)

with

θi =
1−√1− ωi

2
.(2.5)

Remark 2.1. Intuitively, it is not easy to see why one needs to introduce the addi-
tional parameter θi in (2.4), but its presence is essential to guarantee the convergence
of Algorithm 2.1. This will become transparent from our subsequent convergence
proof. Also, the choices of θi in (2.4) are not unique. In fact, θi can be chosen to be
any real numbers such that

0 < θi ≤ 1−
√
1− ωi

2
.

We refer to the remarks at the end of section 3 for more details.
Remark 2.2. It is clear that when both fi and gi vanish, the vectors xi and yi

are the exact solution of the system (1.1). In this case Algorithm 2.1 terminates.
Now we are ready to state our main results. Let H = BtÂ−1B and

κ1 = cond(Â
−1A), α =

κ1 − 1
κ1 + 1

,

κ2 = cond(Ĉ
−1H), β =

κ2 − 1
κ2 + 1

.

We shall frequently use a new norm ‖| · ‖| given by

‖|v‖| = (‖v1‖2 + ‖v2‖2C) 1
2 , v = {v1, v2} ∈ Rn ×Rm.

Without loss of generality, from now on we will always assume that α > 0, and
the preconditioner Â for A is properly scaled so that

(Âv, v) ≤ (Av, v) for all v ∈ Rn.(2.6)

The numerical experiments of section 4 indicate that Algorithm 2.1 still converges
when the condition (2.6) is violated. But our convergence proof will make use of this
assumption, and it is still an open question whether the convergence of Algorithm 2.1
is guaranteed without this assumption.
The following two theorems summarize the main results of the paper, and their

proofs will be given in section 3.
Theorem 2.1. With the assumption (2.6), there is a positive number ρ < 1 such

that

|||Ei+1||| ≤ ρ |||Ei|||
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with Ei = {
√
αA− 1

2 fi, e
y
i }. Also the positive number ρ can be estimated by

ρ ≤ ρ0 = |c(γ, α)|+
√
c(γ, α)2 + 4α

2
(2.7)

with

γ ≡ (1− β)(
√
λ0 −

√
λ0 − 1)

2λ0

√
λ0

< 1− α, c(γ, α) = 1− γ − α(1 + γ).

Here λ0 is any positive number such that

(Av, v) ≤ λ0(Âv, v) for all v ∈ Rn.(2.8)

Moreover, we have

ρ0 <

{
1− 1

2γ(1 + α), 0 < γ ≤ 1−α
1+α ,

1− 1
2 (1− α)2, 1−α

1+α < γ < 1− α.
(2.9)

Theorem 2.2. With the assumption (2.6), Algorithm 2.1 converges, and we have

‖exi ‖A ≤ (
√
1 + 4α+ ρ)ρi−1|||E0|||, i = 1, 2, . . . ,

and

‖eyi ‖C ≤ ρi|||E0|||, i = 1, 2, . . . .

Remark 2.3. There always exists a λ0 such that (2.8) holds. It follows from (2.6)
that λ0 ≥ 1.

Remark 2.4. Theorem 2.2 indicates that Algorithm 2.1 is always convergent for
general preconditioners Ĉ. This seems to be a big advantage over most existing inexact
Uzawa-type algorithms for saddle-point problems, whose convergences are guaranteed
only under certain conditions on the extreme eigenvalues of the preconditioned matrix
Ĉ−1C or Ĉ−1H; see, for example, [3] and [4].

3. Analysis of the convergence rate. This section will focus on the proofs
of our main results stated in Theorems 2.1 and 2.2. Unless otherwise specified, the
notation below will be the same as that defined in section 2. In our subsequent proofs
we will often use the following well-known inequality:

(v, v) (v, v)

(Gv, v) (G−1v, v)
≥ 4λ1λ2

(λ1 + λ2)2
for all v ∈ Rl,(3.1)

where λ1 and λ2 are the smallest and largest eigenvalues of the l×l symmetric positive
definite matrix G. First we will show some auxiliary lemmas.
For fi 	= 0, let αi denote the following ratio:

αi =
‖(I − ωiA

1
2 Â−1A

1
2 )A− 1

2 fi‖
‖A− 1

2 fi‖
.

Lemma 3.1. With the assumption (2.6), the above ratio αi and the parameter ωi

given in Algorithm 2.1 can be bounded above and below as follows:

λ−1
0 ≤ ωi ≤ 1− α2

i , 0 ≤ αi ≤ α.
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Proof. By the definition of the parameter ωi, we have

‖(I − ωiA
1
2 Â−1A

1
2 )A− 1

2 fi‖2 = ‖A−1fi − ωiÂ
−1fi‖2A

= ‖A−1fi‖2A − ωi(fi, Â
−1fi)

=

(
1− ωi

(fi, Â
−1fi)

(fi, A−1fi)

)
‖A−1fi‖2A.(3.2)

Using the Cauchy–Schwarz inequality and assumption (2.6), we obtain

(A−1fi, fi) = (Â(A
−1fi), Â

−1fi) ≤ ‖A−1fi‖Â ‖Â−1fi‖Â
≤ ‖A−1fi‖A ‖Â− 1

2 fi‖ = (A−1fi, fi)
1
2 (Â−1fi, fi)

1
2 .

Thus

(A−1fi, fi) ≤ (Â−1fi, fi),

and this with (3.2) leads to α2
i ≤ 1 − ωi or ωi ≤ 1 − α2

i . The desired lower bound of
ωi is a direct consequence of (2.8) and the definition of ωi.
We next show that 0 ≤ αi ≤ α. It follows from (3.1) that

ωi
(fi, Â

−1fi)

(fi, A−1fi)
=

(fi, Â
−1fi)

2

(AÂ−1fi, Â−1fi) (fi, A−1fi)

=
(Â− 1

2 fi, Â
− 1

2 fi)
2

(Â− 1
2AÂ− 1

2 (Â− 1
2 fi), Â− 1

2 fi) (Â
1
2A−1Â

1
2 (Â− 1

2 fi), Â− 1
2 fi)

≥ 4λ1λ2

(λ1 + λ2)2
,

where λ1 and λ2 are the minimal and maximal eigenvalues of the matrix Â
− 1

2AÂ− 1
2 ,

respectively. This with (3.2) implies that

α2
i ≤ 1−

4λ1λ2

(λ1 + λ2)2
= α2.

The following lemma introduces an auxiliary matrixQBi which plays an important
role in the subsequent spectral estimates of the propagation matrix associated with
Algorithm 2.1.

Lemma 3.2. With the assumption (2.6), for any natural number i, there is a
symmetric and positive definite m×m matrix QBi such that
(i) Q−1

Bi gi = θiτiĈ
−1gi with gi = B

txi+1 − g as defined in Algorithm 2.1;
(ii) all eigenvalues of the matrix Q−1

BiC lie in the interval [ θi(1−β)
λ0

, θi(1 + β)].

Proof. If gi = 0, QBi = [θi(1 + β)]
−1C is the desired matrix. We next consider

the case with gi 	= 0. Using H = BtÂ−1B, we can write

‖BĈ−1gi‖2Â−1 = ‖Ĉ−1gi‖2H ;

then by the definition of the parameter τi we have

‖τiĈ−1gi −H−1gi‖2H = ‖H−1gi‖2H − τi(gi, Ĉ−1gi) =

(
1− τi (gi, Ĉ

−1gi)

(gi, H−1gi)

)
‖H−1gi‖2H .
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It follows from (3.1) that

τi
(gi, Ĉ

−1gi)

(gi, H−1gi)
=

(Ĉ− 1
2 gi, Ĉ

− 1
2 gi)

2

(Ĉ− 1
2HĈ− 1

2 (Ĉ− 1
2 gi), Ĉ− 1

2 gi) (Ĉ
1
2H−1Ĉ

1
2 (Ĉ− 1

2 gi), Ĉ− 1
2 gi)

≥ 4λ′1λ
′
2

(λ′1 + λ
′
2)

2
,

where λ′1 and λ
′
2 are the minimal and maximal eigenvalues of the matrix Ĉ

− 1
2HĈ− 1

2 ,
respectively. Hence we obtain

‖τiĈ−1gi −H−1gi‖H ≤
{
1− 4λ′1λ

′
2

(λ′1 + λ
′
2)

2

} 1
2

‖H−1gi‖H = β‖H−1gi‖H .

This implies the existence of a symmetric positive definite m ×m matrix GBi such
that

G−1
Bi gi = τiĈ

−1gi

and

‖I −H 1
2G−1

BiH
1
2 ‖ ≤ β.(3.3)

See Lemma 9 in [3], for example, for the existence of such a matrix GBi.
Now set Q−1

Bi = θiGBi; then

Q−1
Bi gi = θiτiĈ

−1gi,

and we know from (3.3) that all eigenvalues of the matrixH
1
2Q−1

BiH
1
2 lie in the interval

[θi(1− β), θi(1 + β)].
To prove result (ii), let φ be an eigenvector of the matrix Q−1

BiC corresponding to
the eigenvalue λ. Then we can write

(Cφ, φ) = λ(QBiφ, φ),

or equivalently,

(Â
1
2A−1Â

1
2 (Â− 1

2Bφ), (Â− 1
2Bφ)) = λ(QBiφ, φ).

Using inequalities (2.6) and (2.8), we immediately derive

λ−1
0 (Â

− 1
2Bφ, Â− 1

2Bφ) ≤ λ(QBiφ, φ) ≤ (Â− 1
2Bφ, Â− 1

2Bφ).

This can be written as

λ−1
0 (Hφ, φ) ≤ λ(QBiφ, φ) ≤ (Hφ, φ).

Note that Q−1
BiH has the same eigenvalues as the matrix H

1
2Q−1

BiH
1
2 ; thus by (3.3)

we have

λ−1
0 θi(1− β)(QBiφ, φ) ≤ λ(QBiφ, φ) ≤ θi(1 + β)(QBiφ, φ),

which yields the desired eigenvalue bound.
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The two functions F (z) and ϕ(z) to be introduced below and their properties are
very helpful in achieving some sharper estimates in the subsequent convergence rate
analysis. F (z) is defined for two given positive numbers α, γ ∈ (0, 1) as follows:

F (z) =
1

2

(
az + b+

√
(az + b)2 − 4z

)
, z ∈ [0, 1),

where a = (1+γ)2+γ2/α and b = αγ2+(1−γ)2, and it has the following properties.
Lemma 3.3. The function F(z) can be bounded below and above as follows:

αγ2 + (1− γ)2 ≤ F (z) ≤ F (α2) =
(
|c(γ, α)|+

√
c(γ, α)2 + 4α

)2

/4(3.4)

for all z ∈ [0, α2]. Here c(γ, α) is as given in Theorem 2.1.
Proof. Set f(z) = az + b. Then

F (z) =
1

2
[f(z) +

√
f2(z)− 4z].

Moreover, we have

f(α2) = α2(1 + γ)2 + 2αγ2 + (1− γ)2 = c(γ, α)2 + 2α;
therefore√

f2(α2)− 4α2 =
√
[f(α2)− 2α][f(α2) + 2α] = |c(γ, α)|

√
c(γ, α)2 + 4α.

Note that f(α2) can be written as

f(α2) =
1

2
c(γ, α)2 +

1

2
{c(γ, α)2 + 4α};

then

F (α2) =
1

2
[f(α2) +

√
f2(α2)− 4α2] =

(
|c(γ, α)|+√c(γ, α)2 + 4α

2

)2

.

It is easy to see that (3.4) is equivalent to

F (0) ≤ F (z) ≤ F (α2),

so it suffices to prove that F (z) is a real and monotone increasing function in the
interval [0, 1). First we see that

ab = [(1 + γ)2 + γ2/α] [αγ2 + (1− γ)2]
= αγ2(1 + γ)2 + (1− γ2)2 + γ4 +

γ2(1− γ)2
α

= 1 +

[
√
αγ(1 + γ)− γ(1− γ)√

α

]2

;

thus ab ≥ 1, and

(az + b)2 − 4z = (az + 2√z + b)
[(√

az − 1√
a

)2

+
ab− 1
a

]
≥ 0,
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which indicates that F (z) is real in the interval [0, 1).
On the other hand, taking the derivative of F , we have

F ′(z) =
f ′(z)[f(z) +

√
f2(z)− 4z]− 2

2
√
f2(z)− 4z , z ∈ [0, 1);

then the condition that F ′(z) ≥ 0 is equivalent to

f ′(z)[
√
f2(z)− 4z] ≥ 2− f ′(z)f(z), z ∈ [0, 1).(3.5)

Using ab ≥ 1, we obtain (note that f ′(z) = a)
z[f ′(z)]2 − f(z)f ′(z) + 1 = a2z − a(az + b) + 1 = 1− ab ≤ 0, z ∈ [0, 1).

This implies

[f ′(z)]2[f2(z)− 4z] ≥ [2− f ′(z)f(z)]2, z ∈ [0, 1),
which guarantees the inequality (3.5). (Note that f ′(z)

√
f2(z)− 4z ≥ 0.)

Lemma 3.4. Let γ be defined as in Theorem 2.1 and ϕ(z) = αz2 + (1− z)2; then

ϕ(z) ≤ ϕ(γ) for all z ∈
[
1− β
2λ0

,
1 + β

2

]
.

Proof. We can directly verify that

ϕ′(z)



< 0, z < (1 + α)−1;
= 0, z = (1 + α)−1;
> 0, z > (1 + α)−1.

So the maximum value of ϕ(z) is

max

{
ϕ

(
1− β
2λ0

)
, ϕ

(
1 + β

2

)}
.

By the direct calculations we have

ϕ

(
1− β
2λ0

)
= 1− 1− β

λ0
+
(1 + α)(1− β)2

4λ2
0

and

ϕ

(
1 + β

2

)
= 1− (1 + β) + (1 + α)(1 + β)

2

4
.

Thus

ϕ

(
1− β
2λ0

)
− ϕ

(
1 + β

2

)
=

[
1− 1 + α

4

(
1 + β +

1− β
λ0

)] [
(1 + β)− 1− β

λ0

]
.

Note that λ0 ≥ 1 and α < 1; hence
1− β
λ0

≤ 1− β ≤ 1 + β
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and

1 + α

4

(
1 + β +

1− β
λ0

)
≤ 1 + α

4
(1 + β + 1− β) < 1,

and we have

ϕ

(
1− β
2λ0

)
− ϕ

(
1 + β

2

)
≥ 0.(3.6)

So ϕ(z) reaches its maximum at z = (1 − β)/(2λ0). By the definition of γ it is easy
to see that

1− β
2λ0

≥ γ;

this and the monotonicity of ϕ implies the desired estimate of Lemma 3.4.
The following spectral bounds will be directly used in the spectral estimates of

the propagation matrix associated with Algorithm 2.1.
Lemma 3.5. Let Q be a given symmetric positive definite matrix with its eigen-

values lying in the interval [ θi(1−β)
λ0

, θi(1+ β)] (cf. Lemma 3.2(ii)), and Fi is a matrix
given by

Fi =

(
αi(I +Q) −√αQ√
α
−1
αiQ (I −Q)

)
.

Then the spectrum of Fi is bounded by ρ0 (defined in (2.7)), i.e., ‖Fi‖ ≤ ρ0 .
Proof. Let {λj}mj=1 be the positive eigenvalues of the matrix Q. It is easy to verify

that

‖Fi‖ = max
1≤j≤m

∣∣∣∣
∣∣∣∣
(
αi(1 + λj) −

√
αλj√

α
−1
αiλj 1− λj

)∣∣∣∣
∣∣∣∣ .(3.7)

To estimate ‖Fi‖, it suffices to estimate the maximum eigenvalue of the matrix F t
iFi

with

Fi =

(
αi(1 + λj) −

√
αλj√

α
−1
αiλj 1− λj

)
.

The determinant of the matrix F t
iFi can be simplified as follows:

[α2
i (1 + βj)

2 + α−1α2
iβ

2
j ] [(1− βj)2 + αβ2

j ]− {
√
α
−1
αiβj [1− βj − α(1 + βj)]}2

= α2
i (1− β2

j )
2 + αα2

iβ
2
j (1 + βj)

2 + α−1α2
iβ

2
j (1− βj)2 + α2

iβ
4
j

−α−1α2
iβ

2
j [(1− βj)2 − 2α(1− β2

j ) + α
2(1 + βj)

2]

= α2
i (1− β2

j )
2 + αα2

iβ
2
j (1 + βj)

2 + α−1α2
iβ

2
j (1− βj)2 + α2

iβ
4
j

−α−1α2
iβ

2
j (1− βj)2 + 2α2

iβ
2
j (1− β2

j )− αα2
iβ

2
j (1 + βj)

2

= α2
i [(1− β2

j )
2 + β4

j + 2β
2
j (1− β2

j )] = α
2
i [(1− β2

j ) + β
2
j ]

2 = α2
i ;

hence the characteristic equation of F t
iFi is

λ2 − [α2
i (1 + λj)

2 + α−1α2
iλ

2
j + (1− λj)2 + αλ2

j ]λ+ α
2
i = 0.



328 QIYA HU AND JUN ZOU

Then the desired maximum eigenvalue is

λ∗ =
(
f(αi, λj) +

√
f2(αi, λj)− 4α2

i

)
/2(3.8)

with f(αi, z) defined by

f(αi, z) = α
2
i (1 + z)

2 + α−1α2
i z

2 + (1− z)2 + α z2.
For a fixed αi, the equation f

′(αi, z) = 0 has a unique solution:

z = β0 ≡ α(1− α2
i )

αα2
i + α

2
i + α

2 + α
.

Moreover, we have f ′(αi, z) < 0 for z < β0 and f
′(αi, z) > 0 for z > β0. Thus using

the assumption on the range of the eigenvalues of Q, we have

max
1≤j≤m

{f(αi, λj)} ≤ max
{
f

(
αi,

θi(1− β)
λ0

)
, f(αi, θi(1 + β))

}
.(3.9)

Noting that

αα2
i + α

2
i + α

2 + α ≤ α(1 + α)(1 + αi) < 2α(1 + αi),

it follows from Lemma 3.1 that

θi =
1−√1− ωi

2
≤ 1− αi

2
≤ α(1− α2

i )

αα2
i + α

2
i + α

2 + α
.(3.10)

Using this, one can verify directly that

f(αi, θi(1− β)) ≥ f(αi, θi(1 + β)),

which, with the fact that λ0 ≥ 1, yields

f

(
αi,

θi(1− β)
λ0

)
≥ f(αi, θi(1 + β)).(3.11)

On the other hand, Lemma 3.1 implies that
√
1− ωi ≤

√
1− λ−1

0 ; hence

θi =
1−√1− ωi

2
≥
1−

√
1− λ−1

0

2

or

θi(1− β)
λ0

≥ (1− β)
2λ0

(
1−

√
1− λ−1

0

)
= γ

with the γ given in Theorem 2.1. Therefore,

f

(
αi,

θi(1− β)
λ0

)
≤ f(αi, γ);

this together with (3.9) and (3.11) leads to

f(αi, λj) ≤ f(αi, γ), j = 1, . . . ,m.(3.12)
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By (3.8), (3.12), and the definitions of f(αi, γ) and F (z), we have λ
∗ ≤ F (α2

i ). This
result together with (3.7), Lemma 3.1, and the second inequality of Lemma 3.3 implies
‖Fi‖ ≤ ρ0.
With the help of Lemmas 3.1–3.5 above, we are now ready to show the convergence

results in Theorems 2.1 and 2.2.
Proof of Theorem 2.1. As is true for classical iterative methods, the convergence

proofs for most existing inexact Uzawa-type iterative methods are carried out with the
natural error vectors exi = x−xi and eyi = y−yi (cf. [3], [4], [17]). But this traditional
analysis seems to be very difficult to follow in our current case with variable relaxation
parameters, which is much more complicated technically. It is essential that we shall
first estimate the residual fi instead of the error vector e

x
i . Clearly, the residuals fi

and gi can be represented in terms of e
x
i and e

y
i :

fi = Ae
x
i +Be

y
i , gi = −Btexi+1.(3.13)

By (2.3) and (3.13) we have

A
1
2 exi+1 = A

1
2 (exi − ωiÂ

−1fi) = (I − ωiA
1
2 Â−1A

1
2 )A− 1

2 fi −A− 1
2Beyi .(3.14)

Using (2.4), Lemma 3.2(i), and (3.14) we obtain

A− 1
2Beyi+1 = A

− 1
2B(eyi − θiτiĈ−1gi) = A

− 1
2B(eyi +Q

−1
BiB

texi+1)

= A− 1
2B[eyi +Q

−1
BiB

tA− 1
2 ((I − ωiA

1
2 Â−1A

1
2 )A− 1

2 fi −A− 1
2Beyi )]

= A− 1
2BQ−1

BiB
tA− 1

2 (I − ωiA
1
2 Â−1A

1
2 )A− 1

2 fi

+(I −A− 1
2BQ−1

BiB
tA− 1

2 )A− 1
2Beyi ,(3.15)

while using (3.14) and (3.15) we have

A− 1
2 fi+1 = A

1
2 exi+1 +A

− 1
2Beyi+1

= (I +A− 1
2BQ−1

BiB
tA− 1

2 )(I − ωiA
1
2 Â−1A

1
2 )A− 1

2 fi

−(A− 1
2BQ−1

BiB
tA− 1

2 )A− 1
2Beyi .(3.16)

Now let

BtA− 1
2 = UΣV t(3.17)

with Σ = (Σ0 0) being the singular value decomposition of the matrix B
tA− 1

2 . As
usual, U is an orthogonal m ×m matrix and V is an orthogonal n × n matrix. The
diagonal entries of the matrix Σ0 are the singular values of B

tA− 1
2 . Define

Exy
i =

√
αV tA− 1

2 fi, Ey
i = Σ

tU teyi .

By (3.15) and (3.16), we obtain

Exy
i+1 = (I + V

tA− 1
2BQ−1

BiB
tA− 1

2V )V t(I − ωiA
1
2 Â−1A

1
2 )V Exy

i

−√α(V tA− 1
2BQ−1

BiB
tA− 1

2V )Ey
i(3.18)
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and

Ey
i+1 =

1√
α
(V tA− 1

2BQ−1
BiB

tA− 1
2V )V t(I − ωiA

1
2 Â−1A

1
2 )V Exy

i

+ (I − V tA− 1
2BQ−1

BiB
tA− 1

2V )Ey
i .(3.19)

Set

Q1i ≡ V t(I − ωiA
1
2 Â−1A

1
2 )V

and

Q2i ≡ ΣtU tQ−1
BiUΣ = V

tA− 1
2BQ−1

BiB
tA− 1

2V ;

then the propagation relations (3.18) and (3.19) may be written in the matrix form

(
Exy

i+1

Ey
i+1

)
=

(
(I +Q2i)Q1i −√αQ2i√
α
−1
Q2iQ1i (I −Q2i)

)(
Exy

i

Ey
i

)
.(3.20)

Let E0y
i and Q

0
2i denote the nonzero part of E

y
i and Q2i, respectively, namely,

E0y
i = Σ0U

teyi , Q0
2i = Σ0U

tQ−1
BiUΣ0,

and set Q̂2i = (Q
0
2i, 0)

t. Then we have from (3.20) that

(
Exy

i+1

E0y
i+1

)
=

(
(I +Q2i)Q1i −√αQ̂2i√
α
−1
Q̂t

2iQ1i (I −Q0
2i)

)(
Exy

i

E0y
i

)
.(3.21)

Next we estimate the spectrum of the propagation matrix in (3.21). We first
consider two cases: fi = 0; fi 	= 0 but αi = 0. Then we have by the definition of E

xy
i

and αi that

Q1iE
xy
i = 0 for fi = 0 or αi = 0.

So we can write (3.21) as(
Exy

i+1

E0y
i+1

)
=

(
0 −√αQ̂2i

0 (I −Q0
2i)

)(
Exy

i

E0y
i

)
≡ F0i

(
Exy

i

E0y
i

)
.

For the case that fi 	= 0 but αi = 0, an estimate of the norm ‖F0i‖ can be obtained
directly later on, so we consider only the case that fi = 0 at the moment. Since

F t
0iF0i =

(
0 0

−√αQ̂t
2i (I −Q0

2i)

)(
0 −√αQ̂2i

0 (I −Q0
2i)

)

=

(
0 0
0 α(Q0

2i)
2 + (I −Q0

2i)
2

)
,

it suffices to estimate the maximum eigenvalue of the matrix

Q0i = α(Q
0
2i)

2 + (I −Q0
2i)

2.(3.22)

Using (1.2) and (3.17), we have

Q−1
BiC = Q

−1
BiUΣV

tV ΣtU t = Q−1
BiUΣ

2
0U

t = (Σ0U
t)−1Q0

2i(Σ0U
t).(3.23)
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Thus the matrix Q0
2i has the same eigenvalues as the matrix Q

−1
BiC, and Lemma 3.2(ii)

implies that the maximum eigenvalue of the matrix Q0i defined in (3.22) is bounded
above by the maximum of the function

ϕ(z) = αz2 + (1− z)2, z ∈
[
(1− β)
2λ0

,
(1 + β)

2

]
.

Here we have used the fact that θi =
1
2 for fi = 0 by definition. Using (3.22), (3.4),

and Lemmas 3.3 and 3.4 we have

‖F0i‖2 ≤ αγ2 + (1− γ)2 ≤ F (α2) = ρ20 (when fi = 0).(3.24)

Next, we consider the case that fi 	= 0 and αi > 0. Write (3.21) in the form

(
Exy

i+1

E0y
i+1

)
=

(
αi(I +Q2i) −√αQ̂2i√
α
−1
αiQ̂

t
2i (I −Q0

2i)

)(
α−1
i Q1i 0
0 I

)(
Exy

i

E0y
i

)
.

By the definitions of Q1i, E
xy
i , and αi, we have (note that V

t is an orthogonal matrix)

‖α−1
i Q1iE

xy
i ‖2 = ‖α−1

i

√
αV t(I − ωiA

1
2 Â−1A

1
2 )A− 1

2 fi‖2
= α−2

i α‖(I − ωiA
1
2 Â−1A

1
2 )A− 1

2 fi‖2
= α−2

i αα2
i ‖A− 1

2 fi‖2
= ‖√αV tA− 1

2 fi‖2 = ‖Exy
i ‖2.

Thus ∥∥∥∥
(
α−1
i Q1i 0
0 I

)(
Exy

i

E0y
i

)∥∥∥∥ =
∥∥∥∥
(
α−1
i Q1iE

xy
i

E0y
i

)∥∥∥∥
=
(
‖α−1

i Q1iE
xy
i ‖2 + ‖E0y

i ‖2
) 1

2

=

∥∥∥∥
(
Exy

i

E0y
i

)∥∥∥∥ .
Therefore ∣∣∣∣

∣∣∣∣
(
Exy

i+1

E0y
i+1

)∣∣∣∣
∣∣∣∣ ≤

∣∣∣∣∣
∣∣∣∣∣
(
αi(I +Q2i) −√αQ̂2i√
α
−1
αiQ̂

t
2i (I −Q0

2i)

)∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣
∣∣∣∣
(
Exy

i

E0y
i

)∣∣∣∣
∣∣∣∣ .

It is clear that

(
αi(I +Q2i) −√αQ̂2i√
α
−1
αiQ̂

t
2i (I −Q0

2i)

)
=


 αi(I +Q

0
2i) 0 −√αQ0

2i

0 αiI 0√
α
−1
αiQ

0
2i 0 (I −Q0

2i)


 .

Let Fi be the matrix defined in Lemma 3.5 but with Q replaced by Q
0
2i; then we have∣∣∣∣∣

∣∣∣∣∣
(
αi(I +Q2i) −√αQ̂2i√
α
−1
αiQ̂

t
2i (I −Q0

2i)

)∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣
∣∣∣∣
(
αiI 0
0 Fi

)∣∣∣∣
∣∣∣∣ = max{αi, ‖Fi‖} ≤ max{α, ‖Fi‖}.

Noting that α ≤ ρ0 by the definition of ρ0 and |c(γ, α)| ≥ 0, the desired estimate now
follows from Lemma 3.5.
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For the case that fi 	= 0 and αi = 0, F0i has the same form as Fi. Thus ‖F0i‖ ≤ ρ0
by Lemma 3.5. This proves (2.7) for all possible cases.
Finally we show (2.9). We first claim that

|1− γ − α(1 + γ)| < 1− α.(3.25)

In fact, since

λ0 ≥ κ1 =
1 + α

1− α,

we have √
1− 1

λ0
≥
√
2α

1 + α
≥ α.

Thus

γ =
1− β
2λ0

(
1−

√
1− 1

λ0

)
< 1− α,

which implies (3.25) using γ > 0 and α < 1. Now by (3.25) and the definition of ρ0
in (2.7)

ρ0 <
|1− γ − α(1 + γ)|+ (1 + α)

2
=

{
1−α−γ(1+α)+(1+α)

2 , 0 < γ ≤ 1−α
1+α ,

γ(1+α)−(1−α)+(1+α)
2 , 1−α

1+α < γ < 1− α .
This completes the proof of Theorem 2.1.

Proof of Theorem 2.2. For ease of notation, we let

Q̃1i = I − ωiA
1
2 Â−1A

1
2 , Q̃2i = A

− 1
2BQ−1

BiB
tA− 1

2 .

Then (3.16) can be written as (replacing i by i− 1)

A− 1
2 fi = (I + Q̃2i)Q̃1iA

− 1
2 fi−1 − Q̃2iA

− 1
2Beyi−1.

Applying Young’s inequality, we obtain for any positive η that

‖A− 1
2 fi‖2 ≤ (1 + η)‖(I + Q̃2i)Q̃1iA

− 1
2 fi−1‖2 + (1 + η−1)‖Q̃2iA

− 1
2Beyi−1‖2.(3.26)

By the proof of Theorem 2.1 we know that Q̃2i has the same positive eigenvalues as
the matrix Q−1

BiC. Hence, Lemma 3.2(ii) infers that the eigenvalues of Q̃2i lie in the
interval [0, 1], namely,

‖Q̃2i‖ ≤ 1, ‖I + Q̃2i‖ ≤ 2;
combining with (3.26) and Lemma 3.1, this leads to

‖A− 1
2 fi‖2 ≤ (1 + η)4α2‖A− 1

2 fi−1‖2 + (1 + η−1)‖A− 1
2Beyi−1‖2

= 4α(1 + η)‖√αA− 1
2 fi−1‖2 + (1 + η−1)‖eyi−1‖2C ;

taking η = (4α)−1 and using Theorem 2.1, we have

‖A− 1
2 fi‖ ≤

√
1 + 4αρi−1|||E0|||.
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Now Theorem 2.2 follows immediately from the identity A
1
2 exi = A

− 1
2 fi − A− 1

2Beyi ,
the triangle inequality, and Theorem 2.1.
We end this section with some remarks on the selection of the parameter θi in

Algorithm 2.1. As we see, the parameter θi has been used in the convergence rate
analysis (cf. the inequality (3.10)). We next illustrate in a more direct manner why
we have to introduce such a parameter and why we suggest choosing θi using (2.5).
It is easy to find out from the proof of Theorem 2.1 that the sufficient and necessary
condition for Algorithm 2.1 to converge is ‖Fi‖ < 1, where Fi is essentially the
propagation matrix of Algorithm 2.1. This is equivalent to the condition that λ∗ < 1
(cf. 3.8), that is, √

f2(αi, λj)− 4α2
i < 2− f(αi, λj)

or

f2(αi, λj)− 4α2
i < 4− 4f(αi, λj) + f

2(αi, λj), f(αi, λj) ≤ 2.
Namely,

f(αi, λj) < 1 + α
2
i .

By the definition of f(αi, λj), this condition is equivalent to

0 < λj <
2α(1− α2

i )

αα2
i + α

2
i + α

2 + α
.(3.27)

From Lemma 3.2(ii) and (3.23) we know that λj ∈ [θi(1 − β)/λ0, θi(1 + β)]. Clearly
(3.27) holds if θi is chosen such that

0 < θi <
2α(1− α2

i )

(αα2
i + α

2
i + α

2 + α)(1 + β)
.(3.28)

But since the paramaters α, β, and αi are not easily computable, it is impractical to
choose θi using the criterion (3.28). To find a more practical way of choosing θi, we
further relax the condition (3.27). By Lemma 3.1, we know αi ≤ α; hence

αα2
i + α

2
i + α

2 + α = (1 + α)α
(
1 +

αi

α
αi

)
< 2α(1 + αi),(3.29)

so (3.27) is still satisfied if

0 < λj ≤ 1− αi, j = 1, . . . ,m.(3.30)

For this we need to choose θi such that

0 < θi(1 + β) ≤ 1− αi, j = 1, . . . ,m;(3.31)

this, with the relation αi <
√
1− ωi from Lemma 3.1, yields the following selection

criterion for θi:

θi ≤ 1−
√
1− ωi

2
.(3.32)

Namely, any positive θi satisfying (3.32) guarantees the convergence of Algorithm 2.1.
However, using (3.8) and the monotone decreasing property of f(αi, z) for z < β0 we
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know that the larger the parameter θi is, the faster Algorithm 2.1 converges, namely,
the choice

θi <
1−√1− ωi

2

(
≤ 1− αi

2
≤ β0

)

will result in a convergence slower than the equality case. This is why we choose the
equality case for θi in Theorem 2.1.
Note that the condition (3.32) is very conservative and it is obtained under the

worst case: α→ 1− (cf. (3.29)) and β → 1− (cf. (3.31)). Therefore the choice

θi >
1−√1− ωi

2

is also possible. We omit the detailed discussion about this possibility here.
Finally, we add the additional observation that when α is small the condition

(3.27) becomes 0 < λj < 2 (the last term of (3.27) tends to 2
− as α → 0), which is

satisfied if θi(1 + β) < 2 or θi ≤ 1. Thus we can take θi = ωi ≤ 1 to speed up the
convergence of Algorithm 2.1 in this case.
Summarizing the above, and noting that

0.25ωi <
1−√1− ωi

2
< 0.5ωi ,

we can conclude that the convergence of Algorithm 2.1 will speed up in the following
order:

θi = 0.25ωi ,
1−√1− ωi

2
, 0.5ωi , ωi

in the case that Algorithm 2.1 converges with θi = 0.5ωi and ωi. This matches well
with our numerical results; see Tables 4.1 and 4.2.

4. Numerical experiments. In this section, we apply our new Algorithm 2.1
of section 2, Algorithm 1.1 of [4], and the preconditioned MINRES method [18] to
solve the two-dimensional generalized Stokes problem and a system of purely algebraic
equations. Let Ω be the unit square in R2, and L2

0(Ω) be the set of all square integrable
functions with zero mean values over Ω, and let H1(Ω) be the usual Sobolev space
of order one. The space H1

0 (Ω) consists of those functions in H
1(Ω) with vanishing

traces on ∂Ω.
Our first example is the generalized Stokes problem whose variational formulation

reads as follows: Find (u, p) ∈ (H1
0 (Ω))

2 × L2
0(Ω) such that

(µ(x)∇u,∇v)− (p,∇·v) = (f, v), for all v ∈ (H1
0 (Ω))

2,(4.1)

(q,∇·u) = (q, g), for all q ∈ L2
0(Ω),(4.2)

where f ∈ (L2(Ω))2, g ∈ L2(Ω), and µ ∈ L∞(Ω) with µ(x)≥c > 0 almost everywhere
in Ω.
We use one of the well-known conforming Taylor–Hood elements, which have

been widely used in engineering, to solve the system (4.1)–(4.2). For any positive
integer N , a triangulation T h of Ω is obtained by dividing Ω into N ×N subsquares
with side lengths of h = 1/N . Let Xh ⊂ H1

0 (Ω) and Mh ⊂ H1(Ω) ∩ L2
0(Ω) be

the usual continuous Q2 and Q1 finite element spaces defined on T h, respectively
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Table 4.1
Number of iterations for Algorithm 2.1.

N θi = ω−1
i θi = 1 θi = ωi θi = 0.5ωi θi =

1−
√
1−ωi

2
θi = 0.25ωi

8 638 203 35 39 41 46
16 154 44 36 41 42 46
32 153 45 36 40 42 46
48 154 45 37 40 41 47
64 154 44 36 41 42 46

Table 4.2
Number of iterations for Algorithm 1.1 (left) and the MINRES method (right).

N 8 16 32 48 64
Alg. 1.1 917 300 58 93 95

N 8 16 32 48 64
MINRES 63 55 51 50 50

N 8 16 32 48 64
Alg. 1.1 92 85 76 75 75

N 8 16 32 48 64
MINRES 56 65 65 66 66

(cf. [6, 10]). The total number of unknowns for this finite element is n+m = [2(2N −
1)2] + [(N + 1)2 − 1]; e.g., the total unknowns are 36482 for N = 64. The finite
element approximation of the above Stokes system can be formulated as follows: Find
(uh, ph) ∈ X2

h ×Mh such that

(µ(x)∇uh,∇v)− (ph,∇·v) = (f, v), for all v ∈ X2
h,(4.3)

(q,∇·uh) = (q, g), for all q ∈Mh.(4.4)

It is known that the inf-sup condition is satisfied by the pair (X2
h,Mh) (see [6]), thus

the Schur complement matrix C = BtA−1B associated with the system (4.3)–(4.4) has
a condition number independent of h. As in [5], [18], we take the variable coefficient
µ to be µ = 1+x1x2+x

2
1−x2

2/2. We know that the corresponding matrix A is block
diagonal with two copies of a discrete Laplace operator on the diagonal if µ = 1, and
so it can be solved by the fast Poisson solver. Therefore it is natural to choose this
fast solver Â as the preconditioner of A. In fact, the matrix Â−1A is well-conditioned
since we have

0.5 (Âz, z) ≤ (Az, z) ≤ 2.5 (Âz, z).(4.5)

Thus the matrix BtÂ−1B is also well-conditioned. In fact, it is spectrally equivalent
to h2I (cf. [19]); that is, we can choose Ĉ = h2I.
In most applications, the condition numbers κ1 and κ2 are not very large; other-

wise all iterative methods for the saddle-point problems perform without any essential
difference. It is clear that the parameter ωi has a small range in this case, and we can
roughly estimate the maximum and minimum eigenvalues of the matrix Â−1A based
on several values of ωi. In fact, when the system (4.3)–(4.4) is solved by Algorithm
2.1 with these preconditioners, the computational results (set θi = 1) indicate that
the parameter ωi lies between 0.46 and 0.93 for 1≤i ≤ 4, which reflects roughly the
range of the eigenvalues of the matrix Â−1A.
In order to see whether assumption (2.6) is necessary for the convergence of

Algorithm 2.1, we do not scale the preconditioner Â, so condition (2.6) is violated.
The numerical results show that our Algorithm 2.1 converges well; the number of
iterations is listed in Table 4.1. Note that all the initial guesses for the algorithms
tested in this section are taken to be zero and the algorithms are terminated when
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the following relative error reaches 1.0× 10−5:

ε =
‖Mui − b‖
‖Mu0 − b‖ ,

where M and b = (b1 b2)
t are the coefficient matrix and the right-hand side vector of

the algebraic system corresponding to (4.3)–(4.4) and ui = (xi yi)
t is the ith iterate

of the algorithms to be tested. Here we take the vector b = Mu with the solution
u = (x y)t, and x and y are two vectors with all components being 1.0 and 0.5,
respectively. From Table 4.1 we can see the importance of choosing a different θi
other than θi = ω

−1
i . Also, one can find out that the convergence of Algorithm 2.1 is

nearly independent of the mesh size h.

The inexact Uzawa Algorithm 1.1 is convergent if the two preconditioners for A
and C satisfy the conditions (3.2) and (2.3) of [4]. Using (4.5), one can verify that
these two conditions are indeed satisfied if we take the two preconditioners to be 2.5Â
and 2I for A and C, respectively. Thus, we can also apply Algorithm 1.1 to solve the
system (4.3)–(4.4). However, the convergence is a bit slow; see Table 4.2 (upper left).
When the preconditioner 2I for C is replaced by h2I, which is spectrally equivalent
to C (cf. [19]), Algorithm 1.1 converges slightly faster; see Table 4.2 (lower left). The
main reason for the slow convergence in this case is that the parameter γ defined by
(2.4) of [4] is close to one. Also it is difficult to achieve an accurate estimate on this
parameter γ because of the difficulty of estimating the maximum eigenvalue of the
matrix Ĉ−1C.

Then we applied the preconditioned MINRES method (cf. [16], [18]) with a block
diagonal preconditioner with diagonal blocks being Â and Ĉ = 0.01I or Ĉ = h2I
(spectrally equivalent to C; cf. [19]) to solve the system (4.3)–(4.4). The number of
iterations is listed in the upper right of Table 4.2 for Ĉ = 0.01I and in the lower right
for Ĉ = h2I. We remark that different constant scalings for Ĉ affect the convergence
of the MINRES method greatly; see the comments at the end of this section.

Our second example is a system of purely algebraic equations. We define the
matrices A = (aij)n×n and B = (bij)n×m (n ≥ m) in (1.1) as follows:

aij =



i+ 1, i = j,
1, |i− j| = 1,
0, otherwise;

bij =

{
j, i = j + n−m,
0, otherwise.

The preconditioners Â = (âij)n×n and Ĉ = (ĉij)m×m are defined by

âij =

{
i+ 2, i = j ,
0, i 	= j ; ĉij =

{
k (i2 + 3), i = j ,
0, i 	= j ,

where k is a scaling constant. The right-hand side vectors f and g are taken such
that the exact solutions x and y are both vectors with all components being 1.

Assumption (2.6) is violated again with this example. However, Algorithm 2.1
still converges well; see the number of iterations listed in Table 4.3. The convergence
of Algorithm 1.1 and the preconditioned MINRES method with two different scaling
constants, k = 1, 1/200, are reported in Tables 4.4 and 4.5.
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Table 4.3
Number of iterations for Algorithm 2.1.

n m θi = ω−1
i θi = 1 θi = ωi θi = 0.5ωi θi =

1−
√
1−ωi

2
θi = 0.25ωi

200 150 15 15 15 17 19 38
400 300 16 16 16 17 18 38
800 600 17 17 17 18 18 38
1600 1200 17 17 17 17 18 39

Table 4.4
Iterations for Algorithm 1.1 with different scalings: k = 1, 1/200.

n 200 400 800 1600
m 150 300 600 1200

k = 1 1892 3759 > 5000 > 5000

n 200 400 800 1600
m 150 300 600 1200

k = 1/200 diverge 24 34 71

Table 4.5
Iterations for the preconditioned MINRES method with different scalings k = 1, 1/200.

n 200 400 800 1600
m 150 300 600 1200

k = 1 33 35 38 39

n 200 400 800 1600
m 150 300 600 1200

k = 1/200 22 22 22 23

From the above numerical results and many more tests we have not reported
here, one can observe that different scalings for the preconditioner Ĉ greatly affect
the convergence of Algorithm 1.1 and the preconditioned MINRES method. For
example, Algorithm 1.1 converges (slowly) when the scaling constant k = 1, but
it may diverge (the errors do not decrease) when k = 1/200; see Table 4.4. Such
behaviors also happen for the preconditioned MINRES method (cf. [16], [18] and also
see Table 4.5), whose convergence rate is known to depend on the ratio λmin/λ

′
min,

where λmin and λ
′
min are, respectively, the minimal eigenvalues of Â

−1A and Ĉ−1H

with H = BtÂ−1B (cf. [18]). So it is important for these algorithms to have good
a priori estimates on the minimum or maximum eigenvalues of the matrix Ĉ−1C or
Ĉ−1H in order to find an effective scaling for the preconditioner Ĉ. But such a priori
estimates are usually very difficult to achieve in practical applications, even when
Ĉ−1C is well-conditioned; e.g., this is the case with our first example; see the system
(4.3)–(4.4). One of the advantages of our Algorithm 2.1 is to have relieved such a
troublesome estimate, and different scalings for the preconditioner Ĉ do not affect the
convergence of our Algorithm 2.1, which is easily seen from the algorithm itself.

Acknowledgments. The authors wish to thank the anonymous referees for
many constructive comments that improved the paper greatly.
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Abstract. We study the extreme singular values of incidence graph matrices, obtaining lower
and upper estimates that are asymptotically tight. This analysis is then used for obtaining estimates
on the spectral condition number of some weighted graph matrices. A short discussion on possible
preconditioning strategies within interior-point methods for network flow problems is also included.
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1. Introduction. We study graph matrices coming from the application of
interior-point methods [17, 14], which have grown a well-established reputation as
efficient algorithms for large-scale problems. In these methods, at each step we have
to solve linear systems of the form

EΘETx = b,(1.1)

where E is an n × m matrix and Θ is an m × m diagonal positive definite matrix.
In most general-purpose solvers, these linear systems are solved by means of direct
methods, typically the Cholesky decomposition preceded by a heuristic reordering
of the columns of E aimed at minimizing the “fill-in” [17]. We are interested in
the possibility of using iterative methods instead. This can be beneficial in practice,
especially in cases when E is a sparse structured matrix [7] such as the node-arc
incidence matrix of a graph [15, 16]. However, these approaches can be competitive
only if the rate of convergence of the iterative method is sufficiently high. This
motivates our study of the extreme singular values of E and of the spectral behavior
of EΘET since the convergence rate of iterative methods largely depends on the
conditioning of the matrix. This analysis may have an interest for the development of
preconditioners [15, 16] for the numerical solution to (1.1) through a preconditioned
conjugate gradient (PCG) method (for the convergence theory of the PCG method,
refer to [3]).

The paper is organized as follows. In section 2 we study the spectral properties
(extremal behavior and conditioning) of EET when E is the node-arc incidence matrix
of a directed graph. In section 3 we extend the analysis to “weighted” matrices of
the form EΘET . Finally, in section 4 the connections between this analysis and some
possible preconditioning strategies are briefly discussed.

2. Graph matrices. Let H ≡ Hn = (Un,Vn) be a directed graph with n nodes
Un = {u1, . . . , un} and m arcs Vn = {v1, . . . , vm}; its node-arc incidence matrix
E ≡ En = E(Hn) is the n × m matrix such that Eij = 1 if vj emanates from ui,
Eij = −1 if vj terminates at ui, and Eij = 0 otherwise.
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Here we analyze the spectral properties of sequences of matrices {EnE
T
n }n. Clearly,

this both requires and implies the study of the spectra of (sequences of) graph matri-
ces {En}n. This analysis has an interest of its own, as demonstrated by the literature
on the subject [1, 9]. However, the usual approach has most often been of strongly
combinatorial flavor and for a fixed graph size n. By contrast, our analysis focuses
on asymptotical results, for which little or no previous work seems to have been pub-
lished.

2.1. Preliminary results. The EET matrix that we study is closely related to
the Laplacian of an undirected graph H̄ ≡ H̄n = (Ūn, V̄n) [1], i.e., the n × n matrix
L ≡ Ln = L(H̄n) such that Lii is the degree (number of incident arcs) of node ui and
Lij for i �= j is −1 if the arc (i, j) belongs to V̄n and zero otherwise. It is easy to
prove the following relation between L and EET .

Proposition 2.1. Given an undirected graph H̄ = (Ū , V̄), the directed graph
H = (Ū ,V) with V = { (i, j) : (i, j) ∈ V̄, i < j } has E(H)E(H)T = L(H̄).

In other words, the Laplacian of an undirected graph H̄ can be obtained as
E(H)E(H)T , where H is the directed graph obtained from H̄ by orienting each arc
in such a way that the head node is smaller than the tail node (with any fixed ordering
of Ū). Conversely, the E(H)E(H)T matrix of a generic directed graph H can be seen
as being obtained from the Laplacians of two undirected graphs.

Proposition 2.2. Given a directed graph H = (U ,V), the two undirected graphs
H̄1 = (U , V̄1) and H̄2 = (U , V̄2) with

V̄1 = { (i, j) : (i, j) ∈ V, i < j },

V̄2 = { (i, j) : (i, j) ∈ V, j < i }

are such that E(H)E(H)T = L(H̄1) + L(H̄2).
Therefore, for the purpose of the analysis of the E(H)E(H)T matrices, a directed

graph H can be seen as the composition of two undirected graphs. One of the two
graphs contains (as undirected edges) the arcs having a head node smaller than the
tail node, while the other graph contains (as undirected edges) the arcs having a head
node larger than the tail node.

Thus, Laplacians of undirected graphs and E(H)E(H)T matrices of directed
graphs can be related through appropriate (de)orientation of the arcs. We will there-
fore be able to exploit some interesting results about the spectra of Laplacians such
as the following.

Theorem 2.3 (see [1]). For any undirected graph H̄, λmax(L(H̄)) ≤ n.
It is immediate to verify that summing all the rows of En gives the null vector.

This proves that λmin(EnE
T
n ) = 0 and therefore σmin(En) = 0 if m ≥ n. However,

if Hn is a connected graph, then the matrix obtained by En by eliminating any row
has full rank. If Hn has k maximal connected components, then En = E(Hn) is a
block diagonal matrix with k blocks; the minimal (maximal) singular value of En

is the minimum (maximum) among the minimal (maximal) singular values of the
submatrices associated to the connected components. Hence, we can restrict our
analysis to connected graphs. Note that EnE

T
n has exactly k zero eigenvalues: by

deleting k appropriate rows of En (one for each of the connected components), one
can always obtain a matrix with no zero singular values.

We can always reorder the nodes and the arcs in such a way that the square
submatrix S ≡ Sn = S(Hn) made of the first n− 1 rows of E is nonsingular. In fact,
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Sn is the node-arc incidence matrix of a spanning tree of Hn less one row, for which
the following results hold.

Proposition 2.4 (see [9]). Sn is nonsingular and totally unimodular, i.e., the
determinant of each square submatrix belongs to {±1, 0}.

Proposition 2.5 (see [9]). The entries of S−1
n belong to {±1, 0}.

2.2. Conditioning of trees. We start by studying the special case when H is
a tree, i.e., m = n− 1 (H is connected). We do not require the arcs to have a specific
orientation since the matrix E

′
= E(H

′
), corresponding to the directed tree H

′
ob-

tained from H by reorienting the arcs, can be obtained from E by right multiplication
for an m×m diagonal {−1,+1} matrix. By the singular value decomposition [4, 12],
E and E

′
have the same set of singular values; therefore, from the spectral viewpoint

the directed tree H
′
can be considered a special representative of an equivalence class.

Theorem 2.6. The conditioning of Sn and En satisfies

δ(n− 1)1/2 ≤ κ2(Sn) ≤
√

2n(n− 1),

δ

σn−2(Sn)
≤ κ2(En) ≤

√
2n(n− 1),

where δ =
√
δ(Hn) and δ(Hn) is the maximum degree among all nodes in Hn. Indeed

R1. σmin(Sn) ≤ (n− 1)−1/2;
R2. σmin(Sn) ≥ (n− 1)−1;
R3. σmax(Sn) ≤ (2n)1/2;
R4. σmax(Sn) ≥ δ ≥ √2.
Proof.
Part R1. By the singular value decomposition of Sn

σmin(Sn) = inf
‖x‖2>0

‖xTSn‖2
‖x‖2 ≤ ‖e

TSn‖2
‖e‖2 =

1

(n− 1)1/2
,

where e is the vector of all ones.
Part R2. By Proposition 2.5, |[S−1

n ]i,j | ≤ 1, hence the entries of Bn = S−T
n S−1

n

cannot exceed n − 1. Therefore, ‖Bn‖1 ≤ (n − 1)2; since Bn is positive definite, its
maximal eigenvalue coincides with its spectral norm and is less than its ‖ · ‖1 norm,
hence

λmax(Bn) ≤ (n− 1)2,

but λmax(Bn) = λmax(S
−1
n )2 = (1/λmin(Sn))2.

Part R3. From Proposition 2.2, we know that there exist two undirected graphs
H̄1 and H̄2 such that EnE

T
n = L(H̄1)+L(H̄2). Thus, using Theorem 2.3 and the fact

that Sn is a submatrix of En,

σ2
max(Sn) ≤ σ2

max(En) = λmax(EnE
T
n ) ≤ λmax(L(H̄1)) + λmax(L(H̄1)) ≤ 2n .

Part R4. Let uh be one of the nodes with maximum degree: it is always possible
to reorient the arcs in such a way that uh becomes the root, i.e., it only has outgoing
arcs. Then, let eh be the hth vector of the canonical basis; by the singular value
decomposition of Sn

σmax(Sn) = sup
‖x‖2>0

‖xTSn‖2
‖x‖2 ≥ ‖e

T
hSn‖2
‖eh‖2 =

√
δ(Hn)

1
.

Note that δ(Hn) ≥ 2 since Hn is connected.
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The bounds on the condition numbers of Sn are simple consequences of R1–
R4 above. For the minimal and the maximal singular values of En, as well as its
asymptotic conditioning, note that Sn is a submatrix of En. We can apply a rewording
of the Cauchy interlacing theorem that holds for non-Hermitian matrices [8]. In
particular, the following relations hold:

σn−2(Sn) ≥ σmin(En) ≥ σmin(Sn),(2.1)

σmax(Sn) ≤ σmax(En) ≤
√

2n.(2.2)

The estimates R1–R4 are, up to positive constants, tight: the following special
structures are the “extremes” that prove it.

2.2.1. Linear trees. Hn is a linear tree if it is a path, i.e., each node but two
has exactly two incident arcs. We can assume that the path is oriented from the
root to the unique leaf and that the nodes are ordered accordingly; thus, we obtain a
bidiagonal matrix En. The corresponding Sn is the (n− 1)× (n− 1) square Toeplitz
matrix generated by the symbol f(x) = 1 − eix [18, 6]. f(x) is weakly sectorial [6]
and has a zero of order 1; therefore, the analysis in [6] shows that

σmin(Sn) ∼ n−1,

σmax(Sn) ≤ ‖f‖∞ = 2,

lim
n→∞σmax(Sn) = ‖f‖∞ = 2 .

Hence, R2 and R4 are tight (up to suitable multiplicative constants) for linear trees.
These estimates can even be refined a little bit by studying the matrix ST

n Sn. Direct
calculation shows that

ST
n Sn =




2 −1 0 · · · 0

−1
. . .

. . . 0

0
. . .

...
... 2 −1
0 · · · 0 −1 1




= Tn−1 − en−1e
T
n−1,(2.3)

where Tn−1 is the (n− 1)× (n− 1) Toeplitz matrix generated by the symbol f(x) =
2 − 2 cos(x). Tn−1 belongs to the τ algebra [5], so that its eigenvalues are explicitly
known:

λmin(Tn−1) = 4 sin2
( π

2n

)
, λmax(Tn−1) = 4 sin2

(
π(n− 1)

2n

)
.

Note that ST
n Sn ≤ Tn−1 in the sense of the partial ordering of the Hermitian matrices;

hence,

σmin(Sn) ≤ π/n, σmax(Sn) = 2− εn with εn ≥ π/n .

Finally, since ET
nEn = Tn−1, we have

σmin(En) = 2 sin
( π

2n

)
, σmax(En) = 2 sin

(
π(n− 1)

2n

)
.

Remark 2.1. Observe that the constant ‖f‖∞ = 2 is exactly the maximum node
degree of a linear tree. Therefore, in the case of linear trees the lower bound in R4 is
not tight and it can be replaced by δ(Hn) minus an asymptotically small quantity.
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2.2.2. Star trees. In the opposite direction, we have “concentrated” trees, the
most concentrated one being the “star” tree where the root has n − 1 sons. Let us
choose any ordering for the nodes where the first node is the root, and let us order
the arcs according to the chosen order of the nodes. The resulting En is not lower
triangular, but the corresponding Sn has the following interesting structure:

Sn =




1 1 1 · · · 1
−1 0 0 · · · 0

0 −1
...

...
. . .

. . .
...

0 · · · 0 −1 0



.(2.4)

This structure is close to that of the Frobenius matrices [4], and it is easy to prove
that the characteristic polynomial is p(λ) = (1 + λn)/(1 + λ). However, Sn is “highly
nonnormal” [4]; therefore the fact that all its eigenvalues have unitary modulus does
not tell anything about its conditioning. As in the previous case, we can extract
information on Sn by studying the matrix

SnS
T
n = In−1 + Vn, where Vn = [f |e1] · [e1|g]T

and g = −∑n−1
j=2 ej , f = (n− 2)e1 + g. Since Vn has rank two, SnS

T
n has eigenvalues

1 with multiplicity n− 3 plus two other values that can be explicitly calculated. The
nonzero eigenvalues of Vn are those of the 2× 2 matrix [4]

[e1|g]T · [f |e1] =

[
n− 2 1
n− 2 0

]
.

Direct calculation yields

λmax(SnS
T
n ) = n− 2 +O(n−1),

λmin(SnS
T
n ) = 2/(n− 2) +O(n−2) .

Therefore

σmax(Sn) =
√
n− 2 +O(n−1),

σmin(Sn) =

√
2

n− 2
+O(n−2) ,

proving that R1 and R3 are tight up to suitable multiplicative constants.
Remark 2.2. The root of a star tree has degree n − 1; hence, σmax(Sn) =√

n− 2 +O(n−1) =
√
δ(Hn) + O(1) proves that R4 cannot be relaxed any further.

Thus, δ cannot be replaced by δ(Hn) as “substantially” done for linear trees (see
Remark 2.1).

Remark 2.3. The case of “star” trees shows that the lower bound

δ

σn−2(Sn)
≤ κ2(En)
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on the condition numbers in Theorem 2.6 is tight. Indeed δ =
√
n− 1, σn−2(Sn) = 1,

and EnE
T
n = In−1 + eeT so that σmin(En) = 1, σmax(En) =

√
n, and therefore

κ2(En) =
√
n which is in good agreement with the bound.

Remark 2.4. Tightness of R1–R4 does not imply that the upper estimates on
the spectral conditioning of En in Theorem 2.6 are tight. In fact, “linear” trees have
O(n) condition numbers and “star” trees have O(

√
n) condition numbers, as opposed

to the O(n3/2) bound given in the theorem. Finally, notice that the conditioning of
Sn and En are asymptotically the same for “linear” trees while for “star” trees there
is a substantially different behavior since κ2(En) =

√
n while κ2(Sn) grows as n.

2.3. Conditioning of graphs. The results of the previous section can be used
in order to evaluate the extremal behavior of the singular values of E(Hn) when Hn

is a generic graph with n nodes. Since trees have been analyzed before, we will reduce
the case of connected graphs to the case of trees.

Proposition 2.7. Let Hn be a connected graph: then

σn−1(En) ≥ max
T∈T (Hn)

σmin(Sn(T )),

where T (Hn) is the set of the spanning trees of Hn.
Proof. Let T be a generic spanning tree of Hn: reorder the nodes and the arcs of

Hn in such a way that T is represented by the first n− 1 columns of En, and Sn(T )
is represented by the first n− 1 rows and columns. Therefore, we have

σn−1(En) = sup
dim U=n−1

inf
x∈U, ‖x‖>0

‖xTEn‖2
‖x‖2 ≥ inf

y∈Rn−1, ‖y‖>0

‖[yT , 0]En‖2
‖[y, 0]‖2

= inf
y∈Rn−1, ‖y‖>0

√
‖yTSn(T )‖22 + ‖w‖22

‖y‖2
≥ inf

y∈Rn−1, ‖y‖>0

‖yTSn(T )‖2
‖y‖2 = σmin(Sn(T )) .

From Proposition 2.7 and part R2 of Theorem 2.6, we obtain

σn−1(En) ≥ n−1.(2.5)

On the other hand, using Proposition 2.2 and Theorem 2.3 as in part R3 of Theorem
2.6, one obtains

σmax(En) ≤ (2n)1/2.(2.6)

As a consequence, the following theorem holds.
Theorem 2.8. κ2(En) grows at most as n3/2

√
2.

These bounds are asymptotically tight: linear trees realize (2.5), while (2.6) is
realized by complete graphs. In fact, the matrix EnE

T
n corresponding to a complete

graph Hn is the circulant matrix 2(nI − eeT ), whose maximal eigenvalue is 2n with
multiplicity n− 1 (all the nonzero vectors orthogonal to e are eigenvectors associated
to the eigenvalue 2n) and whose minimal eigenvalue is zero [10].

The bound on the condition number in Theorem 2.8 is asymptotically realized
by a sequence of graphs Hn with two components: a star tree T 1

n with �n/2� nodes
and a linear tree T 2

n with �n/2� nodes. The maximal singular value of En coincides
with the one of E(T 1

n), growing as (n/2)1/2, while the minimal nonzero singular value
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of En coincides with the one of E(T 2
n), collapsing to zero as (n/2)−1. Therefore, the

spectral condition number behaves as n3/2.
It is even possible to construct a sequence of trees having condition number asymp-

totic to n3/2, answering in the positive to the question raised in Remark 2.4. Consider
a sequence of trees Ĥn+1 formed by the union of T 1

n and T 2
n with a new node u and

the two arcs that join u with the roots of T 1
n and T 2

n . We have

σmax(Ên+1) ≥ σmax(E(T 1
n)) =

√
�n/2� − 2 +O(n−1) ∼ n1/2 .

Let the order of the nodes and the arcs of Ĥn+1 be such that the first rows and
columns are related to the linear tree T 2

n :

Ên+1 =




1 0 · · · 0 0 −1
−1 1 · · · 0 0 0
...

. . .
. . .

...
...

...
0 · · · −1 1 0 0
0 · · · 0 −1 0 0

1 1 · · · 1 −1 0
−1 0 · · · 0 0 0
...

. . .
. . .

...
...

...
0 · · · −1 0 0 0
0 · · · 0 −1 0 0

0 · · · 0 0 · · · 0 1 1




(2.7)

or, more compactly,

Ên+1 =


 E(T 2

n) O 0 −e1
O E(T 1

n) −e1 0
0T 0T 1 1


 .

We have already seen in section 2.2.1 that E(T 2
n)TE(T 2

n) = Tn̄, where n̄ = �n/2� − 1
and Th is the h × h Toeplitz matrix generated by the symbol f(x) = 2 − 2 cos(x),
having

λmin(Th) = 4 sin2

(
π

2(h+ 1)

)
.

Now, let w ∈ Rn̄ be the eigenvector of Tn̄ corresponding to the minimum eigenvalue,
and let x ∈ Rn be the vector (1/‖w‖2)[w|0] obtained by padding the normalized
eigenvector with �n/2�+1 zeroes. Since the (n+1)×n matrix Ên+1 has full column
rank, we have

σmin(Ên+1) = σn(Ên+1) = inf
‖y‖2=1

‖Ên+1y‖2

≤ ‖Ên+1x‖2 =
‖E(T 2

n)w‖2
‖w‖2 =

√
wTE(T 2

n)TE(T 2
n)w

‖w‖2

=

√
wTTn̄w

‖w‖2 = 2 sin

(
π

2 �n/2�
)
∼ n−1,

and therefore κ2(Ên+1) ∼ n3/2.
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3. Weighted graph matrices. We will now use the results of the previous
section to study the spectral conditioning of (sequences of) weighted graph matrices
EnΘET

n . Let θ be the vector containing the diagonal elements of Θ. By considering
the Rayleigh quotient

xT (EnΘET
n )x

xT (EnET
n )x

=

∑m
i=1 y

2
i θi∑m

i=1 y
2
i

at any x /∈ Ker(EnE
T
n ), it is easy to see that

λn−1(EnΘET
n ) ≥ θminλn−1(EnE

T
n ) = θminσ

2
n−1(En),(3.1)

λmax(EnΘET
n ) ≤ θmaxλmax(EnE

T
n ) = θmaxσ

2
max(En),(3.2)

where θmin and θmax are, respectively, the minimum and maximum elements of θ and
where Ker(X) denotes the null space of a square matrix X. These estimates imply
that the worst-case conditioning of EnΘET

n is in the order of (θmax/θmin)n
3.

Other estimates of the condition number of EnΘET
n can be obtained through the

“decomposition to spanning trees” of Hn. For any subgraph T of Hn, let us denote
by V(T ) the subset of Vn containing the arcs of T . Since the entries of θ (the diagonal
elements of Θ) are also indexed by arcs, we will denote by θ(T ) [Θ(T )] the subvector
of θ (submatrix of Θ) relative to the arcs in V(T ) and by θmax(T ) and θmin(T ) its
minimum and maximum elements, respectively. Thus, for any T

EnΘET
n ≥ E(T )Θ(T )E(T )T ≥ θmin(T )E(T )E(T )T

in the sense of the partial ordering of the Hermitian matrices. Clearly, one is interested
in “maximal” subgraphs T of Hn, the obvious ones being spanning trees; therefore

λn−1(EnΘET
n ) ≥ max

T∈T (Hn)
θmin(T )λn−1(E(T )E(T )T ),(3.3)

where T (Hn) is the set of the spanning trees of Hn. The bound (3.3) can be strength-
ened by considering any set of disjoint spanning trees, i.e., the familiy

D(Hn) = {D ⊆ T (Hn) : V(T1) ∩ V(T2) = ∅ ∀T1, T2 ∈ D} .(3.4)

For any D ∈ D(Hn), one has

EnΘET
n ≥

∑
T∈D

E(T )Θ(T )E(T )T ≥
∑
T∈D

θmin(T )E(T )E(T )T

and therefore

λn−1(EnΘET
n ) ≥ max

D∈D(Hn)

∑
T∈D

θmin(T )λn−1(E(T )E(T )T ) .(3.5)

Note that the union of the subgraphs in D need not cover all the arc set Vn of
Hn. Actually, one may replace T (Hn) in (3.4) with the set A(Hn) of all acyclic
subgraphs of Hn, allowing for more terms in the sum of (3.5). Unfortunately, all
acyclic subgraphs T which are not spanning trees have λn−1(E(T )E(T )T ) = 0, so
that all the corresponding terms give no contribution to the bound.
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Upper bounds on the maximum eigenvalue of EnΘET
n can be obtained with sim-

ilar techniques. Consider the family of disjoint acyclic subgraphs covering all Vn

C(Hn) =

{
C ⊆ A(Hn) : V(T1) ∩ V(T2) = ∅ ∀T1, T2 ∈ C ,

⋃
T∈C

V(T ) = Vn
}

.

Clearly, one has

λmax(EnΘET
n ) ≤ min

C∈C(Hn)

∑
T∈C

θmax(T )λmax(E(T )E(T )T ) .

The above estimates can be useful when designing preconditioners for the solution of
(1.1) through a PCG method, as briefly discussed in the next section.

4. Conditioning and preconditioning. In this section we briefly discuss how
the analysis of the previous paragraphs is related to the study of preconditioners for
the solution of (1.1) through a PCG method. In the following, we will assume that
one row (for each connected component of Hn) has been deleted from En, so that
(1.1) is a full-rank system.

In the literature, tree-based preconditioners have been shown to be quite suc-
cessful, in practice, for the solution of (1.1) within interior-point approaches to linear
min-cost network flow problems [15, 16]. These preconditioners are chosen as the
matrices SnS

T
n , where Sn = S(T ) corresponds to some spanning tree T of Hn, usu-

ally an (approximate) maximum-weight spanning tree, the weight of arc vi being θi.
Besides working well in practice, this choice has a clear rationale from the analysis
of interior-point methods in that, if the optimal solution of the underlying problem
is unique, then the weights θi tend to zero on all arcs but those corresponding to the
basic optimal solution [17] that form a spanning tree. However, another rationale for
this choice is given by (3.3). In fact, it is well known that, in practice, having small
eigenvalues is what hurts most the performance of a PCG method. Thus, spanning
trees T with large θmin(T ) are presumably a good choice since

κ2((En(T )ET
n (T ))+EnΘnE

T
n ) ≥ θmin(T )

with X+ denoting the pseudoinverse of Moore–Penrose of a matrix X (see, e.g.,
[12]). Interestingly, the Kruskal algorithm that is typically used for computing the
maximum-weight T also gives the tree with largest θmin(T ). This may be used to
provide a more sophisticated convergence analysis for these methods.

Furthermore, (3.1) and (3.2) clearly imply that, using EnE
T
n as a precondi-

tioner for (1.1), the spectral conditioning of the preconditioned matrix is limited
by θmax/θmin. If the entries of θ would belong to a bounded interval [r,R], with r and
R positive constants independent on n, then EnE

T
n would be an optimal precondi-

tioner for (1.1) [3], i.e., the number of PCG iterations required to achieve any chosen
accuracy would be independent on n. Actually, it can be shown that the asymptotic
behavior of the spectra of the preconditioner EnE

T
n describes the asymptotic behav-

ior of the spectra of EnΘnE
T
n for any “nondegenerating” sequence of positive m(n)

vectors θn. Unfortunately, θmax/θmin grows very fast during the iterations of the
interior-point methods. However, blending a preconditioning technique using EnE

T
n

and a (classical) O(
√
n) adaptive updating has recently led to an O( n3

lognL) interior-

point method for linear programming [2]. It is conceivable that similar techniques
could be used to keep the quantity θmax/θmin bounded.
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However, it is still not clear how to exploit the structure of En in order to devise
a fast algorithm for solving linear systems involving the matrix EnE

T
n . In the specific

case of local graphs [11], which generalize the idea of grid graphs, the self-similarity
of the matrices En and En′ , with n′ ∼ θn, θ ∈ (0, 1) independent of n, suggests the
use of an algebraic multigrid method [13] since the matrix En′ can be interpreted as
a coarse grid version of the original matrix En.

Acknowledgment. We are grateful to Claudio Gentile for his contribution to a
part of Theorem 2.6.
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Abstract. In this paper we consider the set of normal matrices N ⊂ C
n×n as a stratified

submanifold of R
2n2

. Based on the Toeplitz decomposition, we construct a stratification of N with
the strata of dimension n2 + j for 1 ≤ j ≤ n. The stratum of the maximal dimension n2 + n is
readily parametrizable since the Toeplitz decomposition Z = H + iK of a generic Z ∈ N equals
Z = H + ip(H) for a polynomial p with real coefficients. Using this, it is possible to approach
computational tasks involving normal matrices in a new way. To give an example, we consider the
problem of approximating eigenvalues of a large, possibly sparse, normal matrix Z. In particular, we
generalize the Hermitian Lanczos method to normal matrices.
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1. Introduction. The set of normal matrices, denoted by N ⊂ C
n×n, is a rich

class of matrices well suited for numerical computations. To give an example of the
computational well behavior, extreme sensitivity of eigenvalues and eigenvectors does
not occur among the set of normal matrices. The ways to characterize normality are
a “rich set” as well. So far there exist about ninety equivalent conditions for a matrix
to be normal, collected in [14] by Grone et al. and in [8] by Elsner and Ikramov. The
classical definition of normality for a matrix Z ∈ C

n×n, or condition 0 as taken in
[14], is based on the algebraic relation

ZZ∗ − Z∗Z = 0(1.1)

for Z. Instead of considering different equivalent characterizations of normality, in
this paper we study N as a set. More precisely, we view the set of normal matrices
as a stratified submanifold of R

2n2

.
It is not difficult to verify that N is a stratified submanifold of R

2n2

. Instead, it
is more difficult to construct a stratification of N that would be structure revealing as
well as concrete enough to be useful in practical problems. Consequently, the purpose
of this paper is to introduce a stratification that would, at least to some extent, have
these properties. To this end we take as a starting point the Toeplitz decomposition,
also called the Cartesian decomposition, of Z ∈ C

n×n defined via

Z = H + iK, where H =
1

2
(Z + Z∗) and K =

1

2i
(Z − Z∗).(1.2)

Clearly both H and K belong to the set of Hermitian matrices H. As is well known,
Z is normal if and only if H and K commute; see, e.g., condition 21 in [14]. Thus,
normality of Z renders H and K in the Toeplitz decomposition strongly interdepen-
dent. Using this property, a way to achieve a simple stratification of the set of normal
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349



350 MARKO HUHTANEN

matrices is to first fix j, with 1 ≤ j ≤ n, and constrain H ∈ H to have exactly
j distinct eigenvalues. Then consider all the possible Hermitian K that commute
with H. With this construction we obtain a stratification of N with the strata of
dimension n2 + j for 1 ≤ j ≤ n. Thus, the smallest dimension n2 + 1 occurs when
H is restricted to be a scalar multiple of the identity, i.e., H = sI for s ∈ R. The
maximal dimension n2 + n corresponds to the case when H varies among the set of
nonderogatory Hermitian matrices.

What makes the described stratification of potential use in practice is the prop-
erty that we obtain a very simple parametrization for the stratum of the maximal
dimension. That is, denoting by Hn the set of nonderogatory Hermitian matrices, the
stratum of dimension n2 + n is given by the injective mapping

(H,α0, . . . , αn−1)→ H + i

n−1∑
k=0

αkH
k(1.3)

from Hn × R
n to N . The image of this mapping is an open dense subset of N in

the norm topology inherited from R
2n2

. This is based on the fact that for a normal
Z = H+iK the partsH andK are simultaneously diagonalizable by a unitary matrix.
Therefore a slight perturbation of the eigenvalues of H yields an element Ĥ of Hn.
Then it remains to find a polynomial p with real coefficients such that p(Ĥ) is close
to K. Thus, a generic normal matrix Z is of the form Z = H + ip(H) for H ∈ Hn

and for a polynomial p with real coefficients. In particular, the set of normal matrices
can be characterized as

clos{H + ip(H) : H ∈ H, p is a polynomial with real coefficients}.(1.4)

With the parametrization (1.3) of an open dense subset of N a number of com-
putational problems involving normal matrices can be approached in a new way.
Consider, for instance, the problem of finding a few (or all) eigenvalues and the cor-
responding eigenvectors of a large, possibly sparse Z = H + iK = H + ip(H) ∈ N
by using Krylov subspace methods. With the Toeplitz decomposition this problem
can be divided into simpler, independent parts by approximating eigenvalues of H
accompanied by finding p. Once this is accomplished, approximations to eigenvalues
of Z are obtained by simply applying the spectral mapping theorem with p to those
eigenvalues of H that have been computed. The eigenvectors of Z are obtained di-
rectly from the corresponding eigenvectors of H. Obviously here the key is that for
a Hermitian matrix, for solving some of its eigenvalues, there exists a large variety of
techniques as well as a lot of different preconditioning strategies. There are several
analogous routes to approximate p.

For a large, possibly sparse, Hermitian matrix the most inexpensive overall tech-
nique for finding eigenvalues is the Hermitian Lanczos method; see, e.g., [21]. It turns
out that if the Hermitian Lanczos method is used to approximate eigenvalues of H for
Z = H + ip(H) ∈ N , then an approximation to p is obtained without any significant
additional cost. This leads to an approximation to eigenvalues of Z as just described.
We call the resulting scheme the Hermitian Lanczos method for normal matrices. As
opposed to standard iterative schemes, we find this approach particularly interesting
since it is structure preserving, that is, at every stage the approximations remain nor-
mal thereby yielding an orthonormal eigenvector basis at every step. It is well known
that with the standard Arnoldi method the normality of approximations is typically
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lost; see [17]. Further, the introduced algorithm preserves all the essential properties
of the Hermitian Lanczos method. For instance, without reorthogonalizations, only a
3 term recurrence is needed. Consequently, with the proposed method eigenvalues of
Z can be approximated by storing only 3 vectors.

In the decomposition Z = H + ip(H) of Z ∈ N the way p can be approximated
by a low degree polynomial on the spectrum of H becomes an important factor. In
particular, if p happens to be of low degree, then the proposed algorithm reduces,
in essence, to computing approximations to eigenvalues of H. Consequently, the
significance of the behavior of p leads, in a natural way, to an introduction of an
adjustable parameter yielding an analogous representation for Z. That is, consider
a rotation eiθZ of Z with θ ∈ [0, 2π). Except for a finite number of θ, this rotation
possesses a representation eiθZ = Hθ + ipθ(Hθ) with Hθ ∈ H and for a polynomial
pθ with real coefficients. The degree as well as the behavior of p and pθ on the
corresponding spectra can, however, be very different. Consequently, the respective
approximation problems for Z and eiθZ arising from the proposed method can be
completely dissimilar.

The paper is organized as follows. In section 2 we present a stratification of N
and construct a simple parametrization for an open dense set of N . In section 3
we outline examples of computational problems where the presented parametrization
can be of use. In particular, we generalize the Hermitian Lanczos method to normal
matrices such that all the essential properties of the original algorithm are preserved.
Finally, we compare the introduced method with the Arnoldi method.

2. A stratification of the set of normal matrices. So far there exist about
ninety equivalent conditions for a matrix to be normal, collected in [14] by Grone et al.
and in [8] by Elsner and Ikramov. The standard definition of normality for Z ∈ C

n×n,
or the so-called condition 0, deals with the equation given by the self-commutator

[Z,Z∗] = ZZ∗ − Z∗Z = 0.(2.1)

In particular, starting from this, algebraic as well as differential geometric interpre-
tations come naturally. As to the algebraic geometric point of view, obviously the
elements of the matrix [Z,Z∗] are not, because of the complex conjugation, polynomi-
als with respect to complex variables {Zi,j}ni,j=1 denoting the elements of Z. However,
they are polynomials with respect to the real and imaginary parts of {Zi,j}ni,j=1, and,
consequently, it is useful to regard the set of all complex n × n matrices as the real
vector space R

2n2

. If Z = X+ iY , where X,Y ∈ R
n×n denote the real and imaginary

parts of Z, respectively, then

[Z,Z∗] = XXT −XTX + Y Y T − Y TY + i(Y XT −XTY + Y TX −XY T ).(2.2)

Requiring [Z,Z∗] = 0, the real part gives, because of symmetry, (n2 + n)/2 poly-
nomial equations of degree 2. Analogously, the imaginary part gives, because of
skew-symmetry, (n2 − n)/2 polynomial equations of degree 2. These, in all n2 ho-

mogeneous polynomials, define an affine variety in R
2n2

. Obviously H and S, the
set of Hermitian and the set of skew-Hermitian matrices, respectively, are both n2

dimensional subspaces of R
2n2

contained in N , the set of normal matrices. These
two subspaces are the building blocks of the constructed stratification of N in this
paper.
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A stratification Σ of a subset X of a manifoldM is a partition of X into subman-
ifolds of M , called the strata, which satisfies the local finiteness condition. That is to
say, every point in X has a neighborhood in M that meets only finitely many strata.
If X ⊂ M can be stratified, X is called a stratified submanifold of M . For further
definitions and properties of stratified submanifolds, see, e.g., [1] or [11].

Proposition 2.1. N is a connected star-shaped stratified submanifold of R
2n2

.

Proof. It is obvious that N is connected as each of its elements is linearly path
connected to the zero matrix. By this argument N is obviously star-shaped. The set
of normal matrices is the image of the mapping (U,D) → UDU∗ (or the equivalent
real mapping constructed in an obvious way). By the stratification theorem [15], N is

a stratified submanifold of R
2n2

as this mapping is real analytic and proper (compact
sets have compact preimages).

As to how to actually construct a stratification of N , there are several routes.
For practical purposes we have chosen to start from the Toeplitz decomposition since
it turns out that in this way we obtain a very simple parametrization for the stratum
of the maximal dimension. For that purpose, let Z = H + iK denote the Toeplitz
decomposition of a matrix Z as defined in (1.2). We call H and iK the Hermitian
and skew-Hermitian parts of Z, respectively. Let C(Z) = {B ∈ C

n×n : BZ = ZB}
denote the centralizer of Z. It is obvious that C(Z) is a subspace of C

n×n.

In what follows we will either consider real or complex dimension. This will be
indicated by an inclusion either in R

2n2

or in C
n×n, respectively.

Lemma 2.2. Assume M ∈ H and the dimension of C(M) ⊂ C
n×n is l. Then the

dimension of S⋂C(M) ⊂ R
2n2

is l.

Proof. It is obvious that S⋂C(M) is a subspace of R
2n2

so that the dimension
is well defined. Assuming that the dimension of C(M) ⊂ C

n×n is l, suppose for

Sj ∈ S
⋂
C(M) ⊂ R

2n2

, j = 1, . . . , l + 1, that there do not exist αj ∈ R for j =

1, . . . , l + 1, of which at least one is nonzero such that
∑l+1

j=1 αjSj = 0. Clearly, then
there cannot exist any βj ∈ C, j = 1, . . . , l + 1, of which at least one is nonzero such

that
∑l+1

j=1 βjSj = 0 either. This contradicts the assumption. Thus, the dimension of

S⋂C(M) ⊂ R
2n2

is at most l. Assume then that Sj , for j = 1, . . . , l − 1, is a basis

of S⋂C(M) ⊂ R
2n2

and Z = H + iK ∈ C(M) ⊂ C
n×n. Since MZ − ZM = 0, then

taking the adjoint yields Z∗M −MZ∗ = 0, so that H,K ∈ C(M) also. Therefore,

for some αj ∈ R holds
∑l−1

j=1 αjSj = iH and for some βj ∈ R holds
∑l−1

j=1 βjSj = iK.

Thus,
∑l−1

j=1(−iαj +βj)Sj = Z and, consequently, Sj , for j = 1, . . . , l−1, is a basis of

C(M) ⊂ C
n×n as well. This, however, contradicts the assumption that the dimension

of C(M) ⊂ C
n×n equals l and the claim follows.

Let (k1, . . . , kj) ∈ N
j be a partition of n ∈ N, that is,

∑j
l=1 kj = n. For a

partition of n we denote by H(k1, . . . , kj) ⊂ H those Hermitian matrices H ∈ C
n×n

that have exactly j distinct eigenvalues with multiplicities k1, . . . , kj . Obviously this
is independent on the ordering of these indices. To give an example, H(1, 2, 3) ∈ C

6×6

is the same as H(3, 1, 2). For simplicity, let Hn denote the set of nonderogatory
Hermitian matrices.

Proposition 2.3. H(k1, . . . , kj) ⊂ R
2n2

is a smooth manifold of dimension

n2 +
∑j

l=1(1− k2
l ).

Proof. Assume k1, . . . , kj are in decreasing order and let j0 be the largest subindex
for which kj0 > 1.
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The dimension of the set of unitary matrices U as a real smooth manifold is n2.
Fix an element U ∈ U and consider those unitary matrices V obtained via

V = U



V1 0 . . . 0
...

. . .
. . .

...
0 . . . Vj0 0
0 . . . 0 Φ


(2.3)

for Vl ∈ C
kl×kl , with 1 ≤ l ≤ j0, unitary and Φ = diag(θ1, . . . , θn−p), where p =∑j0

l=1 kl and |θl| = 1 for 1 ≤ l ≤ n − p. This set is a smooth manifold of real

dimension
∑j0

l=1 k
2
l + (n − p) since the set of unitary matrices in each C

kl×kl is k2
l

dimensional and the product space of n − p unit circles is an (n − p) dimensional
manifold.

Let X be the open set in R
j defined as the complement of the inverse image of 0

of the function (λ1, . . . , λj) →
∏

1≤s<t≤j(λs − λt) from R
j to R. That is, X is such

that λs �= λt whenever s �= t. Identify X with those diagonal matrices D that have
the first j0 blocks equaling eigenvalues in each block of size kl only, for 1 ≤ l ≤ j0,
while the remaining n − p eigenvalues are all pairwise different as well as different
from those in the first j0 blocks. Clearly, the set H(k1, . . . , kj) equals the image of
the mapping (U,D)→ UDU∗ from U ×X.

For a fixed D ∈ X and for arbitrary U, V ∈ U there holds UDU∗ = V DV ∗ if and
only if U and V are related as in (2.3). Consequently, the dimension of the image of
the mapping (U,D)→ UDU∗ is

n2 −
j0∑
l=1

k2
l − (n− p) + j = n2 −

j0∑
l=1

k2
l + j0 = n2 +

j∑
l=1

(1− k2
l )

and the claim follows as it is obviously smooth as well.
Proposition 2.4. If H ∈ H(k1, . . . , kj), then the dimension of S

⋂
C(H) ⊂ R

2n2

is
∑j

l=1 k
2
l .

Proof. The subindex j0 is defined as in the proof of Proposition 2.3. Let H =
UΛU∗ be a diagonalization ofH by a unitary similarity. Then BH = HB is equivalent
to U∗BUΛ = ΛU∗BU , that is, we can consider the centralizer of Λ and then use
this unitary similarity to get the centralizer of H. A block, say, of size kl has the
centralizer of dimension k2

l as a subspace of C
kl×kl simply because all the matrices of

respective size commute with this block. The corresponding skew-Hermitian subspace
is k2

l dimensional in R
2k2

l by Lemma 2.2. Thus continuing in this manner we obtain

a subspace of dimension
∑j0

l=1 k
2
l . Then the remaining eigenvalues are all different,

i.e., this block is nonderogatory. Thus, for this block the dimension of the centralizer
is n − p [16, p. 275] in C

(n−p)×(n−p), with p =
∑j0

l=1 kl. Consequently, using again
Lemma 2.2 with this block we obtain the claim after an addition.

Now N can be stratified as follows. For 1 ≤ j ≤ n, let Nj denote those N =
H + iK ∈ N whose Hermitian part H has exactly j distinct eigenvalues (with no
restrictions to multiplicities). Obviously N =

⋃n
j=1Nj . The following shows that

this provides a stratification of N as well.
Theorem 2.5. For each 1 ≤ j ≤ n the set Nj ⊂ R

2n2

is a smooth manifold of
dimension n2 + j.

Proof. Consider H(k1, . . . , kj) and define

N (k1, . . . , kj) = {N = H + iK ∈ N : H ∈ H(k1, . . . , kj)}.(2.4)
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Then Nk =
⋃N (k1, . . . , kj) such that all these components are disjoint, i.e., all the

partitions differ (modulo ordering). Consider now a single component N (k1, . . . , kj).

By Proposition 2.3H(k1, . . . , kj) is a smooth manifold of dimension n2+
∑j

l=1(1−k2
l ).

In Proposition 2.4 we demonstrated that for a fixed H ∈ H(k1, . . . , kj) the dimension

of S⋂C(H) ⊂ R
2n2

is
∑j

l=1 k
2
l . Thus n2 +

∑j
l=1(1 − k2

l ) +
∑j

l=1 k
2
l = n2 + j. If

H = UΛU∗ ∈ H(k1, . . . , kj), then in the proof of Proposition 2.4 we showed that the
centralizer of H was the direct sum of full matrix algebras

U(Mk1
⊕ · · · ⊕Mkj0

⊕ C⊕ · · · ⊕ C)U∗.(2.5)

In particular, C(H) is independent on the numerical values of the eigenvalues of Λ
as long as they are constrained to have fixed multiplicities in this order such that
Λ ∈ H(k1, . . . , kj). Further, the computation of the skew-Hermitian part from (2.5)
is a smooth operation. Thus, when U and Λ vary smoothly, the smoothness of the
structure follows.

The set of nonderogatory Hermitian matrices Hn is of particular interest for the
following reason.

Proposition 2.6. Assume H ∈ Hn and p is a polynomial with real coefficients.
Then H + ip(H) is normal. Conversely, every normal matrix with H ∈ Hn as its
Hermitian part is of this form for a polynomial p with real coefficients.

Proof. The first claim is obvious. For the converse, let K be Hermitian. By con-
dition 21 in [14] H+ iK is normal if and only if K ∈ C(H). Since H is nonderogatory,
K = p(H) for a polynomial p; see, e.g., [16, p. 275]. If p is not real, then taking the
real part p� of p (i.e., p = p� + ip�, where both p� and p� are polynomials with real
coefficients) gives the claim.

Now Nn, that is, the set of normal matrices having a nonderogatory Hermitian
part, has the following property.

Theorem 2.7. Nn is an open dense subset of N in the norm topology inherited
from R

2n2

.
Proof. Let {λk(A)}nk=1 denote the eigenvalues of a A ∈ C

n×n, counting multi-
plicities, arranged in decreasing order in modulus. The function A = H + iK →∏n−1

k=1(λk(H) − λk+1(H)) is continuous from C
n×n to R. Thereby the inverse image

of 0 for this function is a closed set in C
n×n. Since we use the inherited topology, its

intersection with N , which obviously equals N\Nn, is a closed set in N .
Assume Z ∈ N\Nn. We need to show that there is Zε ∈ Nn arbitrarily close to

Z. Let Z = H+iK be the Toeplitz decomposition of Z. Assume H has j0 eigenvalues
λ1, . . . , λj0 with multiplicities strictly larger than one. Let Λ̂ denote the remaining
eigenvalues. Let U be a unitary matrix diagonalizing H and K simultaneously such
that the diagonal blocks corresponding to λ1, . . . , λj0 come first. As reasoned in the
proof of Proposition 2.4, then all normal matrices with H as their Hermitian part are
of the form

U




Λ1 0 . . . 0
...

. . .
. . .

...
0 . . . Λj0 0

0 . . . 0 Λ̂


U∗ + iU



S1 0 . . . 0
...

. . .
. . .

...
0 . . . Sj0 0

0 . . . 0 Ŝ


U∗,(2.6)

where S1, . . . , Sj0 and Ŝ are diagonal Hermitian matrices. Now perturb each diagonal
element in each Λ1, . . . ,Λj0 slightly to get a nonderogatory Hermitian matrix U(Λ +
ε)U∗. This resulting perturbed matrix Zε of Z remains also normal since its Hermitian
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part commutes with its skew-Hermitian part and the claim follows as the perturbation
can be made arbitrarily small.

In particular, denoting by closS the closure of a set S, the set of normal matrices
can be characterized as follows.

Corollary 2.8. closNn = N and, in particular,

clos{H + ip(H) : H ∈ H, p is a polynomial with real coefficients} = N(2.7)

and {p(H) : H ∈ H, p is a polynomial} = N .
Proof. Only {p(H) : H ∈ H, p is a polynomial} = N needs to be shown. For

that purpose, draw lines through each pair of eigenvalues of a normal matrix Z. Then
take a rotation eiθZ of Z such that there are no vertical lines. Denote by Hθ the
resulting Hermitian part of eiθZ. Then construct a polynomial pθ, via interpolation,
such that eiθZ = Hθ + ipθ(Hθ). From this the polynomial is readily available after
multiplying both sides by e−iθ.

An immediate question is, how about L(H), the set of bounded linear operators
on a separable Hilbert space H? Using an adaptation of the “box construction” of
the proof of the theorem of Weyl–von Neumann–Berg [6] it can be shown that (2.7)
does hold. However, being quite technical, we omit it.

For Nn we obtain a smooth structure as well as a parametrization in a simple
manner from Proposition 2.6 and Theorem 2.7.

Corollary 2.9. Nn ⊂ R
2n2

is a smooth connected manifold of dimension n2+n
with the parametrization

(H,α0, . . . , αn−1)→ H + i

n−1∑
k=0

αkH
k(2.8)

from Hn × R
n to Nn.

Proof. Consider the mapping (2.8). It is bijective, since H is nonderogatory
and the polynomial is of degree n − 1 at most. Also it is clearly smooth. As to
the connectedness, suppose N1, N2 ∈ Nn. Thus, N1 = UΛ1U

∗ + iUp(Λ1)U
∗ and

N2 = V Λ2V
∗ + iV q(Λ2)V

∗ for some U, V ∈ U and some polynomials p and q with
real coefficients. Since U is path connected (every unitary Q is of the form Q = eiE

for a Hermitian matrix E; thus Qt = e
itE , for 0 ≤ t ≤ 1, connects Q to the identity

matrix), V can be connected with a path to U . Since Λ1 and Λ2 are both sets with
n distinct elements, they can be transformed smoothly to one another such that the
amount of distinct points remains equal to n during the process. And finally, the
coefficients of p and q can be smoothly transformed to one another.

Also the stratum N1, which consists of matrices sI + iK for s ∈ R and K ∈
H and is the stratum of the least dimension n2 + 1, is connected. The manifold
N (k1, . . . , kj) in (2.4) is not connected unless k1 = k2 = · · · = kj and

∑j
l=1 kl = n.

In case there are varying multiplicities, individual components of N (k1, . . . , kj) differ
only in the ordering of the eigenvalues of the Hermitian part with the corresponding
multiplicities. The reason that they cannot be connected to one another is that
when trying to move from one component to another, i.e., when trying to change
the ordering of the multiplicities of the eigenvalues of H ∈ H(k1, . . . , kj) on R, some
eigenvalues of H will coalesce. This in turn means that the matrix has entered into
another manifold N (p1, . . . , pl) with the indices p1, . . . , pl corresponding to the arisen
coalescence. While closNn = N , the other strata have the following property when
taking the closure.
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Proposition 2.10. Let {p1s},{p2s},. . . ,{pjs} be a partition of {p1, . . . , pl} such
that

∑
s p

m
s ≤ km for 1 ≤ m ≤ j. Then N (k1, . . . , kj) ⊂ closN (p1, . . . , pl).

Proof. Take Z ∈ N (k1, . . . , kj) and assume Z has been decomposed as in (2.6).
It should be obvious how an element of N (p1, . . . , pl) close to Z is now constructed:
Slightly vary each block Λ1, . . . ,Λj appropriately so as to get the right amount of
eigenvalues with multiplicities p1, . . . , pl.

Thus, generically, one can expect a normal matrix Z to be of the form H+ ip(H)
for a Hermitian matrixH and a polynomial p with real coefficients. As to applications,
the degree of p becomes an important factor. Overstating somewhat, the smaller the
degree of p, the more Hermitian Z can be regarded as far as Krylov methods are
concerned. In the following section we describe problems where this approach can be
useful.

3. Applications to problems involving normal matrices. With a readily
available parametrization for an open dense set of N it is possible to solve compu-
tational problems involving normal matrices in a new way. To demonstrate this we
outline an approach for two well-known examples, the eigenvalue problem and the
problem of finding a closest normal approximant to a matrix A ∈ C

n×n.

Instead of using the Hermitian part of Z ∈ N , the computations can be performed
with the skew-Hermitian part of Z. That is, a generic Z = H + iK ∈ N can be
represented either as Z = H + ip(H) or as Z = q(K) + iK for polynomials p and q
with real coefficients. And more generally, for a rotated eiθZ, with a θ ∈ [0, 2π), this
type of representation exists except for some very exceptional values of θ. To this
end, let us denote by Hθ the Hermitian part of eiθZ.

Proposition 3.1. Assume Z ∈ C
n×n is normal. Then, for θ belonging to an

open dense subset of [0, 2π), there holds eiθZ = Hθ+ ipθ(Hθ) for a polynomial pθ with
real coefficients.

Proof. Draw lines through each pair of eigenvalues of Z. For each rotation
for which there are no vertical lines one can construct a polynomial pθ such that
eiθZ = Hθ + ipθ(Hθ) by interpolation as in the proof of Corollary 2.8.

Recall that Hθ arises while approximating the field of values of a (not necessarily
normal) matrix Z. Namely then, for a finite number of different θ, one computes the
largest eigenvalue of Hθ and intersects certain half-planes defined on the basis of these
eigenvalues; see, e.g., [16, Thms. 1.5.12, 1.5.14]. For a normal Z ∈ C

n×n the rotation
is of interest for computational purposes as the polynomial pθ in the representation
eiθZ = Hθ+ ipθ(Hθ) obviously depends on the rotation parameter θ. Let us illustrate
this with a simple example.

Example 1. Assume Z = H + iK is normal and σ(Z) lies on the parabola x = y2

such that σ(K) is indefinite. If Z can be presented as H + ip(H) with a polynomial
with real coefficients, then the degree of p can be quite high, even n. Whereas for
ei

π
2 Z, the representation ei

π
2 Z = Hπ

2
+ ipπ

2
(Hπ

2
) is obtained for a polynomial pπ

2
of

degree 2 only.

Definition 3.2. Let Z ∈ C
n×n and θ ∈ [0, 2π). Then Z = e−iθHθ + ie

−iθKθ is
the rotated Toeplitz decomposition of Z by the angle θ.

In this decomposition the parts are (typically) not Hermitian matrices. This is
obviously irrelevant as all the computational aspects are analogous forHθ and e

−iθHθ.

3.1. Correcting the Francis shifted QR for normal matrices. Let us first
consider “small problems,” that is, problems in which all the dense matrix manipula-
tions are feasible.
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Although in practice the Francis shifted QR is very reliable for finding eigenvalues,
there are, even among N , matrices for which the convergence can fail; see [4, 5] by
Batterson and [7, p. 173] by Demmel. The simplest example from [5] is the following.

Example 2. The Francis shifted QR for the unitary matrix

Z =




0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0


(3.1)

fails to converge as the “decoupling” into smaller matrices does not take place.
Fortunately, roundoff typically results in convergence; for an example, see [5].
With the representation of Proposition 3.1 we can introduce a simple trick to make

QR convergence for normal matrices. Namely, for Hermitian matrices the Francis
shifted QR converges globally, by considering, if necessary, the symmetric matrix

[
B −C
C B

]

obtained from a Hermitian H = B + iC, where C and B are the real and imaginary
parts of H. For symmetric matrices the global convergence has been demonstrated
in [5]. This result can be combined with a representation eiθZ = Hθ + ipθ(Hθ) for
Z ∈ N as follows. For that purpose define, as usual, the inner-product among C

n×n

via setting

(A,B) := Trace(B∗A).(3.2)

Then solve, using the induced norm,

min
p∈P
‖Kθ − p(Hθ)‖(3.3)

for a value of θ ∈ [0, 2π) that yields zero. Thereafter the spectrum of Z is obtained
by applying the spectral mapping theorem with Hθ.

Algorithm 1 (for every normal matrix converging QR eigenvalue algorithm).
Step 1. For θ ∈ [0, 2π) compute the eigenvalues of Hθ with the Francis shifted QR.
Step 2. Compute p realizing minp∈P ‖Kθ − p(Hθ)‖.
Step 3. If the minimum is zero, use the spectral mapping theorem with q(λ) =

e−iθ(λ+ ip(λ)) to find the spectrum of Z. If the minimum is not zero, go to Step 1.
A way to realize the second step is the following. We do not claim it to be optimal

and we describe it merely because it is the closest approach to sparse methods which
is a primary reason, aside from a simple stratification of N , for the introduction of
a representation Z = e−iθHθ + ie

−iθpθ(Hθ). Namely, consider the linear mapping in
C

n×n defined via A → HθA. Now compute the Hessenberg representation for this
starting from the identity matrix. We thus obtain a Krylov subspace

K(Hθ; I) = span{I,Hθ, H
2
θ , . . . , H

n−1
θ }.(3.4)

Orthogonalizing these matrices with the Gram–Schmidt process yields a Hessenberg
representation for the mapping A → HθA restricted to the Krylov subspace (3.4).
Then, after expandingKθ in this basis, it is straightforward to compute the polynomial
pθ by using the elements of the Hessenberg representation; see Algorithm 2 below.
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Example 2 (continued). We execute Algorithm 1 with the matrix A in (3.1). It is
natural to start with θ = 0. This is a “rare” value of θ as one needs to choose another
θ to make the minimizing problem of Step 2 equal zero. We thus return to Step 1
and pick eiπ/8, for instance. With this value zero is attained at Step 2 so that the
convergence takes place.

3.2. A Hermitian Lanczos method for normal matrices. Consider the
problem of computing an approximation to some eigenvalues of a large, possibly
sparse, normal matrix Z. It is reasonable to assume Z to be generic in the sense
that Z = H + iK = H + ip(H) for H ∈ H and for a polynomial p with real coeffi-
cients. Or, based on some a priori information, a rotated Toeplitz decomposition of
Z can be taken as a starting point so as to have Z = e−iθHθ + ie

−iθpθ(Hθ). Below
we will discuss alternatives for choosing a rotation parameter θ for this purpose.

Whenever Z = H + ip(H), it is apparent that H is readily computable whereas p
is not available. Proceeding with H and finding an eigenvector, say, x, of H yields an
eigenvalue of Z related to z after evaluating Zx. This is clearly not a very practical
approach as it gives eigenvalues of Z almost randomly. To avoid this, some information
about p is needed and, consequently, p has to be approximated in some manner. A
way to achieve this is to use the Hermitian Lanczos method [21] with H. Namely
then, aside from an approximation to the spectrum ofH, also an approximation to p is
obtained. In particular, this is achieved without any relevant additional computational
expenses. The derivation of the scheme is as follows.

The well-known classical Arnoldi method [2] for the eigenvalue approximation
starts from the construction of a Krylov subspace with A ∈ C

n×n and a vector b ∈ C
n.

Then a monic polynomial p̂j of degree j is computed with the property that ‖p̂j(A)b‖
is minimized over all monic polynomials of degree j, that is,

‖p̂j(A)b‖ = min
γ1,. . . ,γj∈C

∥∥∥∥∥
(
Aj −

j∑
i=1

γiA
j−i

)
b

∥∥∥∥∥ .(3.5)

The roots of the polynomial p̂j are then taken as approximate eigenvalues of A. For
more information on the Arnoldi method for the eigenvalue problems, see, e.g., [21].
An eigenvalue approximation for Z = H + ip(H) involving the Hermitian part H of
Z can be obtained as follows. Compute polynomials p̂j and pj via

‖p̂j(H)b‖ = min
γ1,. . . ,γj∈C

∥∥∥∥∥
(
Hj −

j∑
i=1

γiH
j−i

)
b

∥∥∥∥∥(3.6)

and

‖Kb− pj(H)b‖ = min
γ1,. . . ,γj∈R

∥∥∥∥∥
(
K −

j∑
i=1

γiH
j−i

)
b

∥∥∥∥∥ .(3.7)

That is, p̂j and pj are constructed to approximate the eigenvalues of H and the
polynomial p, respectively. Then an eigenvalue approximation for Z is obtained by
applying the spectral mapping theorem with the polynomial z + ipj(z) to the eigen-
value approximation obtained with p̂j for H in (3.6). Obviously (3.7) can be replaced
with the approximation

‖Zb− pj(H)b‖ = min
γ1,. . . ,γj∈C

∥∥∥∥∥
(
Z −

j∑
i=1

γiH
j−i

)
b

∥∥∥∥∥(3.8)

instead.
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Finding the roots of p̂j and the computation of pj can be realized as follows. For
the roots of p̂j the Hermitian Lanczos method is employed by computing

Tj := Q
∗
jHQj =




α1 β1 0
β1 α2 β2

0 β2
. . .

. . .

. . . αj−1 βj−1

βj−1 αj




(3.9)

with the Hermitian H = 1
2 (Z+Z∗) using an initial vector q0 = b

‖b‖ ∈ C
n. The matrix

Qj ∈ C
n×j has orthonormal columns spanning the Krylov subspace Kj(H; q0) =

span{q0, Hq0, H2q0, . . . , H
j−1q0}. As is well known, the eigenvalues of (3.9) yield the

roots of p̂j ; see, e.g., [21]. For finding pj one needs to compute the Fourier coefficients
of Kb in the constructed basis of Kj(H; q0) and collect the coefficient accordingly from
the elements of (3.9).

Denoting by σ(A) the spectrum of a matrix A ∈ C
n×n, we obtain the following

algorithm.
Algorithm 2 (a Hermitian Lanczos method for normal matrices).

for Z = H + iK ∈ C
n×n and a vector q0 of unit length set β−1 = 0, p(λ) = (Kq0, q0),

p−1(λ) = 0 and p0(λ) = 1.
for j = 1 to k
compute with H using the Hermitian Lanczos method αj and βj and qj
compute pj(λ) =

1
βj
λpj−1(λ)− αj

βj
pj−1(λ)− βj−1

βj
pj−2(λ)

compute γj = (Kq0, qj)
set p(λ) = p(λ) + γjpj(λ)
compute σ(Tj) + ip(σ(Tj))
end for

Remark 1. This is a structure preserving Krylov subspace method. Namely, at
each step the approximant for Z is Tj + ip(Tj) restricted to

Kj(H; q0) = span{q0, Hq0, . . . , Hj−1q0}
which is normal. Consequently, all the approximative eigenvectors can be orthogo-
nalized against each other to give an orthonormal basis. We stress that the standard
Arnoldi method does not preserve normality [17].

Remark 2. For computing eigenvalue approximations (in exact arithmetic) only 3
vectors need to be stored as both finding the elements of Tj and updating the polyno-
mial involves a single 3 term recurrence. Note that the cost resulting from updating
the polynomial p as well as the additional memory requirements are negligible. These
are very attractive properties. Of course, as with the Hermitian Lanczos method, fi-
nite precision means that rounding errors can contaminate the results after a number
of steps. One alternative to try to avoid this is to use full reorthogonalization which
means saving all the qk’s, or something in between, that is, using selective orthogo-
nalization. See [7] for a thorough discussion of this subject for the Hermitian Lanczos
method.

Remark 3. This approach to computing eigenvalues of a normal Z is directly
related to the polynomial p in representation Z = H + ip(H). If p is of low degree,
then finding eigenvalues of Z reduces essentially to that of finding eigenvalues of H.
For instance, if the degree of p is two so that σ(Z) lies on a parabola y = ax2 + bx+ c
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with a, b, c ∈ R, then for j ≥ 3 all the approximative eigenvalues will lie on this
parabola. This is obviously a very attractive feature and completely analogous with
the property that for a Hermitian matrix the approximants converge on the real axis.
The standard Arnoldi method will not “detect” the parabola before the nth step.

Remark 4. Computing approximations with Algorithm 2 allows one to use the
Kaniel–Paige convergence theory [12] with normal matrices in the simplest form as
follows. If Z = H + ip(H) with a polynomial p of degree K, then, as soon as j ≥
K + 1, Algorithm 2 has detected p. At the same time, the extreme eigenvalues
of H are bounded according to the Kaniel–Paige theory. Thus, combining these
bounds with knowing p makes it completely straightforward to bound the error of the
approximations of Algorithm 2 for the right- and leftmost eigenvalues of Z.

Remark 5. A more realistic situation is that, instead of being a low degree poly-
nomial, p is well approximated by a reasonably low degree polynomial on the spectrum
of H. If this is the case, then after the corresponding number of steps p is well approx-
imated with Algorithm 2. We will demonstrate with an example that the convergence
behavior of Algorithm 2 can be expected to be very good then.

Remark 6. Finding a good rotation parameter θ ∈ [0, 2π) for a rotated Toeplitz
decomposition can make a big difference as demonstrated in Example 1. A way to find
one is to test with a few rotations, with a small k, how the corresponding minimization
problem (3.7) (or (3.8)) does behave. Based on this, the rotation giving the smallest
value will then be chosen. For this purpose, see Algorithm 3 below.

Remark 7. Since the rotation affects the convergence, it is possible to try to
benefit fully from it. Namely, instead of trying to find an optimal θ as suggested in
Remark 6, computing approximations with different θ can yield a good overall picture
of σ(Z).

Remark 8. As opposed to the power method, for obvious reasons we are tempted
to call this method a fractional power Krylov subspace method for Z. Namely, if
Z = H + ip(H) for a polynomial p of degree l ≥ 1, then the fractional power can be
considered to be 1/l.

Remark 9. Note that all the minimization problems giving rise to this algorithm
involve commuting normal matrices so that max-min property holds [13]. Thus, in
this respect the approximation problems (3.6) and (3.8) are equivalent.

Remark 10. One can easily give examples where Algorithm 2 beats the Arnoldi
method when measured in the number of steps taken. And this is even achieved with
the fixed amount of storage of only 3 vectors. Thus, it is a very good question to
ask how this can be possible at all. An answer is that Algorithm 2 is tuned to find
out about the structure of normality of Z, that is, of the polynomial p, by using the
information provided by the Krylov subspaces Kj(H; q0) in a twofold way. This is not
possible with the standard Arnoldi method as, being a more general method, it does
not exploit normality in any reasonable way.

If certain interior eigenvalues of Z are being computed, then the computation
should be divided into two parts. First, one needs to find an approximation to p. One
way to achieve this is to use Algorithm 2. With H it is possible to use preconditioning
techniques in order to locate its interior eigenvalues. Clearly these tasks can be
performed completely independently and in parallel. Thereafter using the spectral
mapping theorem in an obvious manner yields an eigen-approximation.

For finding a good “local” approximation to p, that is, an approximation that is
meant to be particularly accurate over a certain part of σ(H), it is possible to use
preconditioning. The most elementary approach is to use an inverse iteration type of
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algorithms with a translated Z. In this approach a priori knowledge of the location of
searched eigenvalues should be available. We do not consider preconditioning in this
paper.

For choosing an appropriate θ ∈ [0, 2π) for Algorithm 2, the following algorithm
can be used. It simply monitors (3.7) up to kmax, stopping earlier if a given tolerance
is attained. Note that the elements of (3.9) need not be saved (except for those that
are used for computing the latest qj , of course).

Algorithm 3 (monitoring the rotation parameter θ).
choose θ and a vector q0 of unit length and set e

iθZ = Hθ + iKθ and q = Kθq0
for j = 1 to kmax

compute with Hθ using the Hermitian Lanczos qj and q = q − (q, qj)qj
if ‖q‖ < tol, break, end
end for

Let us now consider examples. Regarding the proposed method for normal matri-
ces an overall method we compare it with the Arnoldi method. We do not reorthogo-
nalize with Algorithm 2. In some respects it is hard to make the comparison fair. For
instance, Algorithm 2, with no reorthogonalization, consumes only a fixed amount
of memory. Thus, from this point of view it is not clear whether we should run the
methods equally “far.” All the computations are performed with matlab [19]. In all
the examples the initial vector is randomly generated.

Example 3. It is easy to construct examples in which the overall convergence
of the Arnoldi method is almost disastrous compared with Algorithm 2. A way to
achieve this is to consider examples in which the spectrum Z lies on a polynomial
curve of low degree making “violent curves.” Namely then, the Arnoldi method places
approximations between curves while Algorithm 2 is very quickly forced to follow the
polynomial form of the spectrum. For an example we takeH to be a 200×200 diagonal
matrix with the eigenvalues chosen randomly from a normal Gaussian distribution.
We form Z = H + ip(H), where p(x) = 2x4 − 35x2 − 2. We compute 10 and 19 steps
using the Arnoldi method as well as Algorithm 2. The approximative eigenvalues are
depicted in Figures 3.1 and 3.2.

Example 4. We take Z to be a direct sum Z1 ⊕ Z2 of size 230 × 230 with the
following diagonal matrices. Z1 = 1

2A1 + 5iA2 ∈ C
30×30, where A1 and A2 have

diagonal elements chosen randomly from a normal Gaussian distribution. Z2 = H +
iq(H) is generated in exactly the same way as in Example 3 except that q(x) =
−4x4+18x3+50x2+30. Thus, Z is normal but the polynomial p in the representation
Z = H + ip(H) is not of low degree as there is a “perturbation” Z1. Despite the
perturbation, Algorithm 2 finds the essential polynomial form of the spectrum very
well. The approximative eigenvalues are depicted in Figures 3.3 and 3.4.

Example 5. We let H be a 200 × 200 diagonal matrix with eigenvalues chosen
randomly from a normal Gaussian distribution. We form Z = H + ip(H), where
p(x) = x2. Then we rotate Z by angles eiπ/8, eiπ/4, and eiπ/2. The approximations
are in Figures 3.5–3.9. Recall that the Arnoldi approximants are rotation invariant
so that we have depicted its approximations only once. Note that Algorithm 2 does
fine at those parts of the spectrum that can be interpolated well with a low degree
polynomial. As a result, the eigenvalue approximation differ correspondingly.

3.3. Closeness problems. Inexpensive approximative solutions to departure
from normality in the sense of Henrici have been derived by Lee [18]. Another way to
measure nonnormality is to find a closest normal matrix to A ∈ C

n×n. In the Frobe-
nius norm this was solved by Gabriel [10] and Ruhe [20]. However, a computation of
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Fig. 3.1. For Example 3 the Arnoldi approximants for H + ip(H) with H a random diagonal
Hermitian matrix of size 200 × 200 and p(x) = 2x4 − 35x2 − 2 with j = 10 and 19. x’s denote the
exact eigenvalues and o’s are approximations.

Fig. 3.2. For Example 3 Algorithm 2 approximants for H + ip(H) with H a random diagonal
Hermitian matrix of size 200 × 200 and p(x) = 2x4 − 35x2 − 2 with j = 10 and 19. x’s denote the
exact eigenvalues and o’s are approximations.
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Fig. 3.3. For Example 4 the Arnoldi approximants for a matrix of size 230× 230 with j = 10
and 19. x’s denote the exact eigenvalues and o’s are approximations.
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Fig. 3.4. For Example 4 Algorithm 2 approximants for a matrix of size 230× 230 with j = 10
and 19. x’s denote the exact eigenvalues and o’s are approximations.
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Fig. 3.5. For Example 5 the Arnoldi approximants for H + ip(H) with H a random diagonal
Hermitian matrix of size 200×200 and p(x) = x2 with j = 10. x’s denote the exact eigenvalues and
o’s are approximations.
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Fig. 3.6. For Example 5 Algorithm 2 approximants for H + ip(H) with H a random diagonal
Hermitian matrix of size 200×200 and p(x) = x2 with j = 10. x’s denote the exact eigenvalues and
o’s are approximations.
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Fig. 3.7. For Example 5 Algorithm 2 approximants for eiπ/8(H + ip(H)) with H a random
diagonal Hermitian matrix of size 200 × 200 and p(x) = x2 with j = 10. x’s denote the exact
eigenvalues and o’s are approximations.
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Fig. 3.8. For Example 5 Algorithm 2 approximants for eiπ/4(H + ip(H)) with H a random
diagonal Hermitian matrix of size 200 × 200 and p(x) = x2 with j = 10. x’s denote the exact
eigenvalues and o’s are approximations.
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Fig. 3.9. For Example 5 Algorithm 2 approximants for eiπ/2(H + ip(H)) with H a random
diagonal Hermitian matrix of size 200 × 200 and p(x) = x2 with j = 10. x’s denote the exact
eigenvalues and o’s are approximations.

an approximation is fairly expensive. As we have demonstrated, this problem can be
stated as

inf
H∈H,α0,. . . ,αn−1∈R

∥∥∥∥∥∥A−H − i
n−1∑
j=0

αjH
j

∥∥∥∥∥∥
F

(3.10)

or as

min
H∈H,α0,. . . ,αn−1∈C

∥∥∥∥∥∥A−
n−1∑
j=0

αjH
j

∥∥∥∥∥∥
F

(3.11)

instead of introducing a minimization problem with constraints. In particular, ap-
proaching the problem with the parametrization (2.8) allows us to derive inexpensive
approximative solutions to the problem of finding a closest normal matrix to A. One
such solution is obtained by making an “initial guess” H ∈ H and then applying an
Arnoldi type of iteration, that is, using matrix-vector products only. More precisely,
one looks for

min
α1,. . . ,αk∈C

∥∥∥∥∥
(
A−

k∑
i=1

αiH
k−i

)
b

∥∥∥∥∥(3.12)

with a vector b ∈ C
n. Thus, generated approximations are of the form p(H) for

polynomials p of degree k at most. The algorithm for this purpose is easily adapted
from Algorithm 2 and Algorithm 3 so that upper bounds for (3.12) are obtained by
using very inexpensive computations as well as fixed storage.

An interesting problem is how to choose an H to start with. After choosing an
H the computation of a normal approximant with (3.12) is relatively inexpensive
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and, consequently, testing with a number of different initial guesses becomes feasible.
Again, “natural” choices are, perhaps, Hθ from rotated Toeplitz decompositions for
A with a few values of θ ∈ [0, 2π).

4. Conclusions. In this paper we have presented a stratification of the set of
normal matrices. The stratification is constructed in such a way that the parametriza-
tion for the stratum having maximal dimension is readily available. The parametriza-
tion is simple enough to be of interest also in computational problems involving normal
matrices. In particular, we have described how it is possible to approximate eigenval-
ues of a generic normal matrix Z by solving two approximation problems in a Krylov
subspace for the Hermitian part of Z. The resulting algorithm for sparse matrices
generalizes the Hermitian Lanczos method to apply to normal matrices preserving
all the essential properties of the original Hermitian Lanczos method. The approx-
imations are particularly good if, after a possible rotation, a low degree polynomial
approximates the form of the spectrum of Z well.

Acknowledgment. We would like to thank Professor Alan Edelman for sugges-
tions that improved and simplified significantly an earlier version of this paper.
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Abstract. A function F on the space of n × n real symmetric matrices is called spectral if it
depends only on the eigenvalues of its argument. Spectral functions are just symmetric functions of
the eigenvalues. We show that a spectral function is twice (continuously) differentiable at a matrix if
and only if the corresponding symmetric function is twice (continuously) differentiable at the vector
of eigenvalues. We give a concise and usable formula for the Hessian.
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1. Introduction. In this paper we are interested in functions F of a symmetric
matrix argument that are invariant under orthogonal similarity transformations:

F (UTAU) = F (A) for all orthogonal U and symmetric A.

Every such function can be decomposed as F (A) = (f ◦λ)(A), where λ is the map that
gives the eigenvalues of the matrix A and f is a symmetric function. (See the next
section for more details.) We call such functions F spectral functions (or just functions
of eigenvalues) because they depend only on the spectrum of the operator A. Classical
interest in such functions arose from their important role in quantum mechanics [7, 20].
Nowadays they are an inseparable part of optimization [11] and matrix analysis [4, 5].
In modern optimization the key example is “semidefinite programming,” where one
encounters problems involving spectral functions like log det(A), the largest eigenvalue
of A, or the constraint that A must be positive definite.
There are many examples where a property of the spectral function F is actually

equivalent to the corresponding property of the underlying symmetric function f .
Among them are first-order differentiability [9], convexity [8], generalized first-order
differentiability [9, 10], analyticity [26], and various second-order properties [25, 24,
23]. It is also worth mentioning the “Chevalley restriction theorem,” which in this
context identifies spectral functions that are polynomials with symmetric polynomials
of the eigenvalues. Second-order properties of matrix functions are of great interest
for optimization because the application of Newton’s method, interior point methods
[13], or second-order nonsmooth optimality conditions [19] requires that we know the
second-order behavior of the functions involved in the mathematical model.
The standard reference for the behavior of the eigenvalues of a matrix subject to

perturbations in a particular direction is [6]. Second-order properties of eigenvalue
functions in a particular direction are derived in [25].
The problem that interests us in this paper is that of when a spectral function

is twice differentiable (as a function of the matrix itself, rather than in a particular
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direction) and when its Hessian is continuous. Analyticity is discussed in [26]: thus
our result lies in some sense between the results in [9] and [26]. Smoothness properties
of some special spectral functions (such as the largest eigenvalue) on certain manifolds
are helpful in perturbation theory and Newton-type methods; see, for example, [15,
16, 18, 17, 22, 21, 14].
We show that a spectral function is twice (continuously) differentiable at a matrix

if and only if the corresponding symmetric function is twice (continuously) differen-
tiable at the vector of eigenvalues. Thus, in particular, a spectral function is C2 if
and only if its restriction to the subspace of diagonal matrices is C2. For example,
the Schatten p-norm of a symmetric matrix is the pth root of the function

∑
i |λi|p

(where the λi’s are the eigenvalues of the matrix). We see that this latter function is
C2 for p ≥ 2, although it is not analytic unless p is an even integer.
As part of our general result, we also give a concise and easy-to-use formula for

the Hessian: the results in [26], for analytic functions, are rather implicit. The paper
is self-contained and the results are derived essentially from scratch, making no use of
complex-variable techniques as in [2], for example. In a parallel paper [12] we give an
analogous characterization of those spectral functions that have a quadratic expansion
at a point (but that may not be twice differentiable).

2. Notation and preliminary results. In what follows, Sn will denote the
Euclidean space of all n×n symmetric matrices with inner product 〈A,B〉 = tr (AB)
and forA ∈ Sn, λ(A) = (λ1(A), . . . , λn(A)) will be the vector of its eigenvalues ordered
in nonincreasing order. By On we will denote the set of all n×n orthogonal matrices.
For any vector x in R

n, Diagx will denote the diagonal matrix with the vector x on
the main diagonal, and x̄ will denote the vector with the same entries as x ordered in
nonincreasing order, that is, x̄1 ≥ x̄2 ≥ · · · ≥ x̄n. Let R

n
↓ denote the set of all vectors

x in R
n such that x1 ≥ x2 ≥ · · · ≥ xn. Let also the operator diag : S

n → R
n be

defined by diag (A) = (a11, . . . , ann). Throughout this paper, {Mm}∞m=1 will denote a
sequence of symmetric matrices converging to 0, and {Um}∞m=1 will denote a sequence
of orthogonal matrices. We describe sets in R

n and functions on R
n as symmetric

if they are invariant under coordinate permutations. Thus f : R
n → R denotes a

function, defined on an open symmetric set, with the property

f(x) = f(Px) for any permutation matrix P and any x ∈ domain f.
We denote the gradient of f by ∇f or f ′ and the Hessian by ∇2f or f ′′. Vectors are
understood to be column vectors unless stated otherwise. Whenever we denote by µ
a vector in R

n
↓ we make the convention that

µ1 = · · · = µk1 > µk1+1 = · · · = µk2 > µk2+1 . . . µkr (k0 = 0, kr = n).

Thus r is the number of distinct entries. We define a corresponding partition

I1 := {1, 2, . . . , k1}, I2 := {k1 + 1, k1 + 2, . . . , k2}, . . . , Ir := {kr−1 + 1, . . . , kr},
and we call these sets blocks. We denote the standard basis in R

n by e1, e2, . . . , en,
and e is the vector with all entries equal to 1. We also define corresponding matrices

Xl := [e
kl−1+1, . . . , ekl ] for all l = 1, . . . , r.

For an arbitrary matrix A, Ai will denote its ith row (a row vector), and Ai,j will
denote its (i, j)th entry. Finally, we say that a vector a is block refined by a vector b
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if

bi = bj implies ai = aj for all i, j.

We need the following result.
Lemma 2.1. Let f : Rn → R be a symmetric function, twice differentiable at the

point µ ∈ R
n
↓ , and let P be a permutation matrix such that Pµ = µ. Then

(i) ∇f(µ) = PT∇f(µ) and
(ii) ∇2f(µ) = PT∇2f(µ)P .

In particular we have the representation

∇2f(µ) =




a11E11 + bk1
J1 a12E12 · · · a1rE1r

a21E21 a22E22 + bk2
J2 · · · a2rE2r

...
...

. . .
...

ar1Er1 ar2Er2 · · · arrRrr + bkr
Jr


 ,

where the Euv are matrices of dimensions |Iu| × |Iv| with all entries equal to one,
(aij)

r
i,j=1 is a real symmetric matrix, b := (b1, . . . , bn) is a vector which is block

refined by µ, and Ju is an identity matrix of the same dimensions as Euu.
Proof. Just apply the chain rule twice to the equality f(ν) = f(Pν) in order

to get parts (i) and (ii). To deduce the block structure of the Hessian, consider the
block structure of permutation matrices P such that Pµ = µ: then, when we permute
the rows and the columns of the Hessian in the way defined by P , it must stay
unchanged.
Using the notation of this lemma, we define the matrix

B := ∇2f(µ)−Diag b = (aijEij)
r
i,j=1.(2.1)

Note 2.2. We make the convention that if the ith diagonal block in the above
representation has dimensions 1×1, then we set aii = 0 and bki = f ′′

kiki
(µ). Otherwise

the value of bki
is uniquely determined as the difference between a diagonal and an

off-diagonal element of this block. Note also that the matrix B and the vector b depend
on the point µ and the function f .

Lemma 2.3. For µ ∈ R
n
↓ and a sequence of symmetric matrices Mm → 0 we have

that

λ(Diagµ+Mm)
T = µT +

(
λ(XT

1 MmX1)
T , . . . , λ(XT

r MmXr)
T
)
+ o(‖Mm‖).

Proof. Combine Lemma 5.10 in [10] and Theorem 3.12 in [3].
The following is our main technical tool.
Lemma 2.4. Let {Mm} be a sequence of symmetric matrices converging to 0 such

that Mm/‖Mm‖ converges to M . Let µ be in R
n
↓ and Um → U ∈ On be a sequence of

orthogonal matrices such that

Diagµ+Mm = Um

(
Diagλ(Diagµ+Mm)

)
UT
m for all m = 1, 2, . . . .(2.2)

Then the following properties hold.
(i) The orthogonal matrix U has the form

U =




V1 0 · · · 0
0 V2 · · · 0
...

...
. . .

...
0 0 · · · Vr


 ,
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where Vl is an orthogonal matrix with dimensions |Il| × |Il| for all l.
(ii) If i ∈ Il, then

lim
m→∞

1−∑p∈Il

(
U i,p
m

)2
‖Mm‖ = 0.

(iii) If i and j do not belong to the same block, then

lim
m→∞

(
U i,j
m

)2
‖Mm‖ = 0.

(iv) If i ∈ Il, then

V i
l

(
Diagλ(XT

l MXl)
)
(V i

l )
T =M i,i.

(v) If i, j ∈ Il, and p �∈ Il, then

lim
m→∞

U i,p
m U j,p

m

‖Mm‖ = 0.

(vi) For any indices i �= j such that i, j ∈ Il,

lim
m→∞

∑
p∈Il

U i,p
m U j,p

m

‖Mm‖ = 0.

(vii) For any indices i �= j such that i, j ∈ Il,

V i
l

(
Diagλ(XT

l MXl)
)
(V j

l )
T =M i,j .

(viii) For any three indices i, j, p in distinct blocks,

lim
m→∞

U i,p
m U j,p

m

‖Mm‖ = 0.

(ix) For any two indices i, j such that i ∈ Il, j ∈ Is, where l �= s,

lim
m→∞

(
µkl

∑
p∈Il

U i,p
m U j,p

m

‖Mm‖ + µks

∑
p∈Is

U i,p
m U j,p

m

‖Mm‖
)
=M i,j .

Proof.
(i) After taking the limit in (2.2) we are left with

(Diagµ)U = U(Diagµ).

The described representation of the matrix U follows.
(ii) Let us denote

hm =
(
λ(XT

1 MmX1)
T , . . . , λ(XT

r MmXr)
T
)T

.(2.3)

We use Lemma 2.3 in (2.2) to obtain

Diagµ+Mm = Um(Diagµ)U
T
m + Um(Diaghm)U

T
m + o(‖Mm‖)
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and the equivalent form

UT
m(Diagµ)Um + UT

mMmUm = Diagµ+Diaghm + o(‖Mm‖).

We now divide both sides of these equations by ‖Mm‖ and rearrange:

Diagµ− Um(Diagµ)U
T
m

‖Mm‖ = − Mm

‖Mm‖ +
Um(Diaghm)U

T
m

‖Mm‖ + o(1)(2.4)

and

Diagµ− UT
m(Diagµ)Um

‖Mm‖ =
UT
mMmUm

‖Mm‖ − Diaghm

‖Mm‖ − o(1).(2.5)

Notice that the right-hand sides of these equations converge to a finite limit
as m increases to infinity. If we call the matrix limit of the right-hand side of
the first equation L, then clearly the limit of the second equation is −UTLU .
We are now going to prove parts (ii) and (iii) together inductively by dividing
the orthogonal matrix Um into the same block structure as U . We begin by
considering the first row of blocks of Um.
Let i be an index in the first block, I1. Then the limit of the (i, i)th entry

in the matrix at the left-hand side of (2.4) is

lim
m→∞

(
µk1

(
1−∑p∈I1

(
U i,p
m

)2 )−∑r
s=2 µks

∑
p∈Is

(
U i,p
m

)2 )
‖Mm‖ = Li,i.(2.6)

Now recall that

Li,i = −M i,i + V i
1 (Diagλ(X

T
1 MX1))(V

i
1 )

T ,

and because V1 is an orthogonal matrix, notice that∑
i∈I1

Li,i = −tr (XT
1 MX1) +

∑
i∈I1

V i
1 (Diagλ(X

T
1 MX1))(V

i
1 )

T

= −tr (XT
1 MX1) +

∑
i∈I1

λi(X
T
1 MX1)

∑
j∈I1

(V j,i
1 )

2

= −tr (XT
1 MX1) +

∑
i∈I1

λi(X
T
1 MX1)

= 0.

We now sum (2.6) over all i in I1 to get

lim
m→∞

(
µk1

(
|I1| −

∑
i,p∈I1

(
U i,p
m

)2)−∑r
s=2 µks

∑
i∈I1, p∈Is

(
U i,p
m

)2)
‖Mm‖ = 0.

Notice here that the coefficients in front of the µkl
, l = 1, 2, . . . , r, in the

numerator sum up to zero. That is,

|I1| −
∑

i,p∈I1

(
U i,p
m

)2 − r∑
s=2

∑
i∈I1, p∈Is

(
U i,p
m

)2
= 0.
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So let us choose a number α such that

(µ+ αe)k1 > 0 > (µ+ αe)k1+1

and add α to every coordinate of the vector µ thus “shifting” it. The coordi-
nates of the shifted vector that are in the first block are strictly bigger than
zero, and the rest are strictly less than zero. By our comment above, the last
limit remains true if we “shift” µ in this way. If we rewrite the last limit for
the “shifted” vector, because all summands are positive, we immediately see
that we must have

lim
m→∞

|I1| −
∑

i,p∈I1

(
U i,p
m

)2
‖Mm‖ = 0(2.7)

and

lim
m→∞

∑
i∈I1, p∈Is

(
U i,p
m

)2
‖Mm‖ = 0 for all s = 2, . . . , r.(2.8)

The first of these limits can be written as

lim
m→∞

∑
i∈I1

(
1−∑p∈I1

(
U i,p
m

)2)
‖Mm‖ = 0,

and because all the summands are positive, we conclude that

lim
m→∞

1−∑p∈I1

(
U i,p
m

)2
‖Mm‖ = 0 for all i ∈ I1.

The second of the limits implies immediately that

lim
m→∞

(
U i,p
m

)2
‖Mm‖ = 0 for any i ∈ I1, p �∈ I1.

Thus we proved part (ii) for i ∈ I1 and part (iii) for the cases specified above.
Here is a good place to say a few more words about the idea of the proof.
As we said, we divide the matrix Um into blocks complying with the block
structure of the vector µ (exactly as in part (i) for the matrix U). We proved
parts (ii) and (iii) for the elements in the first row of blocks of this division.
What we are going to do now is prove the same thing for the first column of
blocks. In order to do this we fix an index i in I1 and consider the (i, i)th
entry in the matrix at the left-hand side of (2.5), and take the limit:

lim
m→∞

µk1

(
1−∑p∈I1

(
Up,i
m

)2)−∑r
s=2 µks

∑
p∈Is

(
Up,i
m

)2
‖Mm‖ = −(UTLU)i,i.

(2.9)

Using also the block-diagonal structure of the matrix U , we again have

∑
i∈I1

(UTLU)i,i =
∑
i∈I1

Li,i = 0.
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So we proceed just as before in order to conclude that

lim
m→∞

1−∑p∈I1

(
Up,i
m

)2
‖Mm‖ = 0 for all i ∈ I1

and

lim
m→∞

(
Up,i
m

)2
‖Mm‖ = 0 for any i ∈ I1, p �∈ I1.(2.10)

We are now ready for the second step of our induction. Let i be an index in
I2. Then the limit of the (i, i)th entry in the matrix at the left-hand side of
(2.4) is

lim
m→∞

1

‖Mm‖
(
− µk1

∑
p∈I1

(
U i,p
m

)2
+ µk2

(
1−

∑
p∈I2

(
U i,p
m

)2 )

−
r∑

s=3

µks

∑
p∈Is

(
U i,p
m

)2)
= Li,i.

Analogously to the above we have∑
i∈I2

Li,i = 0,

so summing the above limit over all i in I2 we get

lim
m→∞

1

‖Mm‖
(
− µk1

∑
i∈I2, p∈I1

(
U i,p
m

)2
+ µk2

(
|I2| −

∑
i,p∈I2

(
U i,p
m

)2 )

−
r∑

s=3

µks

∑
i∈I2, p∈Is

(
U i,p
m

)2)
= 0.

We know from (2.10) that

lim
m→∞

∑
i∈I2, p∈I1

(
U i,p
m

)2
‖Mm‖ = 0.

So now we choose a number α such that

(µ+ αe)k2
> 0 > (µ+ αe)k2+1

and as before exchange µ with its shifted version. Just as before we conclude
that

lim
m→∞

1−∑p∈I2

(
U i,p
m

)2
‖Mm‖ = 0 for all i ∈ I2

and

lim
m→∞

(
U i,p
m

)2
‖Mm‖ = 0 for any i ∈ I2, p �∈ I2.

We repeat the same steps for the second column of blocks in the matrix Um

and so on inductively until we exhaust all the blocks. This completes the
proof of parts (ii) and (iii).
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(iv) For the proof of this part, one needs to consider the (i, i)th entry of the right-
hand side of (2.4). Because the diagonal of the left-hand side converges to
zero (by (ii) and (iii)), taking the limit proves the statement in this part.

(v) This part follows immediately from part (iii).
(vi) Taking the limit in (2.4) gives

lim
m→∞−

∑
s 	=l

µks

∑
p∈Is

U i,p
m U j,p

m

‖Mm‖ − µkl

∑
p∈Il

U i,p
m U j,p

m

‖Mm‖ = Li,j ,

where Li,j is the (i, j)th entry of the limit of the right-hand side of (2.4).
Note that the coefficients of µks

again sum up to zero:

∑
s 	=l

∑
p∈Is

U i,p
m U j,p

m +
∑
p∈Il

U i,p
m U j,p

m = 0

because Um is an orthogonal matrix. Now by part (v) we have

0 = lim
m→∞−

∑
s 	=l

∑
p∈Is

U i,p
m U j,p

m

‖Mm‖ = lim
m→∞

∑
p∈Il

U i,p
m U j,p

m

‖Mm‖

as required, and moreover Li,j = 0.
(vii) The statement of this part is the detailed way of writing the fact, proved in

the previous part, that Li,j = 0.
(viii) This part follows immediately from part (iii). (In fact the expression in

part (v) is identical to the one in part (viii), reiterated with different index
conditions for later convenience.)

(ix) We again take the limit of the (i, j)th entry of the matrices on both sides of
(2.4):

lim
m→∞

(
−
∑
t	=l,s

µkt

∑
p∈It

U i,p
m U j,p

m

‖Mm‖ − µkl

∑
p∈Il

U i,p
m U j,p

m

‖Mm‖

− µks

∑
p∈Is

U i,p
m U j,p

m

‖Mm‖
)
= Li,j .

By part (viii) we have that all but the lth and the sth summand above
converge to zero. On the other hand

Li,j = lim
m→∞

(
− Mm

‖Mm‖ +
Um(Diaghm)U

T
m

‖Mm‖
)i,j

= −M i,j + U i

(
lim

m→∞
Diaghm

‖Mm‖
)
(U j)T

= −M i,j

because U i and U j are rows in different blocks and (Diaghm)/‖Mm‖ con-
verges to a diagonal matrix.

Now we have all the tools to prove the main result of the paper.
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3. Twice differentiable spectral functions. In this section we prove that
a symmetric function f is twice differentiable at the point λ(A) if and only if the
corresponding spectral function f ◦ λ is twice differentiable at the matrix A.
Recall that the Hadamard product of two matrices A = [Ai,j ] and B = [Bi,j ] of

the same size is the matrix of their elementwise products A ◦B = [Ai,jBi,j ]. Let the
symmetric function f : Rn → R be twice differentiable at the point µ ∈ R

n
↓ , where, as

before,

µ1 = · · · = µk1 > µk1+1 = · · · = µk2 > µk2+1 . . . µkr (k0 = 0, kr = n).

We define the vector b(µ) = (b1(µ), . . . , bn(µ)) as in Lemma 2.1. Specifically, for any
index i (say i ∈ Il for some l ∈ {1, 2, . . . , r}), we define

bi(µ) =

{
f ′′
ii(µ) if |Il| = 1,

f ′′
pp(µ)− f ′′

pq(µ) for any p �= q ∈ Il.

Lemma 2.1 guarantees that the second case of this definition doesn’t depend on the
choice of p and q. We also define the matrix A(µ):

Ai,j(µ) =



0 if i = j,

bi(µ) if i �= j but i, j ∈ Il,

f ′
i(µ)−f ′

j(µ)

µi−µj
otherwise.

(3.1)

Notice the similarity between this definition and classical divided difference construc-
tions in Löwner theory (see [1, Chap. V], for example). For simplicity, when the
argument is understood by the context, we will write just bi and Ai,j . The following
lemma is Theorem 1.1 in [9].

Lemma 3.1. Let A ∈ Sn and suppose λ(A) belongs to the domain of the sym-
metric function f : Rn → R. Then f is differentiable at the point λ(A) if and only if
f ◦ λ is differentiable at the point A. In that case we have the formula

∇(f ◦ λ)(A) = U
(
Diag∇f(λ(A)))UT

for any orthogonal matrix U satisfying A = U
(
Diagλ(A)

)
UT .

We recall some standard notions about twice differentiability. Consider a function
F from Sn to R. Its gradient at any point A (when it exists) is a linear functional
on the Euclidean space Sn and thus can be identified with an element of Sn, which
we denote ∇F (A). Thus ∇F is a map from Sn to Sn. When this map is itself
differentiable at A we say F is twice differentiable at A. In this case we can interpret
the Hessian ∇2F (A) as a symmetric, bilinear function from Sn×Sn into R. Its value
at a particular point (H,Y ) ∈ Sn × Sn will be denoted ∇2F (A)[H,Y ]. In particular,
for fixed H, the function ∇2F (A)[H, ·] is again a linear functional on Sn, which we
consider an element of Sn, for brevity denoted by ∇2F (A)[H]. When the Hessian is
continuous at A we say F is twice continuously differentiable at A. In that case the
following identity holds:

∇2F (A)[H,H] =
d2

dt2
F (A+ tH)

∣∣∣∣
t=0

.

The next theorem is a preliminary version of our main result.
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Theorem 3.2. The symmetric function f : Rn → R is twice differentiable at the
point µ ∈ R

n
↓ if and only if f ◦ λ is twice differentiable at the point Diagµ. In that

case the Hessian is given by

∇2(f ◦ λ)(Diagµ)[H] = Diag (∇2f(µ)(diagH)
)
+A ◦H.(3.2)

Hence

∇2(f ◦ λ)(Diagµ)[H,H] = ∇2f(µ)[diagH,diagH] + 〈A, H ◦H〉.
Proof. It is easy to see that f must be twice differentiable at the point µ whenever

f ◦ λ is twice differentiable at Diagµ because by restricting f ◦ λ to the subspace of
diagonal matrices we get the function f . So the interesting case is the other direction.
Let f be twice differentiable at the point µ ∈ R

n
↓ and suppose on the contrary that

either f ◦λ is not twice differentiable at the point Diagµ, or (3.2) fails. Define a linear
operator ∆ by

∆(H) := Diag
(
(∇2f(µ)(diagH)

)
+A ◦H.

(Lemma 3.1 tells us that f ◦ λ is at least differentiable around Diagµ.) So, for this
linear operator ∆ there is an ε > 0 and a sequence of symmetric matrices {Mm}∞m=1

converging to 0 such that

‖∇(f ◦ λ)(Diagµ+Mm)−∇(f ◦ λ)(Diagµ)−∆(Mm)‖
‖Mm‖ > ε

for all m = 1, 2, . . . . Without loss of generality we may assume that the sequence
{Mm}∞m=1 is such thatMm/‖Mm‖ converges to a matrixM because some subsequence
of {Mm}∞m=1 surely has this property. Let {Um}∞m=1 be a sequence of orthogonal
matrices such that

Diagµ+Mm = Um

(
Diagλ(Diagµ+Mm)

)
UT
m for all m = 1, 2, . . . .

Without loss of generality we may assume that Um → U ∈ On, or otherwise we will
just take subsequences of {Mm}∞m=1 and {Um}∞m=1. The above inequality shows that
for every m there corresponds a pair (or more precisely at least one pair) of indices
(i, j) such that

|(∇(f ◦ λ)(Diagµ+Mm)−Diag∇f(µ)−∆(Mm)
)i,j |

‖Mm‖ >
ε

n
.(3.3)

So at least for one pair of indices, call it again (i, j), we have infinitely many numbers
m for which (i, j) is the corresponding pair, and because if necessary we can again
take a subsequence of {Mm}∞m=1 and {Um}∞m=1, we may assume without loss of gen-
erality that there is a pair of indices (i, j) for which the last inequality holds for all
m = 1, 2, . . . . Define the symbol hm again by (2.3). Notice that using Lemma 3.1,
Lemma 2.3, and the fact that ∇f is differentiable at µ we get

∇(f ◦ λ)(Diagµ+Mm) = Um

(
Diag∇f(λ(Diagµ+Mm))

)
UT
m

= Um

(
Diag∇f(µ+ hm + o(‖Mm‖))

)
UT
m

(3.4)
= Um(Diag (∇f(µ) +∇2f(µ)hm + o(‖Mm‖)))UT

m

= Um(Diag∇f(µ))UT
m + Um(Diag (∇2f(µ)hm))U

T
m + o(‖Mm‖).
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We consider three cases. In every case we are going to show that the left-hand side
of inequality (3.3) actually converges to zero, which contradicts the assumption.
Case I. If i = j, then using (3.4) the left-hand side of inequality (3.3) is less than

or equal to

|U i
m

(
Diag∇f(µ))(U i

m)
T − f ′

i(µ)|
‖Mm‖

+
|U i

m

(
Diag∇2f(µ)hm

)
(U i

m)
T − (∇2f(µ)(diagMm)

)
i
|

‖Mm‖ + o(1).

We are going to show that each summand approaches zero as m goes to infinity.
Assume that i ∈ Il for some l ∈ {1, . . . , r}. Using the fact that the vector µ block
refines the vector ∇f(µ) (Lemma 2.1, part (i)) the first term can be written as

1

‖Mm‖

∣∣∣∣∣∣f
′
kl
(µ)


1−∑

p∈Il

(
U i,p
m

)2

−∑

s:s 	=l

f ′
ks
(µ)

∑
p∈Is

(
U i,p
m

)2
∣∣∣∣∣∣ .

We now apply Lemma 2.4, parts (ii) and (iii) to the last expression.
We concentrate now on the second term above. Using the notation of (2.1) (that

is, ∇2f(µ) = B +Diag b) this term is less than or equal to

|U i
m

(
Diag (Bhm)

)
(U i

m)
T − (B(diagMm)

)
i
|

‖Mm‖
(3.5)

+
|U i

m

(
Diag ((Diag b)hm)

)
(U i

m)
T − ((Diag b)(diagMm)

)
i
|

‖Mm‖ .

As m approaches infinity, we have that U i
m → U i. We define the vector h to be

h := lim
m→∞

hm

‖Mm‖ =
(
λ(XT

1 MX1)
T , . . . , λ(XT

r MXr)
T
)T

.

So taking limits, expression (3.5) turns into

|U i
(
Diag (Bh)

)
(U i)T − (B(diagM))

i
|

+|U i
(
Diag ((Diag b

)
h))(U i)T − ((Diag b)(diagM))

i
|.

We are going to investigate each term in this sum separately and show that they are
both actually equal to zero. For the first, we use the block structure of the matrix B
(see Lemma 2.1) and the block structure of the vector h to obtain

(Bh)j =

r∑
s=1

aqstr (X
T
s MXs) when j ∈ Iq.

Using the fact that i ∈ Il and that Vl is orthogonal we get

U i
(
Diag (Bh)

)
(U i)T =

(
V i
l X

T
l

)(
Diag (Bh)

)(
Xl(V

i
l )

T
)

= V i
l

(
XT

l (Diag (Bh))Xl

)
(V i

l )
T

=

(
r∑

s=1

alstr (X
T
s MXs)

)
 |Il|∑

s=1

(V i,s
l )

2
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=

r∑
s=1

alstr (X
T
s MXs)

= (BdiagM)i,

which shows that the first term is zero. For the second term, we use the block structure
of the vector b to write

(Diag b)h =
(
bk1λ(X

T
1 MX1)

T , . . . , bkrλ(X
T
r MXr)

T
)T

.

In the next to the last equality below we use part (iv) of Lemma 2.4:

U i
(
Diag ((Diag b)h)

)
(U i)T =

(
V i
l X

T
l

)(
Diag ((Diag b)h)

)(
Xl(V

i
l )

T
)

= V i
l

(
XT

l (Diag ((Diag b)h))Xl

)
(V i

l )
T

= V i
l

(
Diag bkl

λ(XT
l MXl)

)
(V i

l )
T

= bkl
M i,i

=
(
(Diag b)(diagM)

)
i
.

We can see now that the second term is also zero.
Case II. If i �= j but i, j ∈ Il for some l ∈ {1, 2, . . . r}, then using (3.4) the

left-hand side of inequality (3.3) becomes

|U i
m

(
Diag∇f(µ))(U j

m)
T + U i

m

(
Diag (∇2f(µ)hm)

)
(U j

m)
T − bkl

M i,j
m |

‖Mm‖ + o(1).

Using the fact that µ block refines the vector ∇f(µ), we can write the first summand
above as

1

‖Mm‖


∑

s 	=l

f ′
ks
(µ)

∑
p∈Is

U i,p
m U j,p

m + f ′
kl
(µ)

∑
p∈Il

U i,p
m U j,p

m


 .

We use parts (v) and (vi) of Lemma 2.4 to conclude that this expression converges to
zero. We are left with

|U i
m

(
Diag (∇2f(µ)hm)

)
(U j

m)
T − bkl

M i,j
m |

‖Mm‖ .

Substituting ∇2f(µ) = B +Diag b we get

|U i
m

(
Diag (Bhm)

)
(U j

m)
T + U i

m

(
Diag ((Diag b)hm)

)
(U j

m)
T − bkl

M i,j
m |

‖Mm‖ .

Recall the notation from Lemma 2.1 used to denote the entries of the matrix B. Then
the limit of the first summand above can be written as

lim
m→∞

U i
m

(
Diag (Bhm)

)
(U j

m)
T

‖Mm‖ = U i
(
Diag (Bh)

)
(U j)T

=

r∑
s=1



(

r∑
l=1

asl tr (X
T
l MXl)

)∑
p∈Is

U i,pU j,p




= 0
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because clearly
∑

p∈Is
U i,pU j,p = 0 for all s ∈ {1, 2, . . . , r}. We are left with the

following limit:

lim
m→∞

|U i
m

(
Diag ((Diag b)hm)

)
(U j

m)
T − bkl

M i,j
m |

‖Mm‖
= |U i

(
Diag ((Diag b)h)

)
(U j)T − bkl

M i,j |.
Using Lemma 2.4, part (vii) we observe that the right-hand side is zero.
Case III. If i ∈ Il and j ∈ Is, where l �= s, then using (3.4), the left-hand side of

inequality (3.3) becomes (up to o(1))

|U i
m

(
Diag∇f(µ))(U j

m)
T + U i

m

(
Diag∇2f(µ)hm

)
(U j

m)
T − f ′

kl
(µ)−f ′

ks
(µ)

µkl
−µks

M i,j
m |

‖Mm‖ .

We start with the second term above. Its limit is

lim
m→∞

U i
m

(
Diag (∇2f(µ)hm)

)
(U j

m)
T

‖Mm‖ = U i
(
Diag (∇2f(µ)h)

)
(U j)T = 0

because in our case U i has nonzero coordinates where the entries of U j are zero. We
are left with

lim
m→∞

∣∣∣∣∣
U i
m

(
Diag∇f(µ))(U j

m)
T

‖Mm‖ − f ′
kl
(µ)− f ′

ks
(µ)

µkl
− µks

M i,j
m

‖Mm‖

∣∣∣∣∣ .(3.6)

We expand the first term in this limit:

U i
m

(
Diag∇f(µ))(U j

m)
T

‖Mm‖ = f ′
kl
(µ)

∑
p∈Il

U i,p
m U j,p

m

‖Mm‖

+ f ′
ks
(µ)

∑
p∈Is

U i,p
m U j,p

m

‖Mm‖ +
∑
t	=l,s

f ′
kt
(µ)

∑
p∈It

U i,p
m U j,p

m

‖Mm‖ .

Using Lemma 2.4, part (viii) we see that the third summand above converges to zero
as m goes to infinity. Part (ix) of the same lemma tells us that

lim
m→∞

M i,j
m

‖Mm‖ = limm→∞

(
µkl

∑
p∈Il

U i,p
m U j,p

m

‖Mm‖ + µks

∑
p∈Is

U i,p
m U j,p

m

‖Mm‖
)
.

In order to abbreviate the formulae we introduce the following notation:

βl
m :=

∑
p∈Il

U i,p
m U j,p

m

‖Mm‖ for all l = 1, 2, . . . , r.

Substituting everything in (3.6) we get the following equivalent limit:

lim
m→∞

∣∣∣∣
(
f ′
kl
(µ)βl

m + f ′
ks
(µ)βs

m

)
− f ′

kl
(µ)− f ′

ks
(µ)

µkl
− µks

(
µkl

βl
m + µksβ

s
m

)∣∣∣∣ .
Simplifying we get

lim
m→∞(β

l
m + βs

m)
f ′
ks
(µ)µkl

− f ′
kl
(µ)µks

µkl
− µks

.
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Notice now that

r∑
l=1

βl
m = 0 for all m

because Um is an orthogonal matrix and the numerator of the above sum is the
product of its ith and the jth row. Next, Lemma 2.4, part (viii) says that

lim
m→∞

∑
t	=l,s

βt
m = 0,

so

lim
m→∞(β

l
m + βs

m) = 0,

which completes the proof.
We are finally ready to give and prove the full version of our main result.
Theorem 3.3. Let A be an n × n symmetric matrix. The symmetric function

f : Rn → R is twice differentiable at the point λ(A) if and only if the spectral function
f ◦λ is twice differentiable at the matrix A. Moreover, in this case the Hessian of the
spectral function at the matrix A is

∇2(f ◦ λ)(A)[H] =W
(
Diag

(∇2f(λ(A))diag H̃
)
+A ◦ H̃)WT ,

where W is any orthogonal matrix such that A = W
(
Diagλ(A)

)
WT , H̃ = WTHW ,

and A = A(λ(A)) is defined by (3.1). Hence
∇2(f ◦ λ)(A)[H,H] = ∇2f(λ(A))[diag H̃,diag H̃] + 〈A, H̃ ◦ H̃〉.

Proof. LetW be an orthogonal matrix which diagonalizes A in an ordered fashion,
that is,

A =W
(
Diagλ(A)

)
WT .

Let Mm be a sequence of symmetric matrices converging to zero, and let Um be a
sequence of orthogonal matrices such that

Diagλ(A) +WTMmW = Um

(
Diagλ(Diagλ(A) +WTMmW )

)
UT
m.

Then using Lemma 3.1 we get

∇(f ◦ λ)(A+Mm)

= ∇(f ◦ λ)(W (Diagλ(A) +WTMmW )WT
)

= ∇(f ◦ λ)(WUm(Diagλ(Diagλ(A) +WTMmW ))UT
mWT

)
=WUm

(
Diag∇f(λ(Diagλ(A) +WTMmW ))

)
UT
mWT .

We also have that

∇(f ◦ λ)(A) =W
(
Diag∇f(λ(A)))WT ,

and WTMmW → 0, as m goes to infinity. Because W is an orthogonal matrix we
have ‖WXWT ‖ = ‖X‖ for any matrix X. It is now easy to check the result by
Theorem 3.2.
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4. Continuity of the Hessian. Suppose now that the symmetric function f :
R

n → R is twice differentiable in a neighborhood of the point λ(A) and that its
Hessian is continuous at the point λ(A). Then Theorem 3.3 shows that f ◦λ must be
twice differentiable in a neighborhood of the point A, and in this section we are going
to show that ∇2(f ◦ λ) is also continuous at the point A.
We define a basis, {Hij}, on the space of symmetric matrices. If i �= j all the

entries of the matrix Hij are zeros, except the (i, j)th and (j, i)th, which are one. If
i = j we have one only on the (i, i)th position. It suffices to prove that the Hessian is
continuous when applied to any matrix of the basis. We begin with a lemma.

Lemma 4.1. Let µ ∈ R
n
↓ be such that

µ1 = · · · = µk1
> µk1+1 = · · · = µk2 > µk2+1 . . . µkr (k0 = 0, kr = n),

and let the symmetric function f : Rn → R be twice continuously differentiable at the
point µ. Let {µm}∞m=1 be a sequence of vectors in R

n converging to µ. Then

lim
m→∞∇

2(f ◦ λ)(Diagµm) = ∇2(f ◦ λ)(Diagµ).

Proof. For every m there is a permutation matrix Pm such that P
T
mµm = µm.

(See the beginning of section 2 for the meaning of the bar above a vector.) But there
are finitely many permutation matrices (namely, n!) so we can form n! subsequences
of {µm} such that any two vectors in a particular subsequence can be ordered in
descending order by the same permutation matrix. If we prove the lemma for every
such subsequence we will be done. So without loss of generality we may assume that
PTµm = µm for every m and some fixed permutation matrix P . Clearly, for all large
enough m, we have

µm
k1

> µm
k1+1, µm

k2
> µm

k2+1, . . . , µ
m
kr−1

> µm
kr−1+1.

Consequently the matrix P is block-diagonal with permutation matrices on the main
diagonal, and dimensions matching the block structure of µ, so Pµ = µ. Consider
now the block structure of the vectors {µm}. Because there are finitely many different
block structures, we can divide this sequence into subsequences such that the vectors
in a particular subsequence have the same block structure. If we prove the lemma for
each subsequence we will be done. So without loss of generality we may assume that
the vectors {µm} have the same block structure for every m. Next, using the formula
for the Hessian in Theorem 3.3 we have

∇2(f◦λ)(Diagµm)[Hij ] = P
(
Diag

(∇2f(µm)diag (PTHijP )
)
+A(µm)◦(PTHijP )

)
PT ,

and Lemma 2.1 together with Theorem 3.2 gives us

∇2(f ◦ λ)(Diagµ)[Hij ] = Diag
(∇2f(µ)diagHij

)
+A(µ) ◦Hij

= P
(
Diag

(∇2f(µ)diag (PTHijP )
)

+ A(µ) ◦ (PTHijP )
)
PT .

These equations show that without loss of generality it suffices to prove the lemma
only in the case when all vectors {µm} are ordered in descending order, that is, the
vectors µm all block refine the vector µ. In that case we have

∇2(f ◦ λ)(Diagµm)[Hij ] = Diag
(∇2f(µm)diagHij

)
+A(µm) ◦Hij
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and

∇2(f ◦ λ)(Diagµ)[Hij ] = Diag
(∇2f(µ)diagHij

)
+A(µ) ◦Hij .

We consider four cases.
Case I. If i = j, then

lim
m→∞∇

2(f ◦ λ)(Diagµm)[Hij ] = lim
m→∞Diag

(∇2f(µm)ei
)

= Diag
(∇2f(µ)ei

)
= ∇2(f ◦ λ)(Diagµ)[Hij ]

just because ∇2f(·) is continuous at µ.
Case II. If i �= j but belong to the same block for µm, then i, j will be in the

same block of µ as well and we have

lim
m→∞∇

2(f ◦ λ)(Diagµm)[Hij ] = lim
m→∞ bi(µ

m)Hij

= bi(µ)Hij

= ∇2(f ◦ λ)(Diagµ)[Hij ]

again because ∇2f(·) is continuous at µ.
Case III. If i and j belong to different blocks of µm but to the same block of µ,

then

lim
m→∞∇

2(f ◦ λ)(Diagµm)[Hij ] = lim
m→∞

f ′
i(µ

m)− f ′
j(µ

m)

µm
i − µm

j

Hij

and

∇2(f ◦ λ)(Diagµ)[Hij ] = bi(µ)Hij .

So we have to prove that

lim
m→∞

f ′
i(µ

m)− f ′
j(µ

m)

µm
i − µm

j

= f ′′
ii(µ)− f ′′

ij(µ).

(See the definition of bi(µ) in the beginning of section 3.) For every m we define the
vectors µ̇m and µ̈m coordinatewise as follows:

µ̇m
p =

{
µm
p , p �= i,

µm
j , p = i,

µ̈m
p =




µm
p , p �= i, j,

µm
j , p = i,

µm
i , p = j.

Because µi = µj we conclude that both sequences {µ̇m}∞m=1 and {µ̈m}∞m=1 converge
to µ because {µm}∞m=1 does so. Below we are applying the mean value theorem twice:

f ′
i(µ

m)− f ′
j(µ

m)

µm
i − µm

j

=
f ′
i(µ

m)− f ′
i(µ̇

m) + f ′
i(µ̇

m)− f ′
j(µ

m)

µm
i − µm

j

=
(µm

i − µm
j )f

′′
ii(ξ

m) + f ′
i(µ̇

m)− f ′
j(µ

m)

µm
i − µm

j
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= f ′′
ii(ξ

m) +
f ′
i(µ̇

m)− f ′
i(µ̈

m) + f ′
i(µ̈

m)− f ′
j(µ

m)

µm
i − µm

j

= f ′′
ii(ξ

m) +
(µm

j − µm
i )f

′′
ij(η

m) + f ′
i(µ̈

m)− f ′
j(µ

m)

µm
i − µm

j

= f ′′
ii(ξ

m)− f ′′
ij(η

m),

where ξm is a vector between µm and µ̇m, and ηm is a vector between µ̇m and µ̈m.
Consequently, ξm → µ and ηm → µ. Notice that vector µ̈m is obtained from µm by
swapping the ith and the jth coordinate. Then using the first part of Lemma 2.1 we
see that f ′

i(µ̈
m) = f ′

j(µ
m). Finally we just have to take the limit above and use again

the continuity of the Hessian of f at the point µ.
Case IV. If i and j belong to different blocks of µm and to different blocks of µ,

then

lim
m→∞∇

2(f ◦ λ)(Diagµm)[Hij ] = lim
m→∞

f ′
i(µ

m)− f ′
j(µ

m)

µm
i − µm

j

Hij

=
f ′
i(µ)− f ′

j(µ)

µi − µj
Hij

= ∇2(f ◦ λ)(Diagµ)[Hij ]

because ∇f(·) is continuous at µ and the denominator is never zero.
Now we are ready to prove the main result of this section.
Theorem 4.2. Let A be an n × n symmetric matrix. The symmetric function

f : R
n → R is twice continuously differentiable at the point λ(A) if and only if the

spectral function f ◦ λ is twice continuously differentiable at the matrix A.
Proof. We know that f ◦ λ is twice differentiable at A if and only if f is twice

differentiable at λ(A), so what is left to prove is the continuity of the Hessian. Sup-
pose that f is twice continuously differentiable at λ(A) and that f ◦ λ is not twice
continuously differentiable at A, that is, the Hessian ∇2(f ◦ λ) is not continuous at
A. Take a sequence, {Am}∞m=1, of symmetric matrices converging to A such that for
some ε > 0 we have

‖∇2(f ◦ λ)(Am)−∇2(f ◦ λ)(A)‖ > ε

for all m. Let {Um}∞m=1 be a sequence of orthogonal matrices such that

Am = Um

(
Diagλ(Am)

)
UT
m.

Without loss of generality we may assume that Um → U , where U is orthogonal and
then

A = U
(
Diagλ(A)

)
UT .

(Otherwise we take subsequences of {Am} and {Um}.) Using the formula for the
Hessian given in Theorem 3.3 and Lemma 4.1 we can easily see that

lim
m→∞∇

2(f ◦ λ)(Am)[H] = ∇2(f ◦ λ)(A)[H]
for every symmetric H. This is a contradiction.
The other direction follows from the chain rule after observing

f(x) = (f ◦ λ)(Diagx).
This completes the proof.
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5. Example and conjecture. As an example, suppose we require the second
directional derivative of the function f ◦ λ at the point A in the direction B. That is,
we want to find the second derivative of the function

g(t) = (f ◦ λ)(A+ tB)

at t = 0. Let W be an orthogonal matrix such that A = W (Diagλ(A))WT . Let
B̃ =WTBW . We differentiate twice:

g′′(t) = ∇2(f ◦ λ)(A+ tB)[B,B].

Using Lemma 3.1 and Theorem 3.3 at t = 0 we get

g(0) = f(λ(A)),

g′(0) = tr
(
B̃Diag∇f(λ(A))),

g′′(0) = ∇2(f ◦ λ)(λ(A))[diag B̃,diag B̃] + 〈A, B̃ ◦ B̃〉

=

n∑
i,j=1

f ′′
ij(λ(A))(B̃

i,i)(B̃j,j) +
∑
i�=j

λi=λj

bi(B̃
i,j)2

+
∑
i,j

λi �=λj

f ′
i(λ(A))− f ′

j(λ(A))

λi(A)− λj(A)
(B̃i,j)2.

In principle, if the function f is analytic, this second directional derivative can also be
computed using the implicit formulae from [26]. Some work shows that the answers
agree.
As a final illustration, consider the classical example of the power series expansion

of a simple eigenvalue. In this case we consider the function f given by

f(x) = x̄k := the kth largest entry in x

and the matrix

A = Diagµ,

where µ ∈ R
n
↓ and

µk−1 > µk > µk+1.

Then we have

f ′(µ) = ek and f ′′(µ) = 0,

so for the function g(t) = λk(Diagµ + tB) our results show the following formulae
(familiar in perturbation theory and quantum mechanics):

g(0) = µk,

g′(0) = Bk,k,

g′′(0) =
∑
j 	=k

1

µk − µj
(Bk,j)2 +

∑
i 	=k

−1
µi − µk

(Bi,k)2

= 2
∑
j 	=k

1

µk − µj
(Bk,j)2.
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This agrees with the result in [6, p. 92].
We conclude with the following natural conjecture.
Conjecture 5.1. A spectral function f ◦λ is k-times differentiable at the matrix

A if and only if its corresponding symmetric function f is k-times differentiable at
the point λ(A). Moreover, f ◦ λ is Ck if and only if f is Ck.
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Abstract. In this paper we present a complete perturbation analysis for the Hamiltonian Schur
form of a Hamiltonian matrix under similarity transformations with unitary symplectic matrices.
Both linear asymptotic and nonlinear perturbation bounds are presented. The same analysis is
also carried out for two less condensed block-Schur forms. It suggests that the block forms are
less sensitive to perturbations. The analysis is based on the technique of splitting operators and
Lyapunov majorants as well as on a representation of the symplectic unitary group which is convenient
for perturbation analysis of condensed forms. As a corollary, a perturbation bound for the stable
invariant subspace of Hamiltonian matrices is obtained. Finally, given an ε-perturbation in the initial
Hamiltonian matrix, the perturbations in the Hamiltonian Schur form, and the unitary symplectic
basis are constructed in the form of a power series expansion in ε.

Key words. Hamiltonian Schur form, block-Schur form, Riccati equation, unitary symplectic
group, perturbation analysis, splitting operators
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1. Introduction. The computation of the eigenvalues and invariant subspaces
(in particular the stable invariant subspace) of Hamiltonian matrices is an impor-
tant problem in many applications such as linear quadratic optimal control and H∞
control, as well as in the solution of continuous-time algebraic Riccati equations
[20, 23, 30, 34].

It is known [26] that for a Hamiltonian matrix H with no eigenvalues on the
imaginary axis there exists a unitary symplectic matrix U such that Σ = UHHU =
[T0

R
−TH ], where R is Hermitian and T is upper triangular with all eigenvalues in

the left half plane. A matrix of the form Σ is called a Hamiltonian Schur form of H.
Under some further conditions (see [21, 22]), such a form also exists if the Hamiltonian
matrix has eigenvalues on the imaginary axis.

The computation of the Hamiltonian Schur form is a highly structured problem
and the analysis, as well as the corresponding numerical method, should reflect this
structure in the maximal possible way. This is important for increasing the efficiency
of the numerical method and the accuracy of the computed solution.

An open problem suggested in [26] was to construct a method that is backwards
stable of complexity O(n3) and fully exploits the Hamiltonian structure. Many ap-
proaches have been made but, except for some important special cases [6], it is still an
open problem to construct such a method. It was shown in [2] that here a fundamen-
tal difficulty occurs, in comparison with the transformation into standard Schur form.
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This is due to the fact that the group of unitary symplectic 2n× 2n matrices, being
an algebraic variety of real dimension only 2n2, is much “smaller” than the group of
unitary 2n × 2n matrices, which is of real dimension 4n2. Several new approaches
have been developed which partially (but not yet completely) overcome this difficulty;
see [1, 3, 4].

An important issue, when considering structure-preserving algorithms for struc-
tured problems, is the analysis of the influence of perturbations that are also struc-
tured. This includes determining the sensitivity of the problem (finding condition
estimates in particular) and studying the accuracy of the numerical methods. In the
case of the Hamiltonian eigenvalue problem, one has to study the sensitivity of the
Hamiltonian Schur form under the influence of Hamiltonian perturbations. In par-
ticular, it is important to analyze the sensitivity of the stable invariant subspace,
which is often the desired object when computing the Hamiltonian Schur form. This
is essential for the applications arising in linear quadratic and H∞ control problems
[23, 38].

The perturbation problem for eigensystems under general perturbations is well
understood since the fundamental work of Stewart [35] (see also [36]) and some recent
developments in [16, 29]. However, one may expect that the results will be different
if the perturbations are structured, but a structured perturbation analysis for the
Hamiltonian Schur form has not been carried out previously.

In this paper we call a bound asymptotic if it holds for perturbations in the data
tending to zero, and we call a bound nonlocal if it holds for perturbations in the data
which belong to a finite (although possibly small) domain.

We present a complete perturbation analysis for both the Hamiltonian Schur form
and the corresponding unitary symplectic transformation matrix. We derive nonlocal
nonlinear perturbation bounds based on the technique of splitting operators [16, 29]
(see Appendix C) and analyze in detail asymptotic perturbation bounds.

The same analysis is done for other less condensed block-Schur forms of Hamil-
tonian matrices. An estimate for the sensitivity of the stable invariant subspace is
obtained as a corollary. Finally, we construct power series expansions for the per-
turbed Hamiltonian Schur form as well as for the transformation matrix.

We use the following notation: F is the field of real or complex numbers, i.e.,
F = R or F = C; R+ = [0,∞); ı =

√−1; C− and C+ are the open left and right
half of the complex plane C; Fm×n is the set of m× n matrices over F , Fn×1 = Fn;
‖.‖2 and ‖.‖F are the spectral and Frobenius norms in Fm×n (we use ‖.‖ for the
Euclidean norm of vectors as well as for matrices when the particular norm is not
specified); Range(A) is the range of the matrix A; Inv(A) is an invariant subspace
of the matrix A; gap(M,N) is the gap between the subspaces M and N ; spect(A)
is the collection of n eigenvalues of the matrix A ∈ Cn×n, counted according to their
algebraic multiplicities; spect−(A), spect+(A) are the collection of eigenvalues of A in
the open left or right half plane, respectively; rad(A) is the spectral radius of A; In is
the n×n identity matrix; ek ∈ Rn×1 is the kth column of In; 0m×n is the zero m×n
matrix (if the size is clear from the context we write 0 for the zero matrix); vec(A) ∈
Fmn is the columnwise vector representation of the matrix A ∈ Fm×n; Πn ∈ Rn2×n2

is the vec-permutation matrix, such that vec(X�) = Πnvec(X) for X ∈ Cn×n; A�

and AH are the transpose and complex conjugate transpose of A; A ⊗ B = [aijB]
is the Kronecker product of the matrices A = [aij ] and B. If X,Y ∈ Fn×n, we set

U [X,Y ] = [ X
−Y

Y
X ] ∈ F2n×2n.
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We also use the following notation for different sets of square matrices:
• GL(n) ⊂ Cn×n – the group of nonsingular matrices;
• U(n) ⊂ GL(n) – the group of unitary matrices V , V V H = In;
• Her(n) ⊂ Cn×n – the set of Hermitian matrices B = BH;
• T(n) ⊂ Cn×n – the set of upper triangular matrices;
• S(2n) ⊂ GL(2n) – the group of symplectic matrices U , UHJ2nU = J2n,
where J2n = [ 0

−In

In
0 ];

• US(2n) = U(2n) ∩ S(2n) – the group of unitary symplectic matrices;
• Ham(2n) ⊂ C2n×2n – the set of Hamiltonian matrices H, J2nH = (J2nH)H;
• Ham0(2n) ⊂ Ham(2n) – the set of Hamiltonian matrices with no eigenvalues
on the imaginary axis.

The projectors in Cn×n onto the strictly lower triangular, diagonal, and strictly
upper triangular parts of a matrix are denoted by low, diag, and up, respectively.
With this notation we have up(X) = (low(X�))�, T(n) = Range(diag + up), and

low(X) =

n−1∑
j=1

n∑
i=j+1

eie
�
i Xeje

�
j , diag(X) =

n∑
i=1

eie
�
i Xeie

�
i .

The compressed vectorizations of the operations low, diag, and up are denoted by
lvec : Cn×n → C�, dvec : Cn×n → Cn, and uvec : Cn×n → C�, where � = n(n− 1)/2.
Thus for X = [xij ] ∈ Cn×n we have

lvec(X) = [x2,1, . . . , xn,1, x3,2, . . . , xn,2, . . . , xn,n−1]
� = Ωvec(X) ∈ C�,

dvec(X) = [x1,1, . . . , xn,n]
� = θ vec(X) ∈ Cn,(1.1)

uvec(X) = [x1,2, . . . , x1,n, x2,3, . . . , x2,n, . . . , xn−1,n]
� = ΩΠnvec(X) ∈ C�,

where

Ω := [diag(Ω1, . . . ,Ωn−1), 0�×n] ∈ R�×n2

,

θ := diag
(
e�1 , . . . , e�n

) ∈ Rn×n2

,

Ωk := [0(n−k)×k, In−k] ∈ R(n−k)×n.

The abbreviation “:=” stands for “equal by definition.” We note finally that A is
not used for the complex conjugate of A.

2. Condensed forms for Hamiltonian matrices. In this section we consider
three condensed forms for Hamiltonian 2n × 2n matrices under the similarity action
of the unitary symplectic and unitary transformation groups US(2n) and U(n).

Consider the Hamiltonian matrix

H :=

[
A B
C −AH

]
∈ Ham(2n); B,C ∈ Her(n).(2.1)

IfH ∈ Ham0(2n), then the spectrum ofH splits in two parts, spect(H) = spect−(H)∪
spect+(H), where spect−(H) ⊂ C− and spect+(H) ⊂ C+. The elements of spect−(H)
are called the stable eigenvalues of H, and the associated invariant subspace is the
stable H-invariant subspace. It was shown in [26] that in this case there exists a
matrix

U = U [V,W ] :=

[
V W
−W V

]
∈ US(2n); V,W ∈ Cn×n
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such that

Σ := UHHU =

[
T R
0 −TH

]
∈ Ham(2n); T ∈ T(n), R ∈ Her(n),(2.2)

where spect(T ) = spect−(H). (For properties of unitary symplectic matrices U [V,W ]
see Appendix A.) An analogous form may also exist if H has purely imaginary
eigenvalues; see [22]. A complete analysis of this case is not yet available. The
uniqueness of the stable invariant subspaces for this case has been studied in [24],
and a partial analysis on the stability of such subspaces under perturbations follows
from the results in [31]. In general the above Hamiltonian Schur forms are not unique
unless additional restrictions on the blocks of Σ are imposed.

Definition 2.1. A matrix Σ as in (2.2), where T has no eigenvalues in C+, is
called a Hamiltonian Schur form of H under the action of US(2n). The columns of
U form a symplectic Schur basis of H. The set of all matrices of the form (2.2) is
called the set of Hamiltonian Schur forms of Ham(2n) under the action of US(2n)
and is denoted by HSF(2n).

The stabilizer of Σ ∈ HSF(2n) relative to US(2n) is denoted by

Stab(Σ,US(2n)) := {U ∈ US(2n) : UHΣU ∈ HSF(2n)}.

Similarly, for T ∈ T(n) we denote by Stab(T,U(n)) ⊂ U(n) the stabilizer of T
relative to U(n).

Proposition 2.2. If H ∈ Ham0(2n), then the stabilizer of Σ ∈ HSF(2n) as in
(2.2) is

Stab(Σ,US(2n)) = {diag(V, V ) : V ∈ Stab(T,U(n))}.(2.3)

Proof. If U = diag(V, V ) with V ∈ Stab(T,U(n)), then U ∈ Stab(Σ,US(2n)).

Suppose now that U = U [V,W ] ∈ Stab(Σ,US(2n)) and let T̃ ∈ T(n) be the upper

left block of Σ̃ := UHΣU ∈ HSF(2n). It follows from ΣU = U Σ̃ that W satisfies

the Sylvester equation THW + WT̃ = 0. Since both matrices T and T̃ are stable it
follows from the theory of Sylvester equations [8] that W = 0.

Proposition 2.2 implies that Stab(Σ,US(2n)) is isomorphic to Stab(T,U(n)).
In the generic case when H (and hence T ) has n distinct stable eigenvalues, then
except for similarity transformations with unitary diagonal matrices, the stabilizer
Stab(Σ,US(2n)) contains n(n − 1)/2 substantially different elements. They corre-
spond to the matrices Vij ∈ Stab(T,U(n)), whose similarity action interchanges the
eigenvalues tii and tjj of the matrix T = [tij ] along its diagonal.

The Hamiltonian Schur form (2.2) is only a condensed form and not a canonical
one in the strict sense, unless some additional restrictions on T are imposed; see [24].
For a discussion on the standard Schur canonical form, see [33].

In many applications (e.g., in the computation of stabilizing solutions of algebraic
Riccati equations) one is interested in the stable invariant subspace of H, and it
suffices to have a condensed form like (2.2) relative to transformations from US(2n)
but without the restriction T ∈ T(n). Therefore we also consider the less condensed
Hamiltonian block-Schur form

Σ̂ := ÛHHÛ =

[
T̂ R̂

0 −T̂H

]
∈ Ham(2n),(2.4)
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relative to US(2n), where

R̂ ∈ Her(n), Û := U [V̂ , Ŵ ] ∈ US(2n)

and T̂ has no eigenvalues in C+. Note that if H ∈ Ham0(2n), then spect(T̂ ) =
spect−(H).

A Hamiltonian matrix may be transformed into Hamiltonian block-Schur form if
and only if it may be transformed into Hamiltonian Schur form. Indeed, the Hamil-
tonian Schur form is also a Hamiltonian block-Schur form. In turn, if H admits a
Hamiltonian block-Schur form Σ̂, then a further symplectic unitary transformation
with a matrix diag(V, V ) with V ∈ U(n), such that V HT̂ V ∈ T(n), reduces the

Hamiltonian block-Schur form Σ̂ into a Hamiltonian Schur form Σ.

We also consider the least condensed block-Schur form

Σ := U
H
HU =

[
T R
0 S

]
∈ C2n×2n, U ∈ U(2n),(2.5)

of H relative to transformations from U(2n), where the matrix T ∈ Cn×n has no
eigenvalues in C+. If H ∈ Ham0(2n), then this implies spect(T ) = spect−(H), but it

may happen that the matrix Σ is not Hamiltonian. Such a block-Schur form always
exists as a consequence of Schur’s theorem [9] and may be computed, for example, by
the algorithm proposed in [28].

The standard Schur form ofH relative toU(2n) is as Σ in (2.5) with the additional
requirement T , S ∈ T(n). In this case the linear and nonlinear perturbation bounds
from [16] are applicable.

As the following analysis suggests, the block-Schur forms Σ̂, Σ and the associated
transformation matrices Û , U may be much less sensitive to perturbations than the
corresponding matrices Σ and U in the Hamiltonian Schur form. So if the structure
of the upper left block in the condensed form is not important, it is preferable to work
with the forms (2.4) or (2.5). Some numerical algorithms for computing the stable
H-invariant subspace, however, lead to a Hamiltonian Schur form or to a standard
Schur form rather than to the forms (2.4) or (2.5). This is because the triangular form
is usually needed for the eigenvalue ordering. An exception is the multishift-method
from [1]. Also, methods based on the matrix sign function [7, 15] and some related
methods implicitly compute block-Schur forms rather than the Hamiltonian Schur
form.

3. Perturbation theory for condensed forms. In this section we formulate
the basic problems in the perturbation analysis for the three condensed forms that
we introduced in section 2.

3.1. Hamiltonian Schur form. Our main assumptions when studying the
Hamiltonian Schur form (2.2) are the following:

A1 The matrix H has no imaginary eigenvalues, i.e., H ∈ Ham0(2n).
A2 The matrix H has distinct eigenvalues.

Assumption A2 seems restrictive but in a sense is necessary. Indeed, if H has multiple
eigenvalues, then the perturbations in the symplectic Schur basis U may be discon-
tinuous functions of the perturbations in H (see Appendix B for a detailed analysis
of this phenomenon).
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We consider two types of structured perturbations. These are general Hamiltonian
perturbations,

δH :=

[
δA δB
δC −δAH

]
∈ Ham(2n)(3.1)

with ε := ‖δH‖F, and one-parameter families of perturbations,

δH = εH1 := ε

[
A1 B1

C1 −AH
1

]
∈ Ham(2n).(3.2)

Here ε ≥ 0 is a (usually small) parameter. In the latter case we assume that ‖H1‖F = 1
so that the F-norm of εH1 is ε. Families of one-parameter matrix perturbations
are considered in more detail in Appendix B. Note that we do not require that
assumptions A1 and/or A2 hold for the perturbed matrix H̃ := H + δH.

For matrices H ∈ Ham0(2n) the Hamiltonian Schur form exists. If we require

H̃ := H + δH also to be in Ham0(2n), this would imply restrictions on the norm ε
of δH as follows. The quantity

d0(H) := min{‖G‖F : G ∈ Ham(2n), H +G /∈ Ham0(2n)}

may be interpreted as the distance from H to the set of Hamiltonian matrices with
eigenvalues on the imaginary axis. If ε < d0(H), then H̃ ∈ Ham0(2n) and there

exists a Hamiltonian Schur form Σ̃ of H̃. However, the Hamiltonian Schur form may
also exist when ε ≥ d0(H) and H̃ has imaginary eigenvalues. In the following analysis

we determine a quantity ε0 > 0 such that the Hamiltonian Schur form Σ̃ of H̃ exists
provided that ε ≤ ε0. Thus we avoid the computation (or estimation) of d0(H).
Whether our ε0 is smaller than d0(H) remains an open question.

Suppose that the Hamiltonian Schur form Σ̃ of H̃ exists and denote by

Ũ := U + δU =

[
V + δV W + δW
−W − δW V + δV

]
∈ US(2n)(3.3)

the corresponding transformation matrix. Then the matrix Σ̃ = ŨHH̃Ũ is

Σ̃ := Σ + δΣ =

[
T + δT R+ δR

0 −(T + δT )H

]
∈ HSF(2n),(3.4)

where spect(T + δT ) ⊂ C− provided that H̃ ∈ Ham0(2n). If we set

Z := UHδU := U [X,Y ] =

[
X Y
−Y X

]
; X,Y ∈ Cn×n,(3.5)

then

I2n + Z = UHŨ ∈ U(2n)(3.6)

and δV = V X −WY , δW = WX +V Y . By (3.6) we obtain Z+ZH +ZZH = 0, and
hence we have the conditions for unitarity

X +XH +XXH + Y Y H = 0, (In +X)Y H = Y (In +XH).(3.7)
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If H̃ ∈ Ham0(2n), then the columns of the matrix [ V +δV
−W−δW ] span the stable H̃-

invariant subspace Inv−(H̃).
In what follows we determine a constant ε0 > 0 such that the perturbed matrix

H̃ has a Hamiltonian Schur form provided that ε ≤ ε0. Then we derive estimates for
‖X‖F and ‖Y ‖F of the form

‖Y ‖F ≤ p(ε), ‖X‖F ≤ q(ε),(3.8)

where ε ∈ [0, ε0] and p, q : [0, ε0] → R+ are continuous nondecreasing functions such
that p(0) = q(0) = 0. Using the bounds p and q we obtain bounds for ‖δU‖F. Finally
‖δΣ‖F is estimated via q and ε.

Due to the nonuniqueness of the Hamiltonian Schur form, the estimates (3.8) are

not valid for all transformation matrices Ũ . They rather hold true for at least one
Ũ which transforms H̃ to Hamiltonian Schur form Σ̃. This is a common situation in
perturbation problems with nonunique solution.

To be precise, let us introduce the concept of a minimal perturbation. Let δH be a
fixed small perturbation so that H̃ = H+δH has a Hamiltonian Schur form. Consider
the set M ⊂ C2n×2n of all δU such that Ũ = U+δU ∈ U(2n) and ŨHH̃Ũ ∈ HSF(2n).
We are interested in those perturbations δU which are small together with δH. It
is necessary to restrict ourselves to these perturbations, because M always contains
elements of large norm. Indeed, if δU ∈ M is small, then the matrix −2U − δU is
also in M but has an F-norm close to 2

√
n.

Since M is a compact set, there exists δU0 ∈M such that

‖δU0‖F = min{‖δU‖F : δU ∈M}.
The perturbations δU in U and δΣ = ŨHH̃Ũ − UHHU in Σ are said to be min-
imal if ‖δU‖F = ‖δU0‖F. In view of this, the bounds (3.8) are valid for minimal
perturbations.

3.2. Hamiltonian block-Schur form and stable invariant subspaces. For
the Hamiltonian block-Schur form (2.4) we have an analogous perturbation problem.
In this case we require only assumption A1 to be fulfilled. (Assumption A2 is not

needed here since the matrix T̃ in (2.4) is not necessarily upper triangular.) Since
the Hamiltonian Schur and Hamiltonian block-Schur forms of H exist simultaneously,
the inequality ε < ε0 (see section 3.1) guarantees that the Hamiltonian block-Schur

form of H̃ = H + δH also exists. In the perturbation analysis of the Hamiltonian
block-Schur form, presented below, we find a quantity ε̂0 for which this form exists
provided ε ≤ ε̂0. In this case the corresponding perturbation bounds of type (3.8) are
valid for ε ∈ [0, ε̂0].

Suppose that the Hamiltonian block-Schur form Σ̂ of H exists. Denote by

Û + δÛ :=

[
V̂ + δV̂ Ŵ + δŴ

−Ŵ − δŴ V̂ + δV̂

]
∈ US(2n)

the transformation matrix such that

Σ̂ + δΣ̂ := (Û + δÛ)HH̃(Û + δÛ) =

[
T̂ + δT̂ R̂+ δR̂

0 −(T̂ + δT̂ )H

]
, δR̂ ∈ Her(n),

where spect(T̂ + δT̂ ) ∩ C+ = ∅. If we set Ẑ := ÛHδÛ := U [X̂, Ŷ ], then X̂ and Ŷ
satisfy the conditions (3.7).
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Suppose that H̃ ∈ Ham0(2n). Then the perturbation analysis for the Hamilto-
nian block-Schur form (2.4) also gives estimates for the gap (see [36])

γ := gap(Inv−(H), Inv−(H̃))

between the stableH-invariant subspace Inv−(H) and the stable H̃-invariant subspace

Inv−(H̃). The gap γ is the smallest distance from a vector in Inv−(H) of unit length

to its projection onto Inv−(H̃). Since

γ = gap(ÛHInv−(H), ÛHInv−(H̃))

= gap

(
Range

[
In
0

]
, (I2n + Ẑ)Range

[
In
0

])

and X̂, Ŷ satisfy (3.7), we get γ = ‖Θ‖2, where

Θ :=

[
Θ1 Θ2

Θ2 −Θ1

]
; Θ1 := Ŷ Ŷ H, Θ2 := (In + X̂)Ŷ H.

Using (3.7) we obtain Θ2 = ΘΘH = diag
(
Θ2

1 +Θ2
2,Θ

2
1 +Θ2

2

)
. Hence,

‖Θ‖2 =
√
‖Θ2

1 +Θ2
2‖2 ≤

√
‖Θ1‖22 + ‖Θ2‖22

and, since ‖Θ1‖2 = ‖Ŷ ‖22, it follows from (In + X̂)(In + X̂H) = In − Ŷ Ŷ H that

‖In + X̂‖2 =

√∥∥∥In − Ŷ Ŷ H
∥∥∥

2
=

√
1− σ2

min(Ŷ ),

where σmin(Ŷ ) is the minimal singular value of Ŷ . Hence,

‖Θ2‖2 ≤ ‖Ŷ ‖2
√
1− σ2

min(Ŷ )

and

γ = ‖Θ‖2 ≤ ‖Ŷ ‖2
√
1 + ‖Ŷ ‖22 − σ2

min(Ŷ ) ≤ ‖Ŷ ‖2
√
1 + ‖Ŷ ‖22.(3.9)

We see that the gap between the stable invariant subspaces ofH and H̃ is bounded
from above by a quantity, which depends only on Ŷ and is of asymptotic order ‖Ŷ ‖2
for small ‖Ŷ ‖2.

It follows from this analysis that the sensitivity of the symplectic Schur basis U
in the Hamiltonian Schur form and the sensitivity of the stable H-invariant subspace
Inv−(H) to perturbations H → H+δH may be different. The reason is that for small
ε the norm of X (and hence the norm of δU) may not be small, while at the same

time ‖Ŷ ‖2, which governs the gap γ, remains small.
The symplectic Schur basis for the Hamiltonian Schur form may be sensitive to

perturbations if H has any close eigenvalues. Thus the Hamiltonian Schur form Σ
may not be relevant for the investigation of the sensitivity of the stable H-invariant
subspace. To study the sensitivity of this subspace we need to use the sensitivity
estimates for the Hamiltonian block-Schur form (2.4) or the block-Schur form (2.5).
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3.3. Block-Schur form. In this subsection we shall need some facts about finite
collections λ := {λ1, . . . , λn}, i.e., sets with possibly repeated elements, which are very
useful in describing and analyzing matrix spectra. Note that from a set-theoretical
point of view a collection is indistinguishable from the set of its disjoint elements.

Let l = {l1, . . . , lm} be the set of disjoint elements in λ. Then λ may be repre-
sented by k pairs (l1, k1), . . . , (lm, km), where ki is the number of li’s in λ.

The following operations with finite collections may be introduced. The empty
collection ∅ is the standard empty set. The number of elements in the collection λ
is denoted by #λ. The collection λ′ is a subcollection of λ, denoted as λ′ ⊂ λ, if
for each pair (l′i, k

′
i), associated with λ′, there is a pair (li, ki), associated with λ and

such that li = l′i and ki ≥ k′i. The union λ ∨ λ′ of two collections λ and λ′ is the
collection containing all elements from λ and λ′. The intersection λ ∧ λ′ of λ and λ′

is the collection containing the joint elements λi = λ′
i from λ and λ′, each one taken

with multiplicity min{ki, k′i}. Note that the union and intersection of two collections
are different from the corresponding operations for sets.

The Hamiltonian matrix H is similar to −HH. Hence, the spectrum spect(H) of
H may be represented as the union S− ∨ S0 ∨ S+ of three disjoint collections, where
the elements of S− (if any) are from C−, the collection S+ is symmetric to S− relative
to the imaginary axis, and the elements of S0 (if any) are purely imaginary.

The perturbation analysis of the block-Schur form (2.5) is done under the following
assumption.

A3 The spectrum spect(H) of H ∈ Ham(2n) may be represented as the union
Λ− ∨ Λ+ of two disjoint collections Λ− and Λ+ such that #Λ− = n and Λ−
contains no elements from C+.

Note that S− ⊂ Λ−, S+ ⊂ Λ+, and the collections Λ− and Λ+ may contain (an equal
number of) imaginary elements.

In view of A3 we may always assume that the matrix T is chosen so that spect(T ) =
Λ−. Thus the matrix T is stable if and only if H ∈ Ham0(2n) (i.e., if and only if
S0 = ∅).

Whether assumption A3 holds for a particular Hamiltonian matrix H depends
only on the imaginary part S0 of the spectrum of H. For example, assumption A3 is
fulfilled if H has no imaginary eigenvalues. At the same time A3 may be valid also if
the imaginary part S0 of the collection spect(H) is nonempty but has a certain special
structure as described below.

Let r := #S0 = 2(n−#S+). If the collection S0 is not empty, then we have r ≥ 2
and S0 = {ıα1, ıα2, . . . , ıαr}. Here α := {α1, α2, . . . , αr} is a real collection with each
element participating an even number of times, e.g., α1 = α2, . . . , αr−1 = αr. Let the
disjoint elements of α be l1, . . . , lm with multiplicities k1 ≤ · · · ≤ km, respectively,
where k1 + · · ·+ km = r. We have m ≤ r/2 since ki are positive even numbers.

Then assumption A3 is valid if and only if either H ∈ Ham0(2n) (which is
assumption A1) or the following holds.

A4 The number r/2 is even and there is a positive integer p < m such that
k1 + · · ·+ kp = r/2.

Thus either A1 or A4 must hold in order to guarantee that we can create the block-
Schur form in a specific way such that for every purely imaginary eigenvalue all of its
multiplicity is in only one of the diagonal blocks.

Example 1. For α = {1, 1, 0, 0} we have r = 4, m = 2, r1 = r2 = 2 and
assumption A4 holds with p = 1. For α = {1, 1,−1,−1, 0, 0, 0, 0} we have r = 8,
m = 3, r1 = r2 = 2, r3 = 4 and assumption A4 holds with p = 2. For α = {1, 1, 1, 1}
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we have m = 1, a positive integer p < 1 does not exist, and assumption A4 does not
hold. For α = {1, 1,−1,−1, 0, 0} we have r = 6, the number r/2 = 3 is odd, and
assumption A4 does not hold. For α = {1, 1, 0, 0, 0, 0, 0, 0} we have r = 8, m = 2,
r1 = 2, r2 = 6 and assumption A4 does not hold.

Assumption A4 relaxes the restrictions on H. At the same time for the block-
Schur form of a Hamiltonian matrix the transformation matrix U in general is not
symplectic. Consider the following example.

Example 2. The matrix

H =

[
0 K2

−K2 0

]
∈ Ham(4), K2 :=

[
0 1
1 0

]
,

has spectrum {ı, ı,−ı,−ı} coinciding with S0 with r = 4, m = 2, k1 = k2 = 2 and
satisfies assumption A4. A block-Schur form of H is

Σ = U
H
HU = diag(ıI2,−ıI2),

where

U =
1√
2

[
I2 I2
ıK2 −ıK2

]
∈ U(4).

At the same time there exists no symplectic transformation to block-Schur form; see
[22].

For the block-Schur form it is not necessary to consider Hamiltonian perturba-
tions, since the Hamiltonian structure of H is not preserved under general unitary
transformations. So in this case we assume that the perturbation in H is

δH :=

[
δH11 δH12

δH21 δH22

]
∈ C2n×2n.

Let

Σ + δΣ = (U + δU)H(H + δH)(U + δU) =

[
T + δT R+ δR

0 S + δS

]

be the block-Schur form of the perturbed matrix H + δH. Setting

Z := U
H
δU :=

[
Z11 Z12

Z21 Z22

]
, Zij ∈ Cn×n,

we have I2n + Z ∈ U(2n). Hence, for i = 1, 2 and j �= i we have that

Zii + Z
H

ii + ZiiZ
H

ii + ZjiZ
H

ji = 0, (In + Z11)Z
H

21 + Z12(In + Z
H

22) = 0.(3.10)

In the following we derive nonlocal perturbation bounds for the F-norms of the
matrices Zij and hence of Z. In view of ‖δU‖F = ‖Z‖F this gives the desired per-
turbation bounds for the Schur basis U and the block-Schur form Σ as functions of
ε := ‖δH‖F. These bounds are valid for ε ∈ [0, ε0], where ε0 is a positive constant.
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4. Basic relations for perturbation analysis. In this section we derive the
basic relations necessary for the perturbation analysis of the condensed forms, de-
scribed in sections 2 and 3. We recall that the condensed forms are considered under
the assumptions listed in the table below.

Condensed form Assumptions
Hamiltonian Schur A1 and A2

Hamiltonian block-Schur A1
Block-Schur A3

4.1. Hamiltonian Schur form. Consider the Hamiltonian matrix (2.1) and the

Hamiltonian perturbation (3.1) such that the perturbed matrix H̃ = H + δH admits

a Hamiltonian Schur form. Recall that Ũ in (3.3) is the matrix which transforms H̃
into Hamiltonian Schur form (3.4). Set

E :=

[
E11 E12

E21 E22

]
= UHδHU ∈ Ham(2n),

F :=

[
F11 F12

F21 F22

]
= UHδHŨ ∈ C2n×2n,

G :=

[
G11 G12

G21 G22

]
= ŨHδHŨ ∈ Ham(2n),

where the matrices E,F,G are partitioned conformally with H. Then

E11 = V HδAV − V HδBW −WHδCV −WHδAHW, E22 = −EH
11,

E21 = WHδAV −WHδBW + V HδCV + V HδAHW,(4.1)

E12 = V HδAW + V HδBV −WHδCW +WHδAHV,

and since H̃Ũ = Ũ Σ̃, we have that

(Σ + E)(I2n + Z) = (I2n + Z)(Σ + δΣ),(4.2)

where the matrix Z = UHδU is defined by (3.5). We may rewrite (4.2) in two
equivalent forms, namely,

ΣZ − ZΣ = (I2n + Z)δΣ− F(4.3)

and

δΣ = (I2n + ZH)(ΣZ − ZΣ) +G.(4.4)

Equations (4.3), (4.4), and (3.7) are the basic relations that we use to determine

the blocks X and Y in Z. From (4.3) and the fact that Σ̂ ∈ HSF(2n) we obtain

Σ̃11 = T + δT ∈ T(n) (which is equivalent to δT ∈ T(n)) and furthermore that

Σ̃21 = 0.
For the (1, 1) block in (4.3) we obtain

TX −XT = RY + (In +X)δT − F11.(4.5)

To show that Σ̃11 ∈ T(n) we apply the low projector on both sides of (4.5), keeping
in mind that low(δT ) = 0. We obtain

low(TX −XT ) = low(RY +XδT − F11).(4.6)
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The equation for the (2, 1) block in (4.3) is

L(Y ) := THY + Y T = −Y δT − F21.(4.7)

Thus the equation for the matrix X is obtained by putting the (1, 1) block of Σ̃ into
upper triangular (Schur) form, while the equation for the matrix Y is derived by

zeroing the (2, 1) block of Σ̃.
The equation for the (2, 2) block in (4.3) yields

low(TXH −XHT ) = −low ((R+ δR)Y H + δT (In +XH) + FH
22

)
,(4.8)

where in general F22 �= −FH
11.

The (1, 2) block in (4.3) gives

RX −XR+ TY + Y TH = (In +X)δR− Y δTH − F12.(4.9)

We will also use the identity

δT =
[
In +XH,−Y H

] [ TX −XT −RY
THY + Y T

]
+G11(4.10)

for the (1, 1) block in (4.4).
An important observation from (4.6) and the upper triangular form of T is that

the matrices low(TX), low(XT ), and hence low(TX−XT ) depend only on low(X);
see [16]. Taking the lvec operation on both sides of (4.6) we obtain

M lvec(X) = Ωvec(RY +XδT − F11)(4.11)

= Ω(In ⊗R)vec(Y )

+ Ω (δT� ⊗ In) Ω
� lvec(X)− Ωvec(F11),

where

M := Ω(In ⊗ T − T� ⊗ In)Ω
� ∈ C�×�(4.12)

is the matrix of the linear operator lvec(X) → lvec(TX −XT ) (see [16]), and Ω is
as in (1.1). The eigenvalues of the matrix M are λij := tii − tjj , i > j. Hence, M is
nonsingular if and only if the matrix T = [tij ] has distinct eigenvalues, which is the
case according to assumption A2.

Example 3. For n = 4 the matrix M in (4.12) is

M =




λ21 t23 t24 0 0 0
0 λ31 t34 0 0 0
0 0 λ41 0 0 0
0 −t12 0 λ32 t34 0
0 0 −t12 0 λ42 0
0 0 −t13 0 −t23 λ43



.

4.2. Hamiltonian block-Schur form. If we perturb H to H + δH, then the
matrices Û , Σ̂, and T̂ are perturbed to Û + δÛ = Û(I2n + Ẑ), Σ̂ + δΣ̂, and T̂ + δT̂ .

Here the matrices T̂ , δT̂ , and T̂ + δT̂ may have nonzero elements below the diagonal.
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Hence, in this case we have only an equation of the form (4.7) and the unitarity
conditions (3.7), i.e.,

L̂(Ŷ ) := T̂HŶ + Ŷ T̂ = −Ŷ δT̂ − F̂21, (In + X̂)(In + X̂H) = In − Ŷ Ŷ H,(4.13)

where Ê := ÛHδHÛ , F̂ := Ê(I2n + Ẑ), Ĝ := (I2n + ẐH)F̂ . As we will show in
Appendix A we may set

X̂ =
(
In − Ŷ Ŷ H

) 1
2

P (Ŷ )QH(Ŷ )− In = P (Ŷ )
(
In −D2(Ŷ )

)
QH(Ŷ )− In,(4.14)

where Ŷ = P (Ŷ )D(Ŷ )QH(Ŷ ) is a decomposition of the form (A.5) in Appendix A.

4.3. Block-Schur form. If we consider the block-Schur form (2.5), then we
obtain the following identities analogous to (4.2), (4.3), and (4.4):

ΣZ − Z Σ = (I2n + Z)δZ − F , δΣ = (I2n + Z
H
)(ΣZ − Z Σ) +G,(4.15)

where E := U
H
δH U , F := E(I2n + Z), G := (I2n + Z

H
)F . Furthermore,

S Z21 − Z21T = Z21δT − F 21,(4.16)

analogous to (4.7) while the unitarity conditions are given by (3.10).

5. First order perturbation analysis. In this section we present a detailed
first order (or asymptotic) perturbation analysis of the condensed forms for Hamilto-
nian matrices, giving the first order terms of the corresponding perturbation bounds.
The first order approximations are used then in the next section to derive higher order
approximations.

The asymptotic perturbation analysis produces relations of the form

‖δΣ‖F ≤ Kε+O(ε2), ε→ 0,(5.1)

where ε = ‖δH‖F and K is the absolute condition number of Σ relative to pertur-
bations in H (for other types of first order bounds, see [19]). Since the O(ε2)-term
in (5.1) is usually not known, bounds of this type are applied in the chopped form
‖δΣ‖F ≤ Kε, neglecting second and higher order terms. This must be done very
carefully since the quantity Kε may in fact underestimate the actual perturbation
‖δΣ‖F. The underestimation may occur when, for example, the first partial deriva-
tives of the mapping δH �→ ‖δΣ(δH)‖ in the elements of δH are nonnegative and the
Hessian of the same mapping is a positive definite matrix (if the Hessian exists and
is a continuous function). Due to the lack of a general algorithm for computing the
Hamiltonian Schur form in the case of eigenvalues on the imaginary axis, it is not an
easy task to construct such an example. For the related problem of quadratic matrix
equations, examples that show the underestimation of the perturbations by the linear
bound are given in [17].

5.1. Hamiltonian Schur form. It may be shown (see Proposition 7.1) that for
ε small enough the matrices Z in (3.5) and δΣ in (3.4) are analytic functions in ε that
vanish for ε = 0, i.e.,

Z =
∞∑
k=1

εkZk, δΣ =

∞∑
k=1

εkΣk =

∞∑
k=1

εk
[

Tk Rk

0 −TH
k

]
,(5.2)
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where Zk := U [Xk, Yk] and Tk ∈ T(n), Rk ∈ Her(n). Hence, the first order pertur-
bations X0 := εX1 and Y0 := εY1 satisfy the basic equations

M lvec(X0) = Ω((In ⊗R)vec(Y0)− vec(E11)),(5.3)

THY0 + Y0T = −E21,(5.4)

and the first order approximations to conditions for unitarity (3.7) are

X0 +XH
0 = 0, Y0 = Y H

0 ,(5.5)

where M is given in (4.12) and E21 ∈ Her(n) according to (4.1).
We can solve (5.3)–(5.5) as follows. Equation (5.4) is a Hermitian Lyapunov

equation with Lyapunov operator L, defined by L(Y ) := THY + Y T . Since T is
a stable matrix, the operator L is invertible [8]. Thus (5.4) has a unique solution
Y0 = −L−1(E21) ∈ Her(n), which satisfies the second equation in (5.5) as well. The
matrix Y0 is then substituted in (5.3), and the compressed lower part of X0 becomes

lvec(X0) = M−1Ω((In ⊗R)vec(Y0)− vec(E11)).(5.6)

To satisfy the first equation in (5.5) we choose X0 to be the following skew-Hermitian
matrix with zero main diagonal (this minimizes ‖δU‖F in a first order approximation):

low(X0) = vec−1
(
Ω�lvec(X0)

)
, diag(X0) = 0, up(X0) = −lowH(X0).

It is instructive to see how the first order terms in the equations for the (2, 2) and
(1, 2) block in (4.3) look. Since E22 = −EH

11, the first order part of (4.8) is

low(TXH
0 −XH

0 T ) = −low(RY H
0 − E11),(5.7)

and, since XH
0 = −X0, we see that (5.7) is fulfilled. Equation (4.9) yields the following

first order relation for R0 := εR1:

R0 = RX0 −X0R+ TY0 + Y0T
H + E12.

Since Y0, E12, R ∈ Her(n) and X0 is skew-Hermitian, it follows that necessarily R0 ∈
Her(n).

In most applications only information on the norms of the perturbations in the
data is available. For this reason we now derive first order bounds for the F-norms of
X0, Y0 and δU , δΣ in terms of the quantities

εij := ‖Eij‖F, ε := ‖δH‖F =
√
2ε2

11 + ε2
12 + ε2

21;(5.8)

see (4.1). We have ‖Y0‖F ≤ lε21, which together with (5.6) yields

‖X0‖F =
√
2 ‖lvec(X0)‖ ≤

√
2 (r‖Y0‖F +mε11) ≤

√
2 (lrε21 +mε11).

Here we have made the substitutions

l := max
Y �=0

‖L−1(Y )‖F
‖Y ‖F = ‖L−1‖2, L := In ⊗ TH + T� ⊗ In,

m :=
∥∥M−1Ω

∥∥
2
=
∥∥M−1

∥∥
2
, r :=

∥∥M−1Ω(In ⊗R)
∥∥

2
.(5.9)
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The norm of δU , which is in first order approximation equal to the norm of
Z0 := U [X0, Y0], can now be estimated as

‖δU‖F =
√
2 (‖X0‖2F + ‖Y0‖2F) +O(ε2)

≤
√
4(lrε21 +mε11)2 + 2(lε21)2 +O(ε2).(5.10)

In turn, the norm of the perturbation δΣ can be estimated via (4.4) and (5.10) as

‖δΣ‖F ≤ ‖ΣZ0 − Z0Σ‖F + ε+O(ε2) ≤ s‖Z0‖F + ε+O(ε2)

≤ s
√
4(lrε21 +mε11)2 + 2(lε21)2 + ε+O(ε2),(5.11)

where

s :=
∥∥I2n ⊗ Σ− Σ� ⊗ I2n

∥∥
2
.(5.12)

Estimates in terms of ε are obtained, taking into account that 2ε2
11 + ε2

21 ≤ ε2.
The maximum of the estimate

√
2 (lrε21 + mε11) for ‖X0‖F under the constraint

2ε2
11 + ε2

21 = ε2 is obtained as follows. For a vector b ∈ Cn and a positive definite
matrix P ∈ Cn×n one has

max
{|bHy| : x ∈ Cn, yHPy = ε2

}
= ε‖P−1/2c‖2,(5.13)

where ε > 0. Setting y := [ε11, ε21]
�, b :=

√
2[m, lr]�, and P := diag(2, 1) we get

‖X0‖F ≤ ε‖P−1/2b‖2 = ε
√

m2 + 2l2r2.

Returning to the perturbations δU and δΣ, it follows from (5.10) and (5.11) that

‖δU‖F ≤ εKU +O(ε2),(5.14)

‖δΣ‖F ≤ εKΣ +O(ε2), KΣ := 1 + sKU ,(5.15)

where the quantity KU , depending on l, m, and r, is determined as

KU := max
{√

4(lre21 +me11)2 + 2(le21)2 : 2e2
11 + e2

21 = 1
}
,

with

eij :=
εij
ε

.(5.16)

The explicit expression for KU is obtained using the fact that for matrices Q,P ∈
Her(n) with Q nonnegative and P positive definite one has

max
{
yHQy : x ∈ Cn, yHPy = ε2

}
= ε‖P−1Q‖2.(5.17)

For Q := 2[ 2m2

2lmr
2lmr

l2(1+2r2) ] and y, P as above it follows that KU =
√‖P−1Q‖2, i.e.,

KU =

√
m2 + l2(1 + 2r2) +

√
(m2 − l2(1 + 2r2))2 + 8l2m2r2.(5.18)

The quantities KU and KΣ are estimates for the absolute condition numbers for the
symplectic Schur basis U and for the Hamiltonian Schur form Σ, respectively.
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5.2. Hamiltonian block-Schur form. Consider the form (2.4). Using the
notation

ε̂ij := ‖Êij‖F, 2ε̂ 2
11 + ε̂ 2

21 + ε̂ 2
12 = ε2, ε = ‖Ê‖F = ‖δH‖F,

(4.13) and (4.14) give L̂(Ŷ0) = −Ê21 and X̂0 = P (Ŷ0)Q
H(Ŷ0) − In, where Ẑ0 :=

U [X̂0, Ŷ0] is the first order approximation to Ẑ. Since Ê21 ∈ Her(n) we have Ŷ0 =

−L̂−1(Ê21) ∈ Her(n) and P (Ŷ0) = Q(Ŷ0); see (A.6) from Appendix A. Hence,

X̂0 = 0.
Set L̂ := In ⊗ T̂H + T̂� ⊗ In and

l̂ := max
Y �=0

‖L̂−1(Y )‖F
‖Y ‖F = ‖L̂−1‖2, ŝ :=

∥∥∥I2n ⊗ Σ̂− Σ̂� ⊗ I2n

∥∥∥
2
.

The matrices L̂, L and Σ̂, Σ, respectively, are unitarily similar, which implies that
l̂ = l and ŝ = s. Therefore ‖Ŷ0‖F ≤ lε̂21 and

‖δÛ‖F ≤
√
2 ‖Ŷ0‖F +O(ε2) ≤ (

√
2 l)ε̂21 +O(ε2),(5.19)

‖δΣ̂‖F ≤ (1 +
√
2 ls)ε̂21 +O(ε2).(5.20)

Since the equality ε̂21 = ε is possible, it follows that the quantities K
Û

:=
√
2 l

and K
Σ̂
:= 1+

√
2 sl are estimates of the absolute condition numbers of the symplectic

basis Û and the Hamiltonian block-Schur form Σ̂, respectively.
The condition numbers K

Û
and K

Σ̂
for the Hamiltonian block-Schur form can

be much smaller than the corresponding numbers KU and KΣ for the Hamiltonian
Schur form. The reason is that when dealing with the Hamiltonian block-Schur form
we do not transform the (1, 1) block of H + δH into upper triangular form, which

leaves more freedom in X̂0 in comparison with X0. In fact X̂0 may be chosen as zero.
In a first order approximation the gap γ (see (3.9)) between the stable invariant

subspaces of H and H̃ may be estimated as

γ ≤ ‖Ŷ0‖2 +O(ε2) ≤ l2‖Ê21‖2 +O(ε2),(5.21)

where

l2 := max
Y �=0

‖L̂−1(Y )‖2
‖Y ‖2 = ‖L̂−1(In)‖2.(5.22)

Note that l2 is invariant under the action of the stabilizer of Σ̂ in US(2n). Indeed,
following the proof of Proposition 2.2 we see that this stabilizer consists of matrices
diag(V, V ), V ∈ U(n). Hence, the norms of the operators L̂ and L̂−1, induced by any

unitarily invariant norm in Cn×n, are the same for each T̂ with spect(T̂ ) = spect−(H)
in (2.4). Thus the condition number for the gap is

l2 = ‖Γ‖2,(5.23)

where the matrix Γ = L−1(In) solves the stable Lyapunov equation THΓ + ΓT = In;
see [11].

The linear term l2‖Ê21‖2 in the estimate (5.21), (5.23) coincides with the linear
term in the estimate for the gap from [35].
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5.3. Block-Schur form. Set

ε := ‖H‖F = ‖E‖F, εij := ‖Eij‖F,

and let Z
0
= [Z

0

ij ] be the first order approximation to Z, where Z
0

ij ∈ Cn×n. Within

first order terms in ε the equation for zeroing the (2,1) block of Σ + δΣ is

L(Z0

21) := S Z
0

21 − Z
0

21T = −E21.

Hence, Z
0

21 = −L−1
(E21), where the operator L is invertible in view of assumption A3

and the requirement that spect(T ) = Λ−.
The first order approximations to the conditions for unitarity (3.10) are

(Z
0

ii)
H + Z

0

ii = 0, Z
0

12 = −(Z0

21)
H.

In order to have a solution Z
0
of smallest F-norm we choose Z

0

11 = Z
0

22 = 0. Hence,

‖δU‖F ≤
√
2
∥∥∥Z0

21

∥∥∥
F
+O(ε2) ≤ (

√
2 l)ε21 +O(ε2),(5.24)

‖δΣ‖F ≤ (1 +
√
2 l s)ε21 +O(ε2),(5.25)

where

l := max
Y �=0

‖L−1
(Y )‖F
‖Y ‖F = ‖L−1‖2, s :=

∥∥∥I2n ⊗ Σ− Σ
� ⊗ I2n

∥∥∥
2
,(5.26)

and L := In × S − T
� ⊗ In. The quantities KU :=

√
2 l and KΣ := 1 +

√
2 ls are

the absolute condition numbers of the unitary basis U and of the block-Schur form
Σ, respectively.

5.4. Summary of the first order perturbation analysis. We summarize
the results of the first order perturbation analysis in the following theorem.

Theorem 5.1. Consider a Hamiltonian matrix as in (2.1) and a perturbation as
in (3.1).

1. For the Hamiltonian Schur form we have

‖δU‖F ≤ εKU +O(ε2),

‖δΣ‖F ≤ εKΣ +O(ε2), KΣ := 1 + sKU ,

where KU is given by (5.18).
2. For the Hamiltonian block-Schur form we have

‖δÛ‖F ≤
√
2 ‖Ŷ0‖F +O(ε2) ≤ (

√
2 l)ε̂21 +O(ε2),

‖δΣ̂‖F ≤ (1 +
√
2 ls)ε̂21 +O(ε2)

with l, s given by (5.9) and (5.12).
3. For the gap between the stable invariant subspaces we have

γ ≤ ‖Ŷ0‖2 +O(ε2) ≤ l2‖Ê21‖2 +O(ε2)

with l2 given by (5.23).
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4. For the block-Schur form we have

‖δU‖F ≤
√
2
∥∥∥Z0

21

∥∥∥
F
+O(ε2) ≤ (

√
2 l)ε21 +O(ε2),

‖δΣ‖F ≤ (1 +
√
2 l s)ε21 +O(ε2),

where l, s are given by (5.26).

Note that the bounds (5.24), (5.25) for the block-Schur form may be compared
with the bounds (5.19), (5.20) for the Hamiltonian block-Schur form as follows. The
bounds (5.24), (5.25) are valid under assumption 3 of Theorem 5.1, where H may have
purely imaginary eigenvalues and hence the bounds (5.19), (5.20) do not hold. If H ∈
Ham0(2n), then the bounds for the Hamiltonian block-Schur and block-Schur form
are identical.

6. Nonlocal perturbation analysis. In this section we derive nonlinear, non-
local perturbation bounds for the Hamiltonian Schur and block-Schur forms of H as
functions of the quantities εij , ε̂ij , εij . For this purpose we rewrite the perturbation

problem as an equivalent operator equation for the blocks of the matrices Z, Ẑ, and
Z.

6.1. Hamiltonian Schur form. The blocks X and Y in Z contain 4n2 real
elements. For these elements we have n(n−1)/2 complex (or n(n−1) real) equations
from (4.5), n2 complex (or 2n2 real) equations from (4.6), and n2 real equations
from (3.7). Thus at this stage we face the more general problem of perturbation
analysis for transformation matrices U from the set S∗(2n) of matrices of the form
M = U [V, (In − V V H)1/2N ] with N ∈ U(n) and ‖V ‖2 ≤ 1; see Appendix A. In the
following we construct an operator equation for X, Y and, using the Schauder fixed
point principle [14, 25], we show that it has at least one solution in a closed convex set
∆(ε) ⊂ S∗(2n). The diameter of ∆(ε) tends to zero together with ε, and this gives us
the desired perturbation bounds. An additional canonical projection of the resulting
matrix I2n + Z with Z = U [X,Y ] into the group of unitary matrices proves that the
bounds are valid for the original problem as well.

Set

x1 := lvec(X) ∈ C�,
x2 := dvec(X) ∈ Cn,
x3 := uvec(X) ∈ C�,
x4 := vec(Y ) ∈ Cn2

,

and x :=
[
x�

1 , x�
2 , x�

3 , x�
4

]� ∈ C2n2

. We have

‖X‖F =
√
‖x1‖2 + ‖x2‖2 + ‖x3‖3, ‖Y ‖F = ‖x4‖,

and

‖Z‖F =
√
2 (‖X‖2F + ‖Y ‖2F) =

√
2 ‖x‖.

Recalling that ‖δH‖F = ε and using (4.10), we may show that (4.7), (4.11), and
(3.7) are equivalent to the operator equation x = Φ(x, ε), where the components of
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the operator Φ := [Φ�
1 ,Φ�

2 ,Φ�
3 ,Φ�

4 ]
� : C2n2 → C2n2

are given by the relations

Φ1(x, ε) := M−1Ω
((
δT� ⊗ In

)
Ω�x1 + (In ⊗R)x4 − vec(F11)

)
,

Φ2(x) := −0.5dvec(XXH + Y Y H),(6.1)

Φ3(x) := −x1 − uvec(XXH + Y Y H),

Φ4(x, ε) := −L−1
((
δT� ⊗ In

)
x4 + vec(F21)

)
.

Here x1 is the complex conjugate of x1, the matrix M is as in (4.12), and the matrix
L is as in (5.9). It is assumed also that X has a real main diagonal; see [16]. To
get tighter bounds it is better to work with the Hamiltonian perturbation matrix E
instead of with the general perturbation matrix F . Since F = E(I2n + Z) we obtain
Fi1 = Ei1(In +X)− Ei2Y and

‖Fi1‖F ≤ εi1 + εi2‖x4‖; i = 1, 2,(6.2)

where ε11 = ε22 and 2ε2
11 + ε2

21 + ε2
12 = ε2; see (5.8), (4.1).

Due to (4.4) we have

‖δΣ‖F =
√
2‖δT‖2F + ‖δR‖2F =

∥∥(I2n + ZH
)
(ΣZ − ZΣ) +G

∥∥
F

≤ ‖ΣZ − ZΣ‖F + ε ≤ s‖Z‖F + ε =
√
2 s‖x‖+ ε.

Keeping in mind that G ∈ Ham(2n), it follows from (4.10) and the results in [16]
that

‖δT‖F ≤
∥∥∥∥
[

TX −XT −RY
THY + Y T

]∥∥∥∥
F

+ ‖G11‖F

=

∥∥∥∥S1

[
vec(X)
vec(Y )

]∥∥∥∥+ ‖G11‖F ≤ s1

√
‖X‖2F + ‖Y ‖2F + ε/

√
2

= s1‖x‖+ ε/
√
2,

where

s1 := ‖S1‖2, S1 :=

[
In ⊗ T − T� ⊗ In −(In ⊗R)

0n2×n2 In ⊗ TH + T� ⊗ In

]
.(6.3)

It follows from (6.3) and (2.2) that s1 ≤ s.
Let ξ := [ξ1, ξ2, ξ3, ξ4]

� ∈ R4
+ and

cn :=
√

(n− 1)/(2n).

If ‖xi‖ ≤ ξi, then using (6.3), (6.2), and the estimates from [16] we get

‖Φ1(x, ε)‖F ≤ m‖δT‖F ξ1 + rξ4 +m(ε11 + ε12ξ4)

≤ m(s1‖ξ‖+ ε/
√
2)ξ1 + (r +mε12)ξ4 +mε11 =: f1(ξ, ε),

‖Φ2(x)‖F ≤ 0.5 ‖ξ‖2 =: f2(ξ),

‖Φ3(x)‖F ≤ ξ1 + cn‖ξ‖2 =: f3(ξ),(6.4)

‖Φ4(x, ε)‖F ≤ l‖δT‖F ξ4 + l(ε21 + ε11ξ4)

≤ l(s1‖ξ‖+ ε/
√
2 + ε11)ξ4 + lε21 =: f4(ξ, ε),

where εij = ε eij and 2e2
11 + e2

21 + e2
12 = 1; see (5.16).
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Note that in the trivial case that e11 = e21 = 0 we may choose ξ = 0, which
corresponds to x = 0. Indeed, here the matrix Σ + δΣ is already in Hamiltonian
Schur form and there is nothing to transform. So we assume further that at least one
of the quantities e11 or e21 is positive.

Consider the function f := [f1, f2, f3, f4]
� : R4

+ × R+ → R4
+, defined by (6.4).

Let J(ξ, ε) := f ′
ξ(ξ, ε), ξ �= 0, be the Jacobi matrix of f relative to ξ, and set

J(0, ε) := lim
ξ→0

J(ξ, ε) =




(m/
√
2)ε 0 0 r +mε12

0 0 0 0
1 0 0 0

0 0 0 l
(
ε/
√
2 + ε11

)


 .

The matrix J(ξ, ε) has nonnegative elements, which are continuous functions of ξ and
ε. The spectral radius of J(0, ε) is

rad(J(0, ε)) = max
{
(m/
√
2)ε, l(ε/

√
2 + ε11)

}
,

and hence rad(J(ξ, ε))→ 0 for ξ → 0 and ε→ 0.
The function f is a vector Lyapunov majorant for the operator Φ; see [10, 18].

We recall that a function f of nonnegative arguments is a Lyapunov majorant for Φ
if the following conditions are satisfied:

• For ‖xi‖ ≤ ξi the inequalities ‖Φi(x, ε)‖F ≤ fi(ξ, ε) are fulfilled.
• The function f is nonnegative, continuously differentiable, and nondecreasing
in all its arguments, f(0, 0) = 0 and rad(J(0, 0)) < 1.

In addition we have ‖f(ξ, ε)‖ → ∞ as ‖ξ‖ → ∞, and

‖f(ξ, ε)‖ ≥
√

(mε11)2 + (lε21)2 > 0.

Therefore, according to the technique of Lyapunov majorants (see [10]), and using
the fact that f(ξ, ε) is algebraic in ξ and ε, there exists a number ε0 > 0 with the
following properties:

• For ε ≤ ε0 the system of equations ξ = f(ξ, ε) has a solution ξ = ξ(ε), which is
continuous and nondecreasing in ε and satisfies ξ(0) = 0, rad(J(ξ(ε), ε)) < 1
for ε < ε0, and rad(J(ξ(ε0), ε0)) = 1.

• The function ξ : [0, ε0]→ R4
+ is algebraic, differentiable on the interval [0, ε0),

and its derivative ξ′ satisfies

ξ′(ε) = (I4 − J(ξ(ε), ε))−1f ′
ε(ξ(ε), ε)

for ε < ε0 and ‖ξ′(ε)‖ → ∞ as ε→ ε0.
Thus the critical value ε0 for ε may be determined by solving the system

ξ = f(ξ, ε), det(I4 − J(ξ, ε)) = 0

of five algebraic equations for the five unknowns ξ1, . . . , ξ4, ε.
Let ∆(ε) ⊂ C2n2

be the set of all x such that ‖xi‖ ≤ ξi(ε) for ε ≤ ε0. In view of
(6.4) the operator Φ maps the convex, compact set ∆(ε) into itself. According to the
Schauder fixed point principle (see, e.g., [14, 25]), there exists a solution x ∈ ∆(ε) of
the operator equation x = Φ(x, ε). Thus we have the estimates

‖Y ‖F ≤ ξ4(ε), ‖X‖F ≤
√

ξ2
1(ε) + ξ2

2(ε) + ξ2
3(ε),
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and

‖δU‖F = ‖Z‖F =
√
2 ‖x‖ ≤

√
2 ‖ξ(ε)‖,(6.5)

‖δΣ‖F ≤ s‖Z‖F + ε ≤ s
√
2 ‖ξ(ε)‖+ ε.(6.6)

After some calculations the system ξ = f(ξ, ε) in view of (6.4) yields an algebraic
equation of 8th degree for ‖ξ‖ of the form

8∑
i=0

ai(ε)z
i = 0,(6.7)

where the coefficients ai(ε) are given by

a0(ε) := 2ν2(ε) + (lε21)
2µ2(ε),

a1(ε) := −2lms1

(
2ε11ν(ε) + lε2

21µ(ε)
)
,

a2(ε) := −λ2(ε)µ2(ε) + 2cnλ(ε)µ(ε)ν(ε) + (lms1)
2
(
2ε2

11 + ε2
21

)
,

a3(ε) := 2λ(ε)µ(ε)(ω(ε)− cnlms1ε11)− 2cnν(ε)ω(ε),(6.8)

a4(ε) := dnλ
2(ε)µ2(ε) + 2cnlms1(s1ν(ε) + ε11ω(ε))

− ω2(ε)− 2lms2
1λ(ε)µ(ε),

a5(ε) := 2ω(ε)
(
lms2

1 − dnλ(ε)µ(ε)
)− 2cn(lms1)

2ε11,

a6(ε) := dn
(
ω2(ε) + 2lms2

1λ(ε)µ(ε)
)− (lm)2s4

1,

a7(ε) := −2dnlms2
1ω(ε),

a8(ε) := dn(lm)2s4
1

and

λ(ε) := 1− l
(
ε/
√
2 + ε11

)
,

µ(ε) := 1− (m/
√
2)ε,

dn := (3n− 2)/(4n),

ν(ε) := mε11λ(ε) + lε21(r +mε12),

ω(ε) := s1(lµ(ε) +mλ(ε)).

The discriminant of (6.7) is an algebraic polynomial in ε, whose smallest positive
root is the number ε0. There is no explicit formula for the solution ‖ξ‖ of (6.7) as
a function of ε or for determining ε0. Computable bounds for these quantities are
derived below.

If we represent the solution ‖ξ(ε)‖ as a power series in ε, then after some elemen-
tary calculations we get

‖ξ(ε)‖ = α1ε+ α2ε
2 +O(ε3),

where the coefficients α1 ≤ KU/
√
2 and α2 are determined from

α1 :=
√
2(me11 + lre21)2 + (le21)2,(6.9)

α2 :=
β−1

α1
+ β0 + β1α1 + β2α

2
1,
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and

β−1 := 2lm(me11 + lre21)
(
e12e21 − e2

11 − e11/
√
2
)
− (m/

√
2)(le21)

2,

β0 := −lms1

(
2me2

11 + 2lre11e21 + le2
21

)
,(6.10)

β1 := cn(me11 + lre21) + le11 + (l +m)/
√
2, β2 := s1(l +m).

Hence,

‖δU‖F ≤ (
√
2α1)ε+ (

√
2α2)ε

2 +O(ε3),(6.11)

‖δΣ‖F ≤ (1 +
√
2 sα1)ε+ (

√
2 sα2)ε

2 +O(ε3).(6.12)

We may bound f from above to get slightly less sharp bounds ‖xi‖ ≤ ηi(ε), which
are easier to compute (these new bounds will differ from ξi(ε) only by O(ε2) terms).
It follows from the second and third equations of the system ξ = f(ξ, ε) and from
(6.4) that

ξ3 = ξ1 + 2cnξ2

and

ξ2 = ξ2
1 + 2cnξ1ξ2 + (0.5 + 2c2n)ξ

2
2 + 0.5 ξ2

4 .

Hence,

ξ1 ≤
√

ξ2 = ‖ξ‖/
√
2

(because of the definition of f2) and, since ξ4 ≤ ‖ξ‖, we obtain ξ1‖ξ‖ ≤ ‖ξ‖2/
√
2

and ξ4‖ξ‖ ≤ ‖ξ‖2. Thus we get the majorant system for the vector η with elements
ηi ≥ ξi,

η1 = (m/
√
2)
(
s1‖η‖2 + εη1

)
+ (r +mε12)η4 +mε11,

η2 = 0.5‖η‖2,
η3 = η1 + cn‖η‖2,
η4 = l

(
s1‖η‖2 +

(
ε/
√
2 + ε11

)
η4

)
+ lε21.

This system yields the following biquadratic equation in ‖η‖
α(ε)‖η‖4 − β(ε)‖η‖2 + a0(ε) = 0,(6.13)

where

α(ε) := µ2(ε)
(
(ls1)

2 + dnλ
2(ε)
)
+ 2ν1(ε)(ν1(ε) + cnλ(ε)µ(ε)),

β(ε) := µ2(ε)
(
λ2(ε)− 2l2s1ε21

)− 2ν(ε)(2ν1(ε) + cnλ(ε)µ(ε)),(6.14)

ν1(ε) := s1

(
mλ(ε)/

√
2 + l(r +mε12)

)
,

and a0(ε) is defined from (6.8). We choose the smaller positive root of equation (6.13),

‖η(ε)‖ =
√

2a0(ε)

β(ε) +
√

β2(ε)− 4α(ε)a0(ε)
, ε ∈ [0, ε1],(6.15)



PERTURBATION ANALYSIS OF HAMILTONIAN SCHUR FORMS 409

which is of order O(ε). Here ε1 < ε0 is the smallest positive root of the equation

β2(ε) = 4α(ε)a0(ε).(6.16)

The quantity ε1 > 0 is well defined. Indeed, β(0) = 1, a0(0) = 0, and 0 is not a root
of (6.16). A direct computation shows that ε′ := (l(1/

√
2 + e11))

−1 > 0 is a root of
(6.16), so the equation has at least one positive root. Since β(ε′) < 0, we see that
ε1 < ε′.

As a result, using (4.4) and (5.12), we obtain the rigorous and easily computable
bounds

‖δU‖F ≤
√
2 ‖η(ε)‖,(6.17)

‖δΣ‖F ≤ ε+ s
√
2 ‖η(ε)‖.(6.18)

It may be shown that ‖η(ε)‖ = α1ε + O(ε2) = ‖ξ(ε)‖ + O(ε2). Hence, the bounds
(6.17), (6.18) coincide with (6.5), (6.6) within first order terms of magnitude relative
to the small parameter ε.

The above perturbation analysis for the Hamiltonian Schur form solves the per-
turbation problem for transformation matrices from S∗(2n) rather than from US(2n).

However, the bounds are the same for matrices from US(2n). Indeed, let Ũ =
U [V,W ](I2n + Z) ∈ S∗(2n), where Z = U [X,Y ], be the matrix for which the derived

nonlinear nonlocal perturbation bounds hold. In general Ũ /∈ US(2n). In this case
according to the parametrization (A.8) of US(2n), there exists a matrix R ∈ U(n)
(not necessarily as in (2.2)) such that I2n + U [X,Y R] ∈ US(2n), and hence

Ũc := U [V,W ](I2n + U [X,Y R]) ∈ US(2n).

The matrix YR := Y R satisfies the equation

LR(YR) := THYR + YR(R
HTR) = −(YRR

HδT + F21)R.

It follows from (4.7) that the matrix representation LR := (RHTR)H ⊗ In + In ⊗ TH

of the operator LR is unitarily similar to the matrix L := T� ⊗ In + In ⊗ TH of the
operator L. Indeed, we have LR = (R� ⊗ In)L(R

� ⊗ In)
H, where R� ⊗ In ∈ U(n2).

Hence,

max
Y �=0

‖L−1
R (Y )‖F
‖Y ‖F =

∥∥L−1
R

∥∥
2
= ‖L−1‖2 = l,

and the above perturbation bounds hold for X and YR as well.

6.2. Hamiltonian block-Schur form. The nonlocal perturbation analysis for
the Hamiltonian block-Schur form (2.4) is easier than the analysis of the Hamiltonian

Schur form, because we do not have to make the (1, 1) block of Σ̃ upper triangular.
This additional freedom in the transformation matrix explains why the form (2.4)
may be less sensitive to perturbations in comparison with the form (2.2).

To simplify the presentation we assume X ∈ Her(n) in (3.7), which implies

2X̂ + X̂2 + Ŷ Ŷ H = 0, L̂(Ŷ ) := T̂HŶ + Ŷ T̂ = −Ŷ δT̂ − F̂21.(6.19)
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Set x̂1 := vec(X̂), x̂2 := vec(Ŷ ) ∈ Cn. Then the system of matrix equations (6.19)

may be written as an equivalent operator equation x̂ = Φ̂(x̂, ε), where x̂ := [x̂�
1 , x̂�

2 ]
�

∈ C2n2

, Φ̂ := [Φ̂�
1 , Φ̂�

2 ]
� : C2n2 → C2n2

, and

Φ̂1(x̂) := −0.5vec(X̂2 + Ŷ Ŷ H),

Φ̂2(x̂, ε) := −L̂−1
((

δT̂� ⊗ In

)
x̂2 + vec(F̂21)

)
.

Let ξ̂ := [ξ̂1, ξ̂2]
� ∈ R2

+ and ‖x̂i‖ ≤ ξ̂i. Then we have

‖Φ̂1(x̂, ε)‖F ≤ 0.5 ‖ξ̂‖2 =: f̂1(ξ̂),

‖Φ̂2(x̂, ε)‖F ≤ l(s1‖ξ̂‖+ ε/
√
2 + ε̂11)ξ̂2 + lε̂21 =: f̂2(ξ̂, ε),

where ε̂ij := εêij . We may assume that ê21 > 0, since otherwise Σ̂ + δΣ̂ is in

Hamiltonian block-Schur form, and we have the trivial case ξ̂ = 0 and x̂ = 0.
As in section 6.1 it can be shown that the function f̂ := [f̂1, f̂2]

� : R2
+×R+ → R2

+

is a vector Lyapunov majorant for the operator Φ̂. Hence, there exists ε̂0 > 0 such
that for ε ≤ ε̂0 the system of algebraic equations ξ̂ = f̂(ξ̂, ε) has a continuous solution

ξ̂ = ξ̂(ε), differentiable in ε < ε̂0 and such that ξ̂(0) = 0.

Let ∆̂(ε) ⊂ C2n2

be the set of all x̂ with ‖x̂i‖ ≤ ξ̂(ε) for ε ≤ ε̂0. Then there

exists a solution x̂ ∈ ∆̂(ε) of the operator equation x̂ = Φ̂(x̂, ε). Therefore we have
the estimates

‖δÛ‖F = ‖Ẑ‖F =
√
2 ‖x̂‖ ≤

√
2 ‖ξ̂(ε)‖,(6.20)

‖δΣ̂‖F ≤ s‖Ẑ‖F + ε ≤ s
√
2 ‖ξ̂(ε)‖+ ε.(6.21)

The system ξ̂ = f̂(ξ̂, ε) yields an algebraic equation of 6th degree for ‖ξ̂‖,
6∑

i=0

âi‖ξ̂‖i = 0,(6.22)

where

â0(ε) := (lε̂21)
2, â1(ε) := 0, â2(ε) := −λ̂2(ε), â3(ε) := 2ls1λ̂(ε),

â4(ε) := 0.25λ̂2 − (ls1)
2, â5(ε) := −0.5 ls1λ̂(ε), â6(ε) := 0.25(ls1)

2,

and λ̂(ε) := 1− l(ε/
√
2+ ε̂11). The smallest positive root of the discriminant of (6.22)

is the number ε̂0. If we represent the solution ‖ξ̂‖ of (6.22) as a power series in ε,
then we get

‖ξ̂(ε)‖ = lε̂21 + l2ε̂21(ε/
√
2 + ε̂11 + ls1ε̂21) +O(ε3).

Hence,

‖δÛ‖F ≤
√
2 lε̂21 +

√
2 l2ε̂21(ε/

√
2 + ε̂11 + ls1ε̂21) +O(ε3),(6.23)

‖δΣ̂‖F ≤ (1 +
√
2 ls)ε̂21 +

√
2 l2sε̂21(ε/

√
2 + ε̂11 + ls1ε̂21) +O(ε3).(6.24)

Again, we may bound f̂ from above using the inequality ‖ξ̂‖ξ̂2 ≤ ‖ξ̂‖2 in order to
get slightly less sharp, but easily computable, perturbation bounds. This gives a new
majorant system for η̂ := [η̂1, η̂2]

� ∈ R2
+ with η̂i ≥ ξ̂i, namely,

η̂1 = 0.5 ‖η̂‖2, η̂2 = l
(
s1‖η̂‖2 + (ε/

√
2 + ε̂11)η̂2

)
+ lε̂21.
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The quantity ‖η̂‖ satisfies the biquadratic equation

α̂(ε)‖η̂‖4 − β̂(ε)‖η̂‖2 + â0(ε) = 0,(6.25)

where

α̂(ε) := 0.25 λ̂2(ε) + (ls1)
2, β̂(ε) := λ̂2(ε)− 2l2s1ε̂21.(6.26)

The positive root of (6.25) of order O(ε) is

‖η̂(ε)‖ =
√√√√ 2â0(ε)

β̂(ε) +

√
β̂2 − 4α̂(ε)â0(ε)

, ε ≤ ε̂1,(6.27)

where ε̂1 < ε̂0 is the smallest positive root of the equation β̂2(ε) = 4α̂(ε)â0(ε). Thus
the perturbation bounds for the Hamiltonian block-Schur form becomes

‖δÛ‖F ≤
√
2 ‖η̂(ε)‖,(6.28)

‖δΣ̂‖F ≤ s
√
2 ‖η̂(ε)‖+ ε.(6.29)

Note that ‖η̂(ε)‖ = lε̂21 + O(ε2) = ‖ξ̂(ε)‖ + O(ε2) and hence the bounds (6.20),
(6.21) and (6.28), (6.29) coincide within first order terms relative to ε.

Using (3.9), a nonlocal bound for the gap γ is straightforward, i.e.,

γ ≤ η̂2(ε)
√
1 + η̂2

2(ε), η̂2(ε) :=
l
(
s1‖η̂(ε)‖2 + ε̂21

)
λ̂(ε)

.(6.30)

As in section 6.1 the presented perturbation analysis solves the perturbation prob-
lem for transformation matrices from S∗(2n) rather than from US(2n). The same
arguments as before imply that the bounds are the same for matrices from US(2n).

It can be shown that the given estimates for the gap are identical in first order
with those in [35] (see also Theorem 2.8 from [36]). As nonlinear expressions these
estimates are alternative to the estimates for the gap, i.e., one or the other may give
better results depending on H and δH.

6.3. Block-Schur form. The nonlocal perturbation analysis for the block-Schur
form (2.4) makes sense even when the matrixH has imaginary eigenvalues as described
in assumption A4. In this case we cannot use unitary symplectic transformations,

since they yield S = −TH
and the Lyapunov operator L would be singular.

For the sake of simplicity we take Z11, Z22 ∈ Her(n), which implies

2Zii + Z
2

ii + ZjiZ
H

ji = 0, (In + Z11)Z
H

21 + Z12(In + Z22) = 0,(6.31)

L(Z21) := S Z21 − Z21T = Z21δT − F 21.

In the following analysis we use the representation (4.15), which yields

δT = [In + Z11, Z12]

[
T Z11 − Z11T +RZ21

S Z21 − Z21T

]

and ‖δT‖F ≤ s1

√
‖Z11‖2F + ‖Z21‖2F, where

s1 :=

∥∥∥∥∥
[

In ⊗ T − T
� ⊗ In In ⊗R

0n2×n2 In ⊗ S − T
� ⊗ In

]∥∥∥∥∥
2

.(6.32)
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Set x1 := vec(Z11), x2 := vec(Z12), x3 := vec(Z22), x4 := vec(Z21) ∈ Cn.
Then the system (6.31) is equivalent to the operator equation x = Φ(x, ε), where

x := [x�
1 , x�

2 , x�
3 , x�

4 ]
� ∈ C4n2

, Φ := [Φ
�
1 ,Φ

�
2 ,Φ

�
3 ,Φ

�
4 ]

� : C4n2 → C4n2

, and

Φ1(x) := −0.5vec
(
Z

2

11 + Z12Z
H

12

)
,

Φ2(x) := −vec
(
(In + Z11)Z

H

21(In + Z22)
−1
)
,

Φ3(x) := −0.5vec
(
Z

2

22 + Z21Z
H

21

)
,

Φ4(x, ε) := −L−1
((

δT
� ⊗ In

)
x4 + vec(F 21)

)
.

Let ξ := [ξ1, ξ2, ξ3, ξ4]
� ∈ R4

+ and ‖xi‖ ≤ ξi. Since F 21 = E21(In+Z11)+E22Z21,

we have ‖F 21‖F ≤ ε21 + ε22ξ4 and

‖Φ1(x)‖F ≤ 0.5
(
ξ
2

1 + ξ
2

2

)
=: f1(ξ), ‖Φ2(x)‖F ≤ ξ4

1− ξ3

=: f2(ξ),

‖Φ3(x)‖F ≤ 0.5
(
ξ
2

3 + ξ
2

4

)
=: f3(ξ),

‖Φ4(x, ε)‖F ≤ l

(
s1

√
ξ
2

1 + ξ
2

4 + ε+ ε22

)
ξ4 + lε21 =: f4(ξ, ε),

where εij := ε eij . We may assume that e21 > 0, since otherwise we have the trivial
case ξ = 0 and x = 0.

The function f := [f1, f2, f3, f4]
� : R4

+ × R+ → R4
+ is a Lyapunov majorant

for Φ. Hence, there exists ε0 > 0 such that for ε ≤ ε0 the system ξ = f(ξ, ε) has
a continuous solution ξ = ξ(ε), differentiable in ε < ε0 and such that ξ(0) = 0.
Therefore we have the estimates

‖δU‖F = ‖Z‖F =
√
2 ‖x‖ ≤

√
2 ‖ξ(ε)‖,(6.33)

‖δΣ‖F ≤ s‖Z‖F + ε ≤ s
√
2 ‖ξ(ε)‖+ ε.(6.34)

The system ξ = f(ξ, ε) yields, unfortunately, an algebraic equation of 24th degree
for ‖ξ‖, which is not presented here. The smallest positive root of its discriminant is
ε0.

The asymptotic representation of ‖ξ(ε)‖ is

‖ξ(ε)‖ =
√
2 lε21 +

√
2 l

2
ε21(ε+ ε22 + ls1ε21) +O(ε3).

Hence,

‖δU‖F ≤ 2lε21 + 2l
2
ε21(ε+ ε22 + ls1ε21) +O(ε3),(6.35)

‖δΣ‖F ≤ (1 + 2ls)ε21 + 2l
2
sε21(ε+ ε22 + ls1ε21) +O(ε3).(6.36)

We will bound f from above to get computable bounds. There are many ways

to do this. We bound the sums ξ
2

i + ξ
2

j in f1, f3 and the term ξ4

√
ξ
2

1 + ξ
2

4 in f4 by

‖ξ‖2. Assuming that ‖ξ‖ ≤ 1 we have ξ3 ≤ 0.5 and hence f3(ξ) ≤ 2ξ4. This gives a
new majorant system for ηi ≥ ξi, namely,

η1 = 0.5 ‖η‖2, η2 = 2η4, η3 = η1, η4 = l
(
s1‖η‖2 + ε+ ε22η4

)
+ lε21,
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which yields a biquadratic equation for ‖η‖,(
λ

2
(ε) + 10(ls1)

2
)
‖η‖4 − 2

(
λ(ε)− 10l

2
s1ε21

)
‖η‖2 + 10(lε21)

2 = 0,(6.37)

with

λ(ε) := 1− l(ε+ ε22).(6.38)

The smaller positive root of (6.37) is

‖η(ε)‖ =
√
5 lε21√

λ(ε)− 10l
2
s1ε21 +

√
µ(ε)

, ε ∈ [0, ε1],(6.39)

where

µ(ε) := λ(ε)
(
λ(ε)
(
1− 10(lε21)

2
)− 20 l

2
s1ε21

)
.(6.40)

Here ε1 = min{ε′, ε′′}, where ε′ is the smallest positive root of the equation µ(ε) = 0
and ε′′ is the positive root of the equation ‖η(ε)‖ = 1 (if any). Thus the perturbation
bounds for the block-Schur form become

‖δU‖F ≤ ‖η(ε)‖,(6.41)

‖δΣ‖F ≤ s‖η(ε)‖+ ε.(6.42)

6.4. Summary of the nonlocal perturbation analysis. We summarize the
results of the nonlocal perturbation analysis in the next theorem.

Theorem 6.1. Given a Hamiltonian matrix as in (2.1) and perturbations of the
form (3.1), the nonlocal perturbation bounds for the condensed forms of Hamiltonian
matrices are as follows.

1. For the Hamiltonian Schur form we have

‖δU‖F ≤ (
√
2α1)ε+ (

√
2α2)ε

2 +O(ε3),

‖δΣ‖F ≤ (1 +
√
2 sα1)ε+ (

√
2 sα2)ε

2 +O(ε3)

and

‖δU‖F ≤
√
2 ‖η(ε)‖,

‖δΣ‖F ≤ ε+ s
√
2 ‖η(ε)‖,

with coefficients given by (6.9), (6.10) and (6.15), (6.14), respectively.
2. For the Hamiltonian block-Schur form we have

‖δÛ‖F ≤
√
2 lε̂21 +

√
2 l2ε̂21(ε/

√
2 + ε̂11 + ls1ε̂21) +O(ε3),

‖δΣ̂‖F ≤ (1 +
√
2 ls)ε̂21 +

√
2 l2sε̂21(ε/

√
2 + ε̂11 + ls1ε̂21) +O(ε3)

and

‖δÛ‖F ≤
√
2 ‖η̂(ε)‖,

‖δΣ̂‖F ≤ s
√
2 ‖η̂(ε)‖+ ε,

with coefficients given by (6.27), (6.26).
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3. For the gap we have

γ ≤ η̂2(ε)
√
1 + η̂2

2(ε), η̂2(ε) :=
l
(
s1‖η̂(ε)‖2 + ε̂21

)
λ̂(ε)

with coefficients given by (6.27), (6.26).
4. For the block-Schur form we have

‖δU‖F ≤ 2lε21 + 2l
2
ε21(ε+ ε22 + ls1ε21) +O(ε3),

‖δΣ‖F ≤ (1 + 2ls)ε21 + 2l
2
sε21(ε+ ε22 + ls1ε21) +O(ε3),

and

‖δU‖F ≤ ‖η(ε)‖,
‖δΣ‖F ≤ s‖η(ε)‖+ ε

with coefficients in (6.39), (6.38), and (6.40).

7. Power series expansions. An alternative way to obtain nonlinear perturba-
tion bounds for the condensed forms of Hamiltonian matrices is based on power series
expansions for the perturbations in the condensed forms of Hamiltonian matrices. We
begin with the Hamiltonian Schur form and derive a recurrence for the computation
of the perturbed matrix Ũ , and from this also for Σ̃ of H̃ when the perturbation
δH = εH1 is given.

For ε small enough the matrices Z and δΣ are analytic functions of ε, vanishing
together with ε = 0. Substituting (5.2) in (4.3) and comparing the coefficients we get
the recurrence relation

ΣZk+1 − Zk+1Σ = Σk+1 − E1Zk +

k∑
i=1

ZiΣk+1−i,

Σk =

k−1∑
i=0

ZH
i (ΣZk−i − Zk−iΣ+ E1Zk−i−1), Z0 := In,(7.1)

where E1 := UHH1U . (Note that we have already constructed the first order approx-
imations Z0 = εZ1 and δΣ0 = εΣ1.)

Taking the low operation in the (1, 1) block in (7.1), using the (2, 1) block, and
keeping in mind that low(Σk+1) = 0 and that the (2, 1) block in Σk+1 vanishes, we
get

M lvec(Xk+1) = lvec(RYk+1 + (Nk)11), L(Yk+1) = Nk,21,(7.2)

where M is as in (4.12) and Nk,ij are the corresponding n× n blocks of the matrix

Nk = Nk(Z1, . . . , Zk) := −E1Zk +

k∑
i=1

ZiΣk+1−i .(7.3)

The second equation in (7.2) has a unique solution Yk+1 = L−1(Nk,21), which is then
substituted in the first equation in (7.2).
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At stage k + 1 of the recurrence (7.1) we can determine the whole matrix Yk+1

and the n(n− 1)/2 elements of the lower part lvec(Xk+1) of Xk+1. To determine the
remaining elements of Xk+1 we use (3.7). Substituting the power series expansions
for X = X(ε) and Y = Y (ε) we get

Xk+1 +XH
k+1 = −

k∑
i=1

(
XiX

H
k+1−i + YiY

H
k+1−i

)
=: −Ψk(Z1, . . . , Zk), k ≥ 1.(7.4)

Taking the operations up and diag on both sides of (7.4) we obtain

up(Xk+1) = −(Ψk + low(Xk+1))
H, diag(Xk+1) = −0.5diag(Ψk).(7.5)

Thus the remaining part of the matrix Xk+1 is determined. The presented approach
is justified by the following proposition.

Proposition 7.1. There exists ε∗ > 0 such that the power series expansions
(5.2) are convergent for ε ∈ [0, ε∗).

Proof. As we have shown already, the perturbation problem for the Hamiltonian
Schur form with δH = εH1 is equivalent to the operator equation x = Φ(x, ε), where
Φ is as in (6.1). We have proved in section 6.1 that for each ε ∈ [0, ε0) a solution
x = x(ε) exists such that ‖xi(ε)‖ ≤ ξi(ε). Since Φ is a polynomial in x and ε (in
fact quadratic in x and affine in ε), it follows that the solution x(ε) is analytic in ε.

Hence, it may be represented as the sum of a convergent series
∑∞

k=1 ε
kck, ck ∈ C2n2

,
in the powers of ε, starting from the first power, since x(0) = 0. The number ε∗ > 0
is then the radius of convergence of the power series.

Similar results hold for the Hamiltonian block-Schur and block-Schur forms as
well.

8. A numerical example. In this section we present a numerical example which
illustrates the accuracy and applicability of the derived linear and nonlinear perturba-
tion bounds for the Hamiltonian Schur form. All computations are done in floating-
point arithmetic with round-off unit u = 2.22× 10−16.

Consider a sixth order Hamiltonian matrix which is already in Hamiltonian Schur
form (H = Σ) with

T =


 −1 1 2

0 −2 −1
0 0 −3


 , R =


 2 4 −3

4 −2 1
−3 1 5


 .

The Hamiltonian Schur form is perturbed to

Σ̃ = Σ + δΣ =

[
T + δT R+ δR

0 −(T + δT )T

]
,

where δT = 10−4δT 0, δR = 10−4δR0 and

δT 0 =


 2 −1 4

0 1 −3
0 0 −2


 , δR0 =


 1 −1 0
−1 2 1
0 1 −1


 .



416 M. KONSTANTINOV, V. MEHRMANN, AND P. PETKOV

An orthogonal symplectic transformation with Ũ = U [Ṽ , W̃ ] is applied, where (to 15
digits)

Ṽ =


 0.99999997000000 0.00000002999999 −0.00000003499999

0.00000002999999 0.99999994500001 0.00000003999999
−0.00000003499999 0.00000003999999 0.99999991000002


 ,

W̃ =


 0.00019999998750 −0.00009999998450 0.00009999998000
−0.00009999998450 0.00029999997650 −0.00009999997550
0.00009999998000 −0.00009999997550 0.00039999995650


 ,

so that H̃ = Ũ Σ̃ŨT . This allows us to compute the exact perturbations δA, δB, δC
in the Hamiltonian matrix, which produce the variations δT, δR in the Hamiltonian
Schur form. As a result it is obtained that

δA =


 −0.00009988990302 0.00119979484054 −0.00099992986154

0.00109979486304 −0.00099952981408 0.00069982485308
−0.00019990001756 0.00009980500359 0.00140077982183


 ,

δB =


 0.00030014997894 −0.00040036493293 −0.00029986507103
−0.00040036493292 0.00120041984391 −0.00000014485496
−0.00029986507103 −0.00000014485496 0.00229954960709


 ,

δC =


 0.00040010994597 −0.00050032989395 −0.00009989008602
−0.00050032989395 0.00140038978993 −0.00010014984896
−0.00009989008602 −0.00010014984896 0.00179961969405


 .

For the linear approximation Ulin of the perturbed orthogonal symplectic transforma-
tion Ũ we have that

‖UT
linUlin − I6‖2 = 2.72× 10−7, ‖Ulin − Ũ‖2 = 7.54× 10−7,

and this transformation produces a linear approximation Σlin = UT
linH̃Ulin of the

perturbed Hamiltonian Schur decomposition for which

Tlin =


 −0.99980023313949 0.99990016105472 2.00040110800902

0.00000026099100 −1.99989881036519 −1.00029891030407
−0.00000024021200 0.00000042978581 −3.00020034543892


 ,

Rlin =


 2.00009442867804 3.99990387841553 −3.00000058586934

3.99990387841554 −1.99979566286183 1.00009722174880
−3.00000058586934 1.00009722174880 4.99990085393051


 .

Comparing the exact perturbed matrices T + δT, R + δR with their linear approx-
imations Tlin, Rlin, respectively, we see that the errors in the linear approximations
are of order ε2, as expected. Instead of being a zero 3× 3 matrix, the (2, 1) block of
the matrix Σlin has the form

 −0.00000010979360 0.00000032951121 −0.00000011002986
0.00000032951121 −0.00000039017789 0.00000014961474
−0.00000011002986 0.00000014961474 0.00000038047439


 .

The elements of this block are of order ε2, and its 2-norm is 6.42× 10−7.
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Table 1
Exact and estimated quantities as functions of ε.

ε ‖δU‖F ulin unonlin

5.25× 10−8 8.37× 10−9 5.55× 10−7 5.55× 10−7

5.25× 10−7 8.37× 10−8 5.55× 10−6 5.55× 10−6

5.25× 10−6 8.37× 10−7 5.55× 10−5 5.57× 10−5

5.25× 10−5 8.37× 10−6 5.55× 10−4 5.72× 10−4

5.25× 10−4 8.37× 10−5 5.55× 10−3 *
5.25× 10−3 8.37× 10−4 5.55× 10−2 *

ε ‖δΣ‖F σlin σnonlin

5.25× 10−8 8.94× 10−9 6.87× 10−6 6.87× 10−6

5.25× 10−7 8.94× 10−8 6.87× 10−5 6.88× 10−5

5.25× 10−6 8.94× 10−7 6.87× 10−4 6.89× 10−4

5.25× 10−5 8.94× 10−6 6.87× 10−3 7.08× 10−3

5.25× 10−4 8.94× 10−5 6.87× 10−2 *
5.25× 10−3 8.94× 10−4 6.87× 10−1 *

The gap between the perturbed and original stable invariant subspaces is γ =
5.21 × 10−4. If we compute the projection onto the approximate subspace spanned
by the first three columns of the approximated matrix Ulin, then we obtain that
γ0 = 5.22× 10−4.

To compare the linear and nonlinear estimates for perturbations of different size
and to demonstrate the quality of our bounds, we computed the exact quantities
related to the perturbation analysis along with their estimates for perturbations δH
constructed as described above for

δT = 10−10+iT 0, δR = 10−10+iR0, i = 1, . . . , 6.

In Table 1 we give the values of ε = ‖δH‖F along with the values of the exact
and estimated quantities. The linear bounds for ‖δU‖F and ‖δΣ‖F are denoted by
ulin, σlin, and the nonlinear bounds by unonlin, σnonlin, respectively. The cases in which
the corresponding nonlinear bounds do not exist are denoted by ∗.

Note that the theoretically obtained perturbation bounds are valid for the minimal
perturbations in U and Σ. To construct minimal perturbations, however, is a difficult
optimization problem. In this example δU and δΣ are not constructed as minimal
perturbations, but we see from the numerical results that the computed perturbation
bounds are correct bounds nevertheless.

9. Conclusions and future research. We have presented a complete pertur-
bation analysis of the Hamiltonian Schur form and of two less condensed block-Schur
forms for Hamiltonian matrices H. The analysis is based on the technique of splitting
operators [16, 29] and Lyapunov majorants [10, 18] as well a special representation
of the unitary symplectic group US(2n); see Appendix A. The technique for pertur-
bation analysis of the block-Schur form of a Hamiltonian matrix is applicable to the
investigation of the sensitivity of the block-Schur form S = [S11

0
S12

S22
] of an arbitrary

square matrix A, whose spectrum splits into two nonempty disjoint collections.
From the perturbation results for the condensed forms and the corresponding

Schur bases we have also obtained bounds for the sensitivity of the stable H-invariant
subspace when H has no imaginary eigenvalues. The sensitivity of the stable H-
invariant subspace may be analyzed using the results from [35]; see also [36]. Our
estimates and the estimates from [35] coincide within first order terms. As nonlinear
expressions, both estimates are alternative.
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The Hamiltonian Schur and Hamiltonian block-Schur forms of a Hamiltonian ma-
trix are also Hamiltonian matrices. So in these two cases we have considered struc-
tured Hamiltonian perturbations in order to preserve the Hamiltonian structure of the
condensed forms for the perturbed matrices and to remain in the group of unitary sym-
plectic transformations. This approach corresponds to the use of structure-preserving
methods for transforming Hamiltonian matrices into condensed form. Here we have
also assumed that the initial Hamiltonian matrix has no imaginary eigenvalues. Thus
various phenomena connected with the splitting of imaginary eigenvalues under small
perturbations (such as round-off errors) have not been completely analyzed. Partial
results follow from [31].

The case of general unstructured perturbations of Hamiltonian matrices is covered
by the analysis of the block-Schur condensed form. In this case the transformations
are unitary but not necessarily symplectic. Here we deal with Hamiltonian matrices
which may have imaginary eigenvalues that split into two disjoint collections.

The perturbation bounds are tighter when given in terms of the quantities εij
from (5.8), (4.1), instead of ε; see also [35]. This, however, requires a knowledge
about the norms of the blocks Eij of the transformed perturbation E, which may not
be available even if the norms of the perturbations δA, δB, and δC are known. In
this case one should use bounds in terms of ε such as (5.14), (5.15) which are directly
deducible from the bounds based on εij , keeping in mind that 2ε2

11 + ε2
21 ≤ ε2.

Appendix A. Unitary symplectic matrices. In this appendix we present
parameterizations of the group of unitary symplectic matrices. The matrices from
US(2n) are of the form

U = U [V,W ] :=

[
V W
−W V

]
∈ C2n×2n,(A.1)

where V,W ∈ Cn×n and

V V H +WWH = In, V WH = WV H.(A.2)

Since there are n2 independent real scalar equations in each of the equations (A.2),
the real dimension of US(2n) is 4n2 − 2n2 = 2n2 in contrast to the real dimension of
both U(2n) and Her(2n), which is 4n2. This observation allows us to obtain different
representations of the group US(2n).

For V ∈ Cn×n set F (V ) := (In + V V H)−1/2. If M ∈ Her(n) and N ∈ U(n),
then the matrix U [F (M)N,MF (M)N ] is unitary symplectic and depends on 2n2 real
parameters (the elements of M and N). Hence, the group US(2n) may be generated
as

US(2n) := {U [F (M)N,MF (M)N ] : M ∈ Her(n), N ∈ U(n)} .(A.3)

(Using the dual conditions V HV +WHW = In, W
HV = V HW and interchanging V

and W we get three more equivalent representations.)
We also use matrices of the form (A.1), for which V and W satisfy only the first

equation in (A.2), but not necessarily the second. Let Mn ⊂ Cn×n × Cn×n be the set
of all pairs (V,W ), such that the rows of the matrix [V,W ] are orthonormal. Setting
G(V ) := (In − V V H)1/2 it follows that

Mn = {(V,G(V )N) : ‖V ‖2 ≤ 1, N ∈ U(n)} ,(A.4)

and hence the real dimension of Mn is 3n2.
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The set S∗(2n) of all matrices of the form (A.1), which satisfy the first equation
in (A.2), is isomorphic to Mn and according to (A.4) may be represented as

S∗(2n) := {U [V,G(V )N ] : N ∈ U(n), ‖V ‖2 ≤ 1} .
Note that US(2n) ⊂ S∗(2n), but S∗(2n) is not a subset of S(2n) and is not

a (multiplicative) group, since in general U1, U2 ∈ S∗(2n) does not imply U1U2 ∈
S∗(2n). Furthermore, S∗(2n) contains matrices of rank n, which is the minimum
possible rank, since obviously U ∈ S∗(2n) implies rank(U) ≥ n.

Example 4. Let U = U [V,W ], where V = 1√
2
Θ, W = ıV, and Θ ∈ U(n). Then

UUH =

[
In ıIn
−ıIn In

]
=

[
In ıIn
0 In

] [
0 0
0 In

] [
In 0
−ıIn In

]
,

and hence U is of rank n.
If U ∈ S∗(2n), then UJ2nU

H = J2n + diag(Ψ,Ψ) and

UUH = I2n +

[
0 ΨH

Ψ 0

]
,

where Ψ := VWH −WV H. Hence, we have

S∗(2n) ∩ S(2n) = S∗(2n) ∩U(2n) = US(2n).

In our analysis we construct matrices U = U [V,W ] ∈ S∗(2n) and then transform
them to U [V,WN ] with N ∈ U(n) in order to get U [V,WN ] ∈ US(2n). Although
S∗(2n) contains US(2n) as a subset, it is not a priori clear whether for each (V,W ) ∈
Mn there exists N ∈ U(n), such that U [V,WN ] ∈ US(2n). We show that such N
always exists and give an explicit expression for N .

We can introduce an equivalence relation for matrices in S∗(2n) by saying that
U = U [V,W ] and U ′ = U [V,W ′] are equivalent if there exists N ∈ U(n) such that
W ′ = WN . For this equivalence relation we can study the canonical sets, i.e., the set
that contains exactly one representative of each equivalence class.

In the following proposition we show that US(2n) is a canonical set of S∗(2n)
and give in the proof an explicit expression for the canonical form Uc, i.e., the repre-
sentative of each equivalence class in U ∈ S∗(2n).

Proposition A.1. The group US(2n) is a canonical set for S∗(2n).
Proof. Every matrix U = U [V,W ] ∈ S∗(2n) may be represented in the form

U = U [V,G(V )N ]. If VWH = WV H, then already U ∈ US(2n) and we may set
Uc = U . In the general case VWH �= WV H we construct R ∈ U(n) such that
Uc := U [V,G(V )NR] ∈ US(2n). For this purpose R must satisfy V (WR)H = WRV H

or V (NR)HG(V ) = G(V )NRV H. To construct R we perform a factorization

V = P (V )D(V )QH(V ),(A.5)

with P (V ), Q(V ) ∈ U(n) and D(V ) diagonal, but in contrast to the usual singu-
lar value decomposition [9], we do not require the diagonal elements of D(V ) to be
nonnegative or ordered in a decreasing way (see [5] for the analysis and numerical
computation of such decompositions). To obtain that the factorization is unique, the
freedom in such decompositions is resolved by requiring that P (V )QH(V ) is closest
to In. Set

µ(V ) :=
∥∥P (V )QH(V )− In

∥∥(A.6)

= min
{∥∥PQH − In

∥∥ : PHV Q diagonal; P,Q ∈ U(n)
}
.



420 M. KONSTANTINOV, V. MEHRMANN, AND P. PETKOV

The minimum is taken over a compact subset of U(n)×U(n) and is hence achieved.
Then we obtain G(V ) = P (V )G(D(V ))PH(V ) and the equation for NR becomes

P (V )D(V )QH(V )(NR)HP (V )G(D(V ))PH(V )

= P (V )G(D(V ))PH(V )NRQ(V )D(V )PH(V ).

Setting NR = P (V )ΛQH(V ), where Λ ∈ U(n), it follows that Λ satisfies

G(D(V ))ΛD(V ) = D(V )ΛHG(D(V )).(A.7)

Suppose that D(V ) has n0 zero eigenvalues, n1 eigenvalues of modulus 1, and k
pairwise distinct eigenvalues d1, . . . , dk (0 < |di| < 1) with algebraic multiplicities
ν1, . . . , νk (n0 + n1 + ν1 + · · ·+ νk = n). Then the solution set of (A.7) is isomorphic
to

U(n0)×U(n1)×U(ν1) ∩Her(ν1)× · · · ×U(νk) ∩Her(νk).

Generically we have n0 = n1 = 0 and σ1 = · · · = σn = 1, and the solutions of (A.7)
are of the form Λ = diag(±1, . . . ,±1).

In order to get a representation which is generically unique, we choose Λ = In,
and then we have NR = P (V )QH(V ) and hence

Uc := U [V,G(V )P (V )QH(V )] ∈ US(2n),

which finishes the proof.
From the previous analysis we obtain the following new parametrizations of the

group US(2n):

US(2n) =
{
U
[
V,
(
In − V V H

)1/2
P (V )QH(V )

]
: ‖V ‖2 ≤ 1

}
=
{
U
[(
In −WWH

)1/2
P (W )QH(W ),W

]
: ‖W‖2 ≤ 1

}
.(A.8)

The parametrization (A.8) is more convenient than (A.3) in analyzing the similarity
action of US(2n) on the set of Hamiltonian matrices.

Example 5. Consider the matrix U from Example 4. We have N = ıΘ and
P (V )QH(V ) = Θ. Hence, the canonical form of U is Uc = U [V, V ] ∈ US(2n), with
V = Θ/

√
2.

The minimal distance µ(V ) in (A.6) is a characteristic of the matrix V , revealing
the sensitivity of the factors P,Q in the decomposition (A.5). If V is normal, then
we have P (V ) = Q(V ) and µ(V ) = 0. But µ may be discontinuous for derogatory
matrices V . Also it is possible that µ is continuous at a point V , where P and Q are
discontinuous. Furthermore it is worth mentioning that P and Q may be less sensitive
to perturbations than the matrices of left and right singular vectors in the singular
value decomposition (SVD) of V . For a detailed analysis of these factorizations, see [5].
All these instructive facts are illustrated in the following examples. To compare with
the standard SVD, introduce µ0 analogous to µ as µ0(V ) :=

∥∥P0(V )QH
0 (V )− In

∥∥,
where P0, Q0 are those unitary factors in the SVD of V for which the minimum is
achieved. Obviously µ(V ) ≤ µ0(V ), i.e., the diagonal decomposition is less sensitive
to perturbations than the standard SVD.

Example 6. Let V = I2 = PDQH with P = D = Q = I2 be perturbed to
V + εF = [1ε

ε
1 ]. Then both pairs (P,Q) and (P0, Q0) jump from (I2, I2) to (Θ,Θ),
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where Θ := (I2±J2)/
√
2, being discontinuous as functions of ε for ε = 0. At the same

time µ(V + εF ) = µ0(V + εF ) = 0, i.e., the functions ε �→ µ(V + εF ), µ0(V + εF ) are
constant and hence continuous.

Example 7. Let V = [ 10
0
0 ] be perturbed to V + εF = [ 10

0
−ε ], ε > 0. Then the

pair (P,Q) = (I2, I2) remains unchanged, but the pair (P0, Q0) jumps from (I2, I2)
to ([10

0
−1 ], I2). Hence, the function ε �→ µ(V + εF ) = 0 is constant, but the function

ε �→ µ0(V + εF ) is discontinuous at ε = 0.
Example 8. Let V = 02×2 be perturbed to V + εF = [ 0ε

0
0 ], ε > 0. Then

both pairs (P,Q) = (P0, Q0) jump from (I2, I2) to (±J2, I2). Hence, the functions
ε �→ µ(V + εF ) = µ0(V + εF ) are discontinuous at ε = 0.

Appendix B. One-parameter families of perturbations. In the sensitivity
analysis of the Hamiltonian Schur form of H we study the case when the minimally
perturbed matrices are analytic functions in ε that vanish at ε = 0. Here we impose
the additional assumption that H (and hence T ) has distinct eigenvalues for the
following reasons.

The case of multiple eigenvalues is more complicated and may lead to nonanaly-
ticity or even discontinuity of some of the involved quantities. Indeed (see [37]),
if a defective matrix M0 ∈ Cn×n is perturbed to M0 + εM1, where ε is a small
parameter, then some eigenvalues of M0 + εM1 may depend on fractional powers εp/q

of ε, being nondifferentiable in ε = 0 and hence nonanalytical in a neighborhood
of ε = 0. If M0 is nonderogatory (i.e., if each eigenvalue of M0 is involved in only
one Jordan block), then the minimal perturbations in the corresponding eigenvectors
and principal vectors, as well as in the Schur vectors of M0 + εM1, will depend on
εp/q as well. If M0 is derogatory, then not only the minimal perturbations in some
eigenvectors and principal vectors but also the minimal perturbations in some of the
Schur vectors of M0+εM1 may be discontinuous functions of ε. In this case the modal
basis, which yields the Jordan canonical form, and the Schur basis, which yields the
Schur form, have equally unpleasant behavior, and this is true also for normal matrices
[27]. It should be emphasized that the Schur form is continuous as a function of the
perturbations but that the Schur basis may be a discontinuous function of the same
perturbations. The bases of singular vectors may also be discontinuous functions of
the perturbations (see Examples 6–8).

To give a quantitative expression for the sensitivity of canonical forms, let CF ⊂
Cn×n be a set of condensed forms for the similarity action of a group Γ ⊂ GL(n) on
Cn×n. To avoid trivial results let us assume that Γ is large enough, e.g., U(n) ⊂ Γ.
Then we may assume that CF ⊂ T(n). For a fixed M ∈ Cn×n denote by

B(M) := {V ∈ Γ : V −1MV ∈ CF}

the set of canonical bases for M (i.e., the set of all matrices from Γ, which transform
M into a condensed form), and by

C(M) := {V −1MV : V ∈ B(M)}

the set of condensed forms of M (in the case of canonical forms, C(M) should contain
exactly one element). For B1,B2 ⊂ Cn×n let

d(B1,B2) := inf{‖M1 −M2‖ : Mi ∈ Bi}

be the distance between B1 and B2.
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The sensitivity of the condensed forms of M may then be measured by the quan-
tity

ω(ε) := max{d(C(M),C(M +N)) : ‖N‖ ≤ ε}, ε ≥ 0.

Obviously ω(0) = 0. For the transformation group Γ = U(n) the function ω : R+ →
R+ is continuous and satisfies ω(ε) = O(ε1/k), ε → 0, where k is the index of nilpo-
tency of up(Mc) and Mc ∈ C(M); see [9].

The function ω is discontinuous for Jordan canonical forms, where CF is the set
of bidiagonal matrices with elements 1 or 0 on the super diagonal. However, the
ones in the super diagonal are introduced for purely theoretical purposes to make the
form canonical under the action of the general linear group. But because of that the
transformation matrices may have arbitrary large norms, which makes the standard
Jordan canonical form not very suitable for computations in finite arithmetic. For
computational purposes it is better to use either upper triangular forms or variants
of the Jordan canonical form with no restrictions on the sizes of the elements on the
super diagonal; see, e.g., [12, 13, 32] and [30].

In order to analyze the sensitivity of the transformation matrices let N1, N2 ∈
Cn×n and define a function b via

b(ε) := max
‖Ni‖≤ε

min
Vi∈B(M+Ni)

‖V1 − V2‖.

The expression b(ε) may be used to analyze the sensitivity of the canonical basis V
of M relative to perturbations of size ε. We have b(0) = 0. The function b will
be discontinuous at the point ε = 0 for both transformation groups Γ = U(n) and
Γ = GL(n) in the case when the matrix M is derogatory.

The sensitivity of Schur and Hamiltonian Schur forms is illustrated in the next
three examples.

Example 9. Let the nonderogatory matrix M = [ 00
1
0 ] in Schur form T = M and

with Schur basis V = I2 be perturbed to M̃ = [ 0ε
1
0 ], with ε > 0. Then the Schur

form T̃ of M̃ is T̃ = Ṽ HM̃Ṽ = [ ε
1/2

0
1−ε
−ε1/2 ], where Ṽ = (1 + ε)−1/2[ 1

ε1/2
−ε1/2

1 ]. For
ε→ 0, the minimal perturbations satisfy

‖Ṽ − I2‖2 =
√
2
(
1− (1 + ε)−1/2

)1/2
= ε1/2 +O(ε3/2),

‖T̃ − T‖2 =
(
ε+ ε2/2 +

(
ε+ ε2/4

)1/2)1/2
= ε1/2 +O(ε).

Hence, the sensitivities of both the Schur form and the Schur basis are of asymptotic
order ε1/2 for small ε.

Example 10. Consider the derogatory matrix M = 0 in Schur form T = M and
with Schur basis V = I2. Taking N1 = [ 0ε

0
0 ], N2 = NT

1 with ε > 0, we get

B(N1) =

{
±
[

0 1
−1 0

]
,±
[

0 1
1 0

]}
, B(N2) =

{
±I2,±

[
1 0
0 −1

]}
.

The distance between B(N1) and B(N2), measured in ‖ ‖2, is
√
2. Hence, b(0) = 0

and b(ε) =
√
2 for ε > 0, i.e., the function b is discontinuous at ε = 0, which means

that the transformation matrices are infinitely sensitive. At the same time we have
ω(ε) = ε, i.e., the Schur form is of minimal sensitivity.
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Example 11. Consider the derogatory matrix H = diag(−I2, I2) which is in
Hamiltonian Schur form with Hamiltonian Schur basis U = I4. Let, as in Exam-
ple 10, δH = diag(N1,−N2). In view of (2.3) and Example 10 there are four matrices

Ũ1,2,3,4 = diag(±J2,±J2) which transform H̃ into Hamiltonian Schur form so that

the perturbation δUi = Ũi − I4 in Ui is minimal. For all of them ‖δUi‖2 =
√
2 and

‖δUi‖F = 2
√
2. Hence, the symplectic Schur basis of the matrix H is discontinuous

due to the derogatory structure of H. Note, however, that despite this discontinuity,
the stable invariant subspace is not altered by these perturbations.

Appendix C. The technique of splitting operators. The technique of split-
ting operators [16, 18, 29] allows us to solve efficiently the perturbation problem for
Schur and generalized Schur forms, as well as other problems in linear algebra and
control theory. It is based on the following idea. Let a matrix problem with nominal
solution I be given and let I + X be the solution of the corresponding perturbed
problem. Let an invertible linear operatorX �→ L(X) = LX − XL and a nonlinear
operator X �→ F (X) be given, where L is upper triangular and I+X is unitary. Sup-
pose that the operator equation for X is L(X) = F (X), together with the unitarity
condition X+XH+XXH = 0. Then it may be split into three operator equations for
the strictly lower low(X), diagonal diag(X), and strictly upper up(X) parts of X.
Application of a fixed point principle then allows us to estimate the norms of the fixed
points of the operator Φ(·) := L−1(F (·)) and gives the desired perturbation bound.
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Abstract. We present a roundoff error analysis of a null space method for solving quadratic
programming minimization problems. This method combines the use of a direct LU factorization of
the constraints with an iterative solver on the corresponding null space. Numerical experiments are
presented which give evidence of the good performance of the algorithm on sparse matrices.
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1. Introduction. Let M ∈ R
n×n be a symmetric and positive semidefinite ma-

trix, and let A ∈ R
n×m,m ≤ n, be a real full rank matrix, q ∈ R

n and b ∈ R
m. The

quadratic programming problem with equality constraints

min
AT x=b

1

2
xTMx + qTx(1.1)

has a unique solution x̂ if and only if Ker(AT ) ∩ Ker(M) = {0}. Introducing the
vector u ∈ R

m of the Lagrangian parameters the problem (1.1) is equivalent to the
augmented system

[
M A
AT 0

] [
x
u

]
=

[ −q
b

]
.(1.2)

The augmented matrix is invertible, and the solution [x̂T , ûT ]T is composed of the so-
lution of problem (1.1) and the Lagrangian parameters of the gradient of the objective
function at x̂.

In this paper, we present a roundoff error analysis of a null space method which
uses a mixture of direct and iterative solvers. The direct solver is based on the LU
factorization of the matrix A. Similar error analyses are discussed in [8, 19] for the
least squares problems, and in [13] for a different algorithm for quadratic programming
problems. The use of iterative algorithms is not taken into account in [8] or [13]. In
[4, 7, 21] similar algorithms are proposed for the constrained least squares problems:
these papers focus on the convergence properties of the iterative methods and use
block partitioning of AT = [ST ;NT ], where ST is assumed square and nonsingular,
to compute a null space basis. In [3] the error analysis is presented when the QR
algorithm is used to factorize A.

In section 2 we present the details of the algorithm, and in section 3 we analyze
its roundoff error propagation. In section 4 we introduce upper bounds for the error
affecting the computed solution x and the computed Lagrangian parameters u. It

∗Received by the editors August 1, 2000; accepted for publication (in revised form) by Z. Strakoš
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should be pointed out that the augmented system (1.2) also gives the solution to the
(dual) least squares problem

min
u

1

2
(Au + q)TM−1(Au + q) + bTu.(1.3)

Thus, the results given in sections 3 and 4 are equally valid for this problem.
In section 5, we show the results of the numerical tests that we conducted on

selected experiments, and in section 6 we give our conclusions.
In the following, we will denote the augmented matrix by A, and by E1 and E2

the matrices

E1 =

[
Im

0n−m,m

]
and E2 =

[
0m,n−m

In−m

]
.

Let fl(·) denote the result of a floating point computation. We assume that

fl(α✷β) = (α✷β)(1 + δ(✷, α, β)); |δ(✷, α, β)| ≤ ε,(1.4)

where α and β are floating point numbers, ε is the machine precision, and ✷ is
one of + − ∗ /. To a great extent modern computers have arithmetic that satisfies
assumption (1.4) with the exception of some CRAY computers (e.g., CRAY2 and
CRAY-YMP). Furthermore, we assume that the scalar products are accumulated
using either extended precision arithmetic or the Kahan summation formula [22, 9]
(for more details about these techniques we refer to [15, 20]). As a consequence of
these assumptions, given x and y real vectors of dimension n, we have

fl(xT y) = xT y + xTDy + s, |D| ≤ 3εI, |s| ≤ O(nε2|x|T |y|).

Given an n × m matrix B of entries Bij and an n-vector v of entries vi, we
will denote by |B| and |v| the matrix and the vector whose entries are the absolute
values of the entries of B and v. Finally, for the sake of simplicity we will denote
by ci, i = 0, 1, . . ., the constants that will be used in the expressions of the roundoff
errors.

2. Algorithms. In this section, we take into account the null space classical
algorithm, which is described in [14], for the solution of (1.1).

We choose a formulation of this algorithm which is based on the factorization
of the augmented matrix, and in the next section we will show how this formulation
enables us to give a roundoff error analysis of the algorithm.

The matrix A can be factorized in the following way:

PAQ = L

[
U
0

]
=

[
L1 0
L2 I

] [
U
0

]
,(2.1)

where U ∈ R
m×m is an upper triangular matrix, L ∈ R

n×n is a nonsingular lower
triangular matrix generated by the Gaussian algorithm applied to PAQ, and P , Q
are permutation matrices that cope with numerical pivoting and sparsity [10, 17, 28].
For the sake of simplicity, we will omit P , Q in the following, assuming that M , A,
q, and b have been consistently permuted. Let

M̃ = L−1ML−T .
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The augmented matrix A can be factorized in the following way:

A =

[
L 0
0 UT

] M̃11 M̃12 Im
M̃T

12 M̃22 0
Im 0 0


[ LT 0

0 U

]
.

Let Z = L−TE2. The matrix Z is a nonorthonormal basis of the kernel of AT .
On the basis of the previous discussion, we obtain the following algorithm.
Null space algorithm. [

h
v

]
=

[ −L−1q
U−T b

]
,

h1 = ET
1 h,

h2 = ET
2 h.

Solve the block lower triangular system
 Im 0 0

M̃T
12 M̃22 0

M̃11 M̃12 Im




 z1

z2

z3


 =


 v

h2

h1


(2.2)

and let [
x1

x2

]
= L−T

[
z1

z2

]
,

u = U−1z3.

It follows directly from (2.1) that x2 = z2. Frequently, the product L−1ML−T

cannot be performed directly because the complexity would be too high (O(n3))
or because the resulting matrix would be fairly dense despite the sparsity of M .
Nevertheless, in some cases the product can be performed successfully, obtaining a
sparse result. Alternatively, in solving the triangular system (2.2), we can perform
the product of a submatrix of M̃ by a vector in the following way:

M̃ijy = ET
i L−1(M(L−TEjy)) with (i, j) = (1, 2).(2.3)

This approach has the advantage of performing backward and forward substitution
for triangular matrices.

In the null space algorithm, we also need to solve M̃22x2 = p. We have two
alternative ways of proceeding. If n −m is small (the number of constraints is very
close to the number of unknowns) or M̃22 is still sparse, we can explicitly compute M̃22

using the algorithm (2.3) and then solve the system using the Cholesky factorization.
Otherwise, we can solve the linear system M̃22x2 = p using a conjugate gradient
algorithm (see [18]) without explicitly computing M̃22 and using (2.3) to perform the
matrix by vector products.

3. Roundoff error analysis. In the following we will denote the computed
values of the corresponding variables by z̄1, z̄2, z̄3, x̄, and ū. The roundoff properties
of the Gaussian elimination with partial pivoting (GEPP) are very well known. In
[28] and [20, Chapter 9] it is shown that the computed L̄ and Ū satisfy the following
equation:

(A + δA) = L̄

[
Ū
0

]
(3.1)
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with

|δA| ≤ c1mε(|A|+ |L̄|E1|Ū |) +O(ε2).(3.2)

We now use the previous properties to analyze the roundoff in the algorithm (2.3) for
the matrix vector product. First of all, we have [20, Chapter 3]

fl(My) = (M + G)y with |G| ≤ 3ε|M |+O(ε2)

and

fl(L̄−1y) = (L̄ + δL1)
−1y with |δL1| ≤ 3ε|L̄|E1E

T
1 +O(ε2),

f l(L̄−T y) = (L̄ + δL2)
−T y with |δL2| ≤ 3ε|L̄|E1E

T
1 +O(ε2).

Therefore, it follows that for i, j = 1, 2,

fl(M̃ijy) = ET
i fl(L̄−1fl(Mfl(L̄−TEjy)))(3.3)

= ET
i (L̄ + δL1)

−1(M + G)(L̄ + δL2)
−TEjy.

If we assume that

ε‖L‖∞‖L−1‖∞  1,(3.4)

we can linearize the expressions and obtain

fl(M̃ijy) = ET
i L̄−1(M + Gij)L̄−TEjy,(3.5)

where

Gij = G− δL1L̄
−1M −ML̄−T δL2

T +O(ε2)

and

|Gij | ≤ c3ε(|M |+ |L̄||M̂ ||L̄T |+O(ε2)), M̂ = L̄−1ML̄−T .(3.6)

In the following, M̂ij = ET
i M̂Ej with (i, j) = (1, 2), and we will assume that the

matrix M̂22 is invertible. We can now analyze the following variants of the null space
algorithm.

Variant A. If we can afford both the complexity and the storage necessary to
the explicit computation of M̃22, then we can invert the diagonal block in (2.2) by the
Cholesky factorization algorithm, which computes a lower triangular matrix R such
that M̃22 = RRT . Thus, following the analysis given by Wilkinson [28] (see also [20,
Chapter 10]), we prove that R, the computed value of R, and fl(M̃22), the computed
value of M̃22, satisfy the following relations:

fl(M̃22) = ET
2 L̄−1(M + G22)L̄−TE2,(3.7)

|G22| ≤ c3ε(|M |+ |L̄||M̂ ||L̄T |+O(ε2)),

RR
T
= ET

2 L̄−1(M + G22)L̄−TE2 + ET
2 L̄−1L̄E2G4E

T
2 L̄T L̄−TE2(3.8)

= ET
2 L̄−1(M + G22)L̄−TE2

with

|G4| ≤ (n−m)ε|R||RT |,(3.9)

|G22| ≤ c4(n−m)ε(|M |+ |L̄||M̂ ||L̄T |+ E2|R||RT |ET
2 ) +O(ε2).(3.10)
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Variant B. Alternatively, we can solve the system M̃22x2 = h2 − M̃T
12z1 using

an iterative method.

Variant B1. If we incorporate within the iterative method a stopping criterion
based on the a posteriori componentwise backward error theory [20, Chapter 7], then
a stopping criterion such as

IF |M̂22x
(j)
2 − fl(h2 − M̂T

12z1)| ≤ η|ET
2 ME2||x(j)

2 | THEN STOP,(3.11)

with η < 1 an a priori threshold fixed by the user, will guarantee that the computed

solution x̄2 = x
(j)
2 satisfies the perturbed linear system

(M̂22 + E22)x2 = fl(h2 − M̂T
12z̄1), |E22| ≤ η|ET

2 ME2|.
Moreover, we can project the error on the null space such that we have

(ET
2 L̄−1(M + E)L̄−TE2)x2 = h2 − fl(M̂T

12z̄1)(3.12)

with

|E| ≤ η(1 + ε)(E2E
T
2 |M |E2E

T
2 ) + εE2E

T
2 |L̄−1||M |+O(ε2).(3.13)

The choice of η will depend on the properties of the problem that we want to
solve, and, in the practical cases, η can be frequently much larger than ε.

Variant B2. If we use the conjugate gradient method, it is quite natural to
have a stopping criterion which takes advantage of the minimization property of this
method. At each step j the conjugate gradient algorithm minimizes the energy norm

of the error δx2 = x2 − x̄
(j)
2 on a Krylov space. The space R

n−m with the norm

‖y‖M̃22
= (yT M̃22y)

(1/2)

induces the dual norm

‖f‖M̃−1
22

= (fT M̃−1
22 f)(1/2)

for its dual space. Therefore, a stopping criterion such as

IF ‖M̂22x
(j)
2 − h̃‖

M̂−1
22

≤ η‖h̃‖
M̂−1

22

THEN STOP,(3.14)

where h̃ = fl(h2 − M̂T
12z̄1), will guarantee [2] that the computed solution x̄2 = x

(j)
2 ,

which satisfies it, solves the perturbed linear system

M̂22x2 = h̃ + f,

‖f‖
M̂−1

22

≤ η‖h̃‖
M̂−1

22

.

Moreover, because ZTE2 = I, we can project the error on the null space as follows:

(ET
2 L̄−1ML̄−TE2)x2 = h̃ + ET

2 L̄−1δq(3.15)

with

δq = E2f, ‖f‖
M̂−1

22

≤ η‖h̃‖
M̂−1

22

≤ η‖x2‖M̂22
+O(η2).(3.16)
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Using the previous results, we can now prove the following theorem.
Theorem 3.1. Let x̄ and ū be the values of x and u, solutions of (2), computed

with the null space algorithm. If ε‖L̄−1‖∞‖L̄‖∞  1, then there exist the matrices
δM ∈ R

n×n and δA1, δA2 ∈ R
n×m and the vector δq ∈ R

n such that[
M + δM A + δA1

(A + δA2)
T 0

] [
x̄
ū

]
=

[ −(q + δq)
b

]
.

Furthermore, we have

|δA1| ≤ c2mε(|A|+ |L̄|E1|Ū |) +O(ε2),

|δA2| ≤ c2mε(|A|+ |L̄|E1|Ū |) +O(ε2).

If we use an iterative solver with (3.11) and a threshold η (Variant B1),

|δM | ≤ c6εH(|M |+ |L̄||M̂ ||L̄|T )HT + ηE2E
T
2 |M |E2E

T
2 +O(ε2),

δq = 0,

where H = I + E2E
T
2 |L̄−1|E1E

T
1 .

If we use an iterative solver with (3.14) and a threshold η (Variant B2),

|δM | ≤ c6εH(|M |+ |L̄||M̂ ||L̄|T )HT +O(ε2),

‖δq‖
E2M̂

−1
22 ET

2

≤ η‖x2‖M̂22
+O(η2).

Otherwise, if we build M̃22 and then factorize and solve the linear system by Cholesky
factorization (Variant A), we have δq = 0 and

|δM | ≤ c4(n−m)εH(|M |+ |L̄||M̂ ||L̄|T + E2|R||RT |ET
2 )HT +O(ε2).

Proof. From [20, Theorem 8.5, p. 154] it follows that the computed values x̄, z̄1,
z̄2, z̄3, and ū satisfy the equations

(Ū + δU1)ū = z̄3, (L̄ + δL3)
T x̄ =

[
z̄1

z̄2

]
,(3.17)

where

|δU1| ≤ 3ε|Ū |+O(ε2),(3.18)

|δL3| ≤ 3ε|L̄|E1E
T
1 +O(ε2).(3.19)

Moreover, the vector z̄ satisfies the system


 M̂11 + δM̂11 M̂12 + δM̂12 Im

M̂T
12 + δM̂21 M̂22 + δM̂22 0

Im 0 0




 z̄1

z̄2

z̄3


 =


 h̄1

h̄2

v̄


 ,(3.20)

where M̂ = L̄−1ML̄−T ,

δM̂ij = ET
i L̄−1GijL̄−TEj , (i, j) �= (2, 2),
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and

δM̂22 = ET
2 L̄−1G22L̄−TE2,

or

δM̂22 = ET
2 L̄−1EL̄−TE2.

Once more, from [20, Theorem 8.5, p. 154] it follows that the computed values h̄
and v̄ satisfy

(Ū + δU2)
T v̄ = b, (L̄ + δL4)h̄ = −q,(3.21)

where

|δU2| ≤ 3ε|Ū |+O(ε2), |δL4| ≤ 3ε|L̄|E1E
T
1 +O(ε2).(3.22)

Finally, combining (3.21), (3.20), and (3.17) with (3.1) we have

[
M + δM A + δA1

(A + δA2)
T 0

] [
x̄
ū

]
=

[ −q
b

]
,

where

δM =
∑

i,j=1,2

L̄EiδM̂ijE
T
j L̄T ,

and

δA1 = δA + δL4E1Ū + L̄E1δU1 +O(ε2), δA2 = δA + δL3E1Ū + L̄E1δU2 +O(ε2).

The matrix δM can be split into two contributions: δM = δM1 + δM2, where

δM2 = E2δM̂22E
T
2 .

Moreover, defining

H =

[
I 0

ET
2 |L̄−1|E1 I

]
,

we point out that

|L̄EiE
T
i L̄−1| ≤ H, i = 1, 2.

If we choose to invert the diagonal block M̃22 by the Cholesky factorization, the
|δM2| can be bounded using (3.10) as follows:

|δM2| ≤ c5(n−m)εH(|M |+ |L̄||M̂ ||L̄|T + E2|R||RT |ET
2 )HT +O(ε2).(3.23)

Alternatively, using an iterative solver with (3.11), we deduce from (3.12) and (3.13)
that

|δM2| ≤ ηE2E
T
2 |M |E2E

T
2 + 2εH|M |HT +O(ε2).(3.24)
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We can now evaluate the perturbations by the use of (3.1), (3.6), (3.18), (3.19),
(3.22) and, alternatively, either of (3.23) or of (3.24):

|δA1| ≤ c2mε(|A|+ |L̄|E1|Ū |) +O(ε2),

|δA2| ≤ c2mε(|A|+ |L̄|E1|Ū |) +O(ε2),

and either

|δM | ≤ c4(n−m)εH(|M |+ |L̄||M̂ ||L̄|T + E2|R||RT |ET
2 )HT +O(ε2)

or

|δM | ≤ c6εH(|M |+ |L̄||M̂ ||L̄|T )HT + η(E2E
T
2 |M |E2E

T
2 +O(ε2)).

Finally, using (3.14), the result follows straightforwardly from (3.15) and (3.16).

4. Forward error. If we denote by A− = U−1ET
1 L−1 a generalized inverse of

A (A− is not a Moore–Penrose pseudoinverse) [5, Chapter 6], by Z = L−TE2 the
nonorthogonal basis for Ker(AT ), and by P = I −MZM̃−1

22 ZT the oblique projec-
tion onto span(A) along span(MZ) [23, section 5.8], it is easy to verify by direct
computation that

A−1 =

[
ZM̃−1

22 ZT PT (A−)T

A−P −A−PM(A−)T

]
.(4.1)

Following the results of section 3, we are able to represent the errors δx = x− x
and δu = u− u as follows:[

δx
δu

]
= A−1

[ −δA1u− δMx− δq
−δAT

2 x

]
.

Using the block form of the inverse of A (4.1) and the results of Theorem 3.1, we
obtain componentwise bounds which, in general, have a limited practical use when
large sparse matrices are involved.

We can see from these bounds that the solution x is less sensitive than the La-
grangian parameters u to the perturbations in the data, in agreement with the analo-
gous results that we have for the least squares problems (see [8]). Nevertheless, when
we use, for instance, Variants B1 and B2 of the algorithm, the perturbation δM is
the sum of two contributions,

δM = δM1 + E2δM̂22E
T
2 ,

where δM̂22 depends on the threshold η and δM1 depends on the roundoff unit ε.
As normally ε η, it is appropriate to analyze the influence of the perturbation

δM on the error δx neglecting the part depending on ε. More precisely, we will assume
for Variants B1 and B2 that∥∥∥∥A−1

[ −δA1u− δM1x
−δAT

2 x

]∥∥∥∥
∞

<

∥∥∥∥A−1

[
−E2δM̂22E

T
2 x− δq

0

]∥∥∥∥
∞

.

Thus, for Variant B1, we have

[
δx
δu

]
=

[
ZM̃−1

22 ZT δM̂22x2

A−PE2δM̂22x2

]
+O(ε).
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Let us denote the following:

M22 = ET
2 ME2,

D = diag(|M22||x2|),
KA = ‖A−PE2D‖∞,

CM = ‖M̃−1
22 D‖∞.

Therefore, the errors can be bounded as follows:[ |δx|
|δu|

]
≤ η

[ |ZM̃−1
22 ||M22||x2|

|A−PE2||M22||x2|
]
+O(ε).

If we split δx = [δxT
1 ; δx

T
2 ]

T , the norms can be bounded as follows:


 ‖δx1‖∞
‖δx2‖∞
‖δu‖∞


 ≤ η


 ‖Z‖∞CM

CM

KA


+O(ε).

Taking into account the expressions of A− and P, we have

KA = ‖U−1M̃12M̃
−1
22 D‖∞.

Both CM and KA can be estimated using the LAPACK norm estimator [1], which es-
timates the ‖B‖∞ of a matrix B given only the ability to form matrix-vector products
By and BT y.

The case of Variant B2, when the conjugate gradient algorithm is used in con-
junction with (3.14), deserves more attention.

First of all, because we cannot explicitly have M̃22 but only its approximation
M̂22, we can give estimates only for the norms ‖ · ‖M̃22

and ‖ · ‖M̃−1
22

.

Furthermore, we need to add within the conjugate gradient algorithm some tool

for estimating the value e
(j)

M̂22

= f (j)T M̂−1
22 f (j), f (j) = M̂22x

(j)
2 − h̃ at each step (j).

This can be achieved using a Gauss quadrature rule as proposed in [16]. In particular,

this variant of the conjugate gradient algorithm produces a lower bound ξj for e
(j)

M̂22

.

In [16] the authors also propose other quadrature rules which, when used within the

conjugate gradient algorithm, give lower and upper bounds for e
(j)

M̂22

. Unfortunately,

these techniques require guesses for the smallest and the biggest eigenvalues of M̂22,
which are not cheaply available for our matrix. Nevertheless, as suggested in [16] the
Gauss-quadrature-based lower bound can be made reasonably close to the value of

e
(j)

M̂22

at the price of d additional steps of the conjugate gradient algorithm. Therefore,

ξj will be the estimate of e
(j−d)
A . In [16], d = 10 is indicated as a successful compromise,

and our numerical experiments support this conclusion.
Finally, we also need an estimation for h̃T M̂−1

22 h̃. Taking into account that

| ‖h̃‖
M̂−1

22

− ‖x(j)T
2 ‖

M̂22
| ≤

√
e
(j)

M̂22

,(4.2)

we can choose to replace h̃T M̂−1
22 h̃ with the current evaluation of x

(j)T
2 M̂22x

(j)
2 at step

(j) of the conjugate gradient algorithm if e
(j)

M̂22

< η2h̃T h̃. Therefore, we can use (3.14)
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only after an additional check:

IF
√

ξj ≤ η ‖h̃‖2 THEN

IF
√

ξj ≤ η ‖x(j)
2 ‖M̂22

THEN STOP

ENDIF

(4.3)

As before, we can give expressions for the errors δx and δu neglecting the part
depending on ε:

[
δx
δu

]
=

[
ZM̃−1

22 ZTE2f
A−PE2f

]
.

As we bound the backward error f in energy norm, it is natural to bound some
appropriate energy norms of δx and δu. From the expressions of problems (1.1) and
(1.3) the natural choices are

‖δx‖M = ((δx)TMδx)1/2,(4.4)

‖δu‖ATM−1A = ((δu)TATM−1Aδu)1/2.(4.5)

By a direct substitution of the expression of δx in (4.4) we have

‖δx‖M = ‖f‖
M̂−1

22

+O(ε) ≤ η‖x2‖M̂22
.

Furthermore, observing that

Aδu = PE2f

and

P2 = P,

we have

(δu)TATM−1Aδu = fTET
2 PTM−1PE2f

= fTET
2 M−1PE2f

= fTET
2 M−1E2f − fT M̃−1

22 f

≤ fT M̂
−1/2
22 (M̂

1/2
22 ET

2 M−1E2M̂
1/2
22 )M̂

−1/2
22 f.

Therefore, we can bound ‖δu‖ATM−1A as follows:

‖δu‖ATM−1A ≤ η‖x2‖M̂22
(ρ(M̂22E

T
2 M−1E2))

1/2,(4.6)

where ρ(B) of a square matrix B is the spectral radius of B.

5. Numerical experiments. In our numerical experiments, we used augmented
systems obtained from the modeling of electrical networks. For the sake of simplicity,
we will focus our attention on Variant B2 of the null space algorithm to show the
effectiveness of the analysis given in sections 3 and 4 for this problem. Hereafter, we
give a short description of the problem; more details can be found in [26, Chapter 2].
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5.1. Model problem. An electrical network can be described by a directed
graph EN with n nodes nj , j = 1, . . . , n, and m edges eij , and Ohm’s law and
Kirchhoff’s law, which give the relations between the electric currents Iij , the voltage
drops Vj , and the resistances of the edges Rij . The edge-node incidence matrix A of
the graph EN is a totally unimodular matrix (see [24] for more details) with entries
(−1, 0, 1). Denoting the vector of the potentials at the nodes by u and the vector
of electric currents through the edges by x, we can describe Kirchhoff’s law by the
equation

ATx = b,

where b is the vector of the current sources at the nodes. Finally, Ohm’s law is
described by the equation

Mx + Au = −q,

where M = diag(Rij) and −q is the vector of the voltage sources.
We assume in our test examples that the units of measure are chosen such that

the values of the entries in q and b are between −1 and 1.

5.2. Algebraic problem. First of all, we want to call to mind some useful basic
definitions relative to the direct graph EN with m + 1 nodes and n edges. A path
in a graph from node m1 to node mk is a list of nodes [m1,m2, . . . ,mk] such that
(mi,mi+1) is an edge in the graph EN for i = 1, . . . , k − 1. The path contains node
mi for i ∈ [1, . . . , k] and edge (mi,mi+1) for i ∈ [1, . . . , k] and avoids all other nodes
and edges. Nodes m1 and mk are the ends of the path. The path is simple if all its
nodes are distinct. The path is a cycle if k > 1 and m1 = mk and is a simple cycle
if all its nodes are distinct. A graph without cycles is acyclic. If there is a path from
node w to node v, then v is reachable from w. A graph is connected if every node of
its undirected version is reachable from every other node.

A rooted tree is an undirected graph that is connected and acyclic with a distin-
guished node r, called root. A rooted tree with k nodes contains k − 1 edges and has
a unique simple path from any node to any other. When appropriate we shall regard
the edges of a rooted tree as directed. A rooted spanning tree Tr in EN is a rooted
tree which is a subgraph of EN with m + 1 nodes. We will call the edges in the tree
in-tree and the others out-of-tree.

In an electric network EN a node r must be chosen as ground (with potential zero,
ur = 0) and then its corresponding column must be eliminated from the incidence
matrix of the graph. In this way the resulting matrix A is full rank [24, 26]. Choosing
r as root it is always possible to find a rooted spanning tree Tr in EN . We refer
to [24, 27] for surveys of different algorithms for computing spanning trees. If we
renumber the in-tree edges first and the out-of-tree edges last we can permute the
in-tree edges and the nodes such that [24] the permuted A has the form

PAQ =

[
L1

L2

]
,

where L1 ∈ R
m×m is a lower triangular and nonsingular matrix.

As the matrix A is totally unimodular, the matrix L−1
1 is also a matrix with entries

−1, 0, 1. Moreover, the matrix L2L
−1
1 has entries −1, 0, 1 and its rows correspond to

the out-of-tree edges. The number of nonzeros in one of its rows will be the number of
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Table 1
Dimension and number of nonzeros for A, q, and b of each problem.

Prob. n. m n nz(A) nz(q) nz(b)
1 2977 7495 14982 3 1
2 2969 7494 14982 3 1
3 2979 7504 15000 3 1
4 2975 7498 14991 3 1
5 2980 7499 14989 3 1

6 99 246 489 2 1
7 99 246 487 2 1
8 99 240 474 2 1
9 99 237 467 2 1
10 99 245 481 2 1
11 98 242 480 2 1
12 99 245 482 2 1
13 99 243 480 2 1
14 98 242 479 2 1
15 99 238 471 2 1

edges in the cycle of minimal length which the corresponding out-of-tree edge forms
with the in-tree edges.

As a consequence of these properties, the LU factorization of matrices describing
Kirchhoff’s laws and, in general, of totally unimodular matrices is obtainable without
floating point operations:

PAQ =

[
L1

L2

]
= LE1.(5.1)

In this case, the roundoff error analysis of section 3 can be marginally improved and,
in Theorem 3.1, we have the following slightly tighter bounds:

|δA1| ≤ c2ε|A| , |δA2| ≤ c2ε|A| .
5.3. Test problems. We use two sets of test problems. For the first set we

randomly generated 10 small networks with a number of nodes of order 100, and 5
bigger networks with a number of nodes of order 3000. Each node is connected on
average with 5 others, and the graph is connected. We fixed the node 0 as the ground
node and we eliminated it from the incidence matrix A such that A has full rank.

In Table 1 we report the dimensions and the number of nonzeros in each matrix
A and in each vector q and b. The second set consists of six power networks obtained
from the Harwell–Boeing collection of matrices [11, 12]. We fixed an external root in
node 0 for each network, we connected it with node 1, and we randomly generated the
q and b vectors using the Matlab function SPRAND(size,dens) with dens = 5/n
for q and dens = 1/n for b. In Table 2 we report the dimensions and the number of
nonzeros in each matrix A and in each vector q and b.

For both sets we used a breadth-first search strategy to find the spanning tree
with root r, and we assumed that the matrix A and the vectors q and b had been
permuted in agreement with (5.1).

The matrix M is chosen such that

M =




αIm 0 0 0
0 βI�(n−m)/2� 0 0
0 0 γI�(n−m)/2	−1 0
0 0 0 1


 .
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Table 2
Dimension and number of nonzeros for A, q, and b of each problem.

Harwell–Boeing name Prob. n. m n nz(A) nz(q) nz(b)
bcspwr07 16 1612 2107 4213 4 1
bcspwr08 17 1624 2214 4427 7 1
bcspwr09 18 1723 2395 4789 5 1
bcspwr10 19 5300 8272 16543 7 1
eris1176 20 1176 8690 17378 33 1

For each problem we generated two matrices M : for the first one we chose α = 1,
β = 10−3, and γ = 10−3; for the second we chose α = 10−6, β = 10−4, and γ = 1.

5.4. Numerical results. For all the test problems we assumed the exact so-
lution to be that computed by a direct solver: our direct solver computes the nor-
mal equations, factors them by the Cholesky algorithm, and, from the computed
Lagrangian parameters u, computes the solution x. This assumption satisfies our
purposes because we use a conjugate gradient method with a threshold much higher
than ε in the null space algorithm.

In our run, we used a variant of the stopping criterion suggested in [16] to evaluate
the backward error in energy norm during the conjugate gradient algorithm. As
already discussed in section 3, we are unable to supply any lower or upper bounds on
the eigenvalues of the projected Hessian matrix ET

2 M̃E2 without a big computational
cost. Therefore, we were able to use only the estimator based on the Gauss quadrature
formula, which gives only a lower bound estimate of the dual norm of the residual f .
Moreover, we wanted to avoid the many additional matrix-vector products necessary
for the evaluation of h̃T M̂−1

22 h̃ at each iteration. Therefore, we decided to modify
(4.3), introducing two thresholds. We checked at each step (j) whether the estimate

ξj of the value e
(j)

M̂22

was less than 10−6x
(j)T
2 M̂22x

(j)
2 , but only after ξj ≤ 10−8h̃T h̃. As

we mentioned in section 3, at iteration k of the conjugate gradient algorithm, we can
estimate the backward error relative to the iteration k − d. We chose d = 10 in our
test examples as suggested in [16]. In Figures 1 and 2, we plotted the ratio between
estimated value at iteration k − 10 over the energy M -norm of the error between the
solution computed at iteration k and the exact solution.

Analyzing the two figures, we can see that when the conjugate gradient algorithm
converges fast, our lower bound of the error at iteration k − 10 becomes an upper
bound for the true error relative to iteration k. Nevertheless, in the cases when the
convergence is not fast, the lower bound gives more than reasonable estimates.

In Tables 3 and 4, we compare the complexity of the proposed method and the
number of iterations performed by the conjugate gradient algorithm with the com-
plexity of the direct solver. For the larger test examples in set 1, even when the
conjugate gradient algorithm converges slowly, our algorithm requires less floating
point operations than the direct solver. For the test examples in set 2, our algorithm
is not competitive even when the conjugate gradient algorithm performs few itera-
tions. Without any doubt the choice of a diagonal M represents a serious drawback for
our method. Nevertheless, when n is not much larger than m, it is still competitive.

In Figures 3 and 4, we plot the relative errors in M -norm between the computed
x and the solution computed by the direct method x,

((x− x)TM(x− x))1/2/(xTMx)1/2,

for both choices of M . The results are consistent with the thresholds we have chosen
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Fig. 1. Ratio estimated backward error over true backward error (α = 1, β = 10−3, and
γ = 10−3).
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Fig. 2. Ratio estimated backward error over true backward error (α = 10−6, β = 10−4, and
γ = 1).

for the backward error. Moreover, when the conjugate gradient algorithm converges
fast these errors are quite satisfactory. Finally, in Figures 5 and 6, we plot the errors
on the Lagrangian parameters measured in the ATM−1A-norm. All the errors are
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Table 3
Conjugate gradient floating point operations and number of iterations vs. direct solver floating

point numbers (α = 1, β = 10−3, and γ = 10−3).

Prob. num. CG flops iter. dir. sol. flops
1 107314005 576 225244402
2 134831456 684 226935420
3 124145327 647 225892004
4 151407987 813 231680452
5 129431803 695 229054528
6 767530 124 24834
7 558864 90 24291
8 779981 131 22087
9 684317 117 22623
10 450914 73 24196
11 774722 128 24499
12 603367 98 21238
13 446926 73 21574
14 537206 88 23316
15 434045 73 21467
16 1285283 48 64771
17 1949670 64 68866
18 4033672 112 79141
19 44339011 303 332418
20 47080200 181 618637

Table 4
Conjugate gradient floating point operations and number of iterations vs. direct solver floating

point numbers (α = 10−6, β = 10−4, and γ = 1).

Prob. num. CG flops iter. dir. sol. flops
1 8097857 42 225244402
2 7736113 40 226935412
3 8472034 44 225892016
4 7715806 40 231680456
5 8088062 42 229054528
6 144122 22 24834
7 144132 22 24295
8 139497 22 22083
9 129453 21 22623
10 142415 22 24196
11 152802 24 24499
12 142959 22 21238
13 153040 24 21574
14 153462 24 23316
15 137378 22 21467
16 387168 13 63971
17 442674 13 68266
18 530973 13 78730
19 2126403 13 329662
20 7553392 28 620004

consistent with the upper bound (4.6).

6. Conclusions. We have proved the backward stability of the null space algo-
rithm for solving augmented systems. Moreover, we have given evidence of the good
applicability of the method in the sparse case. We reserve for future work the analysis
of the preconditioning techniques proposed by Nash and Sofer in [25]. We want to
emphasize here that our test problems are significant examples of the more general
class of problems, such as the mixed finite element discretization of elliptic problems
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Fig. 3. M-norm relative error on x (α = 1, β = 10−3, and γ = 10−3).
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Fig. 4. M-norm relative error on x (α = 10−6, β = 10−4, and γ = 1).

in saddle point formulation.

Finally, the method we propose could also be generalized to the solution of non-
linear problems with linear equality constraints, where it would be possible to build
a specialized version of the conjugate gradient taking advantage of sparse LU factor-
izations.
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Fig. 5. ATM−1A-norm relative error on u (α = 1, β = 10−3, and γ = 10−3).
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Fig. 6. ATM−1A-norm relative error on u (α = 10−6, β = 10−4, and γ = 1).
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Abstract. We present a family of algorithms for computing symmetric rank-revealing VSV
decompositions based on triangular factorization of the matrix. The VSV decomposition consists of
a middle symmetric matrix that reveals the numerical rank in having three blocks with small norm,
plus an orthogonal matrix whose columns span approximations to the numerical range and null space.
We show that for semidefinite matrices the VSV decomposition should be computed via the ULV
decomposition, while for indefinite matrices it must be computed via a URV-like decomposition that
involves hypernormal rotations.
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1. Introduction. Rank-revealing decompositions of general dense matrices are
widely used in signal processing and other applications where accurate and reliable
computation of the numerical rank, as well as the numerical range and null space,
are required. The singular value decomposition (SVD) is certainly a decomposition
that reveals the numerical rank, but what we have in mind here are the RRQR (rank-
revealing QR) and UTV (i.e., URV and ULV) decompositions which can be computed
and, in particular, updated more efficiently than the SVD. See, e.g., [7, sections
2.7.5–2.7.7], [20, section 2.2], and [34, Chapter 5] for details and references to theory,
algorithms, and applications.

The key to the efficiency of UTV algorithms is that they consist of an initial
triangular factorization which can be tailored to the particular matrix, followed by an
efficient rank-revealing postprocessing step. If the matrix is m × n with m ≥ n and
with numerical rank k, then the initial triangular factorization requires O(mn2) flops,
while the rank-revealing step requires only c (n− k)n2 flops if k ≈ n, and c kn2 flops
if k � n, where c is an algorithm-dependent constant. The updating can always be
done in O(n2) flops, when implemented properly. The same is true for some RRQR
algorithms, while others have a higher complexity. We refer to the original papers [9],
[10], [16], [18], [19], [23], [32], [33] for details about the algorithms.

For structured matrices (e.g., Hankel and Toeplitz matrices), the initial triangular
factorization in the RRQR and UTV algorithms has the same complexity as the
rank-revealing step, namely, O(mn) flops; see [7, section 8.4.2] for signal processing
aspects. However, accurate principal singular values and vectors can also be computed
by means of Lanczos methods in the same complexity, O(mn) flops [13]. Hence the
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advantage of a rank-revealing decomposition depends on the matrix structure and the
numerical rank of the matrix.

Rank-revealing decompositions of general sparse matrices are also in use, for ex-
ample, in optimization and geometric design [28]. For sparse matrices, the initial
pivoted triangular factorization can exploit the sparsity of A. However, the UTV
postprocessors may produce a severe amount of fill, while the fill in the RRQR post-
processor is restricted to lie in the columns that are permuted to the right of the trian-
gular factor [7, Theorem 6.7.1]. An alternative sparse URL decomposition A = U RL,
where U is orthogonal and R and L are upper and lower triangular, respectively, was
proposed in [27]. This decomposition can be computed with less fill at the expense of
working with only one orthogonal matrix.

Numerically rank-deficient symmetric matrices also arise in many applications,
notably in signal processing and in optimization algorithms (cf. section 16.2 in [25]).
In both areas, fast computation and efficient updating are key issues, and sparsity is
also an issue in some optimization problems. Symmetric rank-revealing decomposi-
tions enable us to compute symmetric rank-deficient matrix approximations (obtained
by neglecting blocks in the rank-revealing decomposition with small norm). This is
important, for example, in rank-reduction algorithms in signal processing where one
wants to compute rank-deficient symmetric semidefinite matrices. In addition, utiliza-
tion of symmetry leads to faster algorithms, compared to algorithms for nonsymmetric
matrices.

In spite of this, very little work has been done on symmetric rank-revealing decom-
positions. Luk and Qiao [24] introduced the term VSV decomposition and proposed
an algorithm for symmetric indefinite Toeplitz matrices, while Baker and DeGroat [2]
presented an algorithm for symmetric semidefinite matrices.

The purpose of this paper is to put the work in [2] and [24] into a broader per-
spective by surveying possible rank-revealing VSV decompositions and algorithms,
including the underlying theory. Our emphasis is on algorithms which, in addition
to revealing the numerical rank, provide accurate estimates of the numerical range
and null space. We build our algorithms on existing methods for computing rank-
revealing decompositions of triangular matrices, based on orthogonal transformations.
Our symmetric decompositions and algorithms inherit the properties of these under-
lying algorithms which are well understood today.

We emphasize that the goal of this paper is not to present detailed implementa-
tions of our VSV algorithms, but rather to set the stage for such implementations.
The papers [4] and [29] clearly demonstrate that careful implementations of efficient
and robust mathematical software for numerically rank-deficient problems requires a
major amount of research which is outside the scope of the present paper.

Our paper is organized as follows. After briefly surveying general rank-revealing
decompositions in section 2, we define and analyze the rank-revealing VSV decom-
position of a symmetric matrix in section 3. Numerical algorithms for computing
VSV decompositions of symmetric semidefinite and indefinite matrices are presented
in section 4, and we conclude with some numerical examples in section 5.

2. General rank-revealing decompositions. In this paper we restrict our
attention to real square n× n matrices. The SVD of a square matrix is given by

A = U ΣV T =

n∑
i=1

ui σi v
T
i ,(2.1)
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where ui and vi are the columns of the orthogonal matrices U and V , and Σ = diag(σi)
with σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. Then ‖A‖2 = σ1, ‖A‖2F =

∑n
i=1 σ

2
i , and cond(A) =

σ1/σn. The numerical rank k of A, with respect to the threshold τ , is the number of
singular values greater than or equal to τ , i.e., σk ≥ τ > σk+1 [20, section 3.1].

The RRQR, URV, and ULV decompositions are given by

A = QT ΠT = UR RV T
R = UL LV T

L .

Here, Q, UR, UL, VR, and VL are orthogonal matrices, Π is a permutation matrix, T
and R are upper triangular matrices, and L is a lower triangular matrix. Moreover,
if we partition the triangular matrices as

T =

(
T11 T12

0 T22

)
, R =

(
R11 R12

0 R22

)
, L =

(
L11 0
L21 L22

)
,

then the numerical rank k of A is revealed in the triangular matrices in the sense that
T11, R11, and L11 are k × k and

cond(T11) 	 σ1/σk, ‖T22‖2F 	 σ2
k+1 + · · ·+ σ2

n,

cond(R11) 	 σ1/σk, ‖R12‖2F + ‖R22‖2F 	 σ2
k+1 + · · ·+ σ2

n,

cond(L11) 	 σ1/σk, ‖L21‖2F + ‖L22‖2F 	 σ2
k+1 + · · ·+ σ2

n.

The first k columns of the left matrices Q, UR, and UL span approximations to the
numerical range of A, defined as span{u1, . . . , uk}, and the last n − k columns of
the right matrices VR and VL span approximations to the numerical null space of A,
defined as span{vk+1, . . . , vn}. See, e.g., [20, section 3.1] for details.

Precise definitions of RRQR decompositions and algorithms are given by Chan-
drasekaran and Ipsen [11], Gu and Eisenstat [19], and Hong and Pan [23], and asso-
ciated large-scale implementations are available in Fortran [4]. Definitions of UTV
decompositions and algorithms are given by Stewart [32], [33]. Matlab software for
both RRQR and UTV decompositions is available in the UTV Tools package [17].

3. Symmetric rank-revealing decompositions. For a symmetric n× n ma-
trix A, we need rank-revealing decompositions that inherit the symmetry of the orig-
inal matrix. In particular this is true for the eigenvalue decomposition (EVD)

A = V ΛV T =

n∑
i=1

vi λi v
T
i ,(3.1)

where vi are the right singular vectors, while σi = |λi| and ui = sign(λi) vi for
i = 1, . . . , n.

Corresponding to the UTV decompositions, Luk and Qiao [24] defined the follow-
ing VSV decomposition:

A = VS S V T
S ,(3.2)

where VS is an orthogonal matrix, and S is a symmetric matrix with partitioning

S =

(
S11 S12

ST
12 S22

)
,(3.3)
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in which S11 is k × k. We say that the VSV decomposition is rank-revealing if

cond(S11) 	 σ1/σk, ‖S12‖2F + ‖S22‖2F 	 σ2
k+1 + · · ·+ σ2

n.

This definition is very similar to the definition used by Luk and Qiao, except that they
use ‖triu(S22)‖2F instead of ‖S22‖2F , where “triu” denotes the upper triangular part.
Our choice is motivated by the fact that ‖S22‖2F → σ2

k+1 + · · ·+ σ2
n as ‖S12‖F → 0.

Given the VSV decomposition in (3.2), the first k columns of VS and the last
n − k columns of VS provide approximate basis vectors for the numerical range and
null space, respectively. Moreover, given the ill-conditioned problem Ax = b, we can
compute a stabilized “truncated VSV solution” xk by neglecting the three blocks in
S with small norm, i.e., xk = VS,kS

−1
11 V T

S,kb, where VS,k consists of the first k columns
of VS . We return to the computation of xk in section 4.4.

Instead of working directly with the matrix S, it is more convenient to work
with a symmetric decomposition of S and, in particular, of S11. The form of this
decomposition depends on both the matrix A (semidefinite or indefinite) and the
rank-revealing algorithm. Hence, we postpone a discussion of the particular form of
S to the presentation of the algorithms. Instead, we summarize the approximation
properties of the VSV decomposition.

Theorem 3.1. Let the VSV decompositions of A be given by (3.2), and partition
the matrix S as in (3.3), where k is the numerical rank. Then the singular values σ̄i

of diag(S11 , S22) are related to those of A as

|σ̄i − σi| ≤ ‖S12‖2, i = 1, . . . , n.(3.4)

Moreover, the angle Θ between the subspaces spanned by the first k columns of V and
VS, defined by sinΘ = ‖VkV

T
k − VS,kV

T
S,k‖2, is bounded as

‖S12‖2
σ1 + σk+1

≤ sinΘ ≤ ‖S12‖2
σk − ‖S22‖2 .(3.5)

Proof. The bound (3.4) follows from the standard perturbation bound for singular
values:

|σ̄i − σi| ≤
∥∥∥∥
(
0 S12

ST
12 0

)∥∥∥∥
2

= ‖S12‖2,

where we use that the singular values of the symmetric “perturbation matrix” ap-
pear in pairs. To prove the upper bound in (3.5), we partition V = (Vk , V0) and
VS = (VS,k , VS,0) such that Vk and VS,k have k columns. Moreover, we write
Λ = diag(Λk , Λ0), where Λk is k × k. If we insert these partitionings as well as
(3.1) and (3.2) into the product AVS,0, then we obtain(

VkΛk V
T
k + V0 Λ0 V

T
0

)
VS,0 = VS,k S12 + VS,0 S22.

Multiplying from the left with V T
k we get

Λk V
T
k VS,0 = V T

k VS,k S12 + V T
k VS,0 S22,

from which we obtain

V T
k VS,0 = Λ

−1
k

(
V T
k VS,k S12 + V T

k VS,0 S22

)
.
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Taking norms in this expression and inserting sinΘ = ‖V T
k VS,0‖2 and ‖Λ−1

k ‖2 = σ−1
k ,

we get

sinΘ ≤ σ−1
k ‖S12‖2 + σ−1

k ‖S22‖2 sinΘ,
which immediately leads to the upper bound in (3.5). To prove the lower bound, we
use that

S12 = V T
S,kAVS,0 = V T

S,kVkΛkV
T
k VS,0 + V T

S,kV0Λ0V
T
0 VS,0.

Taking norms and using sinΘ = ‖V T
k VS,0‖2 = ‖V T

S,kV0‖2, ‖Λk‖2 = σ1, and ‖Λ0‖2 =
σk+1, we obtain the left bound in (3.5).

We conclude that if there is a well-defined gap between σk and ‖S22‖2, and if the
norm ‖S12‖2 of the off-diagonal block is smaller than this gap, then the numerical rank
k is indeed revealed in S, and the first k columns of VS span an approximation to the
singular subspace span{v1, . . . , vk}. The following theorem shows that a well-defined
gap is also important for the perturbation bounds.

Theorem 3.2. Let Ã = A+∆A = ṼS S̃ Ṽ T
S , and let Φ denote the angle between

the subspaces spanned by the first k columns of VS and ṼS; then

sinΦ ≤ 4τ + ‖∆A‖2
σk − σk+1 − 4τ − ‖∆A‖2 ,(3.6)

where τ = max{‖S12‖2, ‖S̃12‖2}.
Proof. The bound follows from Corollary 3.2 in [14].
We see that a small upper bound is guaranteed when ‖∆A‖2 as well as τ and

σk+1 are somewhat smaller than σk.

4. Algorithms for symmetric rank-revealing decompositions. Similar to
general rank-revealing algorithms, the symmetric algorithms consist of an initial tri-
angular factorization and a rank-revealing postprocessing step. The purpose of the
latter step is to ensure that the largest k singular values are revealed in the leading
submatrix S11 and that the corresponding singular subspace is approximated by the
span of the first k columns of VS .

For a semidefinite matrix A, our initial factorization is the symmetrically pivoted
Cholesky factorization

PTAP = CTC,(4.1)

where P is the permutation matrix, and C is the upper triangular (or trapezoidal)
Cholesky factor. The numerical properties of this algorithm are discussed by Higham
in [22]. If A is a symmetric semidefinite Toeplitz matrix, then there is good evidence
(although no strict proof) that the Cholesky factor can be computed efficiently and
reliably without the need for pivoting by means of the standard Schur algorithm [31].

When A is indefinite, then it would be convenient to work with an initial factor-
ization of the form PTAP = CTΩC, where C is again triangular and Ω = diag(±1).
Unfortunately such factorizations are not guaranteed to exist. Therefore our initial
factorization is the symmetrically pivoted LDLT factorization

PTAP = LDLT ,(4.2)

where P is the permutation matrix, L is a unit lower triangular matrix, and D is a
block diagonal matrix with 1×1 and 2×2 blocks on the diagonal. The state of the art
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in LDLT algorithms is described in [1], where it is pointed out that special care must
be taken in the implementation to avoid large entries in L when A is ill conditioned.
Alternatively, one could use the factorization

PTAP = GΩGT , Ω = diag(±1)(4.3)

described in [30], where G is block triangular. If A is a symmetric indefinite Toeplitz
matrix, then the currently most reliable approach to computing the LDLT factoriza-
tion seems to be via orthogonal transformation to a Cauchy matrix [21].

The reason why we need the postprocessing step is that the initial factorization
may not reveal the numerical rank of A—there is no guarantee that small eigenvalues
of A manifest themselves in small diagonal elements of C or in small eigenvalues
of D. In particular, since ‖A−1‖2 = σ−1

n ≤ ‖L−1‖22 ‖D−1‖2 = σn(L)
−2 σn(D)

−1 and
σn ≤ σn(D) ‖L‖22, we obtain

σn(L)
2 ≤ σn

σn(D)
≤ ‖L‖22,

showing that a small σn may not be revealed in D when L is ill conditioned.

4.1. Algorithms for semidefinite matrices. For symmetric semidefinite ma-
trices there is a simple relationship between the SVDs of A and C.

Theorem 4.1. The right singular vectors of PTAP are also the right singular
vectors of C, and

σi(C) = σ
1/2
i , i = 1, . . . , n.(4.4)

Proof. The result follows from inserting the SVD of C into PTAP = CTC.
Hence, once we have computed the initial pivoted Cholesky factorization (4.1),

we can proceed by computing a rank-revealing decomposition of C, and this can be
done in several ways. Let E denote the exchange matrix consisting of the columns of
the identity matrix in reverse order, and write PTAP as

PTAP = CTC = E (ECE)T (ECE)E.

Then we can compute a URV or RRQR decomposition of C, a ULV decomposition of
ECE, or an RRQR decomposition of (ECE)T , as shown in the left part of Table 4.1.
The approach using the URV decomposition of C was suggested in [2]. Table 4.1 also
shows the particular forms of the resulting symmetric matrix S, as derived from the
following relations:

PTAP = VR RTRV T
R (URV postprocessor)

= ΠTTT ΠT (RRQR postprocessor)
= (E VL)L

TL (E VL)
T (ULV postprocessor)

= (EQ)T TT (EQ)T (RRQR postprocessor).

The first, third, and fourth approaches lead to a symmetric matrix S that reveals the
numerical rank of A by having both an off-diagonal block S12 and a bottom right
block S22 with small norm. The second approach does not produce blocks S12 and
S22 with small norm; instead (since T11 is well conditioned) this algorithm provides a
symmetric permutation PΠ that is guaranteed to produce a well-conditioned leading
k × k submatrix in (PΠ)TA (PΠ).
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Table 4.1
The four postprocessing rank-revealing steps for a symmetric semidefinite matrix.

Postproc. Decomposition Symmetric matrix

URV C = UR RV T
R S = RTR =

(
RT
11R11 RT

11R12

RT
12R11 RT

12R12 +RT
22R22

)

RRQR C = QT ΠT S = TTT =

(
TT
11T11 TT

11T12

TT
12T11 TT

12T12 + TT
22T22

)

ULV ECE = UL LV T
L S = LTL =

(
LT
11L11 + LT

21L21 LT
21L22

LT
22L21 LT

22L22

)

RRQR (ECE)T = QT ΠT S = T TT =

(
T11TT

11 + T12 TT
12 T12TT

22

T22TT
12 T22TT

22

)

The remaining three algorithms yield approximate bases for the range and null
spaces of A, due to Theorem 3.1. It is well known that among the rank-revealing
decompositions, the ULV decomposition can be expected to provide the most accurate
bases for the right singular subspaces in the form of the columns of VL; see, e.g., [33]
and [15]. Therefore, the algorithm that computes the ULV decomposition of ECE is
to be preferred. We remark that the matrix UL in the ULV decomposition need not
be computed.

In terms of the blocks S12 and S22, the ULV-based algorithm is the only algorithm
that guarantees small norms of both the off-diagonal block S12 = LT

21L22 and the bot-
tom right block S22 = LT

22L22, because the norms of both L12 and L22 are guaranteed
to be small. From Theorem 4.1 and the definition of the ULV decomposition we have

‖L21‖2 	 ‖L22‖2 	 σ
1/2
k+1, and therefore ‖S12‖2 	 ‖S22‖2 	 σk+1.

For a sparse matrix the situation is different, because the UTV postprocessors
may produce severe fill, while the RRQR postprocessor produces only fill in the n−k
rightmost columns of T . For example, if A is the upper bidiagonal matrix

A =

(
10−5Bn−k eke

T
1

0 Bk

)
,

in which Bp is an upper bidiagonal p× p matrix of all ones, and ep is the pth column
of the identity matrix, then URV with threshold τ = 10−4 produces a full k × k
upper triangular R11, while RRQR with the same threshold produces a k × k upper
bidiagonal T11. Hence, for sparsity reasons, the UTV approaches may not be suited
for computing the VSV decomposition, depending on the sparsity pattern of A.

An alternative is to use the algorithm based on RRQR decomposition of the
transposed and permuted Cholesky factor (ECE)T = E CTE, and we note that the
permutation matrix Π is not needed. In terms of the matrix S, only the bottom right
submatrix of S is guaranteed to have a norm of the order σk+1 because of the relations

‖S12‖2 = ‖T12T
T
22‖2 	 σ

1/2
1 σ

1/2
k+1 and ‖S22‖2 = ‖T22T

T
22‖2 	 σk+1.

In practice the situation can be better, because the RRQR-algorithm—when ap-
plied to the matrix E CTE—may produce an off-diagonal block T12 whose norm is

smaller than what is guaranteed (namely, of the order σ
1/2
1 ). The reason is that the

initial Cholesky factor C often has a trailing (n − k) × (n − k) triangular block C22
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whose norm is close to σ
1/2
k+1, which may produce a norm ‖S12‖2 close to σk+1. From

the partitionings

C =

(
C11 C12

0 C22

)
, E CTE =

(
En−kC

T
22En−k En−kC

T
12Ek

0 EkC
T
11Ek

)

and the fact that the RRQR postprocessor leaves column norms unchanged and may
permute the leading n − k columns of E CTE to the back, we see that the norm of
the resulting off-diagonal block T12 in the RRQR decomposition can be bounded by
‖C22‖2. Our numerical examples in section 5 illustrate this.

However, we stress that in the RRQR approach we can guarantee only that ‖S12‖2
is of the order σ

1/2
1 σ

1/2
k+1, and this point is illustrated by the matrix A = KTK,

where K is the “infamous” Kahan matrix [7, p. 105] that is left unchanged by QR
factorization with ordinary column pivoting, yet its numerical rank is k = n − 1.
Cholesky factorization with symmetric pivoting computes the Cholesky factor C = K,
and when we apply RRQR to E CTE we obtain an upper triangular matrix T in which
only the (n, n)-element is small, while ‖T12‖2 = 1 	 ‖T‖2 and ‖S12‖2 = ‖T12 T

T
22‖2 	

‖T22‖2 	 σ
1/2
n .

4.2. Algorithms for indefinite matrices. No matter which factorization is
used for an indefinite matrix, such as (4.2) or (4.3), there is no simple relationship
between the singular values of A and the matrix factors. Hence the four “intrinsic”
decompositions from Table 4.1 do not apply here, and the difficulty is to develop a
new factorization from which the numerical rank can be determined.

All rank-revealing algorithms currently in use maintain the triangular form of
the matrix in consideration, but when we apply the algorithms to the matrix L in
the LDLT factorization (4.2) we destroy the block diagonal form of D. We can
avoid this difficulty by inserting an additional interim stage between the initial LDLT

factorization and the rank-revealing postprocessor, in which the middle block diagonal
matrix D is replaced by the signature matrix Ω = diag(±1). At the same time, L is
replaced by the product of an orthogonal matrix and a triangular matrix. The interim
processor, which is summarized in Figure 4.1, thus computes the factorization

PTAP =W CTΩCWT ,(4.5)

where W is orthogonal and C is upper triangular.
The interim processor is simple to implement and requires at most O(n2) opera-

tions, because W and W are block diagonal matrices with the same block structure
as D. For each 1× 1 block dii in D, the corresponding 1× 1 blocks in W , |Λ|1/2, and
W are equal to 1, |dii|1/2, and 1, respectively. For each 2× 2 block in D, we compute
the eigenvalue decomposition(

dii di,i+1

di,i+1 di+1,i+1

)
=W ii

(
λi 0
0 λi+1

)
W

T

ii ;

1. Compute the eigenvalue decomposition D = W ΛW
T
.

2. Write Λ as Λ = |Λ|1/2 Ω |Λ|1/2.
3. Compute an orthogonal W such that CT = WTLW |Λ|1/2

is lower triangular.

Fig. 4.1. Interim processor for symmetric indefinite matrices.
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then the corresponding 2×2 block inW isW ii, and the associated 2×2 block inW is a
Givens rotation chosen such that C stays triangular. If A is sparse, then some fill may
be introduced in C by the interim processor, but since the Givens transformations are
applied to nonoverlapping 2×2 blocks, fill introduced in the treatment of a particular
block does not spread during the processing of the other blocks. The same type of
interim processor can also be applied to the GΩGT factorization (4.3) in order to
turn the block triangular matrix G into triangular form.

Future developments of rank-revealing algorithms for more general matrices than
the triangular ones may render the interim processor superfluous. It may also be
possible to compute the factorization (4.5) directly.

We shall now explore the possibilities for using triangular rank-revealing post-
processors similar to the ones for semidefinite matrices, but modified such that they
yield a decomposition of C in which the leftmost matrix U is hypernormal with re-
spect to the signature matrices Ω and Ω̂, i.e., we require that UTΩU = Ω̂ and that
the inertia of Ω and Ω̂ are the same. Hypernormal matrices and the corresponding
transformations are introduced in [8] in connection with up- and downdating of sym-
metric indefinite matrices. Here we use them to maintain the triangular form of the
matrix C.

The following theorem shows that a small singular value of A is guaranteed to be
revealed in the triangular matrix C.

Theorem 4.2. If σn(C) denotes the smallest singular value of C in the interim
factorization (4.5), then

σn(C) ≤ σ1/2
n .(4.6)

Proof. We have σ−1
n = ‖(CTΩC)−1‖2 ≤ ‖C−1‖2 ‖Ω‖2 ‖C−T ‖2 = ‖C−1‖22 =

σn(C)
−2, from which the result follows.

Unfortunately, there is no guarantee that σn(C) does not underestimate σ
1/2
n

dramatically, nor does it ensure that the size of σn is revealed in S. We illustrate this
with a small 5× 5 numerical example from [1] where A is given by A = LDLT with

L =




1 0 0 0 0
1 1 0 0 0
1 0 1 0 0
1 − 20

13 − 8
17 1 0

1 6·106

13 − 1
17 0 1


 , D =




1 0 0 0 0
0 10−19

3
6·10−7

7 0 0

0 6·10−7

7 − 3·10−6

13 0 0

0 0 0 − 4·10−5

17
2
7

0 0 0 2
7

1
300


 ,

and cond(L) = 3.01 · 1011. The singular values of A are

σ1 = 5.13, σ2 = 0.270, σ3 = 0.142, σ4 = 2.66 · 10−7, σ5 = 1.14 · 10−8

such that A has full rank with respect to the threshold τ = 10−10. The corresponding
matrix C has singular values

σ1(C) = 104, σ2(C) = 2.02, σ3(C) = 0.459,

σ4(C) = 3.10 · 10−4, σ5(C) = 8.17 · 10−7.

Thus, σ5(C) is not a good approximation of σ
1/2
5 , and if we base the rank decision on

σ5(C) and the threshold τ1/2 = 10−5, then we wrongly conclude that A is numerically
rank deficient.
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The conclusion is that for indefinite matrices, a well-conditioned C ensures that A
is well conditioned, but we cannot rely solely on C for determination of the numerical
rank of A. This rules out the use of RRQR factorization of C and ECE. The following
theorem (which expands on results in [24]) shows how to proceed instead.

Theorem 4.3. Let wn be an eigenvector of CTΩC corresponding to the eigen-
value λn that is smallest in absolute value, and let w̃n be an approximation to wn.
Moreover, choose the orthogonal matrix V̂ such that V̂ T w̃n = en, the last column of
the identity matrix, and partition the matrix

V̂ TCTΩC V̂ = S =

(
S11 s12

sT12 s22

)

such that S11 is (n− 1)× (n− 1). Then

‖s12‖2 ≤ (σ1 + σn) ‖w̃n − wn‖2(4.7)

and

|s22 − λn| ≤ (σ1 + σn) ‖w̃n − wn‖2.(4.8)

Proof. Let Â =WTPTAP W = CTΩC and consider first the quantity

V̂ T Â w̃n = S V̂ T w̃n = S en =

(
s12

s22

)
.

Next, write w̃n = wn + u to obtain

V̂ T Â w̃n = V̂ T Â (wn + u) = λn V̂
Twn + V̂ T Â u

= λn V̂
T (w̃n − u) + V̂ T Â u = λn en − λn V̂

Tu+ V̂ T Â u.

Combining these two results we obtain

(
s12

s22 − λn

)
= V̂ T (Â− λn I)u,

and taking norms we get

‖s12‖22 + (s22 − λn)
2 = ‖(Â− λn I)u‖22 ≤ ‖Â− λn I‖22 ‖u‖22.

Both ‖s12‖22 and |s22 − λn| are lower bounds for the left-hand side. Combining
this with the bound ‖Â − λn I‖2 ≤ σ1 + σn, we obtain the two bounds in the
theorem.

We emphasize that small ‖s12‖2 and |s22| do not imply that the elements in the
last column of C V̂ are small (in contrast to the semidefinite case), due to the presence

of the signature matrix Ω in S = V̂ TCTΩC V̂ .
The above theorem shows that in order for σn to reveal itself in S, we must com-

pute an approximate null vector of CTΩC, apply Givens rotations to this vector to
transform it into en, and accumulate these rotations from the right into C. At the
same time, we should apply hypernormal rotations from the left in order to keep C
upper triangular. (Note that the hypernormal rotations should also be applied to
the (1,2)-submatrix of C.) Theorem 4.3 ensures that if w̃n is close enough to wn,
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then ‖s12‖2 is small and s22 approximates λn. We note that hypernormal transfor-
mations can be numerically unstable, and in our implementations we use the same
stabilizations as in the stabilized hyperbolic rotations [7, section 3.3.4].

Once this step has been performed, we deflate the problem and apply the same
technique to the (n − 1) × (n − 1) submatrix S11 = CT

11 Ω̂11 C11, where C11 and

Ω̂11 are the leading submatrices of the updated factors. When the process stops
(because all the small singular values of A are revealed) we have computed the URV-

like decomposition C = URRV T
R such that UT

RΩUR = Ω̂, and the middle rank-
revealing matrix is given by

S = RT Ω̂R =

(
RT

11Ω̂1R11 RT
11Ω̂1R12

RT
12Ω̂1R11 RT

12Ω̂1R12 +RT
22Ω̂2R22

)
,(4.9)

where Ω̂ = diag(Ω̂1 , Ω̂2) and Ω̂1 is k × k. This is precisely the algorithm from [24];
it is summarized in Figure 4.2 (following the presentations from [17]), where τ is the
rank-decision tolerance for A.

The condition estimator used in the URV-like postprocessor must be modified,
compared to the standard URV algorithm, because we must now estimate the smallest
singular value of the matrix CTΩC. In our implementation we use one step of inverse
iteration applied to CTΩC, with starting vector from the condition estimator of the
ordinary URV algorithm applied to C.

Next we consider a ULV-like approach applied to ECE. Again we must compute
an approximate null vector of CTΩC and transform it into the form en by means of
an orthogonal transformation. This transformation is applied from the right to ECE,
and a hypernormal transformation from the left is then required to restore the lower
triangular form of L = ECE.

To deflate this factorization, note that the leading (n − 1) × (n − 1) block of
S = LT Ω̂L is given by

S11 = LT
11Ω̂1 L11 + '21ω2'

T
21 , where L =

(
L11

'T21 '22

)

and Ω̂ = diag(Ω̂1, ω2). This shows that we cannot merely work on the block L11;
also the 1 × (n − 1) block 'T21 is needed because for indefinite matrices ‖'21‖2 is not
guaranteed to be small when ‖s12‖2 is small (in contrast to the semidefinite case).

1. Let k ← n and compute an initial factorization PTAP = LDLT .
2. Apply the interim processor to compute PTAP = W CTΩCWT .

3. Condition estimation: let σ̃k estimate σk

(
C(1: k, 1: k)TΩ(1: k, 1: k)C(1: k, 1: k)

)
and let wk estimate the corresponding right singular vector.

4. If σ̃k > τ1/2 then exit.
5. Revealment: determine an orthogonal Qk such that QT

k wk = ek;
6. update C(1: k, 1: k)← C(1: k, 1: k)Qk;
7. update C(1: k, 1:n)← HT

k C(1: k, 1:n), where the hypernormal
matrix Hk is chosen such that the updated C is triangular;

8. Deflation: let k ← k − 1.
9. Go to step 3.

Fig. 4.2. The URV-based VSV algorithm for symmetric indefinite matrices.
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Table 4.2
Summary of approaches for symmetric indefinite matrices. Note that the RRQR approaches

do not reveal the numerical rank, and that the ULV-like approach is impractical.

Postproc. Decomposition Comments to decomposition

URV-like C = URRV T
R S = RT Ω̂R

UT
RΩUR = Ω̂ S11 = RT

11Ω̂R11

RRQR C = QRΠT Cannot reveal numerical rank

QTΩQ = Ω̂

ULV-like ECE = ULLV T
L S = LT Ω̂L

UT
LE ΩE UL = Ω̂ S11 = LT

11Ω̂1 L11 + LT
21Ω̂2 L21

RRQR (ECE)T = QRΠT Cannot reveal numerical rank

QTQ = I

Hence, after the deflation step we must work with trapezoidal matices instead of
triangular matrices. This fact renders the ULV-like approach impractical.

We do not think that it is possible to derive an RRQR-like scheme that can
produce the desired rank-revealing VSV decomposition. If we use C = QT ΠT with
Π chosen from w̃n, then we cannot prove that s22 ≈ λ, and it is impossible to use
ECE = ΠTTQT because Q does not carry information about w̃n.

To summarize, for symmetric indefinite matrices only the approach using the
URV-like postprocessor leads to a practical algorithm for revealing the numerical
rank of A. Moreover, a well-conditioned C signals a well-conditioned A, but C cannot
reveal A’s numerical rank. Our analysis is summarized in Table 4.2.

4.3. Updating the VSV decomposition. One of the advantages of the rank-
revealing VSV decomposition over the SVD is that it can be updated efficiently when
A is modified by a rank-one change v vT . From the relation

Aup = A+ v vT = VS

(
S + (V T

S v)(V T
S v)T

)
V T
S

we see that the updating of A amounts to updating the rank-revealing matrix S by
the rank-one matrix wwT with w = V T

S v, i.e., Sup = S + wwT . This can be done in
O(n2) operations, while the EVD/SVD updating requires O(n3) operations.

Consider first the semidefinite case, and let M denote one of the triangular ma-
trices R, L, or TT from the algorithms in Table 4.1. Then

Sup =MTM + wwT =

(
M
wT

)T (
M
wT

)

and we see that the VSV updating is identical to standard updating of a triangular
RRQR or UTV factor, which can be done stably and efficiently by means of Givens
transformation as described in [5], [32], and [33].

Next we consider the indefinite case (4.9), where the updating takes the form

Sup = RT Ω̂R+ wwT =

(
R
wT

)T (
Ω̂ 0
0T 1

)(
R
wT

)
,

showing that the VSV updating now involves hypernormal rotations. Hence, the up-
dating is computationally similar to UTV downdating, whose stable implementation
is discussed in [3] and [26]. Downdating the VSV decomposition will, in both cases,
also involve hypernormal rotations.
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4.4. Computation of truncated VSV solutions. Here we briefly consider
the computation of the truncated VSV solution, which we define as

VS,k S
−1
11 V T

S,kb,(4.10)

where VS,k consists of the first k columns of VS . The decompositions based on the
URV postprocessor (in the semidefinite case) and the URV-like postprocessor (in the
indefinite case) are straightforward to use. For the ULV-based decomposition (in the
semidefinite case only) we have S11 = LT

11L11+LT
21L21, and we can safely neglect the

term LT
21L21 whose norm is at most of the order σk+1. Finally, for the RRQR-based

decomposition we can use the following theorem.
Theorem 4.4. If S = T TT and T̂ is the triangular QR factor of (T11 , T12)

T ,
then

S−1
11 = T̂−1

(
T̂−1

)T
.(4.11)

Alternatively, if the columns of the matrix

W =

(
W1

W2

)
, W1 ∈ R

(n−k)×(n−k),

form an orthonormal basis for the null space of (T11 , T12), then

S−1
11 =

(
T−1

11

)T (
I −W1 W

T
1

)
T−1

11 .(4.12)

Proof. If (T11 , T12)
T = Q̂ T̂ is a QR factorization, then S11 = T̂T T̂ and S−1

11 =

T̂−1
(
T̂−1

)T
which is (4.11). The same relation leads to S−1

11 = T̂−1Q̂T Q̂
(
T̂−1

)T
=(

(T11 , T12)
†)T (T11 , T12)

†, where † denotes the pseudoinverse. In [6] it is proved that

(T11 , T12)
† = (I −W WT )T−1

(
Ik
0

)
,

which, combined with the relation (I − W WT )2 = I − W WT , immediately leads
to (4.12).

The first relation (4.11) in Theorem 4.4 can be used when k � n, while the second
relation (4.12) is more useful when k ≈ n because it avoids computing the large QR
factorization. Note that W can be computed by orthonormalization of the columns
of the matrix

Z =

(
T−1

11 T12

−I
)
.

This approach is particularly useful for sparse matrices because we introduce fill only
when working with the “skinny” n× (n− k) matrix Z.

5. Numerical examples. The purpose of this section is to illustrate the theory
derived in the previous sections by means of some test problems. Although robust-
ness, efficiency, and flop counts are important practical issues, they are also tightly
connected to the particular implementation of the rank-revealing postprocessor and
not the subject of this paper.

All our experiments were done in Matlab, and we used the implementations of
the ULV, URV, and RRQR algorithms from the UTV Tools package [17]. The con-
dition estimation in all three implementations is the Cline–Conn–Van Loan (CCVL)



456 PER CHRISTIAN HANSEN AND PLAMEN Y. YALAMOV

estimator [12]. The modified URV algorithm used for symmetric indefinite matrices is
based on the URV algorithm from [17], augmented with stabilized hypernormal rota-
tions when needed, and with a condition estimator consisting of the CCVL algorithm
followed by one step of inverse iteration applied to the matrix CTΩC.

Numerical results for all the rank-revealing algorithms are shown in Table 5.1,
where we present mean and maximum values of the norms of various submatrices
associated with the VSV decompositions. In particular, Xoff denotes either R12, L21,
or T12, and X22 denotes either R22, L22, or T22. The results are computed on the
basis of randomly generated test matrices of sizes 64, 128, and 256 (100 matrices of
each size), each with n− 4 eigenvalues geometrically distributed between 1 and 10−4,
and the remaining four eigenvalues given by 10−7, 10−8, 10−9, and 10−10, such that
the numerical rank with respect to the threshold τ = 10−5 is k = n− 4.

The test matrices were produced by generating random orthogonal matrices and
multiplying them to diagonal matrices with the desired eigenvalues. For the indefinite
matrices the signs of the eigenvalues were chosen to alternate.

Table 5.1 illustrates the superiority of the ULV-based algorithm for semidefinite
matrices, for which the norm ‖S12‖2 of the off-diagonal block in S is always much
smaller than the norm ‖S22‖2 of the bottom right submatrix. This is due to the fact
that the ULV algorithm produces a lower triangular matrix L whose off-diagonal block
L21 has a very small norm (and we emphasize that the size of this norm depends on
the condition estimator). The second best algorithm for semidefinite matrices is the
one based on the RRQR algorithm, for which ‖S12‖2 and ‖S22‖2 are of the same size.
Note that it is the latter algorithm which we recommend for sparse matrices. The
URV-based algorithm for semidefinite matrices produces results that are consistently
less satisfactory than the other two algorithms. All these results are consistent with
our theory.

For the indefinite matrices, only the URV-like algorithm can be used, and the
results in Table 5.1 show that this algorithm also behaves as expected from the theory.
In order to judge the backward stability of this algorithm, which uses hypernormal
rotations, we also computed the backward error ‖A−VSS V T

S ‖2 for all three hundred
test problems. The largest residual norm was 1.9 · 10−11, and the average was 1.5 ·
10−12. We conclude that we lose a few digits of accuracy due to the use of the
hypernormal rotations.

It is well known that the norm of the off-diagonal block in the triangular URV
factor depends on the quality of the condition estimator—the better the singular
vector estimate, the smaller the norm. Hence, it is interesting to see how much the

Table 5.1
Numerical results for the rank-revealing VSV algorithms.

Postprocessor ‖Xoff‖2 ‖X22‖2 ‖S12‖2 ‖S22‖2
URV mean 2.2 · 10−4 3.2 · 10−4 6.5 · 10−6 2.5 · 10−7

(semidef.) max 3.0 · 10−3 3.2 · 10−4 8.1 · 10−5 9.4 · 10−6

ULV mean 2.7 · 10−7 3.2 · 10−4 8.6 · 10−11 1.0 · 10−7

(semidef.) max 4.7 · 10−7 3.2 · 10−4 1.5 · 10−10 1.0 · 10−7

RRQR mean 1.5 · 10−3 3.2 · 10−4 4.8 · 10−7 1.0 · 10−7

(semidef.) max 2.9 · 10−3 3.2 · 10−4 9.2 · 10−7 1.0 · 10−7

URV-like mean 1.4 · 10−4 3.1 · 10−4 4.6 · 10−4 2.3 · 10−7

(indef.) max 2.1 · 10−3 3.2 · 10−4 9.4 · 10−3 4.3 · 10−6
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Table 5.2
Numerical results with improved singular vector estimates.

Postprocessor ‖R12‖2 ‖R22‖2 ‖S12‖2 ‖S22‖2
URV mean 1.8 · 10−7 3.1 · 10−4 2.3 · 10−9 1.0 · 10−7

(semidef.) max 5.1 · 10−6 3.2 · 10−4 6.1 · 10−8 1.0 · 10−7

URV-like mean 8.6 · 10−10 3.1 · 10−4 4.4 · 10−9 1.0 · 10−7

(indef.) max 2.3 · 10−8 3.2 · 10−4 1.5 · 10−7 1.0 · 10−7

norms of the off-diagonal blocks in R and S decrease if we improve the singular vector
estimates by means of one step of inverse iteration (at the expense of additional
2(n− k)n2 flops). In the semidefinite case we now apply an inverse iteration step to
the CCVL estimate, and in the indefinite case we use two steps of inverse iteration
applied to CTΩC instead of one. The results are shown in Table 5.2 for the same
matrices as in Table 5.1. As expected, the norms of the off-diagonal blocks are now
smaller, at the expense of more work. The average backward errors ‖A − VSS V T

S ‖2
did not change in this experiment.

6. Conclusion. We have defined and analyzed a class of rank-revealing VSV
decompositions for symmetric matrices and proposed algorithms for computing these
decompositions. For semidefinite matrices, the ULV-based algorithm is the method
of choice for dense matrices, while the RRQR-based algorithm is better suited for
sparse matrices because it preserves sparsity better. For indefinite matrices, only the
URV-based algorithm is guaranteed to work.
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Abstract. Let C(n, p) be the set of p-compositions of an integer n, i.e., the set of p-tuples
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is an explicit formula for the determinant of the matrix whose entries are αβ = αβ1
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p where
α, β ∈ C(n, p). The formula shows that the determinant is positive and has a nice factorization. As
an application, it is shown that the polynomials pα(x) = (α1x1+ · · ·+αpxp)n with α ∈ C(n, p) form
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1. Introduction. Let n, p be positive integers. A p-composition of n is a p-tuple
α = (α1, . . . , αp) of nonnegative integers αi such that α1 + · · · + αp = n. The set of
p-compositions of n is denoted by C(n, p). It is well known that its cardinality is

|C(n, p)| =
(
n+ p− 1

p− 1

)
.

Let α, β ∈ C(n, p). We denote αβ = αβ1

1 · · ·αβp
p where, to be consistent, it is assumed

that 00 = 1. LetM(n, p) be the matrix whose entries are αβ . The power-compositions
determinant ∆(n, p) is the determinant of the matrix M(n, p). The rows and columns
of M(n, p) = (αβ) are labeled by the compositions given in the same ordering. In this
way, the determinant ∆(n, p) does not depend on the ordering in C(n, p).

The main theorem is the following.

Theorem 1.1. The determinant of the matrix M(n, p) = (αβ), α, β ∈ C(n, p),
is

∆(n, p) =

min{n,p}∏
k=1

(
n(

n−1
k )

n−k+1∏
i=1

i(n−i+1)(n−i−1
k−2 )

)(pk)
.(1.1)

The determinant ∆(n, p) appears in the following context. Let Hn[x1, . . . , xp]
be the vector space of homogeneous polynomials of degree n in p variables with co-

efficients in a field of characteristic zero. The monomials xβ = xβ1

1 · · ·xβp
p , for all

β ∈ C(n, p), form a basis of Hn[x1, . . . , xp]. The dimension of Hn[x1, . . . , xp] is
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dim Hn[x1, . . . , xp] = |C(n, p)| =
(
n+ p− 1

p− 1

)
.

Consider the polynomials

pα(x) = (α1x1 + · · ·+ αpxp)
n, α = (α1, . . . , αp) ∈ C(n, p).

The multinomial theorem gives

(α1x1 + · · ·+ αpxp)
n =

∑
β∈C(n,p)

(
n

β

)
αβxβ .

Since the xβ form a basis, the polynomials
(
n
β

)
xβ form a basis, too. By Theorem 1.1,

∆(n, p) �= 0 for all n, p ≥ 1, therefore we have the following corollary.

Corollary 1.2. The set of polynomials

pα(x) = (α1x1 + · · ·+ αpxp)
n, α = (α1, . . . , αp) ∈ C(n, p)

is a basis of Hn[x1, . . . , xp].

In section 8 we will discuss why this result can be of interest in the context of
global optimization.

It will be useful to abbreviate the numbers on the right-hand side of (1.1). Define

D∗(n, k) = n(
n−1
k )

n−k+1∏
i=1

i(n−i+1)(n−i−1
k−2 );

D(n, p) =

min{n,p}∏
k=1

(D∗(n, k))(
p
k).

(1.2)

With this notation, the theorem to be proved is ∆(n, p) = D(n, p).

The paper is basically devoted to the proof of Theorem 1.1 and is organized as
follows.

In section 2 we define an order � of the monomials for which the matrix M(n, p)
is block triangular, with zeros at the upper right part. Ordering the monomials xβ

is equivalent to ordering the compositions in C(n, p), which are the labels of rows
and columns of the matrix M(n, p). In the diagonal blocks we recognize submatrices
M∗(n, k) corresponding to proper k-compositions, which are k-compositions with all
its entries different from zero. Thus, we can express the determinant ∆(n, p) in terms
of a product of determinants ∆∗(n, k) of the matrices M∗(n, k) corresponding to
proper k-compositions with values of k ∈ [min{n, p}] = {1, . . . ,min{n, p}}. Then the
proof of ∆(n, p) = D(n, p) is reduced to the proof of ∆∗(n, p) = D∗(n, p).

Given m elements a1, . . . , am in a field, the Vandermonde matrix V (a1, . . . , am)
is the m × m matrix whose ith column is 1, ai, . . . , a

m−1
i . Many generalizations of

the Vandermonde matrix have been studied [3, 8, 10], including combinatorial ones
[1, 7, 9]. Theorem 1.1 can be considered in this context in the sense that ∆∗(n, 2) can
be easily reduced to the Vandermonde’s determinant V (1, 1/(n−1), 1/(n−2), . . . , 1/2).
In section 3 we study this determinant and some others special cases which are needed
later.
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In section 4 it is shown that the proposed ordering splits the matrix M∗(n, p)
into new block submatrices and that the diagonal blocks are matrices M∗(n−j, p−1)
except for constant factors, denoted f1(i, j). We proceed with a triangulation method
which at each step reduces to zero the block matrices to the right of the diagonal
block. This process modifies only the initial block matrices by constant factors fk(i, j).
The method is recursive, but a compact form for the recurrence is not simple to
obtain. Nevertheless, the recursion that modifies only the numerical factors fk(i, j)
is independent of p. So comparing with the case p = 2 that is solved in section 3,
we are able to establish an explicit formula for fi(i, i), which are the only values of
f appearing in the recursive formula for the determinant ∆∗(n, p). The result is a
concrete recursion formula for ∆∗(n, p) in terms of ∆∗(i, p − 1) for i running from
n− 1 till p− 1.

In section 5 we introduce a class of numbers that we call multiplicative binomial
numbers because they have multiplicative properties similar to those of the additive
ones for the binomial numbers.

In sections 6 and 7 a recursion rule for D∗(n, p) involving the multiplicative bi-
nomial numbers is obtained. It is shown that this recursion is the same and has
the same initial values as the recursion satisfied by ∆∗(n, p). So the proof becomes
complete.

Finally, section 8 is concerned with the applications to global optimization theory,
which was the initial motivation of the problem. As it is known, representing a
function as a difference of convex functions is an essential tool in this context. We
show how Corollary 1.2 allows us to do it explicitly for any polynomial function.

Throughout the paper, some elementary properties of binomial numbers are used.
They can be found, for instance, in [4].

2. Reduction to proper compositions. A proper p-composition of n is a p-
composition α = (α1, . . . , αp) such that αi ≥ 1 for all i ∈ [p]. We denote by C∗(n, p)
the set of proper p-compositions of n. Its cardinality is

|C∗(n, p)| =
(
n− 1

p− 1

)
.

LetM∗(n, p) be the matrix (αβ) with α, β ∈ C∗(n, p) and let ∆∗(n, p) be the determi-
nant of M∗(n, p). We first reduce the problem to the calculation of the determinant
∆∗(n, p). To this end, we need to define an order in C(n, p). Denote by

• w(α) the number of zeros of α;
• z(α) the vector of the positions in increasing order of the zeros in α if w(α) >
0, and the vector (0) if w(α) = 0;

• �(v) the last nonzero entry of v if v is a vector with nonzero entries, and 0
otherwise.

The order � is defined as follows: α � β if

(i) w(α) > w(β) or
(ii) w(α) = w(β) and �(z(α)− z(β)) > 0 or
(iii) w(α) = w(β) and �(z(α)− z(β)) = 0 and �(α− β) < 0.

For instance, the compositions of C(4, 3) written in decreasing order � are shown
in Table 2.1.

A composition α with w(α) = 2 can be identified in a natural way with a compo-
sition in C∗(4, 1); the compositions α with w(α) = 1 and z(α) = (i), i ∈ [3], can be
put into one-to-one correspondence with the compositions of C∗(4, 2); and the com-
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Table 2.1
(C(4, 3),�).

w(α) z(α) Compositions
2 (2, 3) (4,0,0),
2 (1, 3) (0,4,0),
2 (1, 2) (0,0,4),
1 (3) (3,1,0),(2,2,0),(1,3,0),
1 (2) (3,0,1),(2,0,2),(1,0,3),
1 (1) (0,3,1),(0,2,2),(0,1,3),
0 (0) (2,1,1),(1,2,1),(1,1,2)

positions with w(α) = 0 form the set C∗(4, 3) of proper 3-compositions of 4. With
this ordering, the matrix M(5, 3) becomes




256 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 256 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 256 0 0 0 0 0 0 0 0 0 0 0 0
81 1 0 27 9 3 0 0 0 0 0 0 0 0 0
16 16 0 16 16 16 0 0 0 0 0 0 0 0 0
1 81 0 3 9 27 0 0 0 0 0 0 0 0 0
81 0 1 0 0 0 27 9 3 0 0 0 0 0 0
16 0 16 0 0 0 16 16 16 0 0 0 0 0 0
1 0 81 0 0 0 3 9 27 0 0 0 0 0 0
0 81 1 0 0 0 0 0 0 27 9 3 0 0 0
0 16 16 0 0 0 0 0 0 16 16 16 0 0 0
0 1 81 0 0 0 0 0 0 3 9 27 0 0 0
16 1 1 8 4 2 8 4 2 1 1 1 4 2 2
1 16 1 2 4 8 1 1 1 8 4 2 2 4 2
1 1 16 1 1 1 2 4 8 2 4 8 2 2 4




.

A framed block corresponds to a set of entries such that the rows α of the block have
constant values of w(α) and z(α), and the columns β of the block also have constant
values of w(β) and z(β). Inside a block the ordering is given by condition (iii) of the
definition, but at this point this is not important; nevertheless it will be significant
later on.

From here onward, we assume that the matrix M(n, p) is written with its rows
and columns in decreasing � order.

Proposition 2.1.

∆(n, p) =

min{n,p}∏
k=1

(∆∗(n, k))(
p
k) .

Proof. First assume n ≥ p. For p = 1 the formulae are obvious. Let p ≥ 2. Fix a
k ∈ [p − 1] and a set of positions 1 ≤ i1 < i2 < · · · < ik ≤ p. The set of rows of the
matrix M(n, p) labeled by compositions α with w(α) = k and z(α) = (i1, . . . , ik) are
consecutive by the ordering �, and they are in one-to-one correspondence with the
compositions of C∗(n, n − k). The diagonal submatrix of M(n, p) formed by rows α
and columns β such that w(α) = w(β) and z(α) = z(β) is the matrix M∗(n, n − k)
(recall the convention 00 = 1).

If w(α) > w(β), then there exists a position i such that αi = 0 and βi �= 0. Hence
αβ = 0. If w(α) = w(β) and �(z(α) − z(β)) �= 0, then there also exists a position i
such that αi = 0 and βi �= 0. Hence αβ = 0. It follows that M(n, p) has the following
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diagonal form:

M(n, p) =




M∗(n, 1) · · · 0 0 · · · 0 · · · · · · 0
...

. . .
...

...
...

...
0 · · · M∗(n, 1) 0 · · · 0 · · · · · · 0
∗ · · · ∗ M∗(n, 2) · · · 0 · · · · · · 0
...

...
...

. . .
...

...
∗ · · · ∗ 0 · · · M∗(n, 2) · · · · · · 0
...

...
...

...
. . .

...
...

...
...

...
. . .

...
∗ · · · ∗ ∗ · · · ∗ · · · · · · M∗(n, p)




,

where the diagonal block M∗(n, k) is repeated
(
p
k

)
times, the

(
p
k

)
possible positions of

the k zeros. Since ∆(n, p) is the product of the determinants of the diagonal blocks,
the formula of the proposition follows.

If p > n, the sets C∗(n, k) are empty for k > n and the last diagonal block in
the matrix M(n, p) is M(n, n). Then the product is to be taken from k = 1 to
k = n.

According to (1.1) and (1.2), Proposition 2.1 reduces the problem to prove that

∆∗(n, p) = D∗(n, p)(2.1)

for all n ≥ p ≥ 1. In the next section it is shown that (2.1) holds for p = 1, p = 2,
and p = n, and in sections 4 and 6 it will be shown that both ∆∗(n, p) and D∗(n, p)
satisfy the same recurrence.

3. Special cases. There are two extreme cases, namely, p = 1 and p = n. In
those cases we have

∆∗(n, 1) = nn;

D∗(n, 1) = n(
n−1

1 ) 10 20 · · · (n− 1)0 n(
−1
−1) = nn−1 n = nn;

∆∗(n, n) = 1;

D∗(n, n) = n(
n−1
n ) 1n (

n−2
n−2) = n0 = 1;

and we notice the coincidence when binomials are extended in the usual form. We
are interested in another special case: p = 2. In this case the determinant ∆∗(n, 2)
can be easily reduced to the well-known Vandermonde’s determinant. We will need
later the value not only of ∆∗(n, 2) but also of its principal minor of order r, which
we denote by ∆∗

r(n, 2). We have

∆∗
r(n, 2) =

∣∣∣∣∣∣∣∣
(n− 1)n−1 · 1 (n− 1)n−2 · 12 · · · (n− 1)n−r · 1r
(n− 2)n−1 · 2 (n− 2)n−2 · 22 · · · (n− 2)n−r · 2r

· · · · · ·
(n− r)n−1 · r (n− r)rn−2 · r2 · · · (n− r)n−r · rr

∣∣∣∣∣∣∣∣
=

(
r∏

i=1

(n− i)n−1 · i
)∣∣∣∣∣∣

1 1/(n− 1) · · · (1/(n− 1))r−1

· · · · · ·
1 r/(n− r) · · · (r/(n− r))r−1

∣∣∣∣∣∣
=

(
r∏

i=1

(n− i)n−1 · i
) ∏

1≤i<j≤r

(
j

n− j
− i

n− i

)
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=

(
r∏

i=1

(n− i)n−1 · i
) ∏

1≤i<j≤r

n(j − i)

(n− i)(n− j)

=

(
r∏

i=1

(n− i)n−1 · i
)
n(

r
2)

∏r−1
i=1 i

r−i∏r
i=1(n− i)r−1

= n(
r
2)

(
r∏

i=1

ir−i+1

)(
r∏

i=1

(n− i)

)(n−r)

.(3.1)

In particular, for r = n, we have

∆∗(n, 2) = n(
n
2)

n∏
i=1

in−i+1,

which is the expression given by formula (1.2) for D∗(n, 2). Therefore, ∆∗(n, p) =
D∗(n, p) for p = 1, p = 2, and p = n.

4. A recurrence for ∆∗(n, p). Unfortunately, the method for p = 2 cannot be
easily generalized for p ≥ 3. Nevertheless, a triangulation method and the knowledge
of the values ∆∗

r(p, 2) lead to a recurrence for ∆∗(n, p).
Let α = (α1, . . . , αp) ∈ C∗(n, p). We denote α = (α1, . . . , αp−1). In the defi-

nition of �, condition (iii) orders the compositions in C∗(n, p) in such a way that
compositions α with αp = i are consecutive and immediately succeeded by those with
αp = i + 1. The submatrix of M∗(n, p) corresponding to rows α with αp = i and
columns β with βp = j can be written in the form

Sijf1(i, j), i, j ∈ [n− 1],

where Sij is the matrix (αβ) and f1(i, j) = ij . Observe that Sii = M∗(n − i, p − 1).
Now we begin a triangulation method that will only modify the factors f1(i, j). Fix a
column β with βp = j ≥ 2. For each column γ with γp = 1 and γk ≥ βk for k ∈ [p−1],
add to the column β the column γ multiplied by

− 1

(n− 1)j−1

(
j − 1

γ − β

)
f1(1, j)

f1(1, 1)
.

Since the differences γ − β are all the compositions of j − 1, the column β has been
modified to the value

αβf1(i, j)−
∑
γ

1

(n− 1)j−1

(
j − 1

γ − β

)
f1(1, j)

f1(1, 1)
αγf1(i, 1)

= αβ

{
f1(i, j)−

(
n− i

n− 1

)j−1
f1(1, j)

f1(1, 1)
f1(i, 1)

}

= αβf2(i, j).

The transformed matrix, which has the same determinant as M∗(n, p), is of the form

(Sijf2(i, j)), i, j ∈ [n− 1].

Observe that the blocks have been modified only by the numerical factor f2(i, j).
Moreover, for i = 1 and j ≥ 2, we have f2(i, j) = 0 and the corresponding block is
the zero matrix.



THE POWER-COMPOSITIONS DETERMINANT 465

The procedure can be iterated. Assume that we have the (r − 1)-iterated matrix
in the form

(Sijfr(i, j)) , i, j ∈ [n− 1],

with fk(i, j) = 0 for k < r and j > i. Select a column β with βp = j > r. For each
column γ with γp = r and γk ≥ βk for k ∈ [p− 1], add to the column β the column γ
multiplied by

− 1

(n− r)j−r

(
j − r

γ − β

)
fr(r, j)

fr(r, r)
.

The differences β − γ are all the compositions of j − r. Then, the column β has been
modified to the value

αβfr(i, j)−
∑
γ

1

(n− r)j−r

(
j − r

γ − β

)
fr(r, j)

f1(r, r)
αγfr(i, r)

= αβ

{
fr(i, j)−

(
n− i

n− r

)j−r
fr(r, j)

fr(r, r)
fr(i, r)

}

= αβfr+1(i, j),

and fr+1(i, j) = 0 for i < r + 1 and j > i. We have the recurrence

fr+1(i, j) = fr(i, j)−
(
n− i

n− r

)j−r
fr(r, j)

fr(r, r)
fr(i, r),(4.1)

and, after n− p iterations, the matrix becomes

(Sijfn−p+1(i, j)) , i, j ∈ [n− 1],

with fn−p+1(i, j) = 0 for j > i. Therefore ∆∗(n, p) is the product of the determinants
of the diagonal blocks Siifi(i, i) = M∗(n− i, p− 1)fi(i, i). Denoting fi = fi(i, i), we
have

∆∗(n, p) =

(
n−p+1∏
i=1

f
(n−i−1

p−2 )
i

)(
n−p+1∏
i=1

∆∗(n− i, p− 1)

)
.

The recurrence (4.1) does not seem easy to solve. Nevertheless, note that it does not
depend on p. In the product

F (n, p) =

n−p+1∏
i=1

f
(n−i−1

p−2 )
i(4.2)

the exponents and the number of factors depend on p, but the fi’s themselves do not.
Then, consider the case p = 2 and apply the method for calculating the minors of
order r and r − 1. We have

∆∗
r(n, 2)

∆∗
r−1(n, 2)

=

(
r∏

i=1

fi

)(
r∏

i=1

(n− i)n−i

)
(

r−1∏
i=1

fi

)(
r−1∏
i=1

(n− i)n−i

) = (n− r)n−rfr.(4.3)
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On the other hand, the quotient of the minors can be evaluated directly by (3.1):

∆∗
r(n, 2)

∆∗
r−1(n, 2)

=

n(
r
2)

r∏
i=1

ir−i+1
r∏

i=1

(n− i)(n−r)

n(
r−1
2 )

r−1∏
i=1

ir−i
r−1∏
i=1

(n− i)(n−r+1)

=

nr−1

(
r∏

i=1

i

)
(n− r)n−r

r−1∏
i=1

(n− i)

=
nr(
n
r

) (n− r)n−r.(4.4)

Then, comparing (4.3) to (4.4), we obtain

fr =
nr(
n
r

) = r!
nr−1

(n− 1) · · · (n− r + 1)
,(4.5)

which gives an explicit formula for F (n, p).
We have proved that the determinants ∆∗(n, p) satisfy the recurrence

∆∗(n, p) = F (n, p)

n−p+1∏
i=1

∆∗(n− i, p− 1),(4.6)

with F (n, p) given by (4.2) and (4.5). The last part of the proof consists of proving
that the numbers D∗(n, p) satisfy the same recurrence.

5. The multiplicative binomial numbers. To obtain a recurrence forD∗(n, p)
we introduce a class of numbers which have similar properties with respect to the
product to those of the binomial numbers with respect to the sum.

Let n ≥ p ≥ 1 be integers. The multiplicative binomial number a(n, p) is the
number

a(n, p) =

n−p+1∏
i=1

i(
n−i
p−1) = 1(

n−1
p−1) · 2(n−2

p−1) · · · (n− p+ 1)(
p−1
p−1).

From the definition, we have

a(n, 1) = n!,

a(n, 2) = 1n−1 2n−2 . . . (n− 1),
(5.1)

a(n, n− 1) = 2,

a(n, n) = 1.

A straightforward calculation and the binomial recurrence
(
n−k
p−i

)
+
(

n−k
p−i−1

)
=
(
n−k+1
p−i

)
shows that

a(n, p) = a(n− 1, p− 1) a(n− 1, p).(5.2)
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Table 5.1

n \ p 0 1 2 3 4 5
1 2 1
2 3 2 1
3 4 6 2 1
4 5 24 12 2 1
5 6 120 288 24 2 1
6 7 720 34560 6912 48 2 1

Moreover,

a(n, p) = a(n− 1, p− 1) a(n− 1, p)

= a(n− 1, p− 1) a(n− 2, p− 1) a(n− 2, p)

· · ·
= a(n− 1, p− 1) a(n− 2, p− 1) · · · a(p− 1, p− 1).(5.3)

The properties (5.2) and (5.3) allow us to translate every additive property of the
binomial numbers into a multiplicative one of the numbers a(n, p).

If we want to define a(n, p) also for p = 0, then (5.1) and (5.2) give

(n+ 1)! = a(n+ 1, 1) = a(n, 0) a(n, 1) = a(n, 0)n!

and a(n, 0) must be defined as

a(n, 0) = n+ 1.

Table 5.1 gives some values of a(n, p). It is constructed as the Pascal triangle of
binomial numbers but uses multiplication instead of addition.

6. A recurrence for D∗(n, p). The number D∗(n, p) has been defined in (1.2)
by

D∗(n, p) = n(
n−1
p )

n−p+1∏
i=1

i(n−i+1)(n−i−1
p−2 ).(6.1)

Then we have

D∗(n− 1, p− 1)D∗(n− 1, p)

=

(
(n− 1)(

n−2
p−1)

n−p+1∏
i=1

i(n−i)(n−i−2
p−3 )

)
·
(
(n− 1)(

n−2
p )

n−p∏
i=1

i(n−i)(n−i−2
p−2 )

)

= (n− 1)(
n−1
p )

n−p+1∏
i=1

i(n−i)(n−i−1
p−2 ).

Comparing this with (6.1) leads to

D∗(n, p) =
(

n

n− 1

)(n−1
p )
(

n−p+1∏
i=1

i(
n−i−1
p−2 )

)
D∗(n− 1, p− 1)D∗(n− 1, p)

=

(
n

n− 1

)(n−1
p )

a(n− 1, p− 1)D∗(n− 1, p− 1)D∗(n− 1, p).
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Let us define D∗∗(n, p) by

D∗(n, p) = n(
n−1
p )D∗∗(n, p).(6.2)

We have

D∗∗(n, p) = a(n− 1, p− 1)D∗∗(n− 1, p− 1)D∗∗(n− 1, p).

Iterating and taking into account (5.3) and that D∗(p, p) = 1 for any p, we obtain

D∗∗(n, p) = a(n, p)

n−p∏
i=1

D∗∗(n− i, p− 1).

Substituting (6.2), we obtain

D∗(n, p) = b(n, p)a(n, p)

n−p∏
i=1

D∗(n− i, p− 1),(6.3)

where

b(n, p) =
n(

n−1
p )

n−p∏
i=1

(n− i)(
n−i−1
p−1 )

.(6.4)

7. The last step.
Lemma 7.1. F (n, p) = b(n, p)a(n, p).
Proof. From the definition (4.2) of F (n, p) and the values (4.5) of fi, we have

F (n, p) =

n−p+1∏
i=1

f
(n−i−1

p−2 )
i

=

n−p+1∏
i=1

(
i!

ni−1

(n− 1) · · · (n− i+ 1)

)(n−i−1
p−2 )

=

(
n−p+1∏
i=1

i!(
n−i−1
p−2 )

)
n−p+1∏
i=1

(
ni−1

(n− 1) · · · (n− i+ 1)

)(n−i−1
p−2 )

.

In the product of powers of factorials, an i ∈ [n− p+ 1] has the exponent(
n− i− 1

p− 2

)
+

(
n− i− 2

p− 2

)
+ · · ·+

(
p− 2

p− 2

)
=

(
n− i

p− 1

)
.

So the first product is

n−p+1∏
i=1

i!(
n−i−1
p−2 ) =

n−p+1∏
i=1

i(
n−i
p−1) = a(n, p).

In the second product, the exponent of n is(
n− 3

p− 2

)
+ 2

(
n− 4

p− 2

)
+ · · ·+ (n− p)

(
p− 2

p− 2

)
=

(
n− 1

p

)
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and the exponent of n− i is

−
(
n− i− 2

p− 2

)
−
(
n− i− 3,

p− 2

)
− · · · −

(
p− 2

p− 2

)
= −

(
n− i− 1

p− 1

)
.

So we have

F (n, p) =
a(n, p)n(

n−1
p )

n−p∏
i=1

(n− i)(
n−i−1
p−1 )

= a(n, p) b(n, p).

Theorem 7.2. The determinant of the matrix M∗(n, p) is

∆∗(n, p) = D∗(n, p) = n(
n−1
k )

n−k+1∏
i=1

i(n−i+1)(n−i−1
k−2 ).

Proof. By induction on p. For p = 1, 2 the equality has been proved in section 2.
Assume that p ≥ 3 and that the theorem holds for p− 1. Then (4.6) gives

∆∗(n, p) = F (n, p)

n−p+1∏
i=1

∆∗(n− i, p− 1).

By Lemma 7.1 and the induction hypothesis, we have

∆∗(n, p) = b(n, p)a(n, p)

n−p+1∏
i=1

D∗(n− i, p− 1),

and by (6.3)

∆∗(n, p) = D∗(n, p).

Corollary 7.3. Let n ≥ p ≥ 1 be integers. The set of polynomials

pα(x) = (α1x1 + · · ·+ αpxp)
n, α = (α1, . . . , αp) ∈ C∗(n, p)

is a basis of the subspace 〈xα : α ∈ C∗(n, p)〉 of Hn[x1, . . . , xp] generated by the proper
monomials.

Corollaries 1.2 and 7.3 can be interpreted in the context of Gröbner bases and
convex polytopes [11]. Corollary 1.2 states that the ideal I generated by the convex
polynomials pα(x) is the monomial ideal 〈xβ : β ∈ C(n, p)〉, for which the set {xβ :
β ∈ C(n, p)} is a universal Gröbner basis. The same is true for Corollary 7.3 relative
to proper compositions. We note that the natural extension of the order � defined in
section 2 does not have the monotony property and, consequently, is not a monomial
order.

8. Polynomials as difference of convex functions. In this section we show
how our result can be of interest in the context of global optimization. We refer to [12]
for details about convex sets and functions and difference of convex (d.c.) functions.

A subset Ω ⊂ R
p is convex if (1 − λ)x + λy ∈ Ω whenever x, y ∈ Ω, λ ∈ R,

0 ≤ λ ≤ 1. Let Ω ⊂ R
p be a convex set. A function f : Ω → R is convex if f((1 −

λ)x + λy) ≤ (1 − λ)f(x) + λf(x) whenever x, y ∈ Ω, λ ∈ R, 0 ≤ λ ≤ 1. A function
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f : Ω→ R is a difference of two convex functions or a d.c. function if there exists two
convex functions f1(x) and f2(x) on Ω such that f(x) = f1(x)− f2(x) for all x ∈ Ω.
The class DC(Ω) of d.c. functions on Ω is the smallest vector space containing all
convex functions on Ω. H. Tuy [12, p. ix] has pointed out that “. . . virtually every
nonconvex optimization problem can be described in terms of functions representable
as differences of convex functions. . . .” A theorem by Hiriart-Urruty [6] proves that
every function f ∈ C2(Rp) is a d.c. function on any compact convex set Ω ⊂ R

p.
In particular, any polynomial function is a d.c. function on any compact convex set.
Nevertheless, how to represent effectively a polynomial as a difference of two convex
polynomials has been considered a difficult problem, which arises, for instance, in the
short-term hydrothermal coordination of electricity generation problem [2, 5].

Let R+ be the set of nonnegative real numbers. The linear functions Lα(x) =
α1x1 + · · ·+ αpxp, where α ∈ C(n, p), are convex and nonnegative in the convex set
R

p
+. Since the functions t �→ tn are increasing in R+, the functions pα(x) = (Lα(x))

n

are convex in R
p
+. Corollary 1.2 implies that, given a homogeneous polynomial h(x) ∈

Hn[x1, . . . , xp], the polynomial h(x) can be expressed as

h(x) =
∑

α∈C(n,p)

λαpα(x),

where the coefficients λα can be found from the coefficients of h(x) and the inverse
of M(n, p). Let P and N be the set of α ∈ C(n, p) such that λα > 0 and λα < 0,
respectively. Then

h(x) =

(∑
α∈P

λαpα(x)

)
−
(∑

α∈N

(−λα)pα(x)

)

is an explicit representation of h(x) as a difference of two convex functions on R
p
+.

If f(x) = f(x1, . . . , xp) is a polynomial of total degree m, then f(x) = h0(x) +
· · · + hm(x), where hj(x) ∈ Hj [x1, . . . , xp]. From the above representation of each
hj(x) as a d.c. function, we obtain an expression of f(x) as a difference of two convex
functions on R

p
+.
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Abstract. A standard method for solving the symmetric definite generalized eigenvalue problem
Ax = λBx, where A is symmetric and B is symmetric positive definite, is to compute a Cholesky
factorization B = LLT (optionally with complete pivoting) and solve the equivalent standard sym-
metric eigenvalue problem Cy = λy, where C = L−1AL−T . Provided that a stable eigensolver is
used, standard error analysis says that the computed eigenvalues are exact for A+∆A and B+∆B
with max(‖∆A‖2/‖A‖2, ‖∆B‖2/‖B‖2) bounded by a multiple of κ2(B)u, where u is the unit round-
off. We take the Jacobi method as the eigensolver and give a detailed error analysis that yields
backward error bounds potentially much smaller than κ2(B)u. To show the practical utility of our
bounds we describe a vibration problem from structural engineering in which B is ill conditioned
yet the error bounds are small. We show how, in cases of instability, iterative refinement based on
Newton’s method can be used to produce eigenpairs with small backward errors. Our analysis and
experiments also give insight into the popular Cholesky–QR method, in which the QR method is
used as the eigensolver. We argue that it is desirable to augment current implementations of this
method with pivoting in the Cholesky factorization.

Key words. symmetric definite generalized eigenvalue problem, Cholesky method, Cholesky
factorization with complete pivoting, Jacobi method, backward error analysis, rounding error anal-
ysis, iterative refinement, Newton’s method, LAPACK, MATLAB
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1. Introduction. The symmetric definite generalized eigenvalue problem

Ax = λBx,(1.1)

where A,B ∈ R
n×n are symmetric and B is positive definite, arises in many applica-

tions in science and engineering [4, chapter 9], [16]. An important open problem is
to derive a method of solution that takes advantage of the structure and is efficient
and backward stable. Such a method should, for example, require half the storage
of a method for the generalized nonsymmetric problem and produce real computed
eigenvalues.

The QZ algorithm [18] can be used to solve (1.1). It computes orthogonal matrices
Q and Z such that QTAZ is upper quasi-triangular and QTBZ is upper triangular.
This method is numerically stable but it does not exploit the special structure of
the problem and so does not necessarily produce real eigenpairs in floating point
arithmetic.

∗Received by the editors June 9, 2000; accepted for publication (in revised form) by M. Chu April
11, 2001; published electronically September 7, 2001.

http://www.siam.org/journals/simax/23-2/37349.html
†Department of Mathematics, University of Manchester, Manchester, M13 9PL, England

(ieuan@ma.man.ac.uk, http://www.ma.man.ac.uk/˜ieuan/, higham@ma.man.ac.uk, http://www.
ma.man.ac.uk/˜higham/, ftisseur@ma.man.ac.uk, http://www.ma.man.ac.uk/˜ftisseur/). The work
of the first author was supported by an Engineering and Physical Sciences Research Council CASE
Ph.D. Studentship with NAG Ltd. (Oxford) as the cooperating body. The work of the second author
was supported by Engineering and Physical Sciences Research Council grant GR/L76532 and a Royal
Society Leverhulme Trust Senior Research Fellowship. The work of the third author was supported
by Engineering and Physical Sciences Research Council grant GR/L76532.

472



SYMMETRIC DEFINITE GENERALIZED EIGENPROBLEM 473

A method that potentially has the desired properties has recently been proposed
by Chandrasekaran [3], but the worst-case computational cost of this algorithm is
not clear.

A standard method, apparently first suggested by Wilkinson [25, pp. 337–340], be-
gins by computing the Cholesky factorization, optionally with complete pivoting [12,
section 4.2.9], [14, section 10.3],

ΠTBΠ = LD2LT ,(1.2)

where Π is a permutation matrix, L is unit lower triangular, and D2 = diag(d2
i ) is

diagonal. The problem (1.1) is then reduced to the form

Cy ≡ D−1L−1ΠTAΠL−TD−1y = λy, y = DLTΠTx.(1.3)

Any method for solving the symmetric eigenvalue problem can now be applied to
C [6], [19]. In LAPACK’s xSYGV driver, (1.1) is solved by applying the QR algo-
rithm to (1.3). MATLAB 6’s eig function does likewise when it is given a symmetric
definite generalized eigenproblem. As is well known, when B is ill conditioned numer-
ical stability can be lost in the Cholesky-based method. However, it is also known
that methods based on factorizing B and converting to a standard eigenvalue prob-
lem have some attractive features. In reference to the method that uses a spectral
decomposition of B, Wilkinson [25, p. 344] states that

In the ill-conditioned case the method of §68 has certain advantages
in that “all the condition of B” is concentrated in the small elements
of D. The matrix P of (68.5) [our C in (1.3)] has a certain number
of rows and columns with large elements (corresponding to small dii)
and eigenvalues of (A − λB) of normal size are more likely to be
preserved.

In this work we aim to give new insight into the numerical behavior of the Cholesky
method.

First, we make a simple but important observation about numerical stability.
Assume that the Cholesky factorization is computed exactly and set Π = I without
loss of generality. We compute Ĉ = C +∆C1 where, at best, ∆C1 satisfies a bound
of the form

|∆C1| ≤ cnu|D−1||L−1||A||L−T ||D−1|,
where cn is a constant and u is the unit roundoff (see section 3 for the floating point

arithmetic model). Here, |A| = (|aij |). Solution of the eigenproblem for Ĉ can be

assumed to yield the exact eigensystem of Ĉ + ∆C2 for some ∆C2. Therefore the
computed eigensystem is the exact eigensystem of

C +∆C1 +∆C2 = D−1L−1
(
A+∆A

)
L−TD−1, ∆A = LD(∆C1 +∆C2)DLT ,

and

|∆A| ≤ |L||D|(cnu|D−1||L−1||A||L−T ||D−1|+ |∆C2|
)|D||LT |

≤ cnu|L||L−1||A||L−T ||LT |+ |L||D||∆C2||D||LT |.(1.4)

If we are using complete pivoting in the Cholesky factorization then |lij | ≤ 1 for i > j
and

d2
1 ≥ · · · ≥ d2

n > 0.(1.5)
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Hence [14, Theorem 8.13]

κp(L) = ‖L‖p‖L−1‖p ≤ n2n−1, p = 1, 2,∞(1.6)

(with approximate equality achieved for LT the Kahan matrix [14, p. 161]), and so
the first term in (1.4) is bounded independently of κ(B). The second term will have
the same property provided that ∆C2 satisfies a bound of the form

|∆C2| ≤ |D−1|f(|A|, |L−1|, u)|D−1|,
where f is a matrix depending on |A|, |L−1|, and u, but not |D−1|.

If nothing more is known about ∆C2 than that ‖∆C2‖ ≤ cnu‖C‖ (corresponding
to using a normwise backward stable eigensolver for C), then the best bound we can
obtain in terms of the original data is of the form

‖∆A‖ ≤ g(n)uκ(B)‖A‖.(1.7)

However, this analysis shows that there is hope for obtaining a bound without the
factor κ(B) if the eigensolver for C respects the scaling of C when D is ill conditioned.
The QL variant of the QR algorithm has this property in many instances, since when
D is ill conditioned the inequalities (1.5) imply that C is graded upward (that is,
its elements generally increase from top left to bottom right) and the backward error
matrix for the QL algorithm1 then tends to be graded in the same way [19, chapter 8],
[21, p. 337]. However, this is a heuristic and we know of no precise results.

In this work we show that if, instead of the QL and QR algorithms, the Jacobi
method is applied to C, then we can derive rigorous backward error bounds that can
be significantly smaller than bounds involving a factor κ(B) when B is ill conditioned.
We also give experimental evidence of the benefits of pivoting in the Cholesky–QR
method.

Wilkinson [26] expressed the view that for most of the standard problems in
numerical linear algebra iterative refinement is a valuable tool for which it is worth
developing software. We investigate iterative refinement as a means for improving the
backward errors of eigenpairs computed by the Cholesky–QR and Cholesky–Jacobi
methods.

The organization of the paper is as follows. In section 2 we describe the Cholesky–
Jacobi method and in section 3 we give a detailed rounding error analysis, making
use of a diagonal scaling idea of Anjos, Hammarling, and Paige [2]. In section 4 we
show how fixed precision iterative refinement can be used to improve the stability of
selected eigenpairs. Section 5 contains a variety of numerical examples. In particular,
we describe a vibration problem from structural engineering where B is ill conditioned
yet our backward error bounds for the Cholesky–Jacobi method are found to be of
order u, and we give examples where ill condition of B does cause instability of
the method but iterative refinement cures the instability. Conclusions are given in
section 6.

In our analysis ‖ · ‖ denotes any vector norm and the corresponding subordinate
matrix norm, while ‖ · ‖2 and ‖ · ‖F denote the 2-norm and the Frobenius norm,
respectively.

1For the original QR algorithm, we need C to be graded downward. However, the distinction is
unimportant for our purposes since LAPACK’s routines for the QR algorithm [1] include a strategy
for switching between the QL and QR variants and thus automatically take advantage of either form
of grading.
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2. Method outline. The Cholesky–Jacobi method computes the Cholesky fac-
torization with complete pivoting (1.2), forms

H0 = D−1L−1ΠTAΠL−TD−1(2.1)

in (1.3), and then applies Jacobi’s method for the symmetric eigenproblem to H0.
Peters and Wilkinson [20] note that a variant of this method in which the Cholesky
factorization of B is replaced by a spectral decomposition, computed also by the
Jacobi method, was used by G. H. Golub on the Illiac at the University of Illinois in
the 1950s.

Jacobi’s method constructs a sequence of similar matrices starting with H0. An
orthogonal transformation is applied at each step,

Hk+1 = QT
kHkQk

in such a way that Hk tends to diagonal form Λ = diag(λi) as k → ∞. Denoting
by Q = Q0Q1 . . . the product of the orthogonal transformations that diagonalizes H0

and writing X = ΠL−TD−1Q, we have, overall,

XTAX = Λ, XTBX = I.(2.2)

Thus X simultaneously diagonalizes A and B and is also easily seen to be a matrix
of eigenvectors.

Now we describe the method in more detail. At the kth stage let Qk be a Jacobi
rotation in the (i, j) plane (i ≤ j) such that QT

kHkQk has zeros in positions (i, j) and
(j, i). Using MATLAB notation,

Qk([i j], [i j]) =

[
c s
−s c

]
,(2.3)

where c = cos θ and s = sin θ are obtained from [12, section 8.4.2] (with sign(0) = 1)

τ =
hjj − hii

2hij
,(2.4)

t =
sign(τ)

|τ |+√1 + τ2
,(2.5)

c =
1√

1 + t2
, s = tc.(2.6)

The corresponding rotation angle θ satisfies |θ| ≤ π/4; choosing a small rotation angle
is essential for the convergence theory [19, chapter 9]. We choose the index pairs (i, j)
from a row cyclic ordering, in which a complete sweep has the form

(i, j) = (1, 2), . . . , (1, n), (2, 3), . . . , (2, n), . . . , (n− 1, n).(2.7)

For this ordering and the choice of angle above, the Jacobi method converges quadrat-
ically [12, section 8.4.4], [19, section 9.4].

When forming Hk+1 = QT
kHkQk = (h̃ij) we explicitly set h̃ij = 0 and compute

the new diagonal elements from [19, equation (9.9)]

h̃ii = hii − hijt,(2.8)

h̃jj = hjj + hijt,(2.9)
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where t is given in (2.5). The complete algorithm is summarized as follows.
Algorithm 2.1 (Cholesky–Jacobi method). Given A,B ∈ R

n×n with A sym-
metric and B symmetric positive definite, this algorithm calculates the eigenvalues λi

and corresponding eigenvectors xi of the pair (A,B).
1. Compute the Cholesky factorization with complete pivoting ΠTBΠ = LD2LT .

Form H = D−1L−1ΠTAΠL−TD−1 by solving triangular systems.
X = ΠL−TD−1.

2. % Jacobi’s method
done rot = true
while done rot = true

done rot = false
for i = 1:n

for j = i+ 1:n

(∗) if |hij | > u
√|hiihjj |

done rot = true
Form Qij ≡ Qk([i j], [i j]) using (2.3)–(2.6).
ind = [1: i− 1, i+ 1: j − 1, j + 1:n]
H([i j], ind) = QT

ijH([i j], ind)
H(ind, [i j]) = H(ind, [i j])Qij

H([i j], [i j]) =
[
h̃ii

0
0

h̃jj

]
using (2.8), (2.9)

X(: , [i j]) = X(: , [i j])Qij

end
end

end
end
λi = hii, xi = X(: , i), i = 1:n

The test (∗) for whether to apply a rotation is adapted from the one used for
Jacobi’s method for a symmetric positive definite matrix [7]—we have added absolute
values inside the square root since hii and hjj can be negative. This test is too
stringent in general and can cause the algorithm not to converge, but we have found
it generally works well, and so we used it in our experiments in order to achieve the
best possible numerical behavior.

3. Error analysis. Now we give an error analysis for Algorithm 2.1, with the
aim of obtaining an error bound better than (1.7). We use the standard model for
floating point arithmetic

fl(x op y) = (x op y)(1 + δ1) =
x op y

1 + δ2
, |δ1|, |δ2| ≤ u, op = +,−, ∗, /,

f l(
√
x) =

√
x(1 + δ), |δ| ≤ u,

where u is the unit roundoff. We will make use of the following lemma [14].
Lemma 3.1. If |δi| ≤ u and ρi = ±1 for i = 1:n, and nu < 1, then

n∏
i=1

(1 + δi)
ρi = 1 + θn, where |θn| ≤ nu

1− nu
=: γn.

We define

γ̃k =
pku

1− pku
,
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where p denotes a small integer constant whose exact value is unimportant. We will
also write θ̃k to denote a quantity satisfying |θ̃k| ≤ γ̃k. Computed quantities are
denoted with a hat.

We consider first the second part of Algorithm 2.1, beginning with the construc-
tion of the Jacobi rotation.

Lemma 3.2. Let a Jacobi rotation Qk be constructed using (2.4)–(2.6) so that
QT

kHkQk has zeros in the (i, j) and (j, i) positions. The computed ĉ, ŝ, and t̂ satisfy

ĉ = c(1 + θ̃1), ŝ = s(1 + θ̃′1), t̂ = t(1 + θ̃′′1 ),

where c, s, and t are the exact values for Hk.
Proof. The proof is straightforward.
In most of the rest of our analysis we will assume that the computed ĉ, ŝ, and t̂

are exact. It is easily checked that, in view of Lemma 3.2, this simplification does not
affect the bounds.

Lemma 3.3. If one step of Jacobi’s method is performed in the (i, j) plane on the

matrix Hm then the computed Ĥm+1 satisfies

Ĥm+1 = QT
m (Hm +∆Hm)Qm,

where the elements of ∆Hm are bounded componentwise by

|∆hik| ≤ γ̃1 (|hik|+ 2|sc||hjk|)
|∆hjk| ≤ γ̃1 (|hjk|+ 2|sc||hik|)

}
k �= i, j,

and

|∆hii| ≤ γ̃1

(
c2|hii|+ |s/c||hij |+ s2|hjj |

)
,

|∆hij |, |∆hji| ≤ γ̃1

(|sc||hii|+ 2s2|hij |+ |sc||hjj |
)
,

|∆hjj | ≤ γ̃1

(
s2|hii|+ |s/c||hij |+ c2|hjj |

)
.

Proof. For the duration of the proof letQm := Qm([i j], [i j]). WritingHm = (hij)

and Ĥm+1 = (ĥij) and using a standard result for matrix–vector multiplication [14,
section 3.5], we have, for k �= i, j,

[
ĥik

ĥjk

]
= fl

(
QT

m

[
hik

hjk

])
,

= (Qm +∆Qm)
T

[
hik

hjk

]
, |∆Qm| ≤ γ̃1|Qm|,

=: QT
m

([
hik

hjk

]
+

[
∆hik

∆hjk

])
.

Then [ |∆hik|
|∆hjk|

]
≤ |Qm||∆QT

m|
[ |hik|
|hjk|

]

≤ γ̃1|Qm||QT
m|

[ |hik|
|hjk|

]

= γ̃1

[
1 2|sc|

2|sc| 1

] [ |hik|
|hjk|

]
,
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which gives the first two bounds. We calculate the elements at the intersection of
rows and columns i and j using

ĥii = fl(hii − hijt) = (1 + θ̃1)hii − (1 + θ̃1)hijt,

ĥjj = fl(hjj + hijt) = (1 + θ̃1)hjj + (1 + θ̃1)hijt,

and by setting ĥij and ĥji to zero. The backward perturbations ∆hii, ∆hij , and ∆hjj

satisfy

QT
m

([
hii hij

hij hjj

]
+

[
∆hii ∆hij

∆hij ∆hjj

])
Qm =

[
ĥii 0
0 ĥjj

]
,

which can be expressed as[
∆hii ∆hij

∆hij ∆hjj

]
= Qm

[
ĥii 0
0 ĥjj

]
QT

m −
[
hii hij

hij hjj

]

=

[
c2ĥii + s2ĥjj −scĥii + scĥjj

−scĥii + scĥjj s2ĥii + c2ĥjj

]
−
[
hii hij

hij hjj

]
.

Substituting in for ĥii and ĥjj and taking absolute values we obtain the second group
of inequalities. (Note that ∆hij = ∆hji = 0 if c and s are exact, so by bounding ∆hij

and ∆hji in this way we are allowing for inexact c and s.)
In the next lemma we show that in the first rotation of Jacobi’s method in Algo-

rithm 2.1 a factor D−1 can be scaled out of the backward error, leaving a term that
we can bound. We make use of the identity

sc =
hij√

4h2
ij + (hii − hjj)

2
,(3.1)

which comes from manipulating the equations defining a Jacobi rotation and solving
for sc = 1

2 sin 2θ in terms of tan 2θ. In this result, A0 ≡ L−1ΠTAΠL−T in (2.1).
Lemma 3.4. Given a symmetric A0 and a positive diagonal matrix D0 = diag(d2

i ),
suppose we perform one step of Jacobi’s method in the (i, j) plane on H0 = D−1

0 A0D
−1
0 ,

obtaining H1 = QT
0 H0Q0. Then

Ĥ1 = fl(QT
0 Ĥ0Q0) = QT

0 D
−1
0 (A0 +∆A0)D

−1
0 Q0,(3.2)

where

‖∆A0‖2 ≤ γ̃n(1 + 2ω0)‖A0‖2,(3.3)

with

ω0 = |sc|max(ρ, 1/ρ), ρ = di/dj .

Proof. We start by forming the matrix H0 = (hij). Since we are given the squared
diagonal elements d2

i we have

ĥij = fl
(
aij/

√
d2
i d

2
j

)
= (1 + θ3)aij/(didj) = (1 + θ3)hij

=: âij/(didj).
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Thus these initial errors can be thrown onto A0: Ĥ0 = D−1
0 (A0 + ∆1)D

−1
0 , where

|∆1| ≤ γ3|A0|. The errors in applying one step of Jacobi’s method to Ĥ0 can be ex-

pressed as a backward perturbation ∆H0 to Ĥ0 using Lemma 3.3. The corresponding
perturbation of Â0 = A0+∆1 is ∆2 = D0∆H0D0, so we simply scale the component-
wise perturbation bounds of Lemma 3.3. We find

|(∆2)ik| ≤ γ̃1 (|âik|+ 2|sc||âjk|ρ)
|(∆2)jk| ≤ γ̃1 (|âjk|+ 2|sc||âik|/ρ)

}
k �= i, j,

|(∆2)ii| ≤ γ̃1

(
c2|âii|+ |s/c||âij |ρ+ s2|âjj |ρ2

)
,(3.4)

|(∆2)ij,ji| ≤ γ̃1

(|sc||âii|/ρ+ 2s2|âij |+ |sc||âjj |ρ
)
,

|(∆2)jj | ≤ γ̃1

(
s2|âii|/ρ2 + |s/c||âij |/ρ+ c2|âjj |

)
.(3.5)

We now work to remove the potentially large ρ2 and 1/ρ2 terms. We can rewrite (3.1)
as

sc =

aij

didj√
4

a2
ij

d2
i
d2
j

+
(

aii

d2
i

− ajj

d2
j

)2
=

ρaij√
(aii − ρ2ajj)

2
+ 4ρ2a2

ij

.(3.6)

Further manipulation yields

|ajj |ρ2 ≤ |aii|+
√

a2
ijρ

2

(sc)2
− 4a2

ijρ
2 = |aii|+ ρ|aij |

√
1

(sc)2
− 4.

Therefore

s2|ajj |ρ2 ≤ s2|aii|+ ρ|aij |
√
t2 − 4s4.(3.7)

A similar manipulation of (3.1) (or a symmetry argument) gives

s2|aii|/ρ2 ≤ s2|ajj |+ |aij |
ρ

√
t2 − 4s4.(3.8)

Since âij = aij(1 + θ3) there is no harm in replacing aij by âij in (3.7) and (3.8).
Since θ ∈ [−π/4, π/4] we have√

t2 − 4s4 + |s/c| = 2|sc|,(3.9)

and hence (3.4) and (3.5) may be bounded by

|(∆2)ii| ≤ γ̃1 (|âii|+ 2|sc||âij |ρ) ,
|(∆2)jj | ≤ γ̃1 (|âjj |+ 2|sc||âij |/ρ) .

Setting ∆A = ∆1 +∆2 and using these componentwise bounds we obtain the overall
bound given in (3.3).

Lemma 3.4 shows that the Jacobi rotation results in a small backward perturba-
tion to A0 provided that ω0 is of order 1. We see from (3.6) that in normal circum-
stances sc is proportional to min(ρ, 1/ρ), which keeps ω0 small. However, in special
situations ω0 can be large, for example, when |aii−ρ2ajj | � ρ|aij | with ρ large, which
requires that |ajj | be much smaller than |aij | and B be ill conditioned.
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By combining Lemma 3.4 with subsequent applications of Lemma 3.3 we find that
after m steps of Jacobi’s method on H0 = D−1

0 A0D
−1
0 we have

Ĥm = QT
m−1 . . . Q

T
0 (H0 +∆0)Q0 . . . Qm−1,

where

∆0 = D−1
0 ∆A0D

−1
0 +

m−1∑
k=1

Q0 . . . Qk−1∆HkQ
T
k−1 . . . Q

T
0

= D−1
0

(
∆A0 +

m−1∑
k=1

D0Q0 . . . Qk−1∆HkQ
T
k−1 . . . Q

T
0 D0

)
D−1

0 .

The ∆Hk are bounded as in Lemma 3.3. We would like to bound the term in paren-
theses by a multiple of u‖A0‖2, but simply taking norms leads to an unsatisfactory
κ(D2

0) factor. To obtain a better bound we introduce, purely for theoretical purposes,

a scaling to Ĥk at each stage of the iteration. For an arbitrary nonsingular diagonal
Dk we write

‖D0Q0 . . . Qk−1∆HkQ
T
k−1 . . . Q

T
0 D0‖2 = ‖D0Q0 . . . Qk−1D

−1
k ·Dk∆HkDk

·D−1
k QT

k−1 . . . Q
T
0 D0‖2

≤ min
Dk diag

(‖D0Q0 . . . Qk−1D
−1
k ‖22‖Dk∆HkDk‖2

)
= min

Dk diag

(‖N−T
k ‖22‖Dk∆HkDk‖2

)
,

where

Nk = D−1
0 Q0 . . . Qk−1Dk.(3.10)

Define

Ak := NT
k A0Nk = DkHkDk.(3.11)

By applying Lemma 3.4 to a rotation on Hk, we can see that

‖Dk∆HkDk‖2 ≤ γ̃n(1 + 2ωk)‖Ak‖2,(3.12)

where

ωk = |skck|max(ρk, 1/ρk), ρk = d
(k)
i /d

(k)
j ,

with a subscript k denoting quantities on the kth step and where Dk = diag(d
(k)
i ).

One way to proceed is to choose Dk to minimize κ2(Mk−1), where

Mk−1 = D−1
k−1Qk−1Dk.(3.13)

Notice that

Nk = M0 . . .Mk−1.(3.14)

This idea is based on an algorithm of Anjos, Hammarling, and Paige [2] that avoids ex-
plicitly inverting any of the Dk and uses transformation matrices of the form in (3.13)
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to diagonalize A while retaining the diagonal form of D0. The algorithm computes
the congruence transformations

Ak+1 = MT
k AkMk, D2

k+1 = MT
k D2

kMk,

whereDk is diagonal for all k and Ak tends to diagonal form as k →∞. The difference
between our approach and that in [2] is that we form H0 = D−1

0 A0D
−1
0 and use Dk in

the analysis to obtain stronger error bounds, whereas in [2], in an effort to apply only
well-conditioned similarity transformations, H0 is never formed but Mk is computed
and applied in the algorithm (and no error analysis is given in [2]).

Now we discuss the choice of Dk, drawing on analysis from [2]. Since Qk−1 is a
rotation in the (i, j) plane, we choose Dk to be identical to Dk−1 in all but the ith
and jth diagonal entries. Thus Mk−1 is the identity matrix except in the (i, j) plane,
in which

Mij = M([i j], [i j]) =

[
d−1
i 0
0 d−1

j

] [
c s
−s c

][
d̃i 0

0 d̃j

]
,

where we are writing

Dk−1 = diag(di), Dk = diag(d̃i).

We now choose Dk to minimize the 2-norm condition number κ2(Mij). It can be
shown that for any 2× 2 matrix, G, say,

κ2(G) = σ1(G)/σ2(G) =
(
φ2 +

√
φ4 − 4δ2

)
/2δ,

where φ = ‖G‖F , δ = |det(G)| and σ1(G) ≥ σ2(G) are the singular values of G. Using
κF (G) = φ2/δ, we obtain

κ2(G) =
(
κF (G) +

√
κF (G)2 − 4

)
/2,

so clearly κ2(G) has its minimum when κF (G) does. Therefore it is only necessary to
analyze κF (Mij) in order to find the minimum of κ2(Mij). For Mij we have

φ2 = s2
(
(d̃i/dj)

2 + (d̃j/di)
2
)
+ c2

(
(d̃j/dj)

2 + (d̃i/di)
2
)
,

δ = det(D−1
k−1) det(Dk) = (d̃id̃j)/(didj).

Setting ξ = d̃i/d̃j we have

κF (Mij) = φ2/δ =
(
c2(ρ2 + ξ2) + s2(ρ2ξ2 + 1)

)
/(ρξ).

This is an equation with only one unknown, ξ. The minimum of κF (Mij) over ξ
occurs at

ξ2
opt =

(
s2 + ρ2c2

)
/
(
c2 + ρ2s2

)
,

which gives the values

κF (Mij)min = 2

√
1 + s2c2 (ρ− ρ−1)

2
,

κ2(Mij)min = |sc(ρ− ρ−1)|+
√
1 + s2c2 (ρ− ρ−1)

2
.(3.15)
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Knowing the ratio d̃i/d̃j that minimizes κ2(M0), we now have to choose d̃j and then

set d̃i = d̃jξopt. We set ‖Dk‖F = ‖Dk−1‖F , or more simply,

d2
i + d2

j = d̃2
i + d̃2

j =
(
ξ2
opt + 1

)
d̃2
j .(3.16)

This yields the values

d̃2
i = c2d2

i + s2d2
j ,

d̃2
j = c2d2

j + s2d2
i

(3.17)

and the matrix

Mij =

[
c
√
c2 + s2/ρ2 s

√
s2 + c2/ρ2

−s
√
s2 + c2ρ2 c

√
c2 + s2ρ2

]
.(3.18)

Clearly,

min(d2
i , d

2
j ) ≤ d̃2

k ≤ max(d2
i , d

2
j ), k = i, j.(3.19)

We note for later reference that a direct calculation reveals

‖M−1
ij ‖F =

√
2.(3.20)

It is also interesting to note that Mij has columns of equal 2-norm. This is not
surprising in view of a result of van der Sluis [24], which states that scaling the
columns of an n × n matrix to have equal 2-norms produces a matrix with 2-norm
condition number within a factor

√
n of the minimum over all column scalings.

To complete our analysis we need to bound ‖Ak‖2 and ‖N−1
i ‖2.

3.1. Growth of Am. We now bound ‖Am‖2, which appears in the bound (3.12).
We consider the growth over one step from Am = (aij) to Am+1 = (ãij) = MT

mAmMm,
as measured by φm = maxi,j |ãij |/maxi,j |aij |. By rewriting (2.8) and (2.9) in terms
of Ak, and using (3.11) and (3.17), we can show that

|ãii| ≤ c2|aii|+ s2|aii|/ρ2 + |aij |
( |s3|

cρ
+ |sc|ρ

)
,(3.21)

|ãjj | ≤ c2|ajj |+ s2|ajj |ρ2 + |aij |
( |sc|

ρ
+
|s3|
c

ρ

)
.(3.22)

We would like to bound these two elements linearly in terms of max(ρ, 1/ρ) (recall
that ρ can be greater than or less than 1). The troublesome terms in the bounds are
s2|ajj |ρ2 and s2|aii|/ρ2. Upon substitution of (3.7) and (3.8) in (3.21) and (3.22) we
obtain bounds linear in ρ and 1/ρ:

|ãii| ≤ c2|aii|+ s2|ajj |+ |aij |
((√

t2 − 4s4 +
|s3|
c

)
1

ρ
+ |sc|ρ

)
,

|ãjj | ≤ c2|ajj |+ s2|aii|+ |aij |
((√

t2 − 4s4 +
|s3|
c

)
ρ+
|sc|
ρ

)
.

Using (3.9) we find that
√
t2 − 4s4 + |s3|/|c| = |sc|, and so

|ãii| ≤ c2|aii|+ s2|ajj |+ |aij ||sc| (ρ+ 1/ρ) ,(3.23)

|ãjj | ≤ c2|ajj |+ s2|aii|+ |aij ||sc| (ρ+ 1/ρ) .(3.24)
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For the other affected elements in rows and columns i and j we have, for k �= i, j,

ãik = ãki = aikc
√
c2 + s2/ρ2 − ajks

√
s2 + c2ρ2,

ãjk = ãkj = aiks
√
s2 + c2/ρ2 + ajkc

√
c2 + s2ρ2.

These elements can be bounded by

|ãik| ≤ |aik|
(
c2 + |sc|/ρ)+ |ajk| (s2 + |sc|ρ) ,(3.25)

|ãjk| ≤ |aik|
(
s2 + |sc|/ρ)+ |ajk| (c2 + |sc|ρ) .(3.26)

The bounds (3.23)–(3.26) can all be written in the form

|ãpq| ≤ max
r,s
|ars|

(
1 + |sc|(ρ+ 1/ρ)

)
,

and so the growth of Am over one step is bounded by

φm ≤ 1 + |sc|(ρ+ 1/ρ) ≤ 1 + 2|sc|max(ρ, 1/ρ) = 1 + 2ωm.

The overall growth bound is

πm :=
‖Am‖2
‖A0‖2 ≤

√
n

m−1∏
i=0

φi.(3.27)

3.2. Bounding ‖N−1
i ‖2. Our final task is to bound

µi := ‖N−1
i ‖2 = ‖D−1

i QT
i−1 . . . Q

T
0 D0‖2

(see (3.10)). We describe two different bounds. In view of (3.19),

‖D−1
i+1‖2 ≤ ‖D−1

i ‖2 ≤ · · · ≤ ‖D−1
0 ‖2.

Thus, since D0 = D, where B has the Cholesky factorization (1.2),

µ2
i ≤ κ2(D)2 ≤ κ2(L)κ2(B).

However, the point of our analysis is to avoid a κ2(B) term in the bounds. As an
alternative way of bounding µi we note that, from (3.14),

N−1
i = M−1

i−1 . . .M
−1
0 .

For the row cyclic ordering in (2.7) the congruence transformations can be reordered
into 2n− 3 groups of up to �n/2� disjoint transformations Mj+1, . . . ,Mj+p such that,
using (3.20),

‖M−1
j+p . . .M

−1
j+1‖2 ≤

√
2.

For example, a sweep of a 6 × 6 matrix can be divided into 9 groups of disjoint
rotations: 



− 1 2 3 4 5
− 3 4 5 6
− 5 6 7
− 7 8
− 9
−



.
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Here, an integer k in position (i, j) denotes that the (i, j) element is eliminated on
the kth step by a rotation in the (i, j) plane, and all rotations on the kth step are
disjoint. Hence we can bound µi by

µi ≤ (
√
2)2n−3 = 2n−3/2.

Although exponential in n, this bound is independent of κ2(B).

3.3. Summary. Our backward error analysis shows that, upon convergence after
m Jacobi rotations, Algorithm 2.1 has computed a diagonal Λ such that

XT (A+∆A)X = Λ, XT (B +∆B)X = I(3.28)

for some nonsingular X, where

‖∆A‖2 ≤ γ̃n2‖A‖2
(
κ2(L)

2 +

m−1∑
k=0

µ2
k

(
1 + 2ωk

)
πk

)
,(3.29a)

‖∆B‖2 ≤ γ̃n2‖B‖2.(3.29b)

The term involving κ2(L) takes account of errors in the first stage of Algorithm 2.1
and follows from standard error analysis [14, chapter 10] of Cholesky factorization
and the solution of triangular systems. Because of the complete pivoting, κ(L) is
bounded as in (1.6), and in practice it is usually small. Even when κ(L) is large, its
full effect tends not to be felt on the backward error, since triangular systems are
typically solved to higher accuracy than the bounds suggest [14, chapter 8].

We do not have a bound better than exponential in n for the term µ2
i , but

this term has been less than 10 in virtually all our numerical tests. We showed in
section 3.1 that the growth factor πk = ‖Ak‖2/‖A0‖2 in (3.27) is certainly bounded

by πk ≤
√
n
∏k−1

i=0 (1 + 2ωi). The term

ωk = |skck|max(ρk, 1/ρk) ≤ |skck|κ2(D) ≤ |skck|κ2(L)κ2(B)1/2(3.30)

is the most important quantity in our analysis. A large value of ωk, for some k, is the
main indicator of instability in Algorithm 2.1.

We stress that our error bounds do not depend on the ordering (1.5), as should be
expected since the Jacobi method is insensitive to the ordering of the diagonal of D.
The purpose of pivoting in the Cholesky factorization is to keep L well conditioned
and thereby concentrate any ill conditioning of B into D.

The conclusion from the error analysis is that Algorithm 2.1 has much better
stability properties than the bound (1.7) suggests. When κ2(B) is large it is usually
the case that small values of |skck| cancel any large values of max(ρk, 1/ρk) (see the
discussion following Lemma 3.4) and that πk is also small, with a resulting small
backward error bound.

For the particular version of the Cholesky–QR method in which the initial tridi-
agonalization of the QR algorithm is performed using Givens rotations, Davies [5]
uses suitable modifications of the analysis presented here to derive analogues of (3.28)
and (3.29) in which the terms 1 + 2ωk and πk in (3.29) are squared (the definitions
of wk and πk are unchanged, but of course the underlying rotations are different).
Unfortunately, Householder transformations rather than Givens rotations are almost
always used for the tridiagonalization and our error analysis is specific to rotations;
therefore (1.7) remains the best error bound for the practically used Cholesky–QR
method.



SYMMETRIC DEFINITE GENERALIZED EIGENPROBLEM 485

4. Iterative refinement. The relative normwise backward error of an approx-
imate eigenpair (x̃, λ̃) of (1.1) is defined by

η(x̃, λ̃) = min
{
ε : (A+∆A)x̃ = λ̃(B +∆B)x̃, ‖∆A‖ ≤ ε‖A‖,(4.1)

‖∆B‖ ≤ ε‖B‖}.
To evaluate the backward error we can use the explicit expression [11], [13]

η(x̃, λ̃) =
‖r‖

(|λ̃| ‖B‖+ ‖A‖)‖x̃‖
,(4.2)

where r = λ̃Bx̃−Ax̃ is the residual. For symmetric A and B, we denote by ηS(x̃, λ̃)
the backward error (4.1) with the additional constraint that the perturbations∆A and

∆B are symmetric. Clearly ηS(x̃, λ̃) ≥ η(x̃, λ̃). However, Higham and Higham [13]

show that when λ̃ is real, ηS(x̃, λ̃) = η(x̃, λ̃) for the 2-norm. Hence, for the symmetric
definite generalized eigenproblem it is appropriate to use the general definition (4.1)
and the formula (4.2).

The idea of using iterative refinement to improve numerical stability has been
investigated for linear systems by several authors; see [14, chapter 11] for a survey
and [15] for the most recent results. Iterative refinement has previously been used
with residuals computed in extended precision to improve the accuracy of approx-
imate solutions to the standard eigenproblem [8], [9], [22]. Tisseur [23] shows how
iterative refinement can be used in fixed or extended precision to improve the forward
and backward errors of approximate solutions to the generalized eigenvalue problem
(GEP). She writes the GEP as

Ax = λBx, eTs x = 1 (for some fixed s)

and applies Newton’s method to the equivalent nonlinear equation problem

F

([
x
λ

])
=

[
(A− λB)x
eTs x− 1

]
: R

n+1 → R
n+1.

This requires solving linear systems whose coefficient matrices are the Jacobian

J

([
x
λ

])
=

[
A− λB −Bx

eTs 0

]
.

We use this technique with residuals computed in fixed precision to improve the
backward errors of eigenpairs computed by Algorithm 2.1. We very briefly summarize
the convergence results and two implementations of iterative refinement; full details
may be found in [23].

If J is not too ill conditioned, the linear system solver is not too unstable, and the
starting vector is sufficiently close to an eigenpair (x∗, λ∗), then iterative refinement
by Newton’s method in floating point arithmetic with residuals computed in fixed
precision yields a refined eigenpair (x̂, λ̂) with backward error in the∞-norm bounded
by [23, Corollary 3.5]

η∞(x̂, λ̂) ≤ γ̃n + u(3 + |λ|)max

(‖A‖∞
‖B‖∞ ,

‖B‖∞
‖A‖∞

)
.(4.3)

This backward error bound is small if λ is of order 1 and the problem is well balanced,
that is, ‖A‖∞ ≈ ‖B‖∞. If the problem is not well balanced, we can change the GEP
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to make it so. We can scale the GEP to (αA)x = (αλ)Bx, where α = ‖B‖∞/‖A‖∞
and the backward error now depends on the size of λ = αλ. If |λ| ≤ 1, a small
backward error is ensured, while for |λ| ≥ 1 we can consider the problem Bx = µAx,
for which |µ| ≤ 1. Practical experience shows that it is not necessary to scale or to
reverse the problem—a backward error of order u is obtained as long as the starting
vector is good enough for Newton’s method to converge.

The following algorithm can be derived after some manipulation of the Newton
equations [23].

Algorithm 4.1. Given A, B and an approximate eigenpair (x, λ) with ‖x‖∞ =
xs = 1, this algorithm applies iterative refinement to λ and x:

repeat until convergence
r = λBx−Ax
Form M : the matrix A− λB with column s replaced by −Bx
Factor PM = LU (LU factorization with partial pivoting)
Solve Mδ = r using the LU factors
λ = λ+ δs; δs = 0
x = x+ δ

end
This algorithm is expensive as each iteration requires O(n3) flops for the factor-

ization of M . By taking advantage of the eigendecomposition computed by Algo-
rithm 2.1, the cost per iteration can be reduced to O(n2) flops [23].

Algorithm 4.2. Given A, B, X, and Λ such that XTAX = Λ and XTBX = I,
and an approximate eigenpair (x, λ) with ‖x‖∞ = xs = 1, this algorithm applies
iterative refinement to λ and x at a cost of O(n2) flops per iteration.

repeat until convergence
r = λBx−Ax
Dλ = Λ− λI
d = −Bx− cλs, where cλs is the sth column of A− λB
v = XT d; f = XT es
Compute Givens rotations Jk in the (k, k + 1) plane, such that

QT
1 v := JT

1 . . . JT
n−1v = ‖v‖2e1

Compute orthogonal Q2 such that
T = QT

2 Q
T
1 (Dλ + vfT ) is upper triangular

z = QT
2 Q

T
1 X

T r
Solve Tw = z for w
δ = Xw
λ = λ+ δs; δs = 0
x = x+ δ

end

The computed X̂ from Algorithm 2.1 does not necessarily give a backward stable
diagonalization of A and B. However, Tisseur [23] shows that instability in the solver
does not affect the overall limiting accuracy and limiting backward error (4.3) when
iterative refinement converges, although of course it may inhibit convergence. The
price to be paid for the greater efficiency of Algorithm 4.2 over Algorithm 4.1 is less
frequent and less rapid convergence.

5. Numerical results. In this section we give several examples to illustrate the
behavior of Algorithm 2.1 and the sharpness of our backward error bounds, to show
how the algorithm compares with the Cholesky–QR method, to show the need for
pivoting in the Cholesky–QR method, and to show the benefits of iterative refinement.
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Table 5.1
Terms from error analysis and backward error for Example 1.

ε κ2(B) maxωk maxµ2k maxπk max η2(x̂, λ̂)

10−1 107 7.98e-1 3.33e0 3.12e0 1.31e-16
10−2 1014 1.90e0 4.38e0 7.02e0 5.35e-17
10−3 1021 2.38e0 4.67e0 1.04e1 3.50e-17

All our experiments were carried out in MATLAB 6, in which matrix computations are
based on LAPACK; the unit roundoff is u = 2−53 ≈ 1.1×10−16. (Our implementation
of the Cholesky–QR method uses the MATLAB/LAPACK implementation of the QR
algorithm and so employs Householder tridiagonalization.) In Algorithms 4.1 and 4.2

convergence was declared when η∞(x̂, λ̂) ≤ u.

Example 1. Our first example illustrates how our backward error bounds can
correctly predict perfect backward stability of Algorithm 2.1 despite large values of
κ2(B). We take A = H − I ∈ R

n×n, where H is the Hilbert matrix, and B =
diag(1, ε, ε2, . . . , εn−1). For n = 8 and ε = 10−1, 10−2, 10−3, Table 5.1 shows the values
of the terms appearing in the error analysis along with the maximum backward error
over all the computed eigenpairs. The Cholesky–QR method is also stable on this
example.

In a variation of this example we took A = H and B = diag(εn−1, . . . , ε, 1), with
n = 8 and ε = 10−2. The computed eigenvalues from the Cholesky–Jacobi method
and the Cholesky–QR method with pivoting both range from 10−9 to 1014 and the
maximum backward error over all the computed eigenpairs is of order u. However,
the Cholesky–QR method without pivoting produces two negative eigenvalues of or-
der 10−2, even though the exact eigenvalues are clearly positive, and the maximum
backward error is of order 10−3.

Example 2. This example is a structural engineering problem that again illustrates
independence of our backward error bounds on κ2(B). We consider a cantilever beam
as shown in Figure 5.1(a). We assume that the cantilever is rigid in its axial direction
and that all the deformations are small. The boundary conditions are full-fixity at
the base and zero translational displacement at the cantilever end. We also assume
that the material properties and cross sections vary along the length of the beam.
The equation of motion for the natural vibrations has the form

Mv̈ +Kv = 0,

where M denotes the symmetric positive definite mass inertia matrix and K the
symmetric positive definite stiffness matrix. The finite element method leads to the
generalized eigenvalue problem

Kφ = λMφ.(5.1)

The cantilever is modeled with N finite elements. Each element has 4 degrees of
freedom, namely, the two beam-end lateral displacements and the two beam-end ro-
tations as shown in Figure 5.1(b). The length of the ith finite element ei is taken to
be Li and its flexural characteristic to be (EI)i, where E is the modulus of elasticity
and I the moment of inertia. The global degrees of freedom are numbered as shown
in Figure 5.1(a). If cubic Hermite interpolation polynomials are used to describe
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e1 e2 ei ei+1 eN

1,2 3,4 2i−1,2i

2N−1

(a) Geometry of supported cantilever beam.

2i−3

2i−2

2i−1

2i

Li

ei

(b) Beam finite element.

Fig. 5.1. Single span cantilever beam with supported end point.

Table 5.2
Result for two instances of the cantilever beam problem.

κ2(M) = 3.9× 1010, κ2(L) = 1.8

maxωk maxµ2k maxπk max η2(x̂, λ̂)

Cholesky–Jacobi 4.58e0 8.3e0 1.63e0 5.18e-17
Cholesky–QR (no pivoting) 5.10e-17

Cholesky–QR (with pivoting) 7.48e-17

κ2(M) = 6.7× 106, κ2(L) = 2.2

maxωk maxµ2k maxπk max η2(x̂, λ̂)

Cholesky–Jacobi 3.86e0 4.18e0 2.45e0 1.77e-16
Cholesky–QR (no pivoting) 1.23e-13

Cholesky–QR (with pivoting) 1.21e-16

displacement along the beam element, then the beam element stiffness matrix is [17]

Ki =
2(EI)i
L3
i




6 3Li −6 3Li

3Li 2L2
i −3Li L2

i

−6 −3Li 6 −3Li

3Li L2
i −3Li 2L2

i




and the beam element consistent mass matrix is

Mi =
miLi

420




156 22Li 54 −13Li

22Li 4L2
i 13Li −3L2

i

54 13Li 156 −22Li

−13Li −3L2
i −22Li 4L2

i


 ,

where mi is the average mass per unit length for the ith beam. The global stiffness
and mass inertia matrices are obtained by assembling the Ki and Mi, i = 1:N .

For our example, we chose N = 5 finite elements leading to 9 degrees of freedom
and we varied the parameters ei, Li, (EI)i, and mi, sometimes applying direct search
to maximize the backward error over these variables. The backward errors for Algo-
rithm 2.1 and the Cholesky–QR method with pivoting were always of order u, with
our backward error bounds for Algorithm 2.1 also of order u. Table 5.2 shows results
for two sets of parameters. The second set of results shows again that pivoting can
be needed for stability of the Cholesky–QR method.

Example 3. This is an example where Algorithm 2.1 is unstable and there is only
one large value of ωk. With n = 10, we take A ∈ R

n×n to be a random symmetric
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Table 5.3
Iterative refinement of eigenpairs of Example 4. For the entry marked †, convergence was not

to the eigenvalue indicated in the leftmost column.

Before After refinement

refinement Algorithm 4.1 Algorithm 4.2

λ η∞(x̃, λ̃) e(λ̃) η∞(x̂, λ̂) e(λ̂) it η∞(x̂, λ̂) e(λ̂) it

ε = 2−6 ≈ 1.6× 10−2

1.4e0 4e-7 9e-6 5e-17 3e-16 2 7e-17 1e-15 2

−4.6e1 2e-8 6e-8 7e-18 2e-16 2 6e-18 2e-16 2

−8.4e3 2e-11 1e-9 5e-20 0 1 5e-20 0 2

ε = 2−8 ≈ 3.9× 10−3

1.4e0 2e-3 4e-2 4e-17 2e-16 3 4e-17 2e-16 12

−1.8e2 1e-5 3e-4 2e-17 2e-16 2 3e-17 8e-16 9

−1.4e4 4e-9 3e-6 5e-21 2e-16 2 2e-15 1e-12 ∗
ε = 2−12 ≈ 2.4× 10−4

1.4e0 3e-3 1e0 4e-18 0† 5 1e-2 1e0 ∗
−3.0e3 6e-4 8e-1 1e-22 0 5 3e-3 8e-1 ∗
−3.5e7 4e-5 1e-1 2e-17 4e-16 3 2e-5 1e-1 ∗

matrix and B = In and replace the (n, n) entries of each matrix by 10−24. Jacobi
rotations not involving the nth plane have ρ = 1, and therefore ωk is small. However,
when we first apply a Jacobi rotation in the (1, n) plane we see that ρ = 1012 and

a11 − ρ2ann = a11 − 1� ρa1n = 1012a1n,

and therefore, from (3.6), sc ≈ 1/2 and ωk ≈ 5× 1011. Note that this is an example
where (3.30) is sharp. This is the only ill-conditioned Mk transformation as, using

our scaling strategy, we set d̃2
n = c2d2

n + s2d2
1 = O(1) in (3.17), and afterwards ρ is

always approximately 1 for all subsequent rotations. The other key terms from the
error bounds are maxk πk = 8.4×1011 and maxk µ

2
k = 2.0. The computed eigenvalues

consist of a group of 8 of order 1, all with backward errors of order 10−5 and two
eigenvalues of order 1012, with backward errors of order u. Applying Algorithm 4.1
to the eigenvalues with large backward errors we found that backward errors of order
u were produced within 3–7 iterations; Algorithm 4.2 did not converge for any of the
eigenvalues. The Cholesky–QR method was stable in this example.

Example 4. This example is one of a form suggested by G. W. Stewart that causes
difficulties for Algorithm 2.1, and we use it to compare Algorithms 4.1 and 4.2. The
matrices are

diag(A) = d, aij = min(i, j) for i �= j, B = diag(d), d = [1, ε, ε2, . . . , εn−1]

with 0 < ε < 1. We take n = 8 with three choices of ε and concentrate on the three
eigenvalues of smallest absolute value. We report in Table 5.3 the backward error
η∞(x̂, λ̂) of the computed eigenpair and the forward error

e(λ̂) =
|λ− λ̂|
|λ|

of the computed eigenvalue, where the exact λ is obtained using MATLAB’s Symbolic
Math Toolbox; these statistics are given both before and after refinement, together
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Table 5.4
Terms from error analysis for Example 4.

ε κ2(B) maxωk maxµ2k maxπk

2−6 4e12 1.3e5 7.9 1.1e10

2−8 7e16 1.7e7 8.0 8.8e13

2−12 2e25 2.8e11 8.0 5.7e21
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η∞(x,λ)

Before refinement
After refinement

Fig. 5.2. Backward errors for Cholesky–QR method before and after iterative refinement for
Kahan matrix example (Example 5). Dotted line denotes unit roundoff level.

with the number of iterations required by Algorithms 4.1 and 4.2, where “∗” denotes
no convergence after 50 iterations and in this case the quantities from the 50th itera-
tion are shown. Table 5.4 shows the size of the terms appearing in the error bounds
of section 3.3. The observed instability corresponds to large ωk and πk, but µ2

k is
small, as is usually the case. We see that, as expected from the theory [23], refining
with the unstable linear system solver produces the same limiting backward error as
when the stable solver is used, but that it can produce slower convergence and is
less likely to converge at all, as we saw also in Example 3. Iterative refinement also
improves the forward error e. As one entry in the table shows, it is possible for iter-
ative refinement to converge to a different eigenpair than expected when the original
approximate eigenpair is sufficiently poor. The Cholesky–QR method performs stably
on this example.

Example 5. The next example illustrates how ill condition of L can cause in-
stability. Here, n = 20, A = I, and B = RTR, where R is a Kahan matrix, and
κ2(B) ≈ 1/u, κ2(L) ≈ 3 × 104. Figure 5.2 plots the eigenvalues on the x-axis versus
the ∞-norm backward errors of the eigenpairs on the y-axis, for eigenpairs both be-
fore and after refinement. At most one step of iterative refinement was required. The
Cholesky–QR method was used, with Algorithm 4.2; Algorithms 2.1 and 4.1 give very
similar results. The quantities in the error bounds for Algorithm 2.1 are maxωk = 0.6,
maxµ2

k = 315, maxπk = 1.8. As expected, it is the small eigenvalues that have large
backward errors initially.
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Fig. 5.3. Behavior of the backward error for eigenvalue of smallest modulus of problem (5.2)
with α = 1, δ = 10−3. Dotted line denotes unit roundoff level.

Example 6. Our penultimate example is adapted from a problem used by Fix and
Heiberger [10] and shows that it is possible for the Cholesky–Jacobi method to be
stable when the Cholesky–QR method both with and without pivoting is unstable.
Let

A =



1 α 0 δ
α 2 0 0
0 0 3 0
δ 0 0 ε


 , B = diag(ε, 1, ε, 1), α, δ > 0, 0 < ε < 1.(5.2)

We solved the problem for α = 1, δ = 10−3 and a range of ε from 10−10 to 10−18

by Algorithm 2.1 and the Cholesky–QR method with pivoting. Figure 5.3 plots the
condition number of B against the backward error η2(x̂min, λ̂min) for the eigenvalue

λ̂min of minimal modulus. The Cholesky–QR method performs unstably for most of
the matrices B in the figure (strangely, producing generally better results without
pivoting), while Algorithm 2.1 displays excellent stability. For Algorithm 2.1 we have
maxk ωk = maxk πk = 1.0 and maxk µ

2
k = 1.71, so our error bounds predict the small

backward errors.
Example 7. Our final example uses a class of random test problems suggested by

Chandrasekaran [3]. They have the form

A = R+ (10−8nλn − λ[n/2])I, B = S + (|λ1|+ 10−8nmax(λ1, λn))I,

where R and S are random matrices from the normal (0,1) distribution and λ1 ≤ · · · ≤
λn are the eigenvalues of R (for A) or S (for B). With 5 ≤ n ≤ 100 the backward errors
of the eigenpairs produced by the Cholesky–Jacobi method and the Cholesky–QR
method with and without pivoting were almost always less than nu, with a maximum
value of 10−13 occurring for the Cholesky–QR method without pivoting for n = 60.
Iterative refinement by Algorithms 4.1 and 4.2 reduced the backward error to u in at
most three iterations, with only one iteration being required in over 95 percent of the
cases. For Algorithm 2.1 we have maxk ωk = maxk µ

2
k = 4 and maxk πk = 56.
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6. Conclusions. We have shown that the Cholesky–Jacobi method has better
numerical stability properties than the standard backward error bound (1.7) suggests.
For problems with an ill-conditioned B, the method can be, and often is, perfectly
stable, and numerical experiments show that our bounds predict the stability well.
The method is of practical use: it is easy to code, as Algorithm 2.1 shows, and the
Jacobi method is particularly attractive in a parallel computing environment.

In practice, the Cholesky–QR method appears to perform as well as the Cholesky–
Jacobi method, provided that complete pivoting is used in the Cholesky factorization.
As we noted in section 1 this can, to some extent, be explained by the QR method’s
good performance on graded matrices. However, except for a rarely used variant
employing Givens tridiagonalization, the best backward error bound for the Cholesky–
QR method continues to contain a factor κ2(B). It is an important open problem to
derive a sharper bound.

Instability of the Cholesky methods can be cured by iterative refinement, provided
it is not too severe, as we have illustrated. Drawbacks are that refinement is expensive
if applied to more than just a few eigenpairs, and practically verifiable conditions that
guarantee convergence to the desired eigenpair are not available, though the method
is surprisingly effective in practice.

The Cholesky–QR method (without pivoting) is the standard method for solving
the symmetric definite generalized eigenproblem in LAPACK, MATLAB 6, and the
NAG Library, all of which aim to provide exclusively backward stable algorithms. It
is clearly desirable for these implementations to incorporate pivoting in the Cholesky
factorization, in order to enhance the reliability, and to incorporate the option of
iterative refinement of selected eigenpairs, to ameliorate those instances, which are
rarer than we can explain, where the Cholesky–QR method behaves unstably.

Acknowledgment. We thank Sven Hammarling for many helpful discussions on
this work.
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Abstract. We present a stabilized superfast solver for nonsymmetric Toeplitz systems Tx = b.
An explicit formula for T−1 is expressed in such a way that the matrix-vector product T−1b can be
calculated via FFTs and Hadamard products. This inversion formula involves certain polynomials
that can be computed by solving two linearized rational interpolation problems on the unit circle.
The heart of our Toeplitz solver is a superfast algorithm to solve these interpolation problems. To
stabilize the algorithm, i.e., to improve the accuracy, several techniques are used: pivoting, iterative
improvement, downdating, and giving “difficult” interpolation points an adequate treatment. We
have implemented our algorithm in Fortran 90. Numerical examples illustrate the effectiveness of
our approach.
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1. Introduction. The subject of this paper is linear systems of equations

Tnx = b(1.1)

with a nonsingular, in general nonsymmetric, n × n Toeplitz coefficient matrix T :=
Tn := [ak−l]

n−1
k,l=0 and a right-hand side vector b ∈ C

n. The aim of the paper is to

present a new solution algorithm that has (generically) complexity O(n log2 n) and
that avoids unstable behavior by introducing several stabilizing techniques.

Since Toeplitz systems of equations appear in many applications, they are the
subject of a large number of publications. During the last decades many algorithms
have been developed that exploit the Toeplitz structure of the coefficient matrix.
There are two types of direct fast solvers that require O(n2) operations: Levinson-
type and Schur-type algorithms. For more references and information concerning the
history of these algorithms, we refer the reader to [36].

The flow of these classical fast methods is determined by the exact singularity of
the leading principal submatrices of T . The fast methods compute the solutions corre-
sponding to successive nonsingular leading principal submatrices (sections). However,
in finite-precision arithmetic not only singular but also ill-conditioned sections should
be avoided. In the case of a positive definite matrix, it can be guaranteed that the
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principal submatrices are well-conditioned. Moreover, it was proved in [5] that the
Schur (Bareiss) algorithm is weakly stable in this case. Weak stability of the Levinson
algorithm for a certain class of positive definite Toeplitz matrices was already proven
in [13]. In the case of an indefinite and nonsymmetric matrix, simple examples show
that both the Levinson and the Schur algorithms can be highly unstable. One idea
for overcoming these instabilities is to consider the normal equation TH

n Tnx = TT
n b

or some related augmented systems. The matrix TH
n Tn and its augmented relatives

are positive definite, i.e., all principal submatrices are nonsingular, and, moreover,
they have a displacement structure. Stable generalized Schur algorithms have been
designed for these matrices by Sayed and Chandrasekaran (see [36, Chapter 3] and
the references therein, such as [12]).

Another idea for overcoming unstable behavior of the classical algorithms is to
“look ahead” from one well-conditioned section to the next one and jump over the
ill-conditioned sections that lie in between. For Toeplitz systems several look-ahead
algorithms were designed in [10, 11, 15, 16, 18, 23, 25, 26, 27, 28, 35]. For Hankel sys-
tems we refer to [6, 9, 17]. Several high-performance algorithms for Toeplitz matrices
are described in [19], including two look-ahead Schur algorithms for symmetric indefi-
nite block Toeplitz matrices. See also [51]. In [45] a look-ahead block Schur algorithm
for Toeplitz-like matrices was presented. However, reliable look-ahead strategies are
difficult to design and, moreover, the resulting algorithms may have complexity O(n3),
i.e., they may not be fast.

A third approach for dealing with nonsymmetric Toeplitz systems, which is, in
principle, also the approach used in this paper, was first proposed in [29] and further
developed in [19, 21, 24, 30, 32, 33, 37, 38, 48] and other papers. A survey of the matter
is given in [44]. The idea is to transform the Toeplitz (or Hankel or Toeplitz-plus-
Hankel) matrix with the help of the DFT or real discrete trigonometric transforms into
a generalized Cauchy or a generalized Vandermonde matrix, which can be done with
O(n log n) complexity in a stable way. The advantage of these classes of matrices
is that permutation of rows or columns does not destroy the structure. Therefore
pivoting strategies can be applied to stabilize the algorithm. Slightly different is the
idea, which was proposed in [30, 31], to transform the Toeplitz (or Hankel) system
directly into a rational interpolation problem at roots of unity. One advantage of this
approach is that one can guarantee that the length of the transformations is a power
of 2.

Algorithms with complexity less than O(n2) are called superfast. Superfast solvers
are based on divide and conquer strategies. The idea for a superfast Toeplitz solver was
first announced in the Ph.D. thesis of Morf [41]. Superfast algorithms were designed
by Sugiyama et al. [47], Bitmead and Anderson [4], Brent, Gustavson, and Yun [7], and
Morf [42]. More recent algorithms can be found in [1, 2, 3, 8, 14, 20, 22, 39, 40, 43, 46].

The main disadvantage of these algorithms is that they cannot handle nearly
singular leading principal submatrices and are therefore unstable in the nonsymmetric
case. To overcome this problem, Gutknecht [26] and Gutknecht and Hochbruck [27, 28]
developed an algorithm that combines the look-ahead idea with divide and conquer
techniques. Because in most practical problems the look-ahead step will be small
compared to the order of the system that is to be solved, the algorithm is generically
superfast.

In [52] a divide and conquer approach was used to obtain a superfast algorithm
for rational interpolation at roots of unity. The algorithm consists of two stages.
The first part, for a small number of nodes, consists of the fast algorithm from [38]
including pivoting. The second part is a doubling procedure. Instead of pivoting,
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“difficult” points are sorted out and are treated at the end. Also, iterative refinement
is applied to stabilize the algorithm. In this way a stabilized generically superfast
solver for indefinite Hankel systems was obtained, i.e., superfast in case the number
of difficult points is small, and fast otherwise.

In this paper we use a similar approach for Toeplitz systems. In contrast with [52],
the Toeplitz is not first transformed into another matrix, but an explicit formula for
the inverse of a Toeplitz matrix is used. This formula involves the values of the “fun-
damental system” at roots of unity, i.e., the DFT of the fundamental system. It will
be presented in section 2. The fundamental system is a pair of polynomials containing
all the information about the Toeplitz matrix. These polynomials are related to two
linearized rational interpolation problems at roots of unity. This connection will be
explained in section 3. To solve these interpolation problems, we extend the superfast
algorithm presented in [52]. We will incorporate “downdating” into this algorithm as
an additional stabilizing technique. In section 5 we will present numerical examples
and compare our results with those obtained in [52]. Note that in [52] the size of the
Hankel system is limited to a power of 2, whereas we can handle Toeplitz systems of
arbitrary size.

2. DFT representation of Toeplitz matrix inverses. Let us introduce the
following notation. To each column vector u = [uk]nk=0 ∈ C

n+1 we associate the
polynomial u(z) :=

∑n
k=0 ukz

k ∈ C[z]. The column vector û is defined as û :=
[un−k]nk=0. Thus, û(z) = znu(z−1).

Let a−n ∈ C be arbitrary and let T̃ = T̃n be given by the n× (n+ 1) matrix

T̃ := [ak−l]
n−1,n
k,l=0 =




a0 a−1 · · · a−n+1 a−n

a1 a0
. . . a−n+1

...
. . .

. . .
...

an−1 · · · · · · a0 a−1


 =




a−n

T
...
a−1


 .

The polynomials u(z) and v(z) are called the canonical fundamental system of T if
• T̃ u = e1 and un = 0, where e1 := [ 1 0 · · · 0 ]T ,

• T̃ v = 0 and vn = 1.
In other words, u(z) is a polynomial of degree n − 1 at most while v(z) is a monic
polynomial of degree n such that



a0 a−1 · · · a−n+1

a1 a0
. . .

...
...

. . . a−1

an−1 · · · · · · a0







u0

u1

...
un−1


 =




1
0
...
0




and 


a0 a−1 · · · a−n+1

a1 a0
. . .

...
...

. . . a−1

an−1 · · · · · · a0







v0
v1
...

vn−1


 = −




a−n

a−n+1

...
a−1


 .

As T is assumed to be nonsingular, these polynomials do exist. Moreover, u(z) is
unique whereas v(z) is uniquely determined given a particular value of a−n. For our
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purposes the specific value of a−n is immaterial and thus v(z) is in fact unique up
to a linear combination with u(z). Note that by canceling the last (zero) component
of u, one obtains the first column of T−1.

Remark. Let w = [ w0 · · · wn−1 ]T ∈ C
n be the last column of T−1

n . If

Tn−1 := [ak−l]
n−2
k,l=0 is also nonsingular, then Cramer’s rule implies that wn−1 �= 0 and

one may choose v(z) as v(z) = zw(z)/wn−1. This choice determines the value of a−n.
Also, if Tn is symmetric, then w(z) = û(z).

The generating function M(t, s) of a matrix M = [mk,l]
p,q
k,l=0 is defined as

M(t, s) :=

p∑
k=0

q∑
l=0

mk,lt
ksl.

Theorem 2.1. The generating function of T−1 is given by

T−1(t, s) =
u(t)v̂(s)− v(t)û(s)

1− ts .(2.1)

Proof. For the proof, see [34, p. 32].
The matrix whose generating function is given by the right-hand side of (2.1) is

called the Toeplitz Bezoutian of the polynomials u(z) and v(z).
Let N ≥ n be a power of 2. From the previous theorem we will now derive a

formula for T−1 that will enable us to calculate the matrix-vector product T−1b in
O(N logN) floating point operations.

Define ω0, . . . , ω2N−1 as the 2Nth roots of unity,

ωk := exp
(2πi

2N
k
)
, k = 0, 1, . . . , 2N − 1,

and let ω+
k := ω2k and ω−

k := ω2k+1 for k = 0, 1, . . . , N − 1. Note that ω+
0 , . . . , ω

+
N−1

are the Nth roots of unity whereas ω−
0 , . . . , ω

−
N−1 are the Nth roots of −1. Let

η := exp(πi/N). Define the matrices F+ and F− as

F+ :=
[

(ω+
k )l

]N−1

k,l=0
and F− :=

[
(ω−

k )l
]N−1

k,l=0
.

Then F+/
√
N is unitary and F− = F+ diag(1, η, . . . , ηN−1). Matrix-vector products

involving F+ or F− can be evaluated with arithmetic complexity O(N logN) via the
celebrated FFT.

Let [T−1]N denote the N ×N matrix

[T−1]N :=

[
T−1 0

0 0

]
∈ C

N×N .

DefineD := diag
(

(ω+
0 )−n, . . . , (ω+

N−1)−n
)
, D±(u) := diag

(
u(ω±

0 ), . . . , u(ω±
N−1)

)
and

similar for the matrices D±(v).
Theorem 2.2. The matrix [T−1]N can be expressed as

[T−1]N =
1

2
F−1

−
[
D−(u)F−F−1

+ D+(v)−D−(v)F−F−1
+ D+(u)

]
DF+.(2.2)

Proof. As F−1
+ = 1

NFH
+ , it follows that

F−[T−1]NF−1
+ =: [ck,l]

N−1
k,l=0,



498 MARC VAN BAREL, GEORG HEINIG, AND PETER KRAVANJA

where

ck,l =
1

N
T−1(ω−

k , 1/ω
+
l )

=
1

N

u(ω−
k )v̂(1/ω+

l )− v(ω−
k )û(1/ω+

l )

1− ω−
k /ω

+
l

=
1

N

u(ω−
k )v(ω+

l )− v(ω−
k )u(ω+

l )

1− ω−
k /ω

+
l

[ω+
l ]−n.

One can easily verify that

F−F−1
+ =

2

N

[
1

1− ω−
k /ω

+
l

]N−1

k,l=0

.

The expression for [T−1]N then follows immediately.
The formula in the previous theorem allows us to compute the product x = T−1b

in O(N logN) flops provided that the polynomials u(z) and v(z) are known. Indeed,[
x
0

]
= [T−1]N

[
b
0

]

and the multiplication by [T−1]N can be done via six N -point (inverse) FFTs and
O(N) flops. For preprocessing one has to compute the values of u(ωk) and v(ωk) for
k = 0, 1, . . . , 2N − 1, which amounts to two 2N -point FFTs.

3. Interpolation interpretation. For a given Toeplitz matrix T = [ ak−l]
n−1
k,l=0,

we introduce the function

a(z) :=
n−1∑

k=1−n

akz
k,

where z is considered as a complex variable.
Theorem 3.1. Suppose a−n = 0. Then the polynomials u(z) and v(z) are the

canonical fundamental system of T if and only if there exist polynomials r̂u(z) and
r̂v(z) satisfying the linearized rational interpolation conditions

ωn
k r̂u(ωk)− a(ωk)u(ωk) = 0, k = 0, 1, . . . , 2N − 1,

where deg r̂u(z) ≤ 2N − n, r̂u,2N−n = 1 and deg u(z) ≤ n, un = 0, and

ωn
k r̂v(ωk)− a(ωk)v(ωk) = 0, k = 0, 1, . . . , 2N − 1,

where deg r̂v(z) ≤ 2N − n, r̂v,2N−n = 0 and deg v(z) ≤ n, vn = 1.

Proof. Let δ ∈ C. Let w(z) be a polynomial of degree ≤ n such that T̃w = δe1.
The case δ = 1 corresponds to w(z) = u(z), whereas δ = 0 corresponds to w(z) = v(z).
The condition T̃w = δe1 is equivalent to the existence of polynomials r−(z) and r+(z)
of degree ≤ n− 1 with r−,0 = δ such that

a(z)w(z) = r−(1/z) + znr+(z).

It follows that

a(ωk)w(ωk) = r−(ω−1
k ) + ωn

k r+(ωk)

= r−(ω−1
k ) + ωn−2N

k r+(ωk)
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for k = 0, 1, . . . , 2N − 1. Define

r(z) := r−(z) + z2N−nr+(1/z).

Then r(z) is a polynomial of degree ≤ 2N − n and r0 = δ. Thus

a(ωk)w(ωk) = r(ω−1
k )

= ωn
k [ω2N−n

k r(ω−1
k )]

= ωn
k r̂(ωk)

for k = 0, 1, . . . , 2N − 1. In other words,

ωn
k r̂(ωk)− a(ωk)w(ωk) = 0, k = 0, 1, . . . , 2N − 1,

where deg r̂(z) ≤ 2N − n, r̂2N−n = δ, and degw(z) ≤ n.
These interpolation conditions can also be written as follows:[

ωn
k −a(ωk)

]
B�(ωk) =

[
0 0

]
, k = 0, 1, . . . , 2N − 1,

where

B�(z) :=

[
r̂u(z) r̂v(z)
u(z) v(z)

]
∈ C[z]2×2

is a 2× 2 matrix polynomial. The degree of the first row of B�(z) is equal to 2N − n
whereas the degree of the second row of B�(z) is equal to n. The second row of B�(z)
gives us the inversion parameters that are needed in formula (2.2).

4. A stabilized divide and conquer approach. Define

fk :=

[
ωn
k

−a(ωk)

]
∈ C

2×1

for k = 0, 1, . . . , 2N − 1 and let S be the set of all the column vector polynomials
w(z) ∈ C[z]2×1 that satisfy the interpolation conditions

fTk w(ωk) = 0, k = 0, 1, . . . , 2N − 1.(4.1)

If w(z) ∈ C[z]2×1 is an arbitrary vector polynomial, then the left-hand side of (4.1)
is called the residual with respect to w(z) at the interpolation point ωk.

The set S forms a submodule of the C[z]-module C[z]2×1. A basis for S always
consists of exactly two elements [49, Theorem 3.1]. Let {B1(z), B2(z)} be a basis
for S. Then every element w(z) ∈ S can be written in a unique way as w(z) =
α1(z)B1(z) + α2(z)B2(z) with α1(z), α2(z) ∈ C[z]. The matrix polynomial B(z) :=
[B1(z) B2(z) ] ∈ C[z]2×2 is called a basis matrix. Basis matrices can be characterized
as follows.

Theorem 4.1. A matrix polynomial C(z) = [C1(z) C2(z) ] ∈ C[z]2×2 is a basis
matrix if and only if C1(z), C2(z) ∈ S and deg detC(z) = 2N .

Proof. The proof follows immediately from [49, Theorem 4.1].
Note that B�(z) is a basis matrix.
Within the submodule S we want to be able to consider solutions w(z) that satis-

fy additional conditions concerning their degree-structure. To describe the degree-
structure of a vector polynomial, we use the concept of τ -degree [49]. Let τ ∈ Z.
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The τ -degree of a vector polynomial w(z) = [w1(z) w2(z) ]T ∈ C[z]2×1 is defined as a
generalization of the classical degree:

τ -degw(z) := max{degw1(z),degw2(z)− τ }
with τ -deg 0 := −∞. The τ -highest degree coefficient of a vector polynomial

[w1(z) w2(z) ]T

with τ -degree δ is defined as the vector [ω1 ω2 ]T with ω1 the coefficient of zδ in w1(z)
and ω2 the coefficient of zδ+τ in w2(z). A set of vector polynomials in C[z]2×1 is
called τ -reduced if the τ -highest degree coefficients are linearly independent. Every
basis of S can be transformed into a τ -reduced one. For details, we refer to [49]. Once
we have a basis in τ -reduced form, the elements of S can be parametrized as follows.

Theorem 4.2. Let {B1(z), B2(z) } be a τ -reduced basis for S. Define δ1 := τ -
degB1(z) and δ2 := τ -degB2(z). Then every element w(z) ∈ S having τ -degree ≤ δ
can be written in a unique way as

w(z) = α1(z)B1(z) + α2(z)B2(z)

with α1(z), α2(z) ∈ C[z], degα1(z) ≤ δ − δ1, and degα2(z) ≤ δ − δ2.
Proof. For the proof, see Van Barel and Bultheel [49, Theorem 3.2].
We can now summarize our aim as follows: we want to design an algorithm

for computing the 2 × 2 matrix polynomial B�(z) as a τ -reduced basis matrix that
corresponds to the interpolation data (ωk, fk), k = 0, 1, . . . , 2N − 1, where we set
τ := 2(n−N).

The following theorem will enable us to devise an interpolation algorithm that is
based on a divide and conquer approach. It shows how basis matrices can be coupled
in case the degree-structure is important.

Theorem 4.3. Suppose K is a positive integer. Let σ1, . . . , σK ∈ C be mutually
distinct and let φ1, . . . , φK ∈ C

2×1. Suppose that φk �= [ 0 0 ]T for k = 1, . . . ,K.
Let 1 ≤ κ ≤ K. Let τK ∈ Z. Suppose that Bκ(z) ∈ C[z]2×2 is a τK-reduced basis
matrix with basis vectors having τK-degree δ1 and δ2, respectively, corresponding to
the interpolation data

{ (σk, φk) : k = 1, . . . , κ }.
Let τκ→K := δ1 − δ2. Let Bκ→K(z) ∈ C[z]2×2 be a τκ→K-reduced basis matrix corre-
sponding to the interpolation data

{ (σk, B
T
κ (σk)φk) : k = κ+ 1, . . . ,K }.

Then BK(z) := Bκ(z)Bκ→K(z) is a τK-reduced basis matrix corresponding to the
interpolation data

{ (σk, φk) : k = 1, . . . ,K }.
Proof. For the proof, see Van Barel and Bultheel [50, Theorem 3].
The following algorithm implements this theorem. We start with the 2Nth roots

of unity as interpolation points. They are split into the Nth roots of unity s1 and the
rotated Nth roots of unity s2. The fact that we are dealing with (rotated) roots of
unity enables us to do all polynomial evaluations and multiplications via FFTs (and
diagonal scalings). As N is a power of 2, this process can be repeated. At the lowest
level the interpolation problems are solved by the fast solver RatInt developed by
Kravanja and Van Barel [38].
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recursive function [B(z), sbad ]← RecRatInt(s, Ls, Rs, Ns, τ)
-- τ ∈ Z

-- Ns = 2p+1 for some p ∈ N: the number of interpolation conditions
-- s ∈ C

Ns×1: the (mutually distinct) interpolation points
-- Ls, Rs ∈ C

Ns×1: the initial left and right residual vectors
-- B(z) ∈ C[z]2×2: a τ -reduced basis matrix corresponding to

the given interpolation data
-- sbad: a complex column vector containing the difficult

interpolation points

if Ns > 2limit then
[ s1, Ls1 , Rs1 , s2, Ls2 , Rs2 ]← Split(s, Ls, Rs)
[B1(z), sbad,1 ]← RecRatInt(s1, Ls1 , Rs1 , Ns/2, τ)
for k = 1(1)Ns/2

[ L̃s2(k) R̃s2(k) ]← [Ls2(k) Rs2(k) ] ·B1(s2(k))
end for
τ̃ ← the difference between the left and right τ -degrees of B1(z)

[ B̃2(z), s̃bad,2 ]← RecRatInt(s2, L̃s2 , R̃s2 , Ns/2, τ̃)

B(z)← B1(z) · B̃2(z)
sbad ← sbad,1 ⊕ s̃bad,2

else
[B(z), sbad ]← RatInt(s, Ls, Rs, Ns, τ)

end if

if Ns = 2downdating then
s+ ← s� sbad

[B(z), sbad,3 ]← Downdating(s+, Ls+ , Rs+ , Ns)
sbad ← sbad ⊕ sbad,3

end if

if Ns = 2reflimit then
s+ ← s� sbad

[B(z) ]← ItRef(B(z), s+, Ls+ , Rs+ , Ns, Nref)
end if
return

function [B(z) ]← RatIntAll(s, Ls, Rs, Ns, τ)
-- τ ∈ Z

-- Ns = 2p+1 for some p ∈ N: the number of interpolation conditions
-- s ∈ C

Ns×1: the (mutually distinct) interpolation points
-- Ls, Rs ∈ C

Ns×1: the initial left and right residual vectors
-- B(z) ∈ C[z]2×2: a τ -reduced basis matrix corresponding to

the given interpolation data

[B+(z), sbad ]← RecRatInt(s, Ls, Rs, Ns, τ)
Nbad ← Size(sbad)
if Nbad > 0 then

calculate Lbad and Rbad

τ− ← the difference between the left and right τ -degrees of B+(z)
[B−(z) ]← RatInt(sbad, Lbad, Rbad, Nbad, τ

−)
B(z)← B+(z) ·B−(z)

end if
return
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Superfast Hankel (Toeplitz) solvers are notoriously unstable when applied to in-
definite systems. Algorithm RecRatInt is stabilized in three ways.

Difficult points. During the execution of RatInt all the residuals at interpolation
points that may be chosen as pivot elements can be smaller (in modulus) than a certain
threshold. By processing these interpolation points the accuracy would decrease.
These points are therefore marked as “difficult.” They are handled only at the very
end, after RecRatInt has finished, via the fast-only algorithm RatInt. If at this
stage the corresponding transformed residuals are still small, this indicates that the
problem is ill-conditioned. The overall complexity of our algorithm will be O(n log2 n)
as long as the number of difficult points is not too large.

Iterative improvement. The approximations for the coefficients of the polynomials
that appear in the basis matrix B(z) can be updated iteratively by using an inversion
formula for coupled Vandermonde matrices. For more details, we refer to Van Barel
and Kravanja [52]. Iterative refinement can be applied at one or more intermediate
levels of the divide and conquer process. In algorithm RecRatInt, it is used only if
the number of interpolation conditions is equal to 2reflimit.

Downdating. Finite precision arithmetic can lead to a situation where

fTk B(sk) �≈ [ 0 0
]

for one or more interpolation points sk. As the matrix B(sk) is singular, there exists
a vector v ∈ C

2 such that

B(sk)v =

[
0
0

]
.

Define

B(z) =:
[
BL(z) BR(z)

]
, v =:

[
vL
vR

]

and let αL := τ -degBL(z) and αR := τ -degBR(z). If αL ≥ αR and vL �= 0, then we
replace BL(z) by

BL(z)← B(z)v/(z − sk).

If, on the other hand, αL < αR and vR �= 0, then we replace BR(z) by

BR(z)← B(z)v/(z − sk).

If vL = 0, then BR(z) is divisible by z − sk. Similarly, if vR = 0, then BL(z) is
divisible by z − sk. These considerations lead to the following algorithm.

function [B(z), sbad ]← Downdating(B(z), s, Ls, Rs, Ns)
-- Ns: the number of interpolation conditions
-- s ∈ C

Ns×1: the (mutually distinct) interpolation points
-- Ls, Rs ∈ C

Ns×1: the initial left and right residual vectors
-- B(z) ∈ C[z]2×2

-- on input: a basis matrix corresponding to the given interpolation data
-- on output: the corresponding downdated basis matrix
-- sbad: a complex column vector containing the interpolation points that

have been downdated

sbad ← ∅
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for k = 1(1)Ns

if ‖ [ Ls(k) Rs(k)
] ‖ > η then

Choose v ∈ C
2 such that B(s(k))v =

[
0 0

]T
and ‖v‖ = 1

-- Let B(z) =:
[
BL(z) BR(z)

]
and v =:

[
vL vR

]T
αL ← τ -degBL(z)
αR ← τ -degBR(z)
if αL ≥ αR then
if vL �= 0 then
BL(z)← B(z)v/(z − s(k))

else
BR(z)← BR(z)/(z − s(k))

end if
else
if vR �= 0 then
BR(z)← B(z)v/(z − s(k))

else
BL(z)← BL(z)/(z − s(k))

end if
end if
sbad ← sbad ⊕ s(k)

end if
end for
return

5. Numerical experiments. We consider double precision Toeplitz matrices Tn
whose entries are real and random uniformly distributed in [0, 1] with n = 2k for
k = 1, . . . , 18. Note that 218 = 262144. The right-hand sides bn ∈ R

n are calculated
such that xn := T−1

n bn = [1 · · · 1]T . The calculations were done by an IBM SP2 with
machine precision ≈ 0.22 10−15 in double precision. Our software is available at

http://www.cs.kuleuven.ac.be/˜marc/software/

Figures 5.1 and 5.2 show the results obtained by our algorithm in which no itera-
tive refinement is applied (the symbols “+”) and in which up to 10 steps of iterative
refinement are applied (the symbols “o”) to enhance the accuracy of the computed
solution to the Toeplitz system. Interpolation problems of size less than or equal to 28

are solved by our fast-only algorithm. For each value of k we consider five (random)
Toeplitz matrices.

Our next figures represent timings. As on our computer system measurements
of execution times are done in units of 0.01 seconds, we limit the k-axis to that part
where the results are meaningful. This is why in the following figures k does not start
at 1 but at a larger value.

Figure 5.3 shows the execution time (in seconds) for Gaussian elimination with
partial pivoting (these results were calculated via the LAPACK routines ZGETRF
and ZGETRS), our fast algorithm, and our superfast algorithm in which no iterative
refinement is applied. The results are indicated with the symbols “+”, “o”, and “x”,
respectively.

Figure 5.4 presents the results shown in Figure 5.3 in a different way. It gives
the magnification of the execution time. For each k, it tells us by which factor the
execution time is to be multiplied if we go from k − 1 to k.
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Fig. 5.1.
‖bn−Tnx̂n‖1

‖bn‖1
versus k = log2 n for k = 1, . . . , 18.
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Fig. 5.2.
‖x̂n−xn‖1

‖xn‖1
versus k = log2 n for k = 1, . . . , 18.

Figures 5.5 and 5.6 are related to our superfast solver. For each value of k we con-
sider five (random) Toeplitz matrices. No iterative refinement is applied. Figure 5.5
shows the percentage of the execution time spent to compute the input data for the
interpolation problem formulated in Theorem 3.1, i.e., the time needed to evaluate
the a(ωk)’s. Figure 5.6 shows the percentage of the execution time spent to apply
the inversion formula given in Theorem 2.2 once the interpolation problem has been
solved.

We also consider matrices of size n = 10000(5000)100000. The entries are again
real and random uniformly distributed in [0, 1], and the right-hand sides are again
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Fig. 5.4. Magnification of the execution time.

calculated such that all the entries of the solution vector are equal to 1. For each
value of n we consider five matrices. Figure 5.7 shows the execution time (in seconds).
The results are indicated with the symbol “x”. The symbols “o” correspond to the
case where n is a power of 2.

One expects that for n in the range 2k−1 < n ≤ 2k the execution time is more
or less equal to that of the system of size 2k. In practice, the execution time is less.
This can be explained as follows. At the lowest level some of the first interpolation
problems can be solved via polynomial interpolation, i.e., by applying FFT.

The computed solution can be refined iteratively. Figure 5.8 shows how much
execution time is spent on iterative refinement as percentage of the execution time in
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Fig. 5.5. Percentage of the execution time spent to compute the input data for the interpolation
problem.
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Fig. 5.6. Percentage of the execution time spent to apply the inversion formula.

which no iterative refinement is applied. We consider one, two, three, or four steps of
iterative refinement. The results are represented by the symbols “x”, “o”, “+”, and
“+”, respectively. For each value of k and each number of iterative refinement steps,
five Toeplitz matrices are considered.

So far we have considered only iterative refinement at the Toeplitz level, i.e.,
we have refined the computed solution to the Toeplitz system iteratively. Iterative
refinement can also be applied at the interpolation level. In our next experiment
we apply up to four steps of iterative refinement at the highest interpolation level.
The timing results are shown in Figure 5.9. We compare the execution time spent
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Fig. 5.8. Time spent on iterative refinement as percentage of the execution time in which no
iterative refinement is applied.

on this kind of iterative refinement to the total execution time in which no iterative
refinement whatsoever is applied. Observe that this kind of iterative refinement is
much more expensive than iterative refinement applied at the Toeplitz level.

Iterative refinement at an interpolation level may be preceded by downdating. Nu-
merical experiments indicate that the time needed to search the interpolation points
that have to be downdated is approximately 45% of the time needed for one step of
iterative refinement.

The following example illustrates how important it is to find the proper combi-
nation of the stabilizing techniques that we have developed. For a certain matrix
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Fig. 5.9. Up to four steps of iterative refinement at the highest interpolation level. We compare
the corresponding execution time to the total execution time in which no iterative refinement at all
is applied.

of size 218 whose entries are random uniformly distributed in the interval [0, 1], we
have observed the following. By applying at most 10 steps of iterative refinement on
the interpolation problems of size 218 (this is the one but highest interpolation level;
remember that a matrix of size 218 corresponds to 219 interpolation conditions), by
considering 85 difficult points, and by applying iterative refinement at the Toeplitz
level, we obtain an approximation for the solution whose relative residual error is
O(10−15). If we do not consider difficult points and do not use iterative refinement
at the interpolation level, then the computed approximation is so bad that iterative
refinement at the Toeplitz level fails. The same holds if we apply only iterative refine-
ment on the interpolation problems of size 219. This clearly shows the importance of
combining our stabilizing tools in the correct way. One can of course apply iterative
refinement on each interpolation level, but this is very costly. One has to find the
correct balance between accuracy and cost. This will be the subject of future research.
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Abstract. Let Mn(C) be the algebra of n× n complex matrices. Suppose S ⊂ C is a measure
zero set. It is proved that if A ∈ Mn(C) is not essentially Hermitian then for almost all unitary
matrices U ∈ Mn(C), each entry of U∗AU is not in S. Some other results of this type are obtained.
The ideas here are mainly from differential topology.
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1. Introduction. Let Mn(F) be the algebra of n × n matrices with entries in
the field F. To avoid the trivial case throughout the paper we suppose n ≥ 2. Let I
be the identity matrix. For A ∈Mn(F) if there exists some α ∈ F such that A = αI
then we call A a scalar matrix. Otherwise, A is nonscalar.

In 1968 Gaines [1, Thm. 5] proved that if F is an infinite field and A ∈Mn(F) is
nonscalar then there exists a nonsingular T ∈Mn(F) so that all the entries of T

−1AT
are different from zero, while in 1991 Silva [4] showed that the same conclusion is true
if the field F has at least seven elements.

In this paper we shall show that if F is the field C of complex numbers, then
much stronger results hold. With very few exceptions, the above T can be replaced
by almost all unitary matrices and the single point zero by any prescribed measure
zero set in C (Theorem 10). We shall also consider the corresponding problem for
real matrices (Theorem 13). The ideas we use to prove these results are mainly from
differential topology. For basic concepts in differential topology, see [2].

2. Main results. The following proposition is the basis of our analysis. We will
give a proof of it in the appendix.
Proposition 1. Let M and N be connected real analytic manifolds and f :M →

N a real analytic map. Assume that f has a regular point. If X ⊂ N has measure
zero, so has f−1(X).

Note that if f has no regular point, then by the Morse–Sard theorem [2], the
image of f , f(M), has measure zero.

Corollary 2 follows immediately from Proposition 1.
Corollary 2. Let M be a connected real analytic manifold and f : M → R a

real analytic map. Assume that f is not a constant map. If X ⊂ R has measure zero,
so has f−1(X).
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Suppose that for each point x in a set X, there is given a proposition P (x). We
say that for almost all x in X, P (x) is true if there exists a measure zero set E such
that for x in X\E, P (x) is true. Let U(n) ≡ {U : U∗U = I, U ∈ Mn(C)} be the
unitary group. Then the set {U∗AU : U ∈ U(n)} is the unitary orbit of A. Note that
U(n) is a real analytic submanifold of GL(n,C), the group of invertible n×n complex
matrices [5]. For an n× n matrix A, we denote its (i, j) entry by A(i, j).
Theorem 3. Let S be a measure zero set in C. Suppose A ∈Mn(C) is nonscalar.

Then for almost all U in U(n), (U∗AU)(i, j) �∈ S for i, j = 1, . . . , n, i �= j.
Proof. The conclusion here is that ∪i �=j{U ∈ U(n) : U∗AU(i, j) ∈ S} is a measure

zero set, which is equivalent to the statement that for each pair i �= j, 1 ≤ i, j ≤ n,
{U ∈ U(n) : U∗AU(i, j) ∈ S} is a measure zero set. Later in the paper, we will use
this fact several times but we will not repeat mentioning it.

Let fij : U(n)→ C be the map given by fij(U) = (U
∗AU)(i, j), U ∈ U(n), i, j =

1, . . . , n, i �= j. Then fij is real analytic. By Proposition 1, it suffices to show that
fij has a regular point. We only consider the case where i = 1, j = 2. The proof for
other i �= j is similar. Denote f12 by f .

Consider first the special case where n = 2. Denote by In the n × n identity
matrix. The tangent space to U(2) at I2 is a real vector space u(2) spanned by

D1 =

( √−1 0
0 0

)
, D2 =

(
0 0
0
√−1

)
,

D3 =

(
0 1
−1 0

)
, D4 =

(
0

√−1√−1 0

)
.

Consider the differential of f at I2, (df)I2 .

(df)I2(D) = (D
∗A+AD)(1, 2) = (AD −DA)(1, 2) for D ∈ u(2).

For U ∈ U(2), the tangent space to U(2) at U is Uu(2) = {UD : D ∈ u(2)}. Let
(df)U be the differential of f at U . For D ∈ u(2),

(df)U (UD) = [(UD)
∗AU + U∗A(UD)](1, 2)

= [D∗(U∗AU) + (U∗AU)D](1, 2)
= [(U∗AU)D −D(U∗AU)](1, 2).

Let A = (aij). Note that (AD1 − D1A)(1, 2) = −a12

√−1, (AD2 − D2A)(1, 2) =
a12

√−1, (AD3 −D3A)(1, 2) = a11 − a22, and (AD4 −D4A)(1, 2) = (a11 − a22)
√−1.

Hence, if f has no regular point, then for any U ∈ U(2), (U∗AU)(1, 1) =
(U∗AU)(2, 2). If U = I2, then we obtain a11 = a22. If

U =

( √
2

2 −
√

2
2√

2
2

√
2

2

)
,

then we obtain a12 + a21 = 0. If

U =

( √
2

2

√
2

2

√−1√
2

2

√−1
√

2
2

)
,

then we obtain a12 − a21 = 0. Thus a12 = a21 = 0 and A is scalar, a contradiction.
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We now consider the general case. Assume that f has no regular point. Then by
the Morse–Sard theorem [2], f(U(n)) has measure zero. Denote

(
a11 a12

a21 a22

)

by A′. Note that for U ′ ∈ U(2),

U =

(
U ′ 0
0 In−2

)
∈ U(n)

and (U∗AU)(1, 2) = (U ′∗A′U ′)(1, 2). Let fA′ : U(2) → C be the map given by
fA′(U ′) = (U ′∗A′U ′)(1, 2), U ′ ∈ U(2). Then fA′(U(2)) ⊂ f(U(n)). Thus fA′(U(2))
has measure zero. So fA′ has no regular point. By the above argument, we have
a11 = a22 and a12 = a21 = 0. Similarly, we have akk = a11, k ≥ 2 and akl = 0, k, l =
1, . . . , n, k �= l. Thus A is scalar, a contradiction. This completes the proof.

Note that for a measure zero set S in R, S × R and R× S are measure zero sets
in C. Thus we have the following corollary.
Corollary 4. Let S be a measure zero set in R. Suppose A is nonscalar.

Then for almost all U in U(n), Re[(U∗AU)(i, j)] �∈ S, Im[(U∗AU)(i, j)] �∈ S for
i, j = 1, . . . , n, i �= j.
Lemma 5. Let S be a measure zero set in R and A ∈Mn(C). Suppose A+A∗ is

nonscalar. Then for almost all U in U(n), Re[(U∗AU)(i, i)] �∈ S for i = 1, . . . , n.
Proof. Let fi : U(n) → R be the map given by fi(U) = Re[(U

∗AU)(i, i)], U ∈
U(n), i = 1, . . . , n. By Corollary 2, we need only to show that for each i, fi is not
a constant map. Since fi(U(n)) = f1(U(n)), i ≥ 2, we need only consider the case
i = 1.

Assume that for all U in U(n), f1(U) = α, where α is a fixed real number. Then
for each x ∈ C

n, the real part of 〈(A − αIn)x, x〉 is zero, where 〈, 〉 is the standard
inner product in C

n. So 〈[(A−αIn) + (A−αIn)∗]x, x〉 = 0 for x ∈ C
n. Hence by the

polarization identity for quadratic forms, (A−αIn)+(A−αIn)∗ = 0, A+A∗ = 2αIn,
a contradiction. This completes the proof.

Similarly, we have the following.
Lemma 6. Let S be a measure zero set in R and A ∈Mn(C). Suppose A−A∗ is

nonscalar. Then for almost all U in U(n), Im[(U∗AU)(i, i)] �∈ S for i = 1, . . . , n.
Remark. If A+A∗ is scalar, then for all U in U(n), Re[(U∗AU)(i, i)] is constant

for i = 1, . . . , n. Similarly, if A−A∗ is scalar, then for all U in U(n), Im[(U∗AU)(i, i)]
is constant for i = 1, . . . , n.

Using Corollary 4 and Lemmas 5 and 6, we have the following theorem.
Theorem 7. Let S be a measure zero set in R and A ∈ Mn(C). Suppose that

A+A∗ and A−A∗ are nonscalar. Then for almost all U in U(n), Re[(U∗AU)(i, j)] �∈
S, Im[(U∗AU)(i, j)] �∈ S for i, j = 1, . . . , n.

It is clear that if A is nonscalar, then either A + A∗ is nonscalar or A − A∗ is
nonscalar. The next theorem follows from Theorem 3 and Lemmas 5 and 6.
Theorem 8. Let S ⊂ C be a countable set. Suppose A ∈ Mn(C) is nonscalar.

Then for almost all U in U(n), each entry of U∗AU is not in S.
An interesting special case of Theorem 8 is S = Sr ≡ {z ∈ C : both Rez and Imz

are rational numbers}. Note that Sr is dense in C.
We say that A ∈Mn(C) is essentially Hermitian if A is normal and the eigenvalues

of A are collinear in the complex plane.
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The numerical range of A ∈Mn(C) is defined as

F (A) ≡ {x∗Ax : ||x|| = 1, x ∈ C
n},

where || · || is the usual Euclidean norm. We remark that A is essentially Hermitian if
and only if F (A) is a line segment in C. In fact, since the numerical range of a normal
matrix is the convex hull of its spectrum [3, p. 11], if A is essentially Hermitian then
obviously F (A) is a line segment. Conversely, suppose F (A) is a line segment. Note
that all the eigenvalues λ1, . . . , λn of A are in F (A). Let −t be the angle between
the line segment F (A) and the real axis. Then the set {eit(z − λ1) : z ∈ F (A)}
is a subset of the real axis, or equivalently, F (eit(A − λ1In)) ∈ R. Thus φ(x) ≡
〈eit(A − λ1In)x, x〉 ∈ R for any x ∈ C

n. By the polarization identity for quadratic
forms, eit(A − λ1In) is Hermitian. Hence A is normal with all eigenvalues collinear,
i.e., A is essentially Hermitian.
Lemma 9. Let S be a measure zero set in C. Suppose A ∈ Mn(C) is not

essentially Hermitian. Then for almost all U in U(n), (U∗AU)(i, i) �∈ S for i =
1, . . . , n.

Remark. Let fi : U(n) → C be the map given by fi(U) = (U∗AU)(i, i), U ∈
U(n), i = 1, . . . , n. Let f : S2n−1 → C be the map given by f(x) = x∗Ax, x ∈ S2n−1,
where S2n−1 = {x ∈ C

n : ||x|| = 1}. Then fi(U(n)) = f(S2n−1) = F (A), the
numerical range of A.

Proof of Lemma 9. By Proposition 1, we need only to show that fi has a regular
point. We only consider the case i = 1. The proof for other cases is similar. Denote
f1 by g.

Assume that g has no regular point. Then by the Morse–Sard theorem [2], g(U(n))
has measure zero. By the Toeplitz–Hausdorff theorem [3], g(U(n)) = F (A) is a convex
set. So g(U(n)) is a line segment in C. But this is the case if and only if A is essentially
Hermitian, which contradicts the hypothesis. This completes the proof.

Using Theorem 3 and Lemma 9 we have the following theorem.
Theorem 10. Let S be a measure zero set in C. If A ∈Mn(C) is not essentially

Hermitian, then for almost all U in U(n), each entry of U∗AU is not in S.
Next we consider real matrices. AT denotes the transpose of A. Let SO(n) denote

the group of n × n real orthogonal matrices of determinant 1. Note that SO(n) is a
real analytic submanifold of GL(n,R) [5].
Lemma 11. Let S be a measure zero set in R and A ∈ Mn(R). If n ≥ 3, then

suppose A is nonscalar. If n = 2, then suppose A+AT is nonscalar. Then for almost
all Q in SO(n), (QTAQ)(i, j) �∈ S for i, j = 1, . . . , n, i �= j.

Proof. Let fij : SO(n) → R be the map given by fij(Q) = (Q
TAQ)(i, j), Q ∈

SO(n), i, j = 1, . . . , n. By Corollary 2, we need only to show that for i �= j, fij is not
a constant map. We only consider the case where i = 2, j = 1. The proof for other
cases is similar.

First assume n ≥ 3. Since A is nonscalar, there is a nonzero vector y1 ∈ R
n

which is not an eigenvector of A and ||y1|| = 1. Let y1, y2, . . . , yn be an orthonormal
basis of R

n such that the matrix Q = (y1 y2 . . . yn) is in SO(n). Assume that
Ay1 = a1y1+ a2y2+ · · ·+ anyn. Since y1 is not an eigenvector, ai �= 0 for some i > 1.
Without loss of generality, we assume that a2 �= 0. Then (QTAQ)(2, 1) = a2 �= 0. Set
Q1 = (y1 − y2 − y3 y4 . . . yn). Then Q1 ∈ SO(n) and (QT

1 AQ1)(2, 1) = −a2. So
f21 is not a constant map.

Now assume that n = 2 and f21 is a constant map. For any Q ∈ SO(2), f21(Q) =
α, where α is a fixed real number. Denote J = ( 0

−1
1
0 ). Let x ∈ R

2 be a unit vector.
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Set Q = (x Jx). Then Q ∈ SO(2) and f21(Q) = 〈x,ATJx〉 = α for any unit
x ∈ R

2, where 〈, 〉 is the standard inner product in R
2. From the above equality we

get 〈x, JTAx〉 = α. Adding them we obtain 〈x, (ATJ + JTA − 2αI2)x〉 = 0 for any
x ∈ R

2, which implies ATJ + JTA − 2αI2 = 0. Consequently A + AT is scalar, a
contradiction. So f21 is not a constant map. This completes the proof.

Lemma 12. Let S be a measure zero set in R, A ∈ Mn(R). Suppose A + AT is
nonscalar. Then for almost all Q in SO(n), (QTAQ)(i, i) �∈ S for i = 1, . . . , n.

The proof is similar to that of Lemma 5. We omit it.

Combining Lemmas 11 and 12, we have the following theorem.

Theorem 13. Let S be a measure zero set in R, A ∈Mn(R). Suppose A+AT is
nonscalar. Then for almost all Q in SO(n), each entry of QTAQ is not in S.

Corollary 14. Suppose A ∈ Mn(R) is nonscalar and A + AT �= 0. Then for
almost all Q in SO(n), each entry of QTAQ is not zero.

Proof. If A + AT is nonscalar, then use Theorem 13. If n ≥ 3, A is nonscalar
and A + AT = kIn, where k �= 0, then for any Q in SO(n), we have (QTAQ)(i, i) =
k
2 �= 0, i = 1, . . . , n. Now use Lemma 11. If n = 2, A is nonscalar and A+AT = kI2,
where k �= 0, then for any Q ∈ SO(2), QTAQ = A and aij �= 0 for i, j = 1, 2. This
completes the proof.

Appendix. Proof of Proposition 1. We begin with the following.

Lemma 15. Let U ⊂ R
m be a connected open set and f : U → R a C∞ map.

Assume that f has an nth order partial derivative which is nowhere zero in U . Then
f−1(0) has measure zero.

Proof. We proceed by induction on n. If n = 0, then f−1(0) is empty. If n = 1
then the assertion follows from the implicit function theorem.

Assume now that the assertion is correct for n − 1. Denote ∂f
∂xi

by fi, i =
1, . . . ,m. Then there exists an i such that an (n − 1)st order partial derivative of
fi is nowhere zero in U . Assume that i = 1. Note that the set of critical points
of f , Σf = f−1

1 (0) ∩ f−1
2 (0) ∩ · · · ∩ f−1

m (0). By induction, f−1
1 (0) has measure zero.

So Σf has measure zero. Set U
′ = U\Σf . Let g denote f |U ′, the restriction of f

to U ′. Then by the implicit function theorem, g−1(0) has measure zero. Note that
f−1(0) ⊂ g−1(0) ∪ Σf . So f

−1(0) has measure zero. This completes the proof.

Lemma 16. Let U ⊂ R
m be a connected open set and f : U → R a real analytic

map. Suppose f is not the zero map. Then f−1(0) ⊂ U has measure zero.

Proof. Let x ∈ U . Since f is real analytic and f is not the zero map, there
exists an open connected neighborhood Ux of x such that f has a partial derivative
which is nowhere zero in Ux. So by Lemma 15, f

−1(0) ∩ Ux has measure zero. Note
that U satisfies the second axiom of countability. So f−1(0) has measure zero. This
completes the proof.

Lemma 17. Let M and N be connected real analytic manifolds and f :M → N a
real analytic map. Assume that f has a regular point. Then the set of critical points
of f , Σf , is a measure zero subset of M .

Proof. First assume that M is an open subset of R
m and N is an open subset of

R
n.

Since f has a regular point, we can choose a linear map g : R
m → R

m−n such
that the map h : M → R

m given by h(x) = (f(x), g(x)), x ∈ M has a regular point.
Let h′ be the determinant of the Jacobian of h. Then x ∈ M is a regular point of h
if and only if h′(x) �= 0. So by Lemma 16, Σh has measure zero. Note that Σf ⊂ Σh.
Thus Σf has measure zero.
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Now let M and N be real analytic manifolds. We say that a connected open
subset U of M is admissible if U is a coordinate patch of M and f(U) is a subset of
a coordinate patch of N . Assume that x0 is a regular point of f . Then by the above
argument, x0 has an admissible neighborhood U0 such that Σf ∩U0 has measure zero.
Note that if U, V are admissible, U ∩ V �= ∅, and f has a regular point in U , then
Σf ∩ U has measure zero and f has a regular point in V . Let x ∈ M . Since M is
connected, we have admissible subsets U0, U1, U2, . . . , Uk of M such that x ∈ Uk and
for each i = 0, . . . , k−1, Ui∩Ui+1 �= ∅. So for each i = 1, . . . , k, f has a regular point
in Ui. Thus Σf ∩ Uk has measure zero. Note that M satisfies the second axiom of
countability. Thus Σf has measure zero. This completes the proof of the lemma.

Proof of Proposition 1. Let M̃ = M\Σf . Let g denote f |M̃ , the restriction of
f to M̃ . Note that M̃ is open. We prove that g−1(X) has measure zero. Since M̃
satisfies the second axiom of countability, it suffices to prove this with M̃ an open
subset of R

m and N = R
n. By the implicit function theorem, every point p ∈ M̃ has

an open neighborhood U ⊂ M̃ such that there are an open set V ⊂ R
m and a C∞

diffeomorphism ϕ : V → U satisfying

(gϕ)(x1, . . . , xm) = (x1, . . . , xn).

Thus (gϕ)−1(X) ⊂ X×R
m−n. Since X ⊂ R

n has measure zero, X×R
m−n ⊂ R

m has
measure zero. Therefore, (gϕ)−1(X) has measure zero. So g−1(X) ∩ U has measure
zero. Since M̃ satisfies the second axiom of countability, g−1(X) has measure zero.

Note that f−1(X) ⊂ g−1(X) ∪ Σf . By Lemma 17, f
−1(X) has measure zero.

This completes the proof of Proposition 1.
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support.
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Abstract. Let M be an n×n square matrix and let p(λ) be a monic polynomial of degree n. Let
Z be a set of n×n matrices. The multiplicative inverse eigenvalue problem asks for the construction
of a matrix Z ∈ Z such that the product matrix MZ has characteristic polynomial p(λ).

In this paper we provide new necessary and sufficient conditions when Z is an affine variety over
an algebraically closed field.
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1. Introduction. Inverse eigenvalue problems involving partially specified ma-
trices have drawn the attention of many researchers. The problems are of significance
both from a theoretical point of view and from an applications point of view. For
background material we refer to the monograph by Gohberg, Kaashoek, and van
Schagen [8], the recent book by Xu [15], and the survey article by Chu [3].

The multiplicative eigenvalue problem asks for conditions which guarantee that
the spectrum of a certain matrixM can be made arbitrarily through premultiplication
by a matrix from a certain set. To be precise, let F be an arbitrary field. Let Matn×n

be the space of all n×nmatrices defined over the field F. We will identifyMatn×n with

the vector space F
n2

. Let Z ⊂ Matn×n be an arbitrary subset and let M ∈ Matn×n

be a fixed matrix. Then the (right) multiplicative inverse eigenvalue problem in its
general form asks the following.
Problem 1.1. Given a monic polynomial p(λ) of degree n, is there an n × n

matrix Z ∈ Z such that MZ has characteristic polynomial

det(λI −MZ) = p(λ)?

The formulation of the left multiplicative inverse eigenvalue problem is analogous,
seeking a matrix Z ∈ Z such that ZM has characteristic polynomial p(λ). The left
and the right multiplicative inverse eigenvalue problems are equivalent to each other
because of the identity

det(λI − ZA) = det(λI −AtZt).

In its general form Problem 1.1 is an “open end problem” and until this point
only very particular situations are well understood; e.g., we would like to mention
the well-known result by Friedland [7], who considered the set Z = D of diagonal
matrices. Friedland did show in this case by topological methods that Problem 1.1
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has an affirmative answer if the base field F consists of the complex numbers C. This
diagonal perturbation result was later generalized by Dias da Silva [5] to situations
where the base field can be any algebraically closed field.

The result which we are going to derive in this paper can be viewed as a large
generalization of Friedland’s result. Specifically we will deal with the situation where
Z ⊂ Matn×n represents an arbitrary affine variety over an arbitrary algebraically
closed field F. Under these assumptions we will derive necessary and sufficient con-
ditions (Theorem 3.1) which will guarantee that Problem 1.1 has a positive answer
for a “generic set” of matrices M and a “generic set” of monic polynomials p(λ) of
degree n.

The techniques which we use in this paper have been developed by the authors in
the context of the additive inverse eigenvalue problem [2, 10, 13] and in the context
of the pole placement problem [12].

The major tool from algebraic geometry which we will use is the “dominant
morphism theorem” (see Theorem 2.1). This powerful theorem necessitates that the
base field is algebraically closed. The situation over a nonalgebraically closed field
seems to be much more complicated. Some new techniques applicable over the real
numbers have been recently reported by Drew et al. [6].

2. Preliminaries. For the convenience of the reader we provide a summary of
results which will be needed to establish the new results of this paper.

Denote by σi(M) the ith elementary symmetric function in the eigenvalues of M ,
i.e., σi(M) denotes up to sign the ith coefficient of the characteristic polynomial of
M . Crucial for our purposes will be the eigenvalue assignment map

ψ : Z −→ F
n, Z �−→ (−σ1(MZ), . . . , (−1)nσn(MZ)).(2.1)

ψ is a morphism in the sense of algebraic geometry. By identifying a monic polynomial
λn + b1λ

n−1 + · · ·+ bn with the point (b1, . . . bn) ∈ F
n we can also write

ψ(Z) = det(λI −MZ).(2.2)

Crucial for the proof of the main result (Theorem 3.1) will be the dominant mor-
phism theorem. The following version can be immediately deduced from [1, Chapter
AG, section 17, Theorem 17.3].
Proposition 2.1. Let f : Z → Y be a morphism of affine varieties over an

algebraically closed field. Then the image of f contains a nonempty Zariski open set
of Y if and only if the Jacobian df

Z
: T

Z,Z → T
f(Z),Y is onto at some smooth point Z

of Z, where T
X,X is the tangent space of X at the point X.

There are classical formulas, sometimes referred to as Newton formulas, which
express the elementary symmetric functions σi(M) uniquely as a polynomial in the
power sum symmetric functions

pi := λi1 + · · ·+ λin = tr(M)i.

To be precise one has the formula (see, e.g., [11])

σi(M) =
1

n!




p1 1 0 . . . 0

p2 p1 2
...

...
. . .

. . .
. . .

...
...

. . . p1 n− 1
pn . . . . . . p2 p1



,
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which induces an isomorphism F
n → F

n, (p1, . . . , pn) �→ (σ1, . . . , σn). Based on this
we can equally well study the map

φ : Z −→ F
n, M �−→ (tr(MZ), . . . , tr((MZ)n)) .(2.3)

We will use the following result from [10].

Proposition 2.2. Let L ⊂ Matn×n be a linear subspace of dimension ≥ n,
L �⊂ sln (i.e., L contains an element with nonzero trace). Define

π(M) = (m11,m22, . . . ,mnn)

the projection onto the diagonal entries. Then there exists a S ∈ Gln such that

π(SLS−1) = F
n.

It is possible to “compactify” the problem. For this, consider the identity

det(λI −MZ) = det

[
I Z
M λI

]
.(2.4)

Denote by Grass (k, n) the Grassmann manifold consisting of all k-dimensional linear
subspaces of F

n. Algebraically, Grass (k, n) has the structure of a smooth projective
variety. In what follows we will identify rowsp[I Z] with a point in the Grassmannian
Grass (n, 2n). By identifying rowsp[I Z] with Z ∈ Matn×n, we can say that Z ⊂
Grass (n, 2n). Let Z̄ be the projective closure of Z in Grass (n, 2n). Every element in
Z̄ can be represented simply by a subspace of the form rowsp[Z1 Z2], where the n×n
matrix Z1 is not necessarily invertible. rowsp[Z1 Z2] describes an element of Z if and
only if Z1 is invertible. For any element rowsp[Z1 Z2] ∈ Z̄, define ψ̄ : Z̄ −→ P

n

ψ̄([Z1 Z2]) = det

[
Z1 Z2

M λI

]
,(2.5)

where a polynomial b0λ
n+b1λ

n−1+· · ·+bn is identified with the point (b0, b1, . . . , bn) ∈
P
n. Recall that the Plücker coordinates of rowsp[Z1 Z2] ∈ Grass (n, 2n) are given

by the full size minors [Z1 Z2], and by considering the Plücker coordinates as the
homogeneous coordinates of points in P

N , N =
(
2n
n

) − 1, one has an embedding
Grass (n, 2n) ⊂ P

N which is called Plücker embedding. Under the Plücker coordinates,
(2.5) becomes

ψ̄([Z1 Z2]) = det

[
Z1 Z2

M λI

]
=

N∑
i=0

zimi(λ),(2.6)

where {zi} are n × n minors of [Z1 Z2] and mi(λ) is the cofactor of the zi in the
determinate of (2.5). ψ̄ is undefined on the elements where

det

[
Z1 Z2

M λI

]
= 0.

So ψ̄ is a rational map.



520 JOACHIM ROSENTHAL AND XIAOCHANG WANG

3. New results. The next theorem constitutes the main result of this paper.
As stated in the introduction we will identify the set Matn×n with the vector space

F
n2

and we will identify the set of monic polynomials of degree n

λn + b1λ
n−1 + · · ·+ bn

with the vector space F
n. If V is an arbitrary F-vector space, one says that U ⊂ V

forms a generic set if U contains a nonempty Zariski open subset. Over the complex
or real numbers a generic set is necessarily dense with respect to the natural topology.
The dominant morphism theorem, Theorem 2.1, states that the image of an algebraic
morphism forms a generic set as soon as the linearization around a smooth point is
surjective and if the field is algebraically closed.

If Problem 1.1 has a positive answer for a generic set of matrices inside Matn×n

and a generic set of monic polynomials, then we will say that Problem 1.1 is generically
solvable. With this preliminary we have the main result of this paper.
Theorem 3.1. Let Z ⊂Matn×n be an affine variety over an algebraically closed

field F. Then Problem 1.1 is generically solvable if and only if dimZ ≥ n and det(Z)
is not a constant function on Z.

Proof. The conditions are obviously necessary. So we only need to prove the
sufficiency. Assume that dimZ ≥ n and det(Z) is not a constant on Z. Then there
exists a curve Z(t) ⊂ Z such that

d

dt
detZ(t)|t=0 �= 0,

Z(0) = Z0 is a smooth point of Z, and detZ0 �= 0.
Let Z(t) = Z0 + tL+O(t2) where L ∈ T

Z0,Z . Then

detZ(t) = detZ0 det(I + tZ−1
0 L+O(t2)) = detZ0(1 + ttrZ−1

0 L+O(t2))

and

d

dt
detZ(t)|t=0 = detZ0trZ

−1
0 L �= 0,

i.e.,

Z−1
0 T

Z0,Z �⊂ sln.

By Proposition 2.2, there exists an S ∈ Gln such that

π(SZ−1
0 T

Z0,ZS
−1) = F

n.

Let

D :=




1
2

. . .

n


(3.1)

and

M := S−1DSZ−1
0 .
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Then for any curve through Z0

Z(t) = Z0 + tL+O(t2) ⊂ Z, L ∈ T
Z0,Z ,

we have

lim
t→0

tr(MZ(t))i − tr(MZ0)
i

t
= lim

t→0

tr(MZ0 + tML+O(t2))i − tr(MZ0)
i

t

= i · tr((MZ0)
i−1ML)

= i · tr(DiSZ−1
0 LS−1).

Let

V = D




1 1 · · · 1
1 2 · · · 2n−1

...
...

...
1 n · · · nn−1


D.(3.2)

Then V is invertible and the Jacobian dφ
Z0

: T
Z0,Z �→ F

n

dφ
Z0
(L) = (tr(DSZ−1

0 LS−1), 2tr(D2SZ−1
0 LS−1), . . . , ntr(DnSZ−1

0 LS−1))

= π(SZ−1
0 LS−1)V

is onto. By the dominant morphism theorem, Theorem 2.1, φ(Z) contains a nonempty
Zariski open set of F

n, so does ψ(Z).
Since the set of M ’s such that ψ is almost onto is a Zariski open set, and we just

showed that it is nonempty, ψ is almost onto for a generic set of matrices M .
Theorem 3.1 says that if dimZ ≥ n and det(Z) is not a constant function on

Z, then there is a nonempty Zariski open set of n × n matrices such that for any
M in this set, the multiplicative inverse eigenvalue problem is solvable for a Zariski
open set of characteristic polynomials. From the proof of Theorem 3.1 we can get a
description of such a Zariski open set of matrices.
Corollary 3.2. Let Z be an affine variety of dimension at least n such that

det(Z) is not a constant function on Z. Pick a smooth point Z0 ∈ Z such that
detZ0 �= 0, and let E be the nonempty Zariski open set of Gln defined by

E = {R ∈ Gln | π(R−1Z−1
0 T

Z0,ZS) = F
n}.

Then for every M ∈ Gln such that MZ0 has n distinct eigenvalues with the associated
right eigenvectors [α1, . . . , αn] ∈ E, the multiplicative inverse eigenvalue problem is
solvable for a nonempty Zariski open set of characteristic polynomials.

Next we consider the number of solutions of Problem 1.1 when dimZ = n. For
this we introduce an important technical concept.
Definition 3.3. A matrix M is called Z-nondegenerate for the right multiplica-

tive inverse eigenvalue problem if

det

[
Z1 Z2

M λI

]
�= 0(3.3)

for any rowsp[Z1, Z2] ∈ Z̄ ⊂ Grass (n, 2n).
Thus if M is Z-nondegenerate, then the map ψ̄ defined by (2.5) becomes a mor-

phism. In this situation we can say even quite a bit more.
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Theorem 3.4. If M is Z-nondegenerate and dimZ = n, then Problem 1.1 is
solvable for any monic polynomial p(λ) of degree n. Moreover, when counted with
multiplicities, the number of matrices inside Z which results in a characteristic poly-
nomial p(λ) is exactly equal to the degree of the projective variety Z̄ ⊂ Grass (n, 2n)
when viewed under the Plücker embedding Grass (n, 2n) ⊂ P

N .
Proof. We will repeatedly use the projective dimension theorem [9, Charter I,

Theorem 7.2] which says that if X and Y are r-dimensional and s-codimensional
projective varieties, respectively, then dimX ∩ Y ≥ r− s. In particular, X ∩ Y is not
empty if r ≥ s.

Let

K =

{
(z0, . . . , zN ) ∈ P

N |
N∑
i=0

zimi(λ) = 0

}
.

Then K must have codimension n+1 because of the condition K ∩Z = ∅. Therefore
the linear equation

N∑
i=0

zimi(λ) = p(λ)(3.4)

has solutions in P
N for any p(λ) ∈ P

n, and the set of all solutions for each p(λ) is in
the form of zp +K where zp is a particular solution; i.e., the solution set is given by
Kp−K, where Kp is the unique n-codimensional projective subspace through zp and
K. Since K ∩ Z̄ = ∅, we must have

dimKp ∩ Z̄ = 0,

and by Bézout’s theorem [14], there are deg Z̄ many points in Kp ∩ Z̄ counted with
multiplicities. If p(λ) is a monic polynomial of degree n, then from (2.5) one can see
that all the solutions are in Z.

An immediate application of Theorem 3.4 is a result of Friedland [7]: Let Z be
the set of all diagonal matrices. Then closure Z̄ of Z inside the Grassmann variety
Grass (n, 2n) is isomorphic to the product of n projective lines:

P
1 × · · · × P

1.

As shown in [2] the degree of Z̄ is then equal to n!. Moreover all points of Z̄ are of
the form rowsp[Z1 Z2] where Z1 and Z2 are given by

Z1 =



z11 0 · · · 0
0 z12 · · · 0
...

...
. . .

...
0 0 · · · z1n


 , Z2 =



z21 0 · · · 0
0 z22 · · · 0
...

...
. . .

...
0 0 · · · z2n


 .

In these matrices, (z1i, z2i) represent the homogeneous coordinates of the ith projec-
tive line P

1.
In order to apply Theorem 3.4 we have to find the algebraic conditions which

guarantee that a particular matrix M is Z-nondegenerate, i.e., condition (3.3) has to
be satisfied for every element [Z1 Z2] ∈ Z̄. For this let I be a subset of {1, 2, . . . , n},
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J be the complement of I, and |J | be the number of elements in J . For any point
[Z1 Z2] ∈ Z̄, assume

z1i = 0 for i ∈ I,
z1j �= 0 for j ∈ J.

Without loss of generality we can take

z2i = 1 for i ∈ I,
z1j = 1 for j ∈ J,

and (2.5) becomes

ψ̄([Z1 Z2]) = ±MI
λ|J| + lower power terms,

where M
I
is the principal minor of M consisting of the ith rows and columns, i ∈ I.

Furthermore if we take

z2j = 0 for j ∈ J,
then

ψ̄([Z1 Z2]) = ±MI
λ|J|.

Therefore M is Z-nondegenerate if and only if all the principal minors of M are
nonzero. Thus we have Friedland’s result [7, Theorem 2.3] formulated for an alge-
braically closed field: If all the principal minors ofM are nonzero, then the multiplica-
tive inverse eigenvalue problem with perturbation from the set of diagonal matrices is
solvable for any monic polynomial p(λ) of degree n, and there are n! solutions, when
counted with multiplicities.
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1. Introduction. Allowing a > 0, we consider a discrete version of the eigen-
value problem of the Schrödinger operator

−
(

1

m(x)
u′
)′

+ V (x)u = λu(1.1a)

on a finite interval I = [−a, a]. Here V (x) denotes the quantum well potential defined
by

V (x) =

{
−v, x ∈ [−b, b],
0 otherwise,

(1.1b)

where a > b > 0 and v > 0. Moreover, m(x) is assumed to be a piecewise constant
function. Specifically,

m(x) =

{
m′, x ∈ [−b, b],
m otherwise.

(1.1c)

To discretize (1.1a), we divide [−a, a] into equal parts of length h and assume a and
b are integer multiples of h, i.e., a = (M +N + 1)h and b = Nh. The node points of
the discrete equation are

xi =

(
a

N +M + 1

)
i, −M −N − 1 ≤ i ≤M +N + 1.
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Using a standard central-differencing technique, we then obtain the discrete version
of (1.1) as follows:

ui+1 − 2(1−m′(λ+ v))ui + ui−1 = 0, −N + 1 ≤ i ≤ N − 1,(1.2a)

ui+1 − 2(1−mλ)ui + ui−1 = 0, N + 2 ≤ |i| ≤ N +M,(1.2b)

uN+1

m+m′ +
uN−1

2m′ −
uN

m+m′ −
uN
2m′ + (λ+ v)uN = 0,(1.2c)

uN+2

2m
+

uN
m+m′ −

uN+1

2m
− uN+1

m+m′ + λuN+1 = 0,(1.2d)

u−N−1

m+m′ +
u−N+1

2m′ −
u−N

m+m′ −
u−N

2m′ + (λ+ v)u−N = 0,(1.2e)

and

u−N−2

2m
+

u−N

m+m′ −
u−N−1

2m
− u−N−1

m+m′ + λu−N−1 = 0.(1.2f)

We remark that the discrete formulation (1.2) of (1.1a) has been normalized in such
a way that the step size h of the discretization is absorbed in λ and v. The following
“symmetric” general boundary conditions are imposed:

uN+M+1 = βu−(N+M) + γu(N+M)(1.2g)

and

u−(N+M+1) = βu(N+M) + γu−(N+M).(1.2h)

In particular, β = 0 and γ = 1 (resp., γ = 0 and β=1) correspond to Neumann (resp.,
periodic) boundary conditions.

Eigenvalue ratios and gaps for the Schrödinger operators have been investigated
by many authors (see, e.g., [1, 2, 5, 9, 10] and the works cited therein). On the
other hand, the number A(d) of eigenvalues less than a bound d is also of interest.
Some partial results concerning the asymptotic behavior (i.e., as d→∞) of A(d) are
contained in [3]. We are led to investigate in this paper the number of energy states
(eigenvalues) for a discrete Schrödinger problem (1.2a)–(1.2h) lying in the wells by
the following work. In [6, 8], the spatial tunneling (from one well to the other) occurs
in coupled quantum wells when the energy states in both wells are aligned. In the
case of the hole tunneling in the coupled quantum wells, the tunneling mechanisms
are significantly complicated due to band mixing effects. When the energy states are
approximately aligned between heavy hole and light hole, the mixing tunneling occurs.
Moreover, it was reported in [7] that the chaotic tunneling effect was generated when
these two tunneling effects have a strong interaction between them. Our effort here
is the first step toward understanding those phenomena.

Our main results are recorded in section 2. Specifically, we construct the charac-
teristic equations of the problem (1.2a)–(1.2h). By analyzing the properties of such
equations, we are able to compute the number of energy states in the well for some
general, symmetric boundary conditions.

2. The main results. We begin with the following definition.
Definition 2.1. An eigenvector (ui)

N+M+1
i=−(N+M+1) of (1.2a)–(1.2h) is said to be

symmetric (resp., antisymmetric) if ui = u−i (resp., ui = −u−i).
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Proposition 2.1. Each eigenvector of (1.2a)–(1.2h) is either symmetric or anti-
symmetric.

Proof. It follows from the rank one modification of the symmetric matrices (see,
e.g., [4]) that every eigenvalue of (1.2a)–(1.2h) is simple. Let (ui)

N+M+1
i=−(N+M+1) be an

eigenvector corresponding to some eigenvalue λ. Note that (u−i)
N+M+1
i=−(N+M+1) is also

an eigenvector associated with λ. Thus, ui + u−i and ui − u−i are in the eigenspace
corresponding to λ. We see that ui +u−i is symmetric and ui−u−i is antisymmetric.
The assertion of the proposition now follows from the facts that every eigenspace is
one-dimensional and that one of the vectors ui + u−i and ui − u−i is nonzero.

Definition 2.2. Let λ be an eigenvalue of (1.2a)–(1.2h) whose corresponding
eigenvector is symmetric (resp., antisymmetric); then λ is said to be symmetric (resp.,
antisymmetric).

We remark that Definition 2.2 is well defined since every eigenspace is one-
dimensional. We next derive some “characteristic” equations whose roots are eigen-
values of the system (1.2a)–(1.2h). To this end, we first assume λ is a symmetric
eigenvalue; then

ui+1 − 2(1−m′(v + λ))ui + ui−1 = 0 for |i| ≤ N − 1.

Hence,

ui = A(si + s−i) for |i| ≤ N,(2.1)

where A is a constant to be determined and

s = 1−m′(v + λ) +
√

(1−m′(v + λ))2 − 1(2.2)

is a root of the characteristic polynomial x2−2(1−m′(v+λ))x+1 = 0. In particular,
for

−v +
2

m′ ≥ λ ≥ −v,(2.3)

we see that

ui = 2A cos iθ.(2.4)

Here θ = cos−1(1−m′(v + λ)). For N + 2 ≤ |i| ≤ N +M ,

ui+1 − 2(1−mλ)ui + ui−1 = 0,

and we have that

(2.5a)
(2.5b)

ui =

{
Bti−N + Ct−(i−N), N + 1 ≤ i ≤ N +M + 1,

Bt−(i+N) + Cti+N , −(N +M + 1) ≤ i ≤ −(N + 1).

Here B and C are constants to be determined and

t = (1−mλ) +
√

(1−mλ)2 − 1.(2.6)

Using the boundary condition (1.2g) and the fact that u is symmetric, we see that

uN+M+1 = (β + γ)uN+M .(2.7)
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Applying (2.5a) to (2.7), we get

C = (t2M+1)

(
β + γ − t

1− (β + γ)t

)
B(2.8)

:= (t2M+1)(Dβ)B.

Hence,

ui = B(ti−N + t2M+1(Dβ)t−(i−N)), N + 1 ≤ i ≤ N +M + 1.(2.9)

We next consider the connection at i = N and i = N + 1. Let

(2.10a,b) α =
2m

m+m′ and α′ =
2m′

m+m′

at i = N ; we thus write (1.2c) as

α′uN+1 + (1− α′)uN − 2(1−m′(λ+ v))uN + uN−1 = 0.(2.11)

Using (2.11), (2.1), and (2.8), we see that (2.11) reduces to

A(1− α′)(sN + s−N ) +A(−2(1−m′(λ+ v))(sN + s−N )) +A(sN−1 + s−N+1)

(2.12)

= −α′B(t+ (Dβ)t2M ).

Noting that sN and s−N satisfy the recursive relation as given in (1.2a) with i = N ,
we see that (2.11) reduces to

A[(α′ − 1)(sN + s−N ) + (sN+1 + s−(N+1))] = α′B(t+ (Dβ)t2M ).(2.13)

At i = N + 1, a similar process yields

Aα(sN + s−N ) = B[(α− 1)(t+ (Dβ)t2M ) + (1 + (Dβ)t2M+1)].(2.14)

Dividing (2.13) by (2.14), we conclude that every symmetric eigenvalue is a root of

[
α− 1

α′ +
1 + (Dβ)t2M+1

α′(t+ (Dβ)t2M )

]−1

=
α′ − 1

α
+

1

α

sN+1 + s−(N+1)

sN + s−N
,(2.15)

where Dβ is defined in (2.8). Similarly, we obtain that every antisymmetric eigenvalue
is a root of [

α− 1

α′ +
1 + (D−β)t2M+1

α′(t+ (D−β)t2M )

]−1

=
α′ − 1

α
+

1

α

sN+1 − s−(N+1)

sN − s−N
.(2.16)

To investigate (2.15) and (2.16), we need to set up the following notations:

ξ±i :=
1 + (D±β)t2i+1

t+ (D±β)t2i
=
t−i + (D±β)ti+1

t1−i + (D±β)ti
,(2.17)

η±i :=
si+1 ± s−(i+1)

si ± s−i
,(2.18)

f±(λ) =
α′

(α− 1) + ξ±M
,(2.19)
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and

g±(λ) =
α′ − 1

α
+
η±N
α
.(2.20)

Now (2.15) and (2.16) can be written as

f+(λ) = g+(λ)(2.21)

and

f−(λ) = g−(λ).(2.22)

Definition 2.3. Equations (2.21) and (2.22) are called the symmetric and anti-
symmetric characteristic equations of system (1.2a)–(1.2h).

Obviously, the roots of symmetric (resp., antisymmetric) characteristic equations
are the symmetric (resp., antisymmetric) eigenvalues of system (1.2a)–(1.2h). The
following useful recursive formulas can be verified directly:

ξ±i+1 = 2(1−mλ)− 1

ξ±i
, 0 ≤ i ≤M − 1,(2.23a)

ξ±0 =
1

γ ± β ,(2.23b)

and

η±i+1 = 2(1−m′(v + λ))− 1

η±i
, 0 ≤ i ≤ N − 1,(2.24a)

η+
0 = 1−m′(v + λ), η−0 =∞.(2.24b)

In the following, we shall study the properties of functions f± and g±.
Proposition 2.2. For whatever λ is defined, d

dλf
±(λ) > 0 and d

dλg
±(λ) < 0.

Proof. We illustrate only the proof of d
dλg

+(λ) < 0. The rest is similar. Using
(2.24) we see that

d

dλ
η+
i+1 = −2m′ +

1

(η+
i )2

d

dλ
η+
i

and

d

dλ
η+
0 = −m′ < 0.

By induction, we conclude that d
dλη

+
N < 0 and, hence, that d

dλg
+(λ) < 0.

To further study f± and g±, we need the following map:

Fλ,m(ξ) = 2(1−mλ)− 1

ξ
.(2.25)

Proposition 2.3. The following assertions hold true:
(i) Fλ,m maps [1,∞] ∪ [−∞, 0) into [1,∞) for λ ∈ (−∞, 0].
(ii) Fλ,m maps [−∞,−1] ∪ (0,∞] into (−∞,−1] for λ ∈ [ 2

m ,∞
)
.

(iii) Fλ,m(ξ) is strictly increasing on (−∞, 0) and on (0,∞) for any λ.
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We skip the proof of Proposition 2.3.
Proposition 2.4. Let 2 > α > 0. If γ + β ≤ 1 (resp., γ − β ≤ 1), then

f+(λ) (resp., f−(λ)) is continuous on (−∞, 0]. Moreover, g±(λ) are continuous on
(−∞,−v]∪[−v + 2

m′ ,∞
)
. If −1 ≤ γ+β (resp., −1 ≤ γ−β), then f+(λ) (resp.,f−(λ))

is continuous on [ 2
m ,∞).

Proof. Let λ ∈ (−∞, 0]. If γ ± β ≤ 1, then ξ±0 ∈ [1,∞) or (−∞, 0). Suppose
ξ±0 ∈ [1,∞). Then it follows from Proposition 2.3(i) that

ξ±M (λ) = FM
λ,m(ξ±0 ) ∈ [1,∞).(2.26)

Hence −1 + α+ ξ±M (λ) 
= 0, and so f± is continuous on (−∞, 0].
Suppose λ ∈ (−∞,−v] ∪ [−v + 2

m′ ,∞
)
. Then η−0 , η

+
0 = 1−m′(v + λ) ∈ [1,∞] ∪

[−∞,−1]. It then follows from Proposition 2.3(i)–(ii) that

η±N (λ) = FN
λ+v,m′(η±0 ) ∈ (−∞,−1] ∪ [1,∞).

Hence, g±(λ) is continuous on (−∞,−v] ∪ [−v + 2
m′ ,∞

)
. If −1 ≤ γ + β and λ is in

[ 2
m ,∞), then Fλ,m(ξ+0 ) ≤ −2− (γ+β) ≤ −1. Hence, ξ+M (λ) = FM

λ,m(ξ+0 ) ∈ (−∞,−1].
The case for −1 ≤ γ − β can be similarly obtained. We thus complete the proof of
the proposition.

It is clear from Proposition 2.4 that the singularities of g±(λ) occur in
(−v,−v + 2

m′
)
,

and that, for −1 ≤ γ + β ≤ 1, the singularities of f±(λ) stay in
(
0, 2

m

)
.

Proposition 2.5. (i) For λ ∈ (−v,−v + 2
m′
)
, g+(λ), respectively, g−(λ), has

singularities at

−v +
1

m′

(
1− cos

2k − 1

2N
π

)
=: dk, i = 1, 2, . . . , N,(2.27a)

respectively,

−v +
1

m′

(
1− cos

k

N
π

)
=: ek, k = 1, 2, . . . , N − 1.(2.27b)

(ii) The following ordering holds true:

−v < d1 < e1 < d2 < e2 < · · · < en−1 < dn < eN := −v +
2

m′ .(2.27c)

Proof. The proof of Proposition 2.5(i) follows from (2.18). The ordering in (2.27c)
is obvious.

Our main concern in this paper is the number of energy levels (eigenvalues) falling
in the well, that is, the number of eigenvalues whose value is no greater than zero.
Hence, the characterization of the singularities of f±(λ) on

(
0, 2

m

)
will not be pursued

here.
Proposition 2.6. (i) Let 0 < α < 2. If γ ± β ≤ 1, then

α′

α+ 1
< f±(0) =

α′

(α− 1) + 1−(γ±β−1)M
γ±β−(γ±β−1)M

≤ α
′

α
.

Consequently, f±(−v) < α′
α . (ii) g+(−v) = α′

α , α+1
α > g−(−v) > α′

α . (iii) If v > 2
m′ ,

then g±(0) < α′−2
α .
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Proof. It follows from l’Hôspital’s rule that

lim
λ→0

ξ±M = lim
t→1

1 + (γ±β)−t
1−(γ±β)t t

2M+1

t+ (γ±β)−t
1−(γ±β)t t

2M
=

1− (γ ± β − 1)M

γ ± β − (γ ± β − 1)M
.

To see the estimates for ξ±M at λ = 0, we consider the map F0,m, as defined in (2.25).

It is then clear that 1 ≤ ξ±M < 2. Hence, α′
α+1 < f

±(0) ≤ α′
α as claimed. Since f±

is increasing on (−∞, 0], we obtain that f±(−v) < α′
α . The assertions in (ii) are

trivial. If v > 2
m′ , then, for λ = 0, η0 = 1 − m′v ≤ −1. Using Fv,m′ , we see, via

Proposition 2.3(ii), that η+
N (0) ≤ −1, and, hence, g+(0) ≤ α′−2

α . Similarly, we obtain

that g−(0) ≤ α′−2
α .

Notation 2.1. Set R1 = {(γ, β) : β ≤ 0, γ − β ≤ 1} and R2 = {(γ, β) : β ≥ 0,
γ + β ≤ 1}.

Proposition 2.7. Let 2 > α > 0. If (γ, β) ∈ R1 (resp., (γ, β) ∈ R2), then
f−(λ) ≥ f+(λ) (resp., f−(λ) ≤ f+(λ)) on (−∞, 0]. The equality holds only if β = 0.

Proof. We first note that R1

⋃
R2 = {(γ, β) : γ + β ≤ 1 and γ − β ≤ 1}. Let

(γ, β) ∈ R1; then one of the following three cases holds:

ξ+0 ≥ ξ−0 ≥ 1, 0 > ξ+0 ≥ ξ−0 , and ξ−0 > 1 > 0 > ξ+0 .(2.28)

Furthermore, if the order of ξ+0 and ξ−0 satisfies one of the three cases in (2.28),
then Fλ,m(ξ+0 ) ≥ Fλ,m(ξ−0 ) ≥ 1. It then follows from Proposition 2.5(ii)–(iii) that
ξ+M (λ) = FM

λ,m(ξ+0 ) ≥ FM
λ,m(ξ−0 ) = ξ−M (λ). Consequently, f+(λ) ≤ f−(λ). The other

case can be similarly obtained. It is clear that f−(λ) = f+(λ) only if ξ+0 = ξ−0 or,
equivalently, β = 0.

Proposition 2.8. (i) g+(λ) < g−(λ) for λ ∈ (−∞, d1) ∪⋃N−1
i=1 (ei, di+1).

(ii) g+(λ) > g−(λ) for λ ∈ ⋃N
i=1(di, ei) ∪ [eN ,∞).

Proof. For λ ∈ (−∞,−v], η+
0 = 1 − m′(v + λ) ≥ 1. It follows from Propo-

sition 2.3(i) that Fv+λ,m′(ξ) ≥ 1 for ξ = η+
0 or η−0 . Hence, we see, via Proposi-

tion 2.3(iii), that g+(λ) < g−(λ). It is clear that

lim
λ→d−

i

g+(λ) = −∞, lim
λ→d+

i

g+(λ) = +∞, i = 1, 2, . . . , N,(2.29a)

and

lim
λ→e−

i

g−(x) = −∞, lim
λ→e+

i

g−(x) =∞, i = 1, 2, . . . , N − 1.(2.29b)

We next show that g+(λ) and g−(λ) do not intersect with each other. To this end,
we set

e(s) :=
s2N+1 − s2N−1

s4N − 1
.

If s2N+1 − s2N−1 = 0, then s2 = 1. Now,

lim
s→1

e(s) = lim
s→1

(2N + 1)s2N − (2N − 1)s2N

4Ns4N−1
=

1

2N
.

Similarly,

lim
s→1−

e(s) = − 1

2N
.
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Fig. 1.

Thus, e(s) is nonzero for all λ. It then follows from Proposition 2.2, equation (2.8),
and the fact that g+(λ) does not intersect with g−(λ) for all λ that the assertions of
the proposition hold true.

Using the assertions of Proposition 2.8, we give a rough drawing of g+(λ) and
g−(λ). Figure 1 reflects only the information of g±(λ) obtained in Proposition 2.8. It
is by no means an accurate drawing of the graphs of g±(λ).

We are now ready to state our main results.
Notation 2.2. Set S = {−v < λ < 0: λ is the symmetric eigenvalue of system

(1.2a)–(1.2h)}, and Sa = {−v < λ < 0: λ is the antisymmetric eigenvalue of system
(1.2a)–(1.2h)}. The cardinalities of S and Sa are denoted by #s and #sa, respectively.
The sum of #s and #sa is denoted by #.

Theorem 2.1. Let 2 > α > 0. Suppose (γ, β) ∈ R1

⋃
R2 and v > 2

m′ . Then
#s = N + 1 and #as = N .

Proof. Using Proposition 2.6, we see that f±(−v) < g±(−v). Thus, all eigenvalues
of the system are greater than −v. It also follows from Proposition 2.6 that f±(0) ≥
α′

α+1 >
α′−2
α = g±(0). Hence, we conclude, via Figure 1, that # ≥ 2N + 1. However,

the other eigenvalues of the system comes from the intersection of f±(λ) and g±(λ)
on
(
0, 2

m

)
. Upon using the fact that f±(0) ≥ g±(0), we conclude that # ≤ 2N + 1.

Hence # = 2N + 1. It is clear from Figure 1 that the assertions of the theorem
hold.

Remark 2.1.
1. Theorem 2.1 implies that if the depth of the well is “sufficiently large,” then

all the energy levels fall in the well.
2. Using Propositions 2.6 and 2.7, one also sees that for Neumann boundary

conditions (γ = 1, β = 0), at least one energy level falls in the well regardless
of the size of the well.

Theorem 2.2. Let (γ, β) ∈ R1, β 
= 0, and v ≤ 2
m′ . If ek < 0 < dk+1 for some

1 ≤ k ≤ N , the following table holds true:

f+(0) > g+(0)
f+(0) > g−(0) f−(0) < g−(0) g+(0) > f−(0)

#s k + 1 k + 1 k
#as k + 1 k k
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If dk < 0 < ek for some 1 ≤ k ≤ N , the following table holds true:

f−(0) > g−(0)
f+(0) > g+(0) g+(0) > f+(0) f−(0) < g−(0)

#s k + 1 k k
#as k k k − 1

If ek < 0 = dk+1 for some 1 ≤ k ≤ N , the following table holds true:

f−(0) > g−(0) f−(0) < g−(0)
#s k + 1 k + 1
#as k + 1 k

If dk < 0 = ek for some 1 ≤ k ≤ N , then the following table holds true:

f+(0) > g+(0) f+(0) < g+(0)
#s k + 1 k
#as k k

Proof. We first note that if (γ, β) ∈ R1 and β 
= 0, then f+(λ) > f−(λ) on
(−∞, 0]. The assertions of the theorem now follow from Propositions 2.2, 2.4, 2.8 and
Figure 1.

For (γ, β) ∈ R2 or β = 0, similar tables as above can be obtained. In each of the
tables above, the largest numbers of #s and #as occur when f±(0) > g±(0). We next
show that this is the case when the length v of the well is sufficiently close to 2

m′ .
Theorem 2.3. Let m ≈ m′ and (γ, β) ∈ R1. Suppose v ≤ 2

m′ and v is sufficiently
close to 2

m′ . Then f±(0) > g±(0). Consequently, only the second column of each table
in Theorem 2.2 holds.

Proof. Direct calculation would yield that

g+(ek) =
α′ − 1

α
+

1

α
cos

kπ

N

and

g−(dk) =
α′ − 1

α
+

1

α
sin

(2k − 1)π

2N
.

Suppose v
(≤ 2

m′
)

is sufficiently close to 2
m′ . Then ek, dk ≥ 0 only if k is sufficiently

large. If k is large, then g+(ek−1) < 0 and g−(dk−1) ≈ 0, where we may assume
that dk−1, ek−1 < 0. Since g± are decreasing, g+(0) < g+(ek−1) < 0 and g−(0) <

g−(dk−1) ≈ 0. However, we see, via Proposition 2.6(i), that f±(0) = α′
α+1 > 0. We

thus complete the proof of the theorem.
We conclude the paper by mentioning some possible future related work. First, the

study of discrete higher-dimensional Schrödinger problems is of considerable interest.
Second, it would also be of interest to study a continuous version of the problem
described in this paper. Finally, though the calculations would get more complicated,
our approach here can be used to treat nonsymmetric boundary conditions.
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Abstract. The singular value decomposition (SVD) has been extensively used in engineering
and statistical applications. This method was originally discovered by Eckart and Young in [Psy-
chometrika, 1 (1936), pp. 211–218], where they considered the problem of low-rank approximation to
a matrix. A natural generalization of the SVD is the problem of low-rank approximation to high or-
der tensors, which we call the multidimensional SVD. In this paper, we investigate certain properties
of this decomposition as well as numerical algorithms.
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1. Introduction of the problem. The problem of high order tensor decompo-
sition has been studied by mathematicians who are interested in algebraic properties
of tensors, by psychologists who need to analyze multiway data, as well as by engineers
and statisticians who are interested in high order (tensor) statistics and independent
component analysis (ICA). This decomposition is a generalization of the SVD that
gives a low-rank approximation to a matrix (i.e., a second order tensor) [11]. However,
a direct generalization of the SVD is nontrivial, since the definition of a rank that
preserves all of the good properties of the SVD does not exist. At the current stage,
little detail is known concerning general rank decompositions of a high order tensor,
even though there have been a number of works in this direction [21, 24, 25, 27, 28].
As a consequence of the lack of a good tensor rank definition, there is no “best” way
to define low-rank approximation for tensors of order higher than two, as pointed out
in [27].

Computationally, the most popular method is based on alternating least squares
minimization. However, the convergence behavior of this method has not been suf-
ficiently analyzed. A rigorous analysis of the method is given in section 4. We also
propose a new method to compute the optimal rank-one approximation. This algo-
rithm is a generalization of the Rayleigh quotient iteration for eigenvalue problems.
If we consider a matrix as a high order tensor, then an interesting application of this
procedure leads to a novel method for computing a singular value/vector pair for the
matrix.

An important application of multidimensional SVD is multiway analysis. Two
models of decomposition have been frequently used: one is the Tucker3 model pro-
posed in [30]; the other is the PARAFAC-CANDECOMP model proposed in [7, 16].
For third order tensors, the Tucker3 model is given by

∑
i,j,k xi ⊗ yj ⊗ zk gijk, where

g is an order 3 tensor called the core array. The PARAFAC-CANDECOMP model
approximates a third order tensor by the sum of a few rank-one tensors—this is equiv-
alent to the Tucker3 model with a diagonal core:

∑
i xi⊗ yi⊗ zi. Both models can be
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easily extended to the higher order case. For more detailed descriptions of these mod-
els and existing computational algorithms, see [15, 17, 18, 22, 27] and the references
therein.

Another application of multidimensional SVD is independent component analysis
(or blind source separation). In this case, we attempt to find a matrix A from vector
observations x1, . . . , xn that are taken from an unknown distribution D, such that
the components of Ax are statistically independent when x is drawn from D. Many
solutions have been proposed in the literature based on different formulations of this
problem; see [3, 4, 5, 8, 9, 10, 26, 31] and the references therein. One solution,
which is based on fourth order cumulants, solves the ICA problem by decomposing a
symmetric fourth order tensor into the sum of symmetric orthogonal rank-one tensors
[4, 8, 10] (see Definition 3.1). Note that a fourth order tensor [aijkl] is symmetric
if we have aijkl = ai′j′k′l′ for any permutation (i

′j′k′l′) of (ijkl). From the tensor
decomposition point of view, this approach to the ICA problem leads to an orthogonal
PARAFAC-CANDECOMP model.

There is an interesting relationship between rank-one and rank-F approximation
in the PARAFAC-CANDECOMP model. In the second order (matrix) case, from the
optimal approximation property of the SVD, the optimal rank-F approximation of a
tensor is equivalent to the following incremental rank-one approximation approach:
we first fit the original tensor by a rank-one tensor, then subtract the rank-one ap-
proximation from the original tensor and fit the residue with another rank-one tensor.
This procedure is repeated until F rank-one tensors are found. Therefore for second
order tensors, the rank-F approximation problem can be reduced to the rank-one ap-
proximation problem. The simplicity of this incremental rank-one fitting procedure is
very attractive; although for higher order tensors it is not necessarily equivalent to the
PARAFAC-CANDECOMP approximation. However, we will show in section 3 that
for the special case of orthogonally decomposable tensors defined later (this special
case includes the fourth order cumulants approach to the ICA problem), the incre-
mental rank-one approximation procedure yields the solution to the optimal rank-F
approximation.

Therefore, computationally, we focus only on the following rank-one approxima-
tion problem: find vectors x, y, and z to minimize∑

i,j,k

(xiyjzk − aijk)
2,(1.1)

where [aijk] denotes a third order tensor. For notational simplicity, we illustrate our
results by using third order tensors whenever generalizations to higher order cases are
straightforward. Subtle differences will be mentioned when they exist.

2. Equivalent rank-one formulations. Note that in (1.1), each vector x, y, or
z is only determined up to a scaling factor. Therefore we can impose the constraints
‖x‖2 = ‖y‖2 = ‖z‖2 = 1 and write (1.1) as

min
∑
i,j,k

(λxiyjzk − aijk)
2.(2.1)

Definition 2.1. Given nonzero vectors x, y, and z, the generalized Rayleigh
quotient (GRQ) is defined as

GRQ(x, y, z) =

∑
i,j,k aijkxiyjzk

‖x‖2 ‖y‖2 ‖z‖2 .
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Similar to the standard Rayleigh quotient, we define the generalized Rayleigh
quotient GRQ(x, y, z) in a way that is invariant under a scaling of x, y, or z. It is
easy to verify that if ‖x‖2 = ‖y‖2 = ‖z‖2 = 1, then λ = GRQ(x, y, z) minimizes (2.1),
and the minimum value is ∑

i,j,k

a2
ijk −GRQ(x, y, z)2.(2.2)

It thus follows that (1.1) is equivalent to the dual problem of maximizing GRQ

max
∑
i,j,k

aijkxiyjzk,(2.3)

under the constraints that ∑
i

x2
i =

∑
j

y2
j =

∑
k

z2
k = 1.(2.4)

We can write down the Lagrangian for the dual problem as

∑
i,j,k

aijkxiyjzk − µ1

2

∑
i

(x2
i − 1)−

µ2

2

∑
j

(y2
j − 1)−

µ3

2

∑
k

(z2
k − 1).(2.5)

By differentiating (2.5), we obtain the following system at a critical point for each
component xi of x, yj of y, and zk of z:



∑

j,k aijkyjzk = µ1xi,∑
i,k aijkxizk = µ2yj ,∑
i,j aijkxiyj = µ3zk.

(2.6)

We now multiply xi, yj , and zk to the first, second, and third equations, and sum over
i, j, and k, respectively. This gives µ1 = µ2 = µ3 =

∑
i,j,k aijkxiyjzk = GRQ(x, y, z).

Let λ = GRQ(x, y, z); then we can rewrite the above system as




∑
j,k aijkyjzk = λxi,∑
i,k aijkxizk = λyj ,∑
i,j aijkxiyj = λzk,∑
i,j,k aijkxiyjzk = λ.

(2.7)

Note that a nonzero solution to (2.7) automatically guarantees that ‖x‖2 = ‖y‖2 =
‖z‖2 = 1.

3. A special tensor decomposition. In this section, we study the following
orthogonal tensor decomposition.

Definition 3.1. We say that a tensor [aijk] is orthogonally decomposable if it
can be written as the sum of F rank-one tensors xp⊗ yp⊗ zp (p = 1, . . . , F ) such that
xp ⊥ xq, yp ⊥ yq , and zp ⊥ zq for p �= q.

It is not difficult to extend this definition to include higher order tensors. In
general, orthogonal decompositions do not necessarily exist. However, for the ICA
problem, the fourth order cumulant tensors are orthogonally decomposable [4]. In
the ICA literature, a Jacobi-type scheme for approximate diagonalization of multiple
symmetric matrices has been proposed to compute this decomposition [4, 6]. Some
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numerical aspects of simultaneous matrix diagonalization can be found in [2, 12, 13].
In the following, we show that if a tensor is of order higher than two and is orthogonally
decomposable, then the decomposition can be correctly computed by the incremental
rank-one approximation algorithm.1 Therefore, the orthogonal tensor decomposition
problem can be reduced to the rank-one approximation problem. A consequence of
this result is the uniqueness of orthogonal decomposition for tensors of order higher
than two. This uniqueness of decomposition (in the special case of third order tensors)
has been previously discovered in [28] using a different analysis.

Now consider the orthogonal decomposition of tensor [aijk]:

aijk =

F∑
p=1

xipyjpzkp,

where we assume that
∑

i xipxiq = 0,
∑

j yjpyjq = 0, and
∑

k zkpzkq = 0 for p �= q.
Note that for convenience, we use the notation vip to denote the ith component of a
vector vp.

Consider the least squares rank-one approximation (1.1), for which we can always
do an orthogonal transformation separately for each index i, j, and k without changing
the least squares error. Therefore, without loss of generality, we can assume that
xip = αpδip, yip = βpδip, and zip = γpδip, where

δij =

{
1 if i = j,
0 if i �= j

is the Kronecker delta symbol.
Let λp = αpβpγp; then aijk =

∑
p λpδipδjpδkp. Let (x∗, y∗, z∗) be a nonzero

solution of (1.1), and let x′ = x∗/‖x∗‖2, y′ = y∗/‖y∗‖2, and z′ = z∗/‖z∗‖2. Without
loss of generality, we can assume that |x′

1| achieves max(‖x′‖∞, ‖y′‖∞, ‖z′‖∞). By
(2.7), we have λx′

1 = λ1y
′
1z

′
1, where |λ| is given by (2.3).

Since |λ| achieves the maximum in (2.3), |λ| ≥ |λ1|. Assume that [aijk] is nonzero;
then λ �= 0 and x′

1 �= 0. We thus obtain the inequality |x′
1| ≤ |y′1z′1|. Note that by

assumption, 1 ≥ |x′
1| ≥ max(|y′1|, |z′1|). Therefore the inequality can be achieved only

at |x′
1| = |y′1| = |z′1| = 1, which shows that |λ| = |λ1| = maxi |λi| and x′ = y′ = z′ =

e1, where e1 is the vector with 1 in the first element and 0 elsewhere. Therefore an
optimal rank-one approximation is given by x∗ ⊗ y∗ ⊗ z∗ = λ1e1 ⊗ e1 ⊗ e1.

Since [aijk] − x∗ ⊗ y∗ ⊗ z∗ is still orthogonally decomposable with rank F − 1
by definition, it follows that by repeating the rank-one approximation algorithm F
times, we obtain the decomposition

∑F
p=1 xipyjpzkp. Observe also that the uniqueness

of the computational procedure implies that the orthogonal decomposition of [aijk] is
unique, and the same analysis is valid for tensors with order greater than 3. We can
summarize the above results in the following theorem.

Theorem 3.2. If a tensor of order at least 3 is orthogonally decomposable, then
this decomposition is unique, and the incremental rank-one approximation algorithm
correctly computes it.

System (2.7) is stable under a small perturbation if the Jacobi matrix J in (4.5)
is not singular. Since our analysis is based on the equality λx′

1 = λ1y
′
1z

′
1 that comes

from (2.7), the decomposition computed by the incremental rank-one approximation

1In [27], the authors introduced a more general concept of orthogonal PCA-k decomposition.
They argued that the decomposition can be computed using the incremental rank-one approximation
procedure. However, their proof was faulty. See [21] for a detailed study.
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method is also stable under a small perturbation of [aijk]. This is not true for matrices
since J becomes singular (see section 4). Consequently, the singular vectors can be
nonunique and unstable under perturbation when some of the singular values are not
distinct.

4. Algorithms.

4.1. Generalized Rayleigh–Newton iteration. Newton’s method can be ap-
plied to solve (2.7) for critical points. In order to derive the algorithm, we shall state
an important property of the GRQ.

Theorem 4.1. Assume that (λ, x, y, z) is a nonzero solution to (2.7); then for
small perturbations δx, δy, and δz, we have

GRQ(x+ δx, y + δy, z + δz) = λ+O(‖δx‖22 + ‖δy‖22 + ‖δz‖22).

Proof. We can assume without loss of generality that xT δx = yT δy = zT δz = 0.
This is because we can write δx as the sum of a component orthogonal to x and a
component parallel to x (similarly for δy and δz). The component parallel to x does
not modify the GRQ; thus only the component orthogonal to x, which is at most as
large as δx, contributes to the change of the GRQ.

Now we have

∑
i,j,k

aijkδxiyjzk = λ
∑
i

xiδxi = 0.

Similarly
∑

i,j,k aijkxiδyjzk =
∑

i,j,k aijkxiyjδzk = 0. Therefore

∑
i,j,k

aijk(xi + δxi)(yj + δyj)(zk + δzk)

=
∑
i,j,k

aijkxiyjzk +


∑

i,j,k

aijkδxiyjzk +
∑
i,j,k

aijkxiδyjzk +
∑
i,j,k

aijkxiyjδzk




+
∑
i,j,k

(aijkδxiδyjzk + aijkδxiyjδzk + aijkxiδyjδzk + aijkδxiδyjδzk)

= λ+ 0 +O


∑

i,j

|δxiδyj |+
∑
j,k

|δyjδzk|+
∑
i,k

|δxiδzk|+
∑
i,j,k

|δxiδyjδzk|



= λ+O(‖δx‖2‖δy‖2 + ‖δx‖2‖δz‖2 + ‖δy‖2‖δz‖2).(4.1)

The last equality follows from the Schwartz inequality. We also note that

‖x+ δx‖2 =
√
‖x‖22 + 2xT δx+ ‖δx‖22 =

√
1 + 0 + ‖δx‖22 = 1 +O(‖δx‖22).

Similarly, ‖y + δy‖2 = 1 +O(‖δy‖22), and ‖z + δz‖2 = 1 +O(‖δz‖22). Therefore

‖x+ δx‖2 ‖y + δy‖2 ‖z + δz‖2 = 1 +O(‖δx‖22 + ‖δy‖22 + ‖δz‖22).(4.2)

Observe that (4.1) and (4.2) are, respectively, the numerator and the denominator in
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the definition of GRQ(x+ δx, y + δy, z + δz); therefore

GRQ(x+ δx, y + δy, z + δz) =
λ+O(‖δx‖2‖δy‖2 + ‖δx‖2‖δz‖2 + ‖δy‖2‖δz‖2)

1 +O(‖δx‖22 + ‖δy‖22 + ‖δz‖22)
= λ+O(‖δx‖2‖δy‖2 + ‖δx‖2‖δz‖2 + ‖δy‖2‖δz‖2)
+ O(‖δx‖22 + ‖δy‖22 + ‖δz‖22)

= λ+O(‖δx‖22 + ‖δy‖22 + ‖δz‖22).
This theorem is a generalization of the following well-known fact: for eigenvalue

problems, the Rayleigh quotient is quadratically as accurate as the approximate eigen-
vector. Note that the theorem is also quite intuitive from the following nonrigorous
argument: since a critical point of (2.3) optimizes GRQ(x, y, z), GRQ(x, y, z) has a
zero gradient at a critical point.

Based on Theorem 4.1, a procedure similar to the Rayleigh quotient iteration (cf.
[14]) can be obtained. By Taylor expansion, we know that given λ, a linearization of
(2.7) at (x, y, z) gives∑

i,j,k

aijk(yjδzk + δyjzk)− λδxi = λxi −
∑
i,j,k

aijkyjzk,

∑
i,j,k

aijk(xiδzk + δxizk)− λδyj = λyj −
∑
i,j,k

aijkxizk,(4.3)

∑
i,j,k

aijk(xiδyj + δxiyj)− λδzk = λzk −
∑
i,j,k

aijkxiyj .

Now, let the (approximate) true solution be x∗ = x+δx, y∗ = y+δy, and z∗ = z+δz;
we obtain the following linearizations:

− λx∗
i +

∑
j,k

aijk(yjz
∗
k + zky

∗
j ) =

∑
j,k

aijkyjzk,

− λy∗j +
∑
i,k

aijk(xiz
∗
k + zkx

∗
i ) =

∑
i,k

aijkxizk,(4.4)

− λz∗k +
∑
i,j

aijk(xiy
∗
j + yjx

∗
i ) =

∑
i,j

aijkxiyj .

For rth order tensors, the right-hand side should be multiplied by r− 2 (which is 1 in
our case of r = 3). The reason is that in the general case, 2-way product terms such
as yjzk in (2.7) are replaced by (r−1)-way product terms. The linearization of each of
the (r−1)-way product terms contributes r−1 additive terms to the left-hand side of
the equation, which needs to be compensated by a multiple of r−2 on the right-hand
side for compatibility with (2.7). Note that for matrices (second order tensors), the
right-hand side is zero, and this is related to the singularity of the left-hand side when
r = 2 (this point will be discussed later). In general, the above linear equation can
be written in the matrix form as

J(λ,w)w∗ = b(w),(4.5)

where w denotes the vector concatenation of x, y, and z, and b(w) is the right-hand
side of (4.4). Here

J(λ,w) =


 −λId1×d1

A3 A2

AT
3 −λId2×d2 A1

AT
2 AT

1 −λId3×d3


 ,
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where Id1×d1
, Id2×d2

, and Id3×d3
are identity matrices corresponding to the x, y,

and z directions, respectively. The (i, j)th element of A3 is
∑

k aijkzk (i = 1, . . . , d1;
j = 1, . . . , d2); the (i, k)th element of A2 is

∑
j aijkyj (i = 1, . . . , d1; k = 1, . . . , d3);

and the (j, k)th element of A1 is
∑

i aijkxi (j = 1, . . . , d2; k = 1, . . . , d3). To some
extent, J(λ,w) can be regarded as the Jacobian of (2.7) or the Hessian of (2.3).

Note that given x, y, and z, λ can be taken as the GRQ λ = GRQ(x, y, z); and
given λ, w can be updated by (4.5). We can alternate between these two steps, and
that leads to the following algorithm.

Algorithm 4.1 (GRQ-Newton iteration).
Given initial estimate w0 = [x0, y0, z0]T

for p = 0, . . . ,
normalize wp so that ‖xp‖2 = ‖yp‖2 = ‖zp‖2 = 1
let λp = GRQ(xp, yp, zp)
solve J(λp, wp)wp+1 = b(wp) for wp+1

endfor
Note that (4.5) is used in Algorithm 4.1 since this particular formulation is directly

comparable to the standard RQI (Rayleigh quotient iteration). However, our later
convergence analysis will mostly rely on (4.3), which can be written as

J(λ,w)δw = c(λ,w),(4.6)

where c(λ,w) = λw − 1
r−2b(w) and δw corresponds to the difference wp+1 − wp in

Algorithm 4.1. Equation (4.6) can also be more suitable for iterative algorithms since
problems introduced by the nondefiniteness of J are alleviated (this point is discussed
shortly).

As we have mentioned, there is a factor r − 2 in b(w) for the order r tensor
formulation. Consequently, an important observation is that Algorithm 4.1 fails at
r = 2 since b(w) ≡ 0. This case corresponds to the standard matrix SVD. A standard
RQI replaces the definition of b(w) by b(w) = w. The inconsistency of the algorithm
at r = 2 is due to the singularity of J(λ∗, w∗) at the critical point (λ∗, w∗).

For the order r tensor formulation of (4.5), let Wr be the r × r matrix consisted
of all 1’s except for −1’s on the diagonal. Let (µ, [α1, . . . , αr]

T ) be an eigenpair of
Wr, and consider the vector w̃

∗ = [α1w
∗T
1 , . . . , αrw

∗T
r ]T , where (λ∗, w∗) is a solution

to (2.7), and w∗ = [w∗T
1 , . . . , w∗T

r ]T . Since, for all i,
∑

j �=i αj = (µ + 1)αi, by using
the critical point equation (2.7) we obtain

J(λ∗, w∗)w̃∗ = −λ∗w̃∗ + (µ+ 1)λ∗w̃∗.

This implies that w̃∗ is an eigenvector of J(λ∗, w∗) with an eigenvalue λ∗µ. Since

Wr = vrv
T
r − 2Ir×r,

where vr is the column vector of dimension r that is composed of all 1’s, Wr has one
eigenvalue of r − 2 and the rest are −2. It follows that when r = 2, J(λ∗, w∗) is
always singular. However, when r > 2, such a conclusion cannot be drawn from this
analysis. In fact, J(λ∗, w∗) becomes singular only in degenerate cases, which rarely
happens in practice. This is the fundamental difference between the case r = 2 and
the case r > 2. Therefore unlike the ill-conditioned standard RQI, matrix J is usually
well-conditioned when r > 2. In this case, Algorithm 4.1 is consistent, and it locally
achieves quadratic convergence as shown in Theorem 4.2.

From the above discussion, we can see that vectors [α1w
∗T
1 , . . . , αrw

∗T
r ]T span

an invariant subspace of J(λ∗, w∗). Although the matrix J is indefinite at (λ∗, w∗),
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the only positive eigenvalue of J(λ∗, w∗) is (r − 2)λ∗ with the eigenvector w∗. Be-
cause c(λ∗, w∗) in (4.6) is orthogonal to w∗, J behaves like a definite matrix in a
neighborhood of w∗ for (4.3) if iterative methods are employed. Computationally,
we do not have to factorize the matrix at each iteration if the direct factorization of
a size

∑
j mj matrix (O((

∑
j mj)

3) operations) is costly. A (preconditioned) Krylov
subspace method [14] may be employed in practice. With a fixed number of inner
iterations, the computation requires only O((

∑
j mj)

2) operations. However, this
method reduces the quadratic convergence shown in the following theorem to linear
convergence.

Theorem 4.2. Let (λ∗, w∗) be a nonzero solution to (2.7). If J(λ∗, w∗) is non-
singular, then Algorithm 4.1 converges to (λ∗, w∗) quadratically in a neighborhood of
(λ∗, w∗).

Proof. Since J(λ∗, w∗)w∗ = b(w∗), it follows from the linearization formula-
tions (4.3) and (4.5) that

0 = J(λ∗, w∗)w∗ − b(w∗)

= J(λ∗, w)w∗ − b(w) +O(‖w∗ − w‖22).

Since λ∗ = GRQ(w∗) and, by Theorem 4.1, GRQ(w) = λ∗ + O(‖w∗ − w‖22), we
have J(λ∗, w) = J(GRQ(w), w) +O(‖w∗ − w‖22). Note that b does not depend on λ.
Therefore

J(GRQ(w), w)w∗ − b(w) = O(‖w∗ − w‖22).

We have assumed that J is nonsingular at J(λ∗, w∗); therefore

‖wp+1 − w∗‖2 = ‖J(GRQ(wp), wp)−1b(wp)− w∗‖2 = O(‖wp − w∗‖22).

Also note that if w = [xT , yT , zT ]T is in a neighborhood of w∗ = [x∗T , y∗T , z∗T ]T ,
then ∥∥∥∥∥

[
xT

‖x‖2 ,
yT

‖y‖2 ,
zT

‖z‖2

]T
− w∗

∥∥∥∥∥
2

= O(‖w − w∗‖2).

This implies that the normalization step in Algorithm 4.1 preserves the rate of con-
vergence.

Algorithm 4.1 can also be used to find a singular value and vector for a matrix (or
an eigenvalue and vector for a symmetric matrix). Let B be a matrix of size m1×m2.
We can regard it as a third order tensor of size m1×m2×1. Since the third dimension
is always unit 1 after normalization, the iteration depends only on vectors x and y
corresponding to the first two dimensions of B. Matrix J can be written as

J(λ, [x, y]) =


 −λIm1×m1 B By

BT −λIm2×m2 BTx
yTBT xTB −λ


 ,(4.7)

and b becomes

b([x, y]) =


 By

BTx
xTBy


 ,(4.8)
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where both x and y have to be normalized: ‖x‖2 = ‖y‖2 = 1. If J is nonsingular, which
is extremely likely, then Algorithm 4.1 is consistent with good convergence properties.
This algorithm can be compared to the standard RQI, where the last row and the
last column of J are omitted in the definition, and b is replaced by w = [xT , yT ]T .
We note that in the RQI, two choices can be made in the normalization step. The
first one is to normalize x and y separately after each iteration. This case corresponds
to an application of Algorithm 4.1 in that the GRQ is equivalent to the traditional
Rayleigh quotient. The second choice is only to normalize w = [xT , yT ]T as a whole
(‖x‖2 and ‖y‖2 can be different). This choice is more standard since it is obtained
from the direct application of RQI to the equivalent eigenvalue problem of a SVD
problem. However, in this case, the GRQ is not equivalent to the traditional Rayleigh
quotient. The difference between these two normalization procedures is very small,
as indicated by Example 5.2. Finally, it should be noticed that we can regard B as
even higher order tensors, and that leads to different procedures.

4.2. Alternating least squares method. In practice, the most commonly
used method for solving (1.1) is the alternating least squares (ALS) algorithm, which
was studied in [1, 20, 23]. An interesting property of this procedure is that it gener-
alizes the power method for eigenvalue problems. Other generalizations are possible,
such as the Jacobi procedure described in the next section. Although the convergence
of this method was studied, the rate of convergence has not yet been analyzed in the
literature. We show that by using the formulation developed in the previous sections,
we can prove linear convergence of this method in a neighborhood of the optimal
solution.

Algorithm 4.2 (ALS).
Given initial position w0 = [x0, y0, z0]T

for p = 0, . . . ,
for i = 1, . . . ,

xp+1
i =

∑
i,j,k aijky

p
j z

p
k

endfor
for j = 1, . . . ,

yp+1
j =

∑
i,j,k aijkx

p+1
i zpk

endfor
for k = 1, . . . ,

zp+1
k =

∑
i,j,k aijkx

p+1
i yp+1

j

endfor
normalize so that ‖xp+1‖2 = ‖yp+1‖2 = ‖zp+1‖2 = 1

endfor
Algorithm 4.2 is derived by individually varying x (or y or z) while fixing the

other two vectors in (1.1). It can be easily checked from (2.3) that the optimal x is
proportional to

∑
i,j,k aijkyjzk. Due to the normalization step, λ does not need to

appear in the algorithm.
Another way to look at this method is to regard it as a nonlinear version of the

Gauss–Seidel iteration (cf. [14]) applied to (2.7). Locally, after a linearization of the
original problem, this algorithm can be regarded as an approximation of the block
Gauss–Seidel iteration for solving the linear system (4.5). Although the Jacobian
matrix J(λ,w) can be indefinite, as we have discussed in section 4.1, the right-hand
side of (4.3) lies approximately in the subspace where J is definite. Moreover, at
each Gauss–Seidel iteration, δx (δy or δz) is approximately orthogonal to x (y or z);
therefore each direction generated by the Gauss–Seidel iteration lies in the subspace
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where J is definite. This indicates that J can essentially be regarded as a definite
operator. From this reasoning, we can obtain the following theorem.

Theorem 4.3. Assume that (λ∗, x∗, y∗, z∗) maximizes (2.3) and J(λ∗, w∗) is non-
singular, where w∗ = [x∗, y∗, z∗]T ; then Algorithm 4.2 converges to (λ∗, w∗) linearly
in a neighborhood of (λ∗, w∗).

Proof. When wp is close to w∗, consider wp+1 obtained by Algorithm 4.2, up+1

obtained by Algorithm 4.1, and vp+1 obtained by approximately solving (4.5) with
the block Gauss–Seidel iteration. That is, for each k = 1, . . . , 3, solve the following
equation for vp+1

k :

∑
�≤k

Jk,�(λ
p, wp)vp+1

� +
∑
�>k

Jk,�(λ
p, wp)wp

� = bk(w
p),(4.9)

where the subscript k (or ') indicates one of the block components corresponding to
x, y, or z. As mentioned earlier, wp is obtained from the nonlinear block Gauss–Seidel
version of (4.9). Now notice that (4.5) is a linearization of (2.7) and λp = GRQ(wp) is
second order in wp−w∗ from λ∗. Therefore at each step k, vp+1

k −wp+1
k is second order

in wp−w∗ and wp−wp+1. That is, ‖vp+1−wp+1‖ = O(‖wp−w∗‖2+‖wp−wp+1‖2).
Also by Theorem 4.2 we have ‖up+1−w∗‖ = O(‖wp−w∗‖2). Therefore we only need
to show that ‖vp+1 − up+1‖ ≤ α‖wp − up+1‖ for some α < 1 where α is independent
of wp.

By (4.6), we know that J(λp, wp)(up+1−wp) = c(λp, wp). Equation (4.9) implies
that vp+1−wp can be regarded as the approximation of the solution δw = up+1−wp

to (4.6) after one block Gauss–Seidel iteration. Let J∗ = J(λ∗, w∗); then (4.6) can be
replaced by J∗δw = c(λp, wp) with second order accuracy both for the exact solution
up+1−wp and for the Gauss–Seidel approximation vp+1−wp. We thus need to show
only that the Gauss–Seidel iteration for solving J∗δw = c(λp, wp) converges linearly
with the starting point δw = 0. Furthermore, each component ck(λ

p, wp) of the right-
hand side is orthogonal to wp

k by the definition of λ
p. Therefore, if we let V denote the

subspace spanned by [x∗T , 0, 0]T , [0, y∗T , 0]T , and [0, 0, z∗T ]T , then we can decompose
c(λp, wp) as c̄ + ∆c such that c̄ ∈ V ⊥ and ∆c = O(‖c̄‖ · ‖wp − w∗‖). Since ∆c is a
small perturbation which does not affect the linear convergence rate, we need to show
only that the Gauss–Seidel iteration for solving J∗δu = c̄ converges linearly with the
starting point δu = 0.

It is easy to check that if c̄ ∈ V ⊥, then each new component δuk generated from
the block Gauss–Seidel iteration also lies in V ⊥. Therefore, the convergence relies
only on the properties of J∗ in the subspace V ⊥. Since (λ∗, w∗) maximizes (2.3) and
J∗ is nonsingular, J∗ has to be negative definite on V ⊥. The theorem follows from
the well-known fact that the Gauss–Seidel iteration converges linearly for definite
matrices [14].

There are many possible variants of Algorithm 4.2. One is to replace the Gauss–
Seidel iteration by an iterative algorithm with a better convergence behavior (such
as the nonlinear version of successive overrelaxation or a Krylov subspace method
[14]). Another variant is to vary two or more components (x or y or z) at the same
time, instead of varying only one component. Note that the optimization of varying
two components can be obtained from an SVD algorithm. Varying more than two
components at the same time leads to a divide-and-conquer approach. However, all
of these algorithms have linear convergence rates. Therefore locally the GRQ-Newton
iteration is more efficient computationally.
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4.3. Jacobi Gauss–Newton procedure. For problems that need to be solved
on a parallel computer, it is often desirable to use the Jacobi version of Algorithm 4.2.
There is also an interesting relationship between this Jacobi algorithm and the Gauss–
Newton procedure for nonlinear least squares problems. The Gauss–Newton method
is an approximation to Newton’s method with the property that the resulted linear
system is always semidefinite. As we show in section 5, this method (Algorithm 4.3)
could be much slower than Newton’s method. However, it still has many useful
applications, such as for certain engineering problems where the enhanced stability
of the Gauss–Newton procedure may be desirable. In addition, the method does not
require the Hessian matrix, which may be expensive to compute.

Algorithm 4.3 (Jacobi Gauss–Newton iteration).
Given initial position w0 = [x0, y0, z0]T

for p = 0, . . . ,

xp+1
i =

∑
i,j,k aijky

p
j z

p
k,

yp+1
j =

∑
i,j,k aijkx

p
i z

p
k,

zp+1
k =

∑
i,j,k aijkx

p
i y

p
j

normalize so that ‖xp+1‖2 = ‖yp+1‖2 = ‖zp+1‖2 = 1
endfor
To derive Algorithm 4.3 as a Gauss–Newton procedure, we consider the formula-

tion (2.1) where λ is still estimated as GRQ(w). Given this parameter λ, we linearize
each term λ(xi + δxi)(yj + δyj)(zk + δzk)− aijk as

λxiyjzk − aijk + λ(δxiyjzk + xiδyjzk + xiyjδzk).

For the Gauss–Newton procedure, we work with the least squares formulation of this
linearization as follows:

min
δx,δy,δz

∑
i,j,k

[λxiyjzk − aijk + λ(δxiyjzk + xiδyjzk + xiyjδzk)]
2.(4.10)

The above system is singular; therefore, we need to impose the following normalization
constraints: xT δx = yT δy = zT δz = 0. After some algebraic manipulations, we obtain
the following solution to (4.10):

δxi =
∑
j,k

aijkyjzk/λ− xi,

δyj =
∑
i,k

aijkxizk/λ− yj ,

δzk =
∑
i,j

aijkxiyj/λ− zk.

By normalizing xi + δxi, yj + δyj , and zk + δzk, we obtain an update rule that is
equivalent to Algorithm 4.3. Similar to Algorithm 4.2, the Gauss–Newton iteration
approximately solves (4.5), but it does not guarantee the convergence even locally.
However, in our experiments the algorithm usually converges, although the observed
rate of convergence is slightly slower than that of Algorithm 4.2. The main advantage
of this method is its parallelizability.

4.4. Computational costs. In order to compare algorithms described in the
previous sections, it is necessary to analyze their computational costs. To be more
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general, we analyze these algorithms in the case of rth order tensor approximation.
Assume that the dimension mj for each side of the tensor satisfies m1 ≥ m2 ≥ · · · ≥
mr. We also assume that [ai1,...,ir ] is not sparse and does not have any special structure
that we can take advantage of. For simplicity, we keep only operation counts accurate
up to the leading term in our analysis.

Given any vector wj , we define the inner product of an rth order tensor A =
[ai1,...,ir ] and a vector wj as a tensor of order r− 1: 〈a,wj〉 = [

∑
ij
ai1,...,irwij ,j ]. The

computation of this inner product requires 2
∏

j mj operations. Therefore, in order to
evaluate GRQ, the best way is to compute the inner product of A and wj in the order
from j = 1 to j = r. This computation requires 2

∑
j

∏
k≥j mk ≈ 2

∏
j mj operations.

We can now consider Algorithm 4.2. In the inner loop, the equation for the
first component requires us to compute the inner product of A and wp

j (j > 1),

with a total of 2
∏

j mj operations. Since the normalization of w
p+1
1 requires O(m1)

operations, the total cost should be 2
∏

j mj . For each component k > 1, we need

to compute the inner product of A and wp+1
j for j = 1, . . . , k − 1. Since the inner

product of A and wp+1
j for j = 1, . . . , k − 2 is available from the previous step, the

overall computation at step k is to take the inner product of 〈A, [wp+1
j ]1:k−2〉 with

wp+1
k−1 in 2

∏
j≥k−1 mj operations, and then the inner product of 〈A, [wp+1

j ]1:k−1〉 with
[wp

k−1]k+1:r in 2
∏

j≥k mj operations. The total operation count at step k > 1 is
therefore 2

∏
j≥k−1 mj + 2

∏
j≥k mj . Summing over k, we need 4

∏
j mj operations

for each outer iteration. Since the procedure described for computing Algorithm 4.2
is still valid for evaluating inner products 〈A, [w1, . . . , ŵk, . . . , wr]〉 for k = 1, . . . , n
simultaneously (ŵk indicates that wk is omitted in the inner product computation),
it follows that Algorithm 4.3 also requires 4

∏
j mj operations.

We now show that 6
∏

j mj operations are needed to compute J and b in Algo-
rithm 4.1. Note that b can be obtained from J in o(

∏
j mj) operations; therefore we

need to show only that J can be obtained in 6
∏

j mj operations. This can be done in
two steps. In the first step, we compute J1,� (and therefore J�,1), which requires m1

times 4
∏

j>1 mj operations from the previous analysis. In the second step, we first
compute 〈A,w1〉, which requires 2

∏
j mj operations, and then recursively compute

the inner products of 〈A,w1〉 with different combinations of r−3 vectors from [wj ]2:n,
which takes only O(

∏
j>1 mj) operations. Therefore a total of 6

∏
j mj operations are

needed to compute J and b. Since O((
∑

j mj)
3) operations are required to solve the

linear system, each iteration in Algorithm 4.1 costs 6
∏

j mj + O((
∑

j mj)
3) opera-

tions. This will be comparable to the computational costs of the other two algorithms
if
∏

j mj is at least of order m
3
1. Note that if an iterative method is employed, then

O((
∑

j mj)
2) operations are required to solve the linear system approximately. In

this case, however, we may obtain only a linear convergence rate.
The computational costs for each iteration of the algorithms are summarized in

Table 4.1. Algorithm 4.1 is denoted by GRQI; Algorithm 4.2 is denoted by ALS; and
Algorithm 4.3 is denoted by GN.

Table 4.1
Comparison of computational costs in flops.

Algorithm GRQI ALS GN

Flops/iteration 6
∏r

j=1 mj +O((
∑r

j=1 mj)
3) 4

∏r
j=1 mj 4

∏r
j=1 mj
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5. Experimental results. Since the computational cost for each method has
already been discussed, we study only the convergence behavior for these methods.
We give two examples: the first example compares the convergence of the algorithms
with synthetic and real multiway datasets; the second example focuses on the matrix
SVD problem. “Optimal solutions” in these examples are obtained numerically up
to the machine precision (denoted by εmach). This has been done by first using ten
iterations of ALS to find an approximate solution and then using GRQI until the error
is within the machine precision. Strictly speaking, the computed optimal solution w∗

may not be exact. The tensors are also not necessarily orthogonally decomposable
in the examples, and we compute only rank-one approximations. However, rank-
F approximations can also be obtained by using the incremental algorithm we have
mentioned. Although the scheme may not lead to an optimal low-rank approximation,
a reasonable approximation may still be obtained. In all of the following experiments,
we report the average performance of ten runs of the algorithms with ten different
randomly generated initial vectors. In each of the ten runs, the same initial vector is
used for all algorithms.

5.1. Example 1. The optimal solution is denoted as w∗, and the residue R(w)
of w is defined by (1.1). We do not report convergence results for GRQ since its
behavior is similar to R(w) (both are of the order ‖w − w∗‖22).

In Table 5.1, we consider a random low-rank 40 × 30 × 40 tensor generated as
the sum of 20 rank-one tensors—each rank-one tensor x ⊗ y ⊗ z is generated with
components of x, y, and z uniformly distributed in (0, 1). The 2-norm of this tensor
is 569. For each of the ten runs, we start with a randomly generated initial vector,
having an average residue of 448. The residue of w∗ is 74. As we can see, a rank-
one approximation reduces the residue by a factor of 6. The condition number of
the Jacobian at w∗ for GRQI is about 2, which explains why, in this case, both
ALS and GN converge relatively quickly. Another interesting observation is that all
three algorithms converge to the optimal solution from a randomly generated starting
approximation. We believe this is related to the dominance of the optimal rank-one
decomposition in this example.

Table 5.1
Positive low-rank random 40× 30× 40 tensor.

‖wk − w∗‖2
p 1 2 3 4

GRQI 7.4× 10−3 1.0× 10−7 5.4× 10−16 εmach

ALS 1.2× 10−2 1.6× 10−4 4.1× 10−7 3.2× 10−9

GN 1.8× 10−2 6.8× 10−4 3.0× 10−5 1.4× 10−6

R(wk)−R(w∗)
p 1 2 3 4

GRQI 1.2× 10−1 2.8× 10−11 εmach εmach

ALS 3.5× 10−1 6.2× 10−5 3.9× 10−10 5.0× 10−13

GN 7.4× 10−1 1.0× 10−3 1.9× 10−6 4.6× 10−9

Table 5.2 shows the results with a random 10× 15× 20× 20 tensor. Each entry
of the tensor is an independently generated Gaussian variable with mean 0 and stan-
dard deviation 1. The norm of the tensor is 246.00 and the optimal approximation
has residue 245.68. Therefore, the optimal rank-one approximation performs very
poorly. Also in this case, we observe that GRQI and GN may converge to nonoptimal
approximations if we start with random approximations. Therefore we use starting
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approximations that are generated by randomly perturbing the computed optimal
solution so that they are close to the optimal solution. The condition number of the
Jacobian for GRQI at w∗ is 58.4, which is relatively large. Thus both ALS and GN
converge much more slowly than GRQI.

Table 5.2
Gaussian random 10× 15× 20× 20 tensor.

‖wk − w∗‖2
p 1 2 3 4

GRQI 1.3× 10−3 3.8× 10−6 6.0× 10−11 2.4× 10−15

ALS 1.9× 10−2 1.0× 10−2 7.6× 10−3 5.8× 10−3

GN 2.4× 10−2 1.8× 10−2 1.5× 10−2 1.3× 10−2

R(wk)−R(w∗)
p 1 2 3 4

GRQI 1.3× 10−7 8.1× 10−13 εmach εmach

ALS 4.6× 10−5 8.3× 10−6 2.8× 10−6 1.2× 10−6

GN 1.6× 10−4 9.7× 10−5 6.8× 10−5 5.3× 10−5

Table 5.3 uses the growth curve data of French girls from [19]. The dataset is a
12×30×8 tensor, indicating 12 ages, 30 French girls, and 8 additional variables. The
rank-one approximation performs very well for this real data, partially because all
variables are positive. While the original tensor norm is 70808, the optimal solution
reduces the residue to 8123. The condition number of Jacobian is 2.3, and we observe
similar convergence behaviors as shown in Table 5.1.

Table 5.3
Growth curve data of French girls.

‖wk − w∗‖2
p 1 2 3 4

GRQI 1.4× 10−1 3.7× 10−4 1.8× 10−9 5.0× 10−16

ALS 4.2× 10−2 6.7× 10−4 9.7× 10−6 1.4× 10−7

GN 1.1× 10−1 1.2× 10−2 1.3× 10−3 1.5× 10−4

R(wk)−R(w∗)
p 1 2 3 4

GRQI 5.0× 103 1.0× 10−1 9.0× 10−13 εmach

ALS 5.8× 102 1.5× 10−1 3.2× 10−5 6.9× 10−9

GN 3.1× 103 4.9× 101 6.1× 10−1 7.4× 10−3

5.2. Example 2. In this example, we compare three algorithms for computing
a singular value of a matrix. GRQI is the method of treating the matrix as a three-
dimensional tensor and applying Algorithm 4.1, which is described in section 4.1. RQI
denotes the standard Rayleigh quotient iteration applied to the equivalent eigenvalue
problem. NRQI denotes the standard Rayleigh quotient with separate normalization
of x and y after each iteration, as described in section 4.1. We generate a random
40 × 50 matrix with entries uniformly distributed in (0, 1). Table 5.4 reports the
convergence of singular values (denoted by σ) and singular vectors (denoted by w)
obtained by the algorithms after each iteration. After the fourth iteration, the esti-
mated condition numbers are 2.4 for GRQI, and of the order 1016 for both NRQI and
RQI. For this problem, GRQI not only is much better conditioned, but it also seems
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Table 5.4
40× 50 singular value problem.

‖wk − w∗‖2
p 1 2 3 4

GRQI 6.0× 10−3 1.5× 10−8 4.0× 10−15 εmach

NRQI 7.2× 10−2 2.3× 10−4 2.6× 10−11 εmach

RQI 7.2× 10−2 2.3× 10−4 2.6× 10−11 εmach

|σk − σ∗|
p 1 2 3 4

GRQI 7.4× 10−4 2.1× 10−14 εmach εmach

NRQI 1.1× 10−1 1.8× 10−6 9.7× 10−15 εmach

RQI 1.1× 10−1 1.8× 10−6 8.8× 10−15 εmach

to converge faster. From the table, we also see that all of the algorithms achieve the
machine precision after four iterations.

We shall mention that it is possible to define the inverse iteration procedure
for eigenvalue problems in a more well-conditioned way by introducing a constraint
xT δx = 0 (see, e.g., [29]). This leads to a more traditional Newton-type method, which
is not equivalent to our formulation. Our formulation has the advantage that the
eigenvalue structure of the J matrix is better understood (see section 4.1). However,
the exact relationship between this method and the traditional Newton’s method
requires further investigation.

6. Conclusions. We have shown that if a tensor of order higher than 2 is or-
thogonally decomposable, then the decomposition is unique and can be computed by
repeatedly applying a rank-one approximation algorithm. Furthermore, even if the
tensor to be approximated is not orthogonally decomposable, incremental rank-one
approximation can still be useful due to its simplicity.

Based on these observations, it is important to study numerical aspects of the
rank-one tensor approximation problem. Specifically, we are able to prove a local
linear convergence rate of the popular ALS algorithm. In addition, based on a formu-
lation that generalizes the Rayleigh quotient variational method for symmetric matrix
eigenvalue problems, we are able to derive a generalized Rayleigh quotient-Newton
iteration (GRQI), which locally has a quadratic convergence rate. For dense high
order tensors, the computation is likely to be dominated by tensor-vector products.
Therefore, locally this method can be more efficient than ALS even after the cost of
matrix factorization is taken into consideration. We have also pointed out that ALS
can be viewed as a nonlinear Gauss–Seidel procedure for approximately solving the
linear system in GRQI. This relationship implies that more sophisticated iterative
algorithms can be applied.

Many open problems still remain though. For example, general properties of high
order tensor decompositions are still not well understood. It might also be interesting
to study numerical methods that directly compute a rank-F tensor approximation,
instead of using the incremental rank-one approximation procedure suggested in this
paper.
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Abstract. This goal of this paper is to present an elegant relationship between an implicitly
restarted Arnoldi method (IRAM) and nonstationary (subspace) simultaneous iteration. This rela-
tionship allows the geometric convergence theory developed for nonstationary simultaneous iteration
due to Watkins and Elsner [Linear Algebra Appl., 143 (1991), pp. 19–47] to be used for analyzing the
rate of convergence of an IRAM. We also comment on the relationship with other restarting schemes.
A set of experiments demonstrates that implicit restarted methods can converge at a much faster
rate than simultaneous iteration when iterating on a subspace of equal dimension.

Key words. simultaneous iteration, Arnoldi reduction, Schur decomposition, restarting, eigen-
values

AMS subject classifications. 65F15, 65G05

PII. S0895479899358595

1. Introduction. A classical method of solution for the large-scale eigenvalue
problem is simultaneous iteration [6, 9, 25, 26, 28, 36, 38]. Simultaneous iteration was
originally introduced by Bauer [7], who called the method Treppeniteration (staircase
iteration). The iteration is a straightforward method for computing the eigenvalues of
largest modulus of a matrix A and is a generalization of the power method in that a
subspace of size larger than one is employed. Unfortunately, the rate of convergence of
simultaneous iteration is often prohibitive for many large-scale eigenvalue problems.

The goal and contribution of this paper is the derivation of an elegant relationship
between an implicitly restarted Arnoldi method (IRAM) and nonstationary subspace
or simultaneous iteration. We show that an IRAM, including its block extension, is
nonstationary simultaneous iteration in disguise. The relationship with nonstationary
simultaneous iteration is demonstrated by exploiting a well-known connection [24,
37, 39] with the QR algorithm. By appealing to the results in [40], possible rates of
convergence for an IRAM are established. Moreover, we show how an IRAM computes
a nested sequence of approximations for the partial Schur decomposition associated
with the dominant invariant subspace of a matrix. Numerical experiments show that
an IRAM can converge significantly faster than simultaneous iteration when acting
on subspaces of equal dimension.

We remark that the relationship between an IRAM and simultaneous iteration
presented also applies to all other restarted Arnoldi methods that employ the same ini-
tial Krylov space and restart polynomial. The elegant relationship with simultaneous
iteration provided by implicit restarting, however, also provides a robust and stable
algorithm. This robustness and stability is a direct result of an exclusive reliance on
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unitary transformations. Golub and Wilkinson [11] examine the many practical dif-
ficulties involved when computing invariant subspaces. They conclude that working
with an orthonormal basis of approximate Schur vectors is a better-behaved numerical
process. Within the context of simultaneous iteration, Stewart [38] also arrives at the
same conclusion.

Section 2 discusses the eigenvalue problem and Schur decompositions. Section 3
introduces the Arnoldi reduction and its computation. The relationship between an
IRAM and nonstationary simultaneous iteration is derived in section 4. Section 5
describes a geometric convergence theory of an IRAM. Section 6 discusses some
practical issues related to the convergence of an IRAM. The results of some numerical
experiments comparing simultaneous iteration with an IRAM are given in section 7.

We conclude this section with the basic notation to be used in this article. We
employ Householder notational conventions. Capital and lowercase letters denote
matrices and vectors, respectively, while lowercase Greek letters denote scalars.

The transpose of a vector x is denoted by xT , and the complex conjugate of xT

is denoted by xH . The norms used are the Euclidean and Frobenius, denoted by ‖ · ‖
and ‖ · ‖F , respectively. The range of a matrix A is denoted by R(A).

A matrix of lower bandwidth b will be called a banded upper Hessenberg matrix.
We drop “upper” when the context is clear. Omission of the word band implies that
the block size is one. We say that a banded Hessenberg matrix is unreduced if all the
elements on the bth subdiagonal are nonzero.

2. The eigenvalue problem. Let A be a complex matrix of order n. We are
interested in computing the k � n dominant (those of largest magnitude) eigenvalues
and associated invariant subspace of

Ax = λx.(2.1)

The eigenvalues and eigenvectors of A are denoted by λj and xj , respectively, for
j = 1, . . . , n. For the remainder of our article, we assume that |λ1| ≥ |λ2| ≥ · · · ≥ |λn|
and |λk| > |λk+1|.

The following decomposition proves central to the eigenvalue algorithms consid-
ered in this article. The decomposition’s value is in providing us with a canonical form
for which stable algorithms may be developed. For us, a stable algorithm computes
the exact Schur decomposition of a nearby matrix.

Theorem 2.1 (Schur decomposition). If A ∈ Cn×n, then there exists a unitary
Z ∈ Cn×n such that

ZHAZ = T,(2.2)

where T is an upper triangular matrix. The eigenvalues can appear in any order along
the diagonal.

Proof. See [10, p. 313].

Let D be a diagonal unitary matrix. Then (ZD)HAZD = DHTD has diagonal
blocks equal to those of T. Thus, apart from the eigenvalues of multiplicity larger than
one, the decomposition is essentially unique, given some ordering of the eigenvalues.
Denote the leading principal matrix of order k ofT by T̂k. Let Zk be the corresponding
columns of Z. Then AZk = ZkT̂k is a partial Schur decomposition of A of order k.
When A is Hermitian, T is a diagonal matrix, and hence the eigenvalues are real
numbers.
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The full decomposition is computed by the practical QR algorithm in the EIS-

PACK [33] and LAPACK [1] software packages. Instead simultaneous iteration at-
tempts to compute a partial Schur decomposition forA with the dominant eigenvalues
located on the diagonal of T̂k.

3. Partial reduction to band Hessenberg form. The first step of the prac-
tical QR algorithm is to reduce A to upper Hessenberg form via Householder trans-
formations. This is done because each step of the QR iteration performed on a
Hessenberg matrix involves only order n2 work. This is in contrast to the order n3

work that would be required during each step of a QR iteration on A (assuming that
A is a dense matrix).

Unfortunately, for large eigenvalue problems, Householder transformations cannot
be used as they destroy any sparsity or structure inA. We say an eigenvalue problem is
large if the dense QR algorithm is prohibitive in storage and/or efficiency. Instead, the
Arnoldi reduction [2] only requires knowledge of A through a matrix-vector product.
Moreover, it allows us to sequentially reduce A to upper Hessenberg form, producing
the leading portion of an upper Hessenberg matrix at every step. When the matrix
A is Hermitian, the Lanczos reduction [16] is recovered.

Since our concern is in the solution of eigenvalue problems where A is not only
large but also expensive to apply, block Arnoldi reductions [30, 31] are considered. In
many instances, the cost of computing a few matrix-vector products is commensurate
with that of one matrix-vector product. Moreover, in exact arithmetic, an unblocked
Arnoldi reduction cannot detect the multiplicity of an eigenvalue. A blocksize enables
the reduction to compute multiplicities less than or equal to the blocksize.

Let b > 0, an integer, be the blocksize and let Ej ≡
[
e(j−1)b+1 · · · ejb

]
where

the jth canonical basis vector is denoted by ej . We say that

AVj = VjHj + FjE
T
j(3.1)

is a block Arnoldi reduction of length j when VH
j AVj = Hj is a banded upper

Hessenberg matrix, VH
j Vj = Ij·b, and VH

j Fj = 0. The j · b columns of Vj are an
orthonormal basis for the block Krylov subspace

Kb
j(A,U1) ≡ Span{U1,AU1, . . . ,A

j−1U1},

where U1 is a full rank matrix with b columns. Note that if A = AH , then Hj is a
block tridiagonal matrix.

In order to introduce notation that will be needed, we rewrite (3.1) as

AVj =
[
U1 · · · Uj

]



G1,1 · · · · · · G1,j

G2,1
. . .

...
...

...
. . .

...
...

0 · · · Gj,j−1 Gj,j




+ Uj+1Gj+1,jE
T
j ,

where Uj+1Gj+1,j is the QR factorization of Fj . The reduction is advanced by one
step (or its length incremented) by the following three operations:

1.W = AUj+1.
2. Gi,j+1 = UH

i W i = 1, . . . , j + 1.

3. Fj+1 =W −∑j+1
i=1 UiGi,j+1.



554 R. B. LEHOUCQ

A direct implementation of the second and third steps will not, in general, produce
an orthogonal set of Arnoldi vectors. We refer the reader to [17] for details on an
efficient and robust implementation. See [12] for references and information on a
block Lanczos reduction implemented via a three-term block recurrence.

3.1. Computing an approximate partial Schur decomposition. Suppose
that HjZ = ZT is a Schur decomposition ordered so that the eigenvalues of T are
in descending order of magnitude along the diagonal. Postmultiplying (3.1) with Z
gives

‖AVjZ−VjZT‖ = ‖FjE
T
j Z‖ = ‖Gj+1,jE

T
j Z‖.(3.2)

Because ET
j Z is a matrix with j · b columns consisting of the last b rows of Z, the

quality of an approximate partial Schur decomposition is determined because

‖FjE
T
j Z
[
e1 e2 · · · ek

] ‖ ≡ ‖FjE
T
j Zk‖.

If this quantity is small, then an approximate partial Schur decomposition of order
k for the dominant invariant subspace is computed. We now establish this assertion.
Suppose that HjZk = ZkT̂k is an order k partial Schur decomposition for Hj ; then

(A+M)VjZk = VjZkT̂k,

where

‖M‖ = ‖ − FjE
T
j Zk(VjZk)

H‖ ≤ ‖Gj+1,jE
T
j Zk‖,

implying that we have computed an exact partial Schur decomposition for a matrix
near A.

If approximate eigenvectors are of interest, they can be computed from the partial
Schur decomposition HjZk = ZkT̂k because

AVjZky −VjZkyθ = FjE
T
j Zky,(3.3)

where T̂ky = yθ. We call VjZky a Ritz vector and θ a Ritz value. Note that the
first Schur vector is always an eigenvector.

4. Connection with nonstationary simultaneous iteration. There is a
well-known connection between nonstationary simultaneous iteration and the QR al-
gorithm. This section will show a similar relationship between an IRAM and non-
stationary simultaneous iteration. The following elementary but technical result is
needed for this relationship. The result is a generalization of the special case ψ(λ) = λ
shown in [19]. A similar result was proved in Lemma 1 of [23] for the Lanczos reduc-
tion.

Lemma 4.1. Suppose that an integer p satisfies 1 ≤ p < m, and let r = m − p.
Let AVm = VmHm + FmE

T
m be a length r + p Arnoldi reduction, where Hm is an

unreduced band upper Hessenberg matrix. If

ψp(λ) =

p∏
i=1

(λ− τi),

then

ψp(A)Vm = Vmψp(Hm) +

p∑
j=1

ψj+1,p(A)FmE
T
mψj−1(Hm),(4.1)
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where ψj,p(λ) =
∏p

i=j(λ− τi).
Moreover,

ψp(A)Vr = Vmψp(Hm)
[
E1 · · · Er

]
.(4.2)

Proof. The proof is by mathematical induction. Define m ≡ r+p. The subscripts
are suppressed on Vm and Hm for the proof. Since ψ1(A)V = Vψ1(H) + FmE

T
m,

where ψ1(λ) = λ − τ1, the base case for p = 1 is established. Assume the lemma’s
truth for polynomials ψj(λ) of degree j ≤ p. Let ψp+1(λ) = (λ − τp+1)ψp(λ). Using
the induction hypothesis leads to

ψp+1(A)V = (A− τp+1I)ψp(A)V

= (A− τp+1I)


Vψp(H) +

p∑
j=1

ψj+1,p(A)FmE
T
mψj−1(H)




= V(H− τp+1I)ψp(H) + FmE
T
mψp(H)

+ (A− τp+1I)

p∑
j=1

ψj+1,p(A)FmE
T
mψj−1(H)

= Vψp+1(H) +

p+1∑
j=1

ψj+1,p+1(A)FmE
T
mψj−1(H),

which establishes (4.1).
Since H is unreduced, ψj−1(H) is a band Hessenberg matrix of lower bandwidth

(j − 1) · b. Hence ET
i ψj−1(H)El = 0 for l = 1, . . . ,m − j, and the last matrix on

the right-hand side of (4.1) is zero through its first r · b columns and (4.2) is estab-
lished.

In other words, (4.2) shows that ψp(A) applied to the first r · b columns of Vm is
equivalent to the basis representation given by the first r · b columns of Vmψp(Hm).

Suppose that p steps of the QR algorithm are performed onHm with p < m shifts
τ1, . . . , τp resulting in

HmW =WH+
m.(4.3)

Note that W is a Hessenberg matrix of lower bandwidth p · b because it is a product
of p unitary matrices each of lower bandwidth b (each computed during a step of the
QR algorithm). If W1 denotes the initial r · b columns of W, W2 denotes the next b
columns, and W3 denotes the remaining columns, equating the first r · b columns of
(4.3) results in

HmW1 ≡
[
W1 W2 W3

]  H+
r

G+
r+1,rE

T
r

0


 .(4.4)

Postmultiplying (3.1) with W1 and using (4.4), we obtain

AVmW1 = VmHmW1 + FmE
T
mW1(4.5)

= VmW1H
+
r +VmW2G

+
r+1,rE

T
r + FmE

T
mW1

≡ V+
r H

+
r + F+

r E
T
r ,
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where

V+
r ≡ VmW1 and F+

r ≡ VmW2G
+
r+1,r + FmE

T
mW1Er.(4.6)

Note the use of the identity ET
mW1 =

[
0 · · · 0 ET

mW1Er

]
in (4.6).

The following theorem establishes a direct relationship between nonstationary
simultaneous iteration and the QR algorithm. The theorem is a partial or truncated
version of Theorem 3.1 in [37, p. 353].

Theorem 4.2. Assume the hypothesis of Lemma 4.1 and the notation in (4.4)–
(4.6). If the QR algorithm computed on Hm with the p shifts τ1, . . . , τp results in
HmW =WH+

m, then

ψp(A)Vr = V+
r R̂r,(4.7)

where R̂r is an upper triangular matrix of order r · b.
Proof. From Lemma 4.1 it suffices to show that the QR factorization of

ψp(Hm)
[
E1 · · · Er

]
=W1R̂r

for some upper triangular R̂r of order r · b. But this is a consequence of the link
between the QR algorithm and nonstationary simultaneous iteration because

ψp(Hm) =WR

is a QR factorization [37, p. 353]. The result follows from equating the initial r · b
columns of this equality and letting R̂r denote the leading submatrix of order r · b of
R.

The theorem allow us to link simultaneous iteration with an IRAM. If p = 1,
ψ1(λ) = λ, r = 1, and b > 1, then (4.7) becomes AV1 = V+

1 R̂1 and simultaneous
iteration is recovered. From (4.5) it follows that for this specific choice of polynomial
an IRAM is simultaneous iteration in disguise because V+

1 is computed. Two remarks
are in order.

First, we note that (4.3) through (4.6) define a restart of the Arnoldi reduction
via a QR algorithm. An IRAM is a sequence of implicit restarts that are terminated
when the partial Schur decomposition of interest is sufficiently well approximated.
The restart is implicit because as Theorem 4.2 demonstrates, polynomials in A can
be implicitly applied to Vm via an application to Hm.

Second, if p = m, implicitly restarting with m− 1 shifts produces

AU+
1 = U+

1 H
+
1 + F+

1 .(4.8)

If QR = H+
1 − τmI, then

(A− τmI)U+
1 = U+

1 QR+ F+
1 .(4.9)

The right-hand side of (4.9) defines a new starting block of vectors (after orthogo-
nalization) for a subsequent block Arnoldi reduction. Thus we can implicitly apply
polynomials of degree m in A. This bit of cleverness was first established in [3].



IMPLICIT RESTARTING AND SUBSPACE ITERATION 557

5. Convergence of an IRAM. Sorensen [34] gave some convergence results
for an IRAM (blocksize of one). For nonsymmetric A, a linear rate of convergence
was given for a fixed ψp(·) per restart. He also showed that for symmetric A, using
the unwanted m − k eigenvalues as shifts during each implicit restart resulted in
convergence to k eigenvalues of A.

Traditional convergence theory [13, 14, 27] for Arnoldi reductions investigates the
quality of Kb

j(A,U1) to approximate eigenvectors of A as j increases. However, with
the connection between an IRAM and nonstationary simultaneous iteration in hand, a
more elegant and powerful theory is possible. A comprehensive geometric convergence
theory for the shifted QR algorithm is presented by Watkins and Elsner [40] within the
more general framework of generic GR algorithms. A GR algorithm is a generalization
of the QR algorithm where the QR factorization of A − τI is replaced with a GR
factorization, where G is a nonsingular matrix. The convergence theory is based on
the idea that a GR algorithm is a nested sequence of nonstationary simultaneous
iterations.

Theorem 5.1 in [40] discusses the convergence of nonstationary simultaneous iter-
ation. Recall the notation established in sections 2 and 4. In addition, let φi(·) denote
ψp(·) (the polynomial in A implicitly applied) used at the ith restart of an IRAM.

Theorem 5.1. Let A be a simple matrix of order n. Let r · b � n, where b
and r are positive. Define the invariant subspaces Z = Span(x1, . . . ,xr·b) and U =
Span(xr·b+1, . . . ,xn). Let Φi = φi · · ·φ1 and suppose that Φi(λj) �= 0 for j = 1, . . . , r·b
and let

ρi =
maxj=r·b+1,...,n |Φi(λj)|
minj=1,...,r·b |Φi(λj)| .(5.1)

If V is a subspace of dimension r · b satisfying V ∩ U = {0}, then there exists a
constant C such that

dist(Φi(A)V,Z) ≤ Cρi
for all i.

Proof. See Theorem 5.1 established in [40].
We remark that the hypothesis on A is done only for notational and elaborative

purposes. The paper [40] considers the more general case of an arbitrary matrix.
The distance between the subspaces [8, 10] V and Z may be shown to be equal

to
√
1− σ2

min(V
HZ) where the columns of V and Z provide an orthonormal basis for

V and Z and σmin(·) denotes the minimum singular value. For increasing values of
i, the approximating subspace Φi(A)V aligns itself with Z, and hence the distance
between the two subspaces goes to zero.

An expression for the constant C is given by Watkins and Elsner. They show
that

C = ‖X‖ ‖X−1‖
√
1− σ2

min(V
HZ)

σmin(VHZ)
,

where X is the matrix of eigenvectors for A. The size of C is large whenever the
eigenvectors form an ill-conditioned basis and/or the starting subspace V is nearly
orthonormal to Z.

Because of the relationship between an IRAM and nonstationary simultaneous
iteration established in the last section, the dist(Φi(A)V,Z)→ 0 and the eigenvalues
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of the leading block of Hm of order r · b computed after i restarts are approximations
to λ1, . . . , λr·b. The rate of convergence given by Theorem 5.1 is determined by how
well the max-min problem (5.1) is solved. This problem cannot, in general, be solved.
Section 6 discusses and reviews practical issues related to convergence.

6. Some practical issues. The question of determining a shift strategy that
leads to a provable rapid rate of convergence is a difficult problem that continues to be
researched. However, it is clear from Theorem 5.1 that a polynomial Φi that minimizes
ρi for the discrete max-min problem (5.1) is required. Unfortunately, this polynomial
is impossible to compute because the eigenvalues are not known. A common alterna-
tive is to replace the max-min problem posed on the discrete set of eigenvalues with
a problem posed on a convex region containing the unwanted eigenvalues. Before
we consider shifting schemes based on this approach, we review two simple shifting
schemes.

A special case of an iteration for which the discrete max-min problem (5.1) can
be solved is when φi(λ) = λi. In this special case, ρi = |λk/λk+1|i·p and by hypothesis
on the ordering of the eigenvalues, |λk−1/λk| < 1, and so convergence to the dominant
invariant subspace is assured.

More general nontrivial stationary iterations where Φi(·) = φ1(·)i and φ1 is a
degree p polynomial converge at the linear rate

maxj=r·b+1,...,n |Φi(λj)|
minj=1,...,r·b |Φi(λj)|

if |φ1(λi)| ≥ |φ1(λk)| for i = 1, . . . , k and |φ1(λk)| > |φ1(λi)| for i = k+1, . . . , n. This
is a slight generalization of Theorem 5.1 in [34] easily established by Theorem 5.1 in
the paper.

We now replace the max-min problem posed on the discrete set of eigenvalues
with a problem posed on a convex region that contains the unwanted eigenvalues. A
first step in reducing ρi is to bound the distance from the k dominant eigenvalues of
A to the set of unwanted eigenvalues. If we assume that the dominant eigenvalues
of A are all to the right (respectively, to the left) of λk, the denominator of (5.1) is
bounded if all the τi’s can be enclosed in a convex region containing the unwanted
eigenvalues not intersecting the region containing the dominant eigenvalues. If all the
shifts lie in this latter region, then we can attempt to approximately solve

ρi =
maxS |Φi(λ)|
minW |Φi(λ)| ,

where S and W are, respectively, the unwanted and wanted regions.
When A is a real matrix, a standard approach is to set S to be an ellipse and then

using the techniques described in [29, pp. 219–239] compute the roots of a Chebyshev
polynomial. Saad shows that the per restart convergence to V is

max
i=1,...,k

α+
√
α2 − γ2

αi +
√
α2
i − γ2

i

,

where S is enclosed by an ellipse with center δ, focal distance γ, major axis α; and γi,
αi are the focal distance and major axis of the ellipse including S and λi. The result-
ing rate of convergence can be far superior to the rate |λk−1/λk| given by standard
subspace iteration.
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A second, more recent approach is the exact shift scheme proposed by Sorensen.
This is the default scheme used by ARPACK [18]. An exact scheme uses a number
of the unwanted eigenvalues of Hm for the ψp(·) implicitly applied per restart. The
scheme is motivated by the observation that the scheme retains only the approxima-
tions to the wanted eigenvalues. As explained in [18, p. 71], the value of r is increased
from the initial value of k as approximations to the eigenvalues of A satisfy the accep-
tance criterion. This has the effect of decreasing the numerator in (5.1) (see [35, 41]
for similar conclusions). Unfortunately, there is no rigorous convergence theory giving
a rate of convergence, but in practice the exact scheme has proven to be robust and
gives slightly better results than using the zeros of Chebyshev polynomials.

Recent papers have elucidated the virtues of other restart polynomials. For non-
Hermitian matrices A, harmonic Ritz values [21, 20, 23, 32] and refined shifts [15] are
interesting schemes that require further analysis. For symmetric eigenvalue problems,
the roots of Leja polynomials [3, 5, 4] are successfully used for small m along with
a deflation scheme that allows r to be increased from a value of one as satisfactory
eigenvalue-eigenvector approximations emerge.

7. Numerical experiments. We present results for computing the 4 dominant
eigenvalues and invariant subspace for the two-dimensional model convection-diffusion
problem

−∆u(x, y) + 4ux(x, y) + .5uy(x, y) = λu(x, y)

on the unit square [0, 1] × [0, 1] with zero boundary conditions. The problem is dis-
cretized by using centered finite differences where the mesh size h = 1/(50+1) results
in a matrix of order 2,500. Table 7.1 lists the results of some MATLAB experiments
(IEEE double precision floating point arithmetic is used). “Subit” refers to simultane-
ous iteration along with a projection at each restart for unscrambling the Schur vector
approximations. The purpose of these experiments is to demonstrate the dramatic
difference in performance that can be achieved when iterating on subspaces of equal
dimension.

Each computed dominant partial Schur decomposition of order 4 gave a residual
no larger than 10−3, and all experiments produced Ritz values that agreed to at
least four significant digits. The first three lines of the table give results in terms
of the number of restarts and matrix-vector products used when using m · b = 16
vectors. The next five lines list the same output when m · b = 24, and the final
line indicates the total number of matrix-vector products needed when b = 1 and
m is increased until the partial Schur decomposition is approximated. This final
experiment gives an indication of the minimum number of matrix-vector products
needed. When b = 1, IRAM uses the strategy for increasing r from k as the eigenvalues
satisfy the acceptance criterion to a maximum of 8; for b = 2 and b = 4, the value of
r stayed fixed at m− 4 and for b = 3 was fixed at r = 5.

The following are some other conclusions resulting from the experiments of Ta-
ble 7.1:

• The simultaneous iteration results always performed an extrammatrix-vector
products per restart needed for the projection step. This projection is not
needed at every restart. Hence the minimum number of matrix-vector prod-
ucts needed is half the number listed.
• Decreasing the blocksize requires a larger value of acceptance tolerance to be
used so that the four dominant eigenvalues are computed to four significant
digits.
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Table 7.1
Computing the partial Schur decomposition corresponding to the 4 dominant eigenvalues of a

convection-diffusion matrix of order 2,500.

k m Matvec Restarts b

Subit 4 1 17,664 552 16

IRAM 4 16 253 23 1

IRAM 4 8 288 35 2

Subit 4 1 16,800 350 24

IRAM 4 24 230 12 1

IRAM 4 12 264 16 2

IRAM 4 8 330 35 3

IRAM 4 6 376 45 4

IRAM 4 200 199 0 1

• If A is efficiently applied to the block of vectors, then the number of matrix-
vector products should be divided by the blocksize. Hence simultaneous iter-
ation may be feasible.
• Decreasing the acceptance tolerance and/or increasing k (number of eigenval-
ues to compute) hinders the efficiency of simultaneous iteration. This effect is
less pronounced as b decreases. IRAM with a blocksize of one has an amazing
ability to compute partial Schur decompositions with small backward error.

In summary, if storage considerations and/or the cost of orthogonalization prevent
a large Arnoldi reduction from being computed, an IRAM does not require a substan-
tial number more matrix-vector products. This was also noted by Morgan [22].

8. Conclusions. We showed that restarted Arnoldi methods are equivalent to
nonstationary simultaneous iteration methods by demonstrating a relationship with
implicitly restarted Arnoldi methods. Convergence theory and numerical experiments
confirmed that Φi(A)Kb

r(A,U1) tends to the dominant invariant subspace of order
r · b at a substantially faster rate than AiKr·b

1 (A,U1) when appropriate restarting
polynomials are employed.
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Abstract. We consider the problem of finding necessary and sufficient conditions for the exis-
tence of a real m×m matrix B, over a field F, having a principal n× n submatrix A such that each
similarity invariant polynomial of A and each similarity invariant polynomial of B lie inside prescribed
divisibility intervals (one interval for each similarity invariant polynomial). The main result gives a
complete solution to this problem in case all prescribed polynomials (the extreme elements of the
divisibility intervals) have all prime factors (over F) of degree 1 or 2. In particular, this solves the
problem for algebraically closed fields and for the field of real numbers.

Our arguments are of the algebraic and discrete kind. We use a localization technique to reduce
the problem to a system of diophantine inequalities involving the degrees of the prime factors of the
given polynomials and the degrees of the elementary divisors of the matrices under consideration.
Feasibility conditions for this system are then determined for the particular case already described. In
the last section we give some additional comments on proof techniques and state some consequences
of the main result.

Key words. matrices, similarity, invariant polynomials, elementary divisors, localization
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1. Introduction. In what follows, F denotes an arbitrary field and F[λ] the
ring of polynomials in the variable λ. A polynomial chain (of length n) is an n-
tuple, γ = (γ1, . . . , γn), where the γi’s are monic polynomials such that γi | γi+1 for
1 � i < n. The zero polynomial is also considered as monic. Very often it will be
convenient to consider coordinates γi for i > n and also for i < 1; our convention is

γi = 0 if i > the length of the chain;
γi = 1 if i < 1 .

(1)

Thus, any relation like γi | δi involving another chain δ of length m trivially holds for
i < 1 and for i > max{n,m}. Besides, if such a relation is true for all i, we have
δi = 0 for i > n.

The similarity invariant polynomials, α1 |α2 | . . . |αn, of an n×n matrix A over F

is the main example of a polynomial chain (α1, . . . , αn). Note that αn is the minimal
polynomial of A and α1 · · ·αn is the characteristic polynomial of A. According to
the so-called interlacing inequalities theorem for similarity invariants [6, 7], given
another F-matrix B of dimension m×m, m � n, with similarity invariant polynomials
β1 | . . . |βm, B is similar to a matrix having A as a principal submatrix if and only if
the relations

βi |αi |βi+h ,(2)
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where h denotes the integer 2m−2n, hold for all i. These are known as the interlacing
relations for invariant factors.

This result has been extended in several directions. One interesting source of
related research arises in linear control theory and concerns the relationship between
the invariant factors and controllability indices of pairs of matrices and the invariant
factors and controllability indices of some of its submatrices. A generalized version
of this kind of problem, also studied in detail in the literature, is the relationship
between the invariant factors and Kronecker indices of rectangular matrix pencils
and the invariant factors and Kronecker indices of some of its subpencils (see, e.g.,
[1, 2, 3, 8, 9, 10] and the references therein).

In [5] we generalized in a different direction the interlacing theorem for similarity
invariant polynomials of square matrices B and those of its principal submatrices
A. Instead of prescribing all similarity invariants of A and B, we may prescribe only
some of them and let all others run freely; this gives rise to many interesting problems,
which are very difficult to solve in general. For example, we may ask for conditions
on m+ 1, given polynomials β1, . . . , βm and α, that ensure the existence of a matrix
B with similarity invariant polynomials β1, . . . , βm and having an n × n principal
submatrix with minimal polynomial α. (This and other problems of this kind are
solved in [5] for algebraically closed fields.)

A generalization of this idea follows.
Problem to be considered. Given m + n sets A1, . . . ,An , B1, . . . ,Bm of

monic polynomials, find conditions equivalent to the existence of an m×m matrix B

over the field F, with similarity invariant factors β1, . . . , βm, having a principal n×n
submatrix A, with similarity invariant factors α1, . . . , αn, such that for all i and j,

αi ∈ Ai and βj ∈ Bj .

As a matter of fact, we are interested in the case when the sets Ai, Bj are
divisibility intervals. To be precise, we are given two nonnegative integers m and n,
such that n � m, and the four polynomial chains

α = (α 1, . . . , αn), α = (α 1, . . . , αn),

β = (β
1
, . . . , β

m
), β = (β 1, . . . , βm).

(3)

In [5] and in this paper we consider the problem above in the case that Ai (resp.,
Bj) is the set of all monic polynomials ϕ such that α i |ϕ |α i (resp., β

j
|ϕ |β j ). In

[5] we solved this problem under some restrictions on the prime factorization (over F)
of the polynomials in (3); in particular, [5] solves the problem when the polynomials
in (3) split into linear factors over F. (This is always the case when F is algebraically
closed.)

In the main result of this paper we solve the problem in the case in which all
given polynomials (3) have prime factors of degree 1 or 2; in particular, we solve the
problem in the real field case, and we retrieve the result of [5] (when all prime factors
are linear).

The methods in the present paper are quite different from those used in [5]. We
now use a localization technique which is self-contained and has the advantage of
revealing the nature of the difficulty of this kind of problem. In particular, it shows
how hopeless it is to find a general solution to our problem in the form of a system
of inequalities on the degrees of the prime factorizations of the given polynomials (3).
The sources of trouble are the degree conditions expressed by (7). In section 3.1 we
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reduce the problem to a very complex system of diophantine inequalities involving
the degrees of the prime factors of the given polynomials (3) and the degrees of the
elementary divisors of the matrices under consideration. Feasibility conditions for this
system are then determined (in section 3.2) for the mentioned particular case of all
prime factors with degree 1 or 2.

According to the interlacing theorem for similarity invariant factors, stated around
(2), the problem amounts to finding conditions on the given entities (3) so that the
system

α i |αi |α i ,(4)

β
j
|βj |β j ,(5)

βi |αi |βi+h ,(6)

deg(α1α2 · · ·αn) = n , deg(β1β2 · · ·βm) = m,(7)

where h denotes 2m−2n, is feasible with respect to the unknowns αi, βj . From now on
we shall assume that the subsystem (4)–(6) is satisfied by at least one set of nonzero
polynomials α1, . . . , αn, β1, . . . , βm. Note that (4)–(6) is equivalent to

αι
i |αi |ασ

i ,

βιj |βj |βσj ,
βi |αi |βi+h ,

where αι
i := lcm{α i, β i

}, ασ
i := gcd{α i, βi+h}, βιj := lcm{β

j
, α j−h}, and βσj :=

gcd{β j , αj} (cf. [5]). This means that we may assume (as we shall) without loss

of generality that the chains α, α, β, β coincide with the chains αι, ασ, βι, βσ,
respectively. This assumption, together with the assumed feasibility of (4)–(6), may
be expressed as follows (cf. [5]):

αn βm
�= 0 , β

i
|α i |β i+h

, α i |α i(8)

βi |α i |β i+h , β
j
|β j .(9)

Assuming (4)–(6) is feasible, we now go in search of a solution meeting with (7). This
may be viewed as a sort of “packing problem” asking for an algorithmic solution. In
section 4 we discuss this matter and give some sample corollaries to our main result.

2. Main result. The roots of an F-polynomial are its roots over a fixed algebraic
closure F̄ of F. When counting roots, we count multiplicities, so the number of roots
of a polynomial equals its degree. The roots that lie in F are called F-roots. We adopt
the convention that the number of roots (F-roots) of the zero polynomial is +∞. In
the statement of our main theorem we use the following definitions:

a is the number of roots of α1α2 · · ·αn .

a
F

is the number of F-roots of α1α2 · · ·αn .

a′ is the number of roots of
∏n

i=1 gcd{αi, β i+h
} .

a′
F

is the number of F-roots of
∏n

i=1 gcd{αi, β i+h
} .

A is the number of roots of α1α2 · · ·αn .

A
F

is the number of F-roots of α1α2 · · ·αn .
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b is the number of roots of β
1
β

2
· · ·β

m
.

b
F

is the number of F-roots of β
1
β

2
· · ·β

m
.

b′ is the number of roots of
∏m

j=1 gcd{βj , α j} .

b′
F

is the number of F-roots of
∏m

j=1 gcd{βj , α j} .

B is the number of roots of β1β2 · · ·βm .

B
F

is the number of F-roots of β1β2 · · ·βm .
As we are assuming that αn and β

m
are nonzero, then a, a

F
, b, b

F
are nonnegative

integers. However, some (and eventually all) of the other entities may be +∞. In
what follows “≡” denotes congruence modulo 2; this symbol goes with the convention
x ≡ +∞ if and only if x = +∞.

Theorem 2.1. We are given polynomial chains, α , α , β , and β as in (3),
satisfying (8)– (9). We further assume that the given polynomials contain only prime
factors of degree 1 or 2. There exists an m ×m matrix B over F, with similarity
invariant factors β1, . . . , βm, having a principal n × n submatrix A, with similarity
invariant factors α1, . . . , αn, such that α i |αi |αi and β j

|βj |β j (for all i and j) if

and only if the entities a, a
F
, . . . , B,B

F
defined above satisfy the following conditions:

a � n � A ,(10)

b � m � B ,(11)

n+ b � m+ a′ ,(12)

m+ a � n+ b′ ,(13)

[n = a ∧ b′
F

= b
F
] ⇒ m ≡ b ,(14)

[m = b ∧ a′
F

= a
F
] ⇒ n ≡ a ,(15)

[n = A ∧ A
F

+ b
F

= B
F

+ a′
F
] ⇒ m ≡ B

F
,(16)

[m = B ∧ B
F

+ a
F

= A
F

+ b′
F
] ⇒ n ≡ A

F
,(17)

[n+ b = m+ a′ ∧ a′
F

= A
F
] ⇒ n ≡ A

F
,(18)

[m+ a = n+ b′ ∧ b′
F

= B
F
] ⇒ m ≡ B

F
,(19)

a
F

= A
F
⇒ n ≡ a ,(20)

b
F

= B
F
⇒ m ≡ b ,(21)

[a′
F

= a
F
∧ b′

F
= b

F
] ⇒ n− a ≡ m− b ,(22)

[A
F

= a′
F

= a
F

+ 1 ∧ b
F

= b′
F

= B
F
− 1] ⇒ [n ≡ a ⇒ m ≡ b] ,(23)

[B
F

= b′
F

= b
F

+ 1 ∧ a
F

= a′
F

= A
F
− 1] ⇒ [m ≡ b ⇒ n ≡ a] .(24)

Remark 2.2. Note that if one of the parameters occurring in one of the conditions
(14)–(24) equals +∞, then that condition is satisfied because its antecedent is trivially
false. For example, if A

F
= +∞, then the bracketed clause in (17) is false because

B
F
+a

F
= A

F
+b′

F
implies B

F
and (a fortiori) B are infinite; on the other hand, m = B

implies B is finite.
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If all polynomials in (3) split into linear factors over F, then the above result is
a consequence of Theorem 5.3 of [5]. To see this, note that the splitting condition
implies a = a

F
, a′ = a′

F
, . . . , B = B

F
. Therefore (14)–(24) are consequences of (10)–

(13). For example, if the bracketed clause in (16) holds, then n+ b = B+a′; together
with (10)–(13), this implies m = B, and therefore (16) holds.

According to the last remark, we may view (10)–(13) as the basic, or fundamental,
conditions to our problem: in fact they constitute the complete solution if the field
is algebraically closed, while the remaining (14)–(24) refer to exceptional situations,
which are relevant only when F is not algebraically closed.

3. Further results and proofs. In this section m,n, h denote any nonnegative
integers such that n � m � n+h. As before, we are given four polynomial chains (3)
satisfying the assumptions (8)–(9). These assumptions are equivalent to the existence
of nonzero monic polynomials, α1 | . . . |αn, β1 | . . . |βm, satisfying (4)–(6).

3.1. Localization. Denote by H the set of pairs of integers (n̂, m̂) for which
polynomial chains (α1, . . . , αn) and (β1, . . . , βm) exist, satisfying, for all i and j,

α i |αi |α i ,(25)

β
j
|βj |β j ,(26)

βi |αi |βi+h ,(27)

deg(α1α2 · · ·αn) = n̂ , deg(β1β2 · · ·βm) = m̂ .(28)

We wish to characterize H by a set of integral inequalities. To do so, we first
localize the problem. Let P (Pk) be the set of all monic prime polynomials (of degree
k). Let f be a monic polynomial (possibly zero), and let π ∈ P. The exponent of π in
f , denoted by expπ(f), is the least upper bound of all nonnegative k such that πk | f ;
we let expπ(0) := +∞.

It is clear that for any polynomials f and g, f | g if and only if expπ(f) � expπ(g)
for every prime π. This we call localization technique to transform a polynomial system
like (25)–(28) into a system of integral inequalities. To do so, we simplify our notation
a bit by introducing

aπi := expπ(α i) , bπj := expπ(β
j
) , xπi := expπ(αi) ,(29)

Aπi := expπ(αi) , Bπj := expπ(βj) , yπj := expπ(βj) .(30)

Moreover, we let

aπ :=
∑n

i=1 aπi , bπ :=
∑m

j=1 bπj ,

Aπ :=
∑n

i=1Aπi , Bπ :=
∑m

j=1Bπj ,

a′π :=
∑n

i=1 min{Aπi, bπ,i+h} , b′π :=
∑m

j=1 min{Bπj , aπj} .

Note that (aπ1, . . . , aπn) and (bπ1, . . . , bπm) are chains of nonnegative integers,
i.e., 0 � aπ1 � · · · � aπn < +∞ and 0 � bπ1 � · · · � bπm < +∞. Thus aπ and bπ are
finite and nonnegative. Obviously (Aπ1, . . . , Aπn) (resp., (Bπ1, . . . , Bπm)) is also a
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chain, but some of its terms may be +∞. So Aπ, Bπ, a′π, or b′π may be +∞. According
to (1), we have aπi = Aπi = xπi = +∞ for i > n and bπj = Bπj = yπj = +∞ for
j > m.

Our assumptions (8)–(9) give rise to the integral inequalities

aπn , bπm �= +∞ , bπi � aπi � bπ,i+h , aπi � Aπi ,

Bπi � Aπi � Bπ,i+h , bπj � Bπj .

Let Hπ be the set of the pairs of integers (xπ, yπ) for which there exist chains of
integers xπ1 � · · · � xπn and yπ1 � · · · � yπm satisfying

aπi � xπi � Aπi ,(31)

bπj � yπj � Bπj ,(32)

yπi � xπi � yπ,i+h ,(33)

n∑
i=1

xπi = xπ ,

m∑
j=1

yπj = yπ .(34)

Our assumptions (8)–(9) imply that all sets H and Hπ are nonempty. All Hπ,
except a finite number, contain the point (0, 0) because aπ (resp., bπ) is a positive
integer if and only if π is a factor of α1α2 · · ·αn , (resp., β

1
β

2
· · ·β

m
), and there

exist only a finite number of such prime factors. Expressions like
∑

π∈P
Hπ (others

of this kind will occur) denote, as is usual in algebra, the set of all sums
∑

π∈P
hπ,

with all hπ ∈ Hπ, and hπ = (0, 0) except for a finite number of π’s.

Theorem 3.1. We have H =
∑

π∈P
deg(π)Hπ .

Proof. Let (n̂, m̂) ∈ H. There exist chains α and β satisfying (25)–(28). For each
π ∈ P, define xπi, yπj , xπ, yπ as in (29)–(30) and (34). Then clearly (xπ, yπ) ∈ Hπ.
On the other hand, the degree of α1 · · ·αn (resp., β1 · · ·βm) is obviously the sum of
all integers deg(π)xπ (resp., deg(π) yπ) for π ∈ P. So (n̂, m̂) lies in the right-hand
side set of the identity under consideration.

Conversely, if (n̂, m̂) is a sum of terms deg(π)(xπ, yπ) , where (xπ, yπ) ∈ Hπ, there
exist for each π ∈ P chains of integers xπ1 � · · · � xπn, yπ1 � · · · � yπm satisfying
(31)–(34). Now define αi (resp., βj) as the product of all powers πxπi (resp., πyπj )
for π ∈ P. It is easily seen that (αi) and (βj) are chains satisfying (25)–(28). So
(n̂, m̂) ∈ H.

Theorem 3.2. The pair of integers (xπ, yπ) belongs to Hπ if and only if the
following inequalities hold:

aπ � xπ � Aπ ,(35)

bπ � yπ � Bπ ,(36)

xπ + bπ � yπ + a′π ,(37)

yπ + aπ � xπ + b′π .(38)

Proof. Let H′
π be the set of pairs of integers (xπ, yπ) that satisfy (35)–(38). We

must prove Hπ = H′
π. To do so, let (xπ, yπ) ∈ Hπ. Equations (35)–(36) are obvious;

the proof of (37)–(38) is not difficult, and we give only a sketchy proof of (37), where
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we use the identity z + w = min{z, w} + max{z, w}, the convention bπj = +∞ for
j > m, and the inequalities (31)–(33). Here is a proof of (37):

xπ + bπ =

n∑
i=1

xπi +

m∑
j=1

bπj =

n∑
i=m−h+1

xπi +
∑

i�m−h

[
xπi + bπ,i+h

]

=
n∑

i=m−h+1

xπi +
∑

i�m−h

[
min{xπi, bπ,i+h}+ max{xπi, bπ,i+h}

]

=
n∑

i=1

min{xπi, bπ,i+h}+

m∑
j=1

max{xπ,j−h, bπj}

�
n∑

i=1

min{Aπi, bπ,i+h}+

m∑
j=1

yπj = a′π + yπ .

So we have (35)–(38) and, therefore, Hπ ⊆ H′
π holds. The dual inclusion is a bit

harder to get.
Step 1, in which we prove that bπ � yπ � b′π implies (aπ, yπ) ∈ Hπ . Define

a chain of integers xπi := aπi for i ∈ {1, . . . , n}. To show the existence of integers
yπ1, . . . , yπm satisfying (31)–(34), let y

πj
:= bπj and yπj := min{Bπj , aπj}. It is

easy to check that (y
π1
, . . . , y

πm
) [(yπ1, . . . , yπm)] is a chain satisfying (31)–(33) (for

xπi := aπi); moreover, yπ1, . . . , yπm satisfy (31)–(33) if and only if y
πj

� yπj � yπj
for all j. On the other hand,

m∑
j=1

y
πj

= bπ and

m∑
j=1

yπj = b′π .

Therefore, if bπ � yπ � b′π, there exists a chain of integers Yπ1, . . . , Yπm such that
y
πj

� Yπj � yπj and
∑m

j=1 Yj = yπ. This completes Step 1.

Step 2, in which we prove that aπ � xπ � a′π implies (xπ, bπ) ∈ Hπ . This is the
“dual” to Step 1, and the proof may follow the same strategy with obvious changes.
Step 3, in which we prove that if (xπ − 1, yπ − 1) ∈ Hπ and (xπ, yπ) ∈ H′

π ,
then (xπ, yπ) ∈ Hπ. Let (x̌πi) and (y̌πj) be chains of integers satisfying (31)–(33),∑n

i=1 x̌πi = xπ − 1 , and
∑m

j=1 y̌πj = yπ − 1 . We consider the following two cases.

Case 1: for all j, y̌πj � Aπ,j−h. As
∑m

j=1 y̌πj < Bπ, there exists r such that
y̌πr < Bπr. Define yπj := y̌πj for j �= r, and yπr := y̌πr + 1. We obviously have
(32). For the current yπj ’s, integers xπ1, . . . , xπn satisfy (31) and (33) if and only
if max{aπi, yπi} � xπi � min{Aπi, yπ,i+h} for all i. Therefore, integers xπ1, . . . , xπn
exist satisfying (31), (33), and (34) if and only if we have

n∑
i=1

max{aπi, yπi} � xπ �
n∑

i=1

min{Aπi, yπ,i+h} .(39)

These inequalities are easy to verify, so we are done with this case.
Case 2: there exists r such that y̌πr < Aπ,r−h. Define yπj exactly as in Case 1.

The existence of integers xπ1, . . . , xπn satisfying (31), (33), and (34) is proved as
above; only the details to verify (39) are slightly different.

To finish the proof, note that the set of pairs of real numbers (xπ, yπ) satisfying
(35)–(38) is a convex “hexagon” like the gray one in Figure 1, and H′

π is the set of its
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V

W

P

Q

R

S

Fig. 1. A “hexagon” and its integral points.

integral points (the bold dots in Figure 1). In the figure, V = (aπ, bπ), W = (Aπ, Bπ),
R = (a′π, bπ), S = (Aπ, bπ + Aπ − a′π), etc. It may not be a hexagon at all; e.g., if
Aπ (or Bπ) is not finite, the vertex W does not occur and the set is unbounded; if
a′π = aπ, then V = R, etc. So a “hexagon” may eventually be a pentagon, a triangle,
a line segment, a half-ray, a singleton, etc.; it can be as “degenerate,” as we show in
the five examples of Figure 2.

The sides PQ and RS, when they exist, are slanted straight line segments, or
half-rays, of slope 1. By definition, the NE-successor of an integral point (p, q) is the
integral point (p+ 1, q + 1). In Step 3 we showed that if a given integral point lies in
Hπ, then its NE-successor lies in Hπ as well, if it lies inside the “hexagon” at all. In
Step 1 (resp., Step 2) we proved that all integral points of V P (resp., V R ) lie in Hπ.
By induction, all integral points of the “hexagon” lying on any fixed straight line of
slope 1 (the dashed lines in Figure 1) belong to Hπ. So H′

π ⊆ Hπ, and the theorem
is proved.

3.2. “Hexagons ”. In our problem, hexagon-like configurations as the one in
Figure 1 occur in a decisive manner, and we need some results on them. For each
t ∈ {1, 2} we are given 6 parameters, at, a

′
t, At, bt, b

′
t, Bt (in this order), where at, bt

are real numbers and a′t, At, b
′
t, Bt ∈ R ∪ {+∞}, satisfying

at � a′t � At ,(40)

bt � b′t � Bt ,(41)

At + bt � Bt + a′t ,(42)

Bt + at � At + b′t .(43)

For each t = 1, 2, let Ht be the set of all (xt, yt) ∈ R
2 such that

at � xt � At ,(44)

bt � yt � Bt ,(45)

xt + bt � yt + a′t ,(46)

yt + at � xt + b′t .(47)
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Such a closed convex set is called a “hexagon” (quotation marks included, by reasons
pointed out at the end of the last proof). The relevance of the inequalities (40)–(43)
is that they, together with the set Ht, uniquely determine the 6 parameters at, . . . , Bt

(in the order given). More precisely, H1 = H2 if and only if a1 = a2, . . . , B1 = B2.
Accordingly, at, . . . , Bt are called the parameters of Ht. If Ht is bounded (i.e., At and
Bt are finite), its vertices (that is to say, its extreme points [4]) are

(at, bt), (a′t, bt), (at, b
′
t), (At, Bt), (At, bt +At − a′t), (at +Bt − b′t, Bt) .(48)

These six points are not distinct in general, and some of these pairs are not in R
2 if Ht

is unbounded. However, the “generic” case is neat and easy to prove: Ht is bounded
and has precisely 6 vertices if and only if all (40)– (43) are strict inequalities; in this
case we say Ht is a 6-vertex-hexagon. Here is an interesting fact.

Lemma 3.3. Any linear combination λ1H1+λ2H2, where the λt are real nonnega-
tive, is again a “hexagon” whose parameters are the corresponding linear combinations
λ1a1 + λ2a2, . . . , λ1B1 + λ2B2.

Proof. The proof trivially reduces to the case λ1 = λ2 = 1. Accordingly, let Σ be
the “hexagon” with parameters a1 + a2, . . . , B1 +B2. The only difficulty of the proof
is to show that Σ ⊆ H1 +H2. The compact case (all finite parameters) is very easy,
because Σ is the convex hull of the set of its vertices, and each vertex of Σ is the sum
of a vertex of H1 and a vertex of H2, as you may see by checking the list (48). So
Σ = H1 +H2 in the compact case.

In the noncompact case a similar argument is available, using [4, Theorem 18.5];
first, however, we need to determine the relation between the extreme directions
of Σ and those of the Ht’s; this is a bit messy, because a “hexagon” has one of
seven possible recession cones (check [4, p. 60] for the definition). A more conceptual
argument goes like this. First we express each Ht as a union, Ht =

⋃∞
k=1H

k
t , where

H1
t ⊆ H2

t ⊆ H3
t ⊆ · · · is a nested sequence of compact “hexagons” such that the

finite parameters of Ht coincide with the corresponding parameters of each Hk
t , and

all other parameters of Hk
t increase to +∞. So, for each t, the parameters of Hk

t

converge to the corresponding parameters of Ht. By the previous argument, Hk
1 +Hk

2

is a “hexagon” with known finite parameters; and these parameters converge to the
parameters of Σ. So the proof ends up because Σ is the union of all Hk

1 +Hk
2 , and

addition commutes with nested unions.

Integral points. We now consider the integral points of “hexagons” whose ver-
tices are integral points. For any subset S of (R ∪ {+∞})k, S Z denotes the set of
integral points of S. Theorem 3.1 shows that we have in between hands the following
difficult diophantine problem.

Problem. Assume we are given “hexagons” H1, . . . , Hw, with integral parame-
ters, and positive integers, d1, . . . , dw. Describe the set d1H

Z

1 + · · ·+dwH Z

w in terms
of the integral points of the given “hexagons” H1, . . . , Hw.

In this paper, we solve this problem in the case in which each ds equals 1 or 2
and leave all other cases open. To begin with, we go back to the case of just two
“hexagons,” H1, H2, whose parameters at, . . . , Bt now lie in Z ∪ {+∞} and satisfy
(40)–(43). The parameters of the “hexagon” H := H1 + 2H2 are the following:

a := a1 + 2a2 , a′ := a′1 + 2a′2 , A := A1 + 2A2 ,
b := b1 + 2b2 , b′ := b′1 + 2b′2 , B := B1 + 2B2 ,

}
(49)
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and H is the set of all (X,Y ) ∈ R
2 such that

a � X � A ,(50)

b � Y � B ,(51)

X + b � Y + a′ ,(52)

Y + a � X + b′ .(53)

We now give the relationship between the set H Z, i.e., (H1 + 2H2) Z, and its
subset H Z

1 + 2H Z

2 .
Theorem 3.4. Assume (X,Y ) is an element of H Z. Then (X,Y ) belongs to

H Z

1 + 2H Z

2 if and only if the following conditions hold, where ≡ denotes congruence
modulo 2:

[X = a ∧ b′1 = b1] ⇒ Y ≡ b ,(54)

[Y = b ∧ a′1 = a1] ⇒ X ≡ a ,(55)

[X = A ∧ A1 + b1 = B1 + a′1] ⇒ Y ≡ B1 ,(56)

[Y = B ∧ B1 + a1 = A1 + b′1] ⇒ X ≡ A1 ,(57)

[X + b = Y + a′ ∧ a′1 = A1] ⇒ X ≡ A1 ,(58)

[Y + a = X + b′ ∧ b′1 = B1] ⇒ Y ≡ B1 ,(59)

a1 = A1 ⇒ X ≡ a ,(60)

b1 = B1 ⇒ Y ≡ b ,(61)

[a′1 = a1 ∧ b′1 = b1] ⇒ X − a ≡ Y − b ,(62)

[A1 = a′1 = a1 + 1 ∧ b1 = b′1 = B1 − 1] ⇒ [X ≡ a ⇒ Y ≡ b] ,(63)

[B1 = b′1 = b1 + 1 ∧ a1 = a′1 = A1 − 1] ⇒ [Y ≡ b ⇒ X ≡ a] .(64)

Note that as in Remark 2.2, if one of the parameters occurring in one of the con-
ditions (54)–(64) equals +∞, then that condition is satisfied, because its antecedent
is trivially false.

In the proof of Theorem 3.4, the following simple observation will be used very
often. Given closed intervals It = [αt, βt] ⊂ R ∪ {+∞} (t = 1, 2), where αt ∈ Z and
βt ∈ Z ∪ {+∞}, the description of the set I Z

1 + 2I Z

2 splits into two cases.
Case I. If I1 has more than one element, then

I Z

1 + 2I Z

2 = (I1 + 2I2) Z .(65)

Case II. If I1 has just one element, I1 = {α1}, then

I Z

1 + 2I Z

2 = {p ∈ [I1 + 2I2] Z : p ≡ α1} .(66)

Thus in Case II our set is not, in general, an interval of integers.
Definition 3.5. We say H1 is degenerate if it satisfies one of the following

conditions:
(a) There exists at most one (integral) point in H1 with abscissa a1 + 1;
(b) There exists at most one (integral) point in H1 with ordinate b1 + 1.
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D.1 D.2 D.3 D.4 D.5

...

... ...

Fig. 2. The five cases of degeneracy.

The parenthetic “integral” means that if we replace, in either (a) or (b), “point”
by “integral point,” an equivalent statement is obtained, which is easily proven.

Lemma 3.6. H1 is degenerate if and only if one of the following conditions holds:
(D.1) a1 = A1;
(D.2) b1 = B1;
(D.3) a′1 = a1 ∧ b′1 = b1;
(D.4) A1 = a′1 = a1 + 1 ∧ b1 = b′1 = B1 − 1;
(D.5) B1 = b′1 = b1 + 1 ∧ a1 = a′1 = A1 − 1.

Proof. We only sketch the argument. By the definition (44)–(47) of H1, there is
no point in H1 of abscissa a1 + 1 if and only if condition (D.1) holds. If a1 < A1,
the set of all y1 such that (a1 + 1, y1) lies in H1 is the closed interval with lower and
upper bounds max{b1, b1 + a1 + 1 − a′1} and min{B1, 1 + b′1}; the identity of these
two elements is equivalent to (D.2) ∨ (D.3) ∨ (D.5). So, item (a) of Definition 3.5 is
equivalent to (D.1) ∨ (D.2) ∨ (D.3) ∨ (D.5).

Note that the (D.k) are the antecedent conditions of (60)–(64). In Figure 2 we
sketch the five cases of degeneracy. In the first 3 cases, H1 may happen to be a
singleton, or unbounded; in the last two cases, H1 has exactly 3 integral points.

Lemma 3.7. Theorem 3.4 holds if H1 is degenerate. More specifically, consider
the following five conditions for a given (X,Y ) ∈ H Z: (C.1) X ≡ a; (C.2) Y ≡ b;
(C.3) X − a≡ Y − b; (C.4) X≡ a⇒Y ≡ b; (C.5) Y ≡ b⇒ X ≡ a.

(I) If H1 is a singleton, then (X,Y ) belongs to H Z

1 + 2H Z

2 if and only if the
condition (C.1) ∧ (C.2) holds.

(II) Assume H1 is not a singleton and satisfies the condition (D.k) for a fixed
k ∈ {1, 2, 3, 4, 5}. Then (X,Y ) belongs to H Z

1 + 2H Z

2 if and only if the condition
(C.k) holds.

(III) If, for a fixed k, (D.k) ∧ (C.k) holds, then (54)–(64) all hold.
Proof. Clearly, Theorem 3.4 follows, in the degenerate case, from (I)–(III). The

singleton case (I) is very easy to check. The proofs of (II) and (III) are also easy
(intuitively, we have to scale-by-two a dotted “hexagon” like the one in Figure 1 and
then add it up, dot by dot, with each one of the degenerate “hexagons” of Figure 2).
The details are boring, so we only give them for the case k = 4.

(II) In case (D.4) H Z

1 reduces to the three points

α = (a1, b1), β = (a1 + 1, b1), and γ = (a1 + 1, b1 + 1) .(67)

Assume that (X,Y ) ∈ H Z

1 + 2H Z

2 . Then this point is of one of three types: (a1 +
2x2, b1 + 2y2), (a1 + 1 + 2x2, b1 + 2y2), or (a1 + 1 + 2x2, b1 + 1 + 2y2). If X ≡ a, then
(X,Y ) is of the first type; therefore Y ≡ b and (C.4) holds.

Conversely, assume (C.4) and let (X,Y ) ∈ H Z. It is easy to check that
if X �≡ a1 and Y �≡ b1, then [(X,Y )− γ]/2 ∈ H2;
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if X ≡ a1 and Y ≡ b1, then [(X,Y )− α]/2 ∈ H2;
if X �≡ a1 and Y ≡ b1, then [(X,Y )− β]/2 ∈ H2.

So (X,Y ) ∈ H Z

1 + 2H Z

2 in all cases compatible with (C.4).
(III) Assume (D.4)∧ (C.4) holds. By (II), (X,Y ) = (x1 + 2x2, y1 + 2y2) for some

(x1, y1) ∈ H Z

1 and (x2, y2) ∈ H Z

2 .
Conditions (54) and (63) are clearly implied by (C.4). By (D.4), the antecedents

of conditions (55)–(56), (59)–(62), and (64) are obviously false.
So we are left with (57) and (58). Assume the antecedent of (57) holds; then

Y = B1 + 2B2, and so Y �≡ b1; by (C.4) this implies X �≡ a1; thus X ≡ A1, and (57)
holds. Assume the antecedent of (58) holds; then we have equality in (46) for both
values of t ; in particular, x1 = A1 + y1 − b1, and so x1 � A1; therefore x1 = A1, and
we have X ≡ A1; hence (58) holds.

Lemma 3.8. Assume H1 is nondegenerate. Any integral point in the interior of
H belongs to H Z

1 + 2H Z

2 .
Proof. Claim 1: an integral point lying in intH, with abscissa a + 1 (or with

ordinate b + 1) belongs to H Z

1 + 2H Z

2 . We shall consider only the integral points of
abscissa a+ 1 (the case of ordinate b+ 1 is similar). It is easily seen that (a+ 1, Y ) ∈
H Z

1 + 2H Z

2 if and only if Y ∈ J Z

1 + 2[b2, b
′
2] Z , where

J1 :=
[

max{b1, a1 − a′1 + b1 + 1},min{B1, b
′
1 + 1}] .

J1 is the interval of all ordinates of points in H1 with abscissa a + 1 (with +∞
included, in case b′1 = +∞). As H1 is nondegenerate, J1 has at least two elements,

and so J Z

1 + 2[b2, b
′
2] Z =

(
J1 + 2[b2, b

′
2]
)Z

. We clearly have J1 + 2[b2, b
′
2] ⊇ [b+ 1, b′].

Now assume (a+ 1, Y ) ∈ (intH
)Z

. As the inequalities (50)–(53) are strict (with
X = a+ 1), we have Y ∈ [b+ 1, b′]. Therefore (a+ 1, Y ) ∈ H Z

1 + 2H Z

2 .
Claim 2: in case (X,Y ) ∈ H Z

1 + 2H Z

2 and (X + 1, Y + 1) lies in intH, we have
(X + 1, Y + 1) ∈ H Z

1 + 2H Z

2 .
Note that, by assumption, X and Y satisfy X+1 < A, Y +1 < B, X+b < Y +a′,

and Y + a < X + b′, and there exist integers x1, x2, y1, y2 satisfying (44)–(47) such
that X = x1 + 2x2 and Y = y1 + 2y2. Under these conditions we shall prove the
existence of integers x̄1, x̄2, ȳ1, ȳ2 satisfying (44)–(47), and

X + 1 = x̄1 + 2x̄2 and Y + 1 = ȳ1 + 2ȳ2 .(68)

Case 1: x1 < A1 and y1 < B1. Let x̄1 := x1 + 1, ȳ1 := y1 + 1, x̄2 := x2, and
ȳ2 := y2. It is obvious that x̄t, ȳt satisfy (44)–(47) and (68).
Case 2: x1 = A1 or y1 = B1. We examine only the assumption x1 = A1 (y1 = B1

is similarly treated). We must have x2 < A2, otherwise we get the contradiction
X + 1 > A. We consider three subcases.
Subcase 2.1: x1 = A1 and y1 = b1. Clearly a′1 = A1. Define x̄1 := x1 − 1,

ȳ1 := y1 +1, x̄2 := x2 +1, and ȳ2 := y2. Then (68) and (44)–(47) hold, the inequalities
ȳ1 +a1 � x̄1 + b′1 and x̄2 + b2 � ȳ2 +a′2 being the less obvious to check; for the current
values of the variables, they are written as

b1 + 1 + a1 � A1 − 1 + b′1 ,(69)

x2 + 1 + b2 � y2 + a′2 .(70)

If (69) is false, H1 is degenerate. If (70) is false, we get x2 +b2 = y2 +a′2, and therefore
(X + 1, Y + 1) �∈ intH. So (69) and (70) must hold.
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Subcase 2.2: x1 = A1 and y2 = B2. Define the x̄t, ȳt as in Subcase 2.1. As
Y + 1 < B, we have y1 + 2 � B1 and therefore ȳ1 + a1 � x̄1 + b′1; the inequality
x̄2 + b2 � ȳ2 + a′2 follows from x2 + 1 � A2 and (42). The rest is trivial.
Subcase 2.3: x1 = A1, y1 > b1, and y2 < B2. Define x̄1 := x1 − 1, ȳ1 := y1 − 1,

x̄2 := x2 + 1, and ȳ2 := y2 + 1. These x̄t, ȳt trivially satisfy (68) and (44)–(47).
This completes the proof of Claim 2. The lemma follows from Claims 1 and 2 by

a straightforward induction using NE-successors as we did at the end of the proof of
Theorem 3.2.

Lemma 3.9. Let (X,Y ) be an integral point of the boundary of H satisfying (54)–
(64). Then (X,Y ) ∈ H Z

1 + 2H Z

2 .
Proof. (X,Y ) satisfies equality in one of the inequalities (50)–(53). So we have

six cases: Case 1: X = a; Case 2: Y = b; Case 3: X = A; Case 4: Y = B; Case 5:
X + b = Y + a′; Case 6: Y + a = X + b′. By symmetry reasons we only need to
consider Cases 1, 3, and 5.
Case 1. The boundary points under consideration form the set

Ba :=
{

(a, y) : y ∈ ([b1, b
′
1] + 2[b2, b

′
2])

Z
}
.

So our assumption is (X,Y ) ∈ Ba. The points of H Z

1 + 2H Z

2 with abscissa a form
the set

B ∗
a :=

{
(a, y) : y ∈ [b1, b

′
1] Z + 2[b2, b

′
2] Z

}
.

According to (65)–(66), we have two subcases. (I) If b1 < b
′
1, then Ba = B ∗

a , and so
(X,Y ) ∈ B ∗

a . (II) If b1 = b′1, (54) implies Y ≡ b1; thus (X,Y ) ∈ B ∗
a .

Case 3. Clearly A is finite. Our assumption is (X,Y ) ∈ BA, where

BA :=
{

(A, y) : y ∈ ([b1 +A1 − a′1, B1] + 2[b2 +A2 − a′2, B2]
)Z
}
.

The points of H Z

1 + 2H Z

2 with abscissa A form the set

B ∗
A :=

{
(A, y) : y ∈ [b1 +A1 − a′1, B1] Z + 2[b2 +A2 − a′2, B2] Z

}
.

If b1 + A1 − a′1 < B1, we have BA = B ∗
A, and so (X,Y ) ∈ B ∗

A. If b1 + A1 − a′1 = B1,
then (56) implies Y ≡ B1; as [b1 +A1 − a′1, B1] = {B1}, (66) implies (X,Y ) ∈ B ∗

A.
Case 5. In this case a′ is finite. (X,Y ) belongs to the set

Φ :=
{

(x, x+ b− a′) : x ∈ ([a′1, A1] + 2[a′2, A2]
)Z
}

= (0, b− a′) +
(
[a′1, A1] + 2[a′2, A2]

)Z

(1, 1) .

It is easily seen that

{(x, y) ∈ H : x+ b = y + a′}
= {(x1, y1) ∈ H1 : x1 + b1 = y1 + a′1}+ 2{(x2, y2) ∈ H2 : x2 + b2 = y2 + a′2} .

Therefore, the points of Φ that belong to H Z

1 + 2H Z

2 form the set

Φ∗ :=
{

(x1, x1 + b1 − a′1) : x1 ∈ [a′1, A1] Z

}
+ 2
{

(x2, x2 + b2 − a′2) : x2 ∈ [a′2, A2] Z

}
= (0, b− a′) +

(
[a′1, A1] Z + 2[a′2, A2] Z

)
(1, 1) .
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According to (65)–(66), we consider two cases. If a′1 < A1, we have Φ = Φ∗, and
so (X,Y ) ∈ Φ∗. If a′1 = A1, (58) implies X ≡ A1; thus (X,Y ) ∈ Φ∗.

Completion of the proof of Theorem 3.4. Lemmas 3.9, 3.8, and 3.7 prove the “if”
part of the theorem and the necessity part of (60)–(64). We have to prove only that
(X,Y ) ∈ H Z

1 + 2H Z

2 implies (54)–(59). By symmetry reasons, only (54), (56), and
(58) have to be considered. However, a closer inspection to Cases 1, 3, and 5 of the
proof of Lemma 3.9 shows they already prove that (X,Y ) ∈ H Z

1 + 2H Z

2 implies (54),
(56), and (58), respectively.

The following result may be obtained from [5, Theorem 3.5]. We show it follows
easily from Theorem 3.4.

Corollary 3.10. H Z

1 +H Z

2 = (H1 +H2) Z.

Proof. Apply Theorem 3.4 to the “hexagons” K1 := 2H1 and K2 := H2. The
theorem characterizes the set K Z

1 + 2K Z

2 , with the symbols a1, a
′
1, A1, b1, b

′
1, B1 re-

placed by 2a1, 2a
′
1, 2A1, 2b1, 2b

′
1, 2B1, respectively. If we consider only even values of

X and Y , conditions (54)–(64) turn out to be redundant. In other words

(2x, 2y) ∈ K Z

1 + 2K Z

2 ⇔ (2x, 2y) ∈ (K1 + 2K2) Z .

As the points of 2H Z

2 have even coordinates, and 2H Z

1 is the set of points of 2H1 of
even coordinates, we have

(2x, 2y) ∈ K Z

1 + 2K Z

2 ⇔ (x, y) ∈ H Z

1 +H Z

2 ,

(2x, 2y) ∈ (K1 + 2K2) Z ⇔ (x, y) ∈ (H1 +H2) Z .

This proves the corollary.

Corollary 3.11. Let {Hτ : τ ∈ T} be a family of “hexagons” with integer
parameters such that (0, 0) ∈ Hτ , except for a finite number of τ ’s. Then

∑
τ∈T H

Z

τ =(∑
τ∈T Hτ

)Z
.

Proof. If F denotes the (finite) set of all τ such that (0, 0) �∈ Hτ , the set
∑

τ∈T Hτ

is the union of all sets
∑

τ∈X Hτ , where X runs over the family of finite subsets of
T that contain F . So the desired result follows by induction from the preceding
corollary.

Corollary 3.12. If H1 is a 6-vertex-hexagon (i.e., (40)–(43) are strict inequal-
ities for t = 1), then H Z = H Z

1 + 2H Z

2 .

Proof. If H1 has six vertices, conditions (54)–(64) trivially hold.

3.3. Proof of the main result. We go back to the notation of section 3.1; in
particular, Pk represents the set of all prime, monic polynomials of degree k. In this
section we assume that the polynomials in (3) contain only prime factors of degree 1
or 2. Then Theorem 3.1 asserts

H =
(∑

π∈P1
Hπ

)
+ 2

(∑
π∈P2

Hπ

)
.

Denote by Hπ the set of the pairs of real numbers (xπ, yπ) satisfying (35)–(38), and
let

H1 :=
∑

π∈P1
Hπ and H2 :=

∑
π∈P2

Hπ .

It is easily seen that for each π, the six parameters aπ, Aπ, a
′
π, bπ, Bπ, b

′
π, defined just

before Theorem 3.2, satisfy the inequalities (40)–(43) with the symbol t replaced by π;
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hence we may apply the results of section 3.2 to the present situation. In particular,
Corollary 3.11 implies

H Z

1 =
∑

π∈P1
H Z

π and H Z

2 =
∑

π∈P2
H Z

π .

By Theorem 3.2, Hπ = H Z

π . Therefore H = H Z

1 + 2H Z

2 , and so Theorem 3.4 provides
us with a characterization of the set H, namely, (X,Y ) lies in H if and only if X and
Y are integers that satisfy (50)–(53) and (54)–(64). In this statement, a, a′, A, b, b′, B
are given by (49), and the parameters at, a

′
t, At, bt, b

′
t, Bt (t = 1, 2) have, in the present

setting, the following values (recall expπ(f) is the exponent of π in f):

at :=
∑
π∈Pt

expπ

(
n∏

i=1

α i

)
, bt :=

∑
π∈Pt

expπ


 m∏

j=1

β
j


 ,

a′t :=
∑
π∈Pt

expπ

(
n∏

i=1

gcd{αi, β i+h
}
)
, b′t :=

∑
π∈Pt

expπ


 m∏

j=1

gcd{βj , α j}

 ,

At :=
∑
π∈Pt

expπ

(
n∏

i=1

αi

)
, Bt :=

∑
π∈Pt

expπ


 m∏

j=1

βj


 .

Now, if we put this together with the interlacing theorem for similarity invariant
factors [6, 7], as stated and explained about (2) and (4)–(7), we immediately get
Theorem 2.1.

4. Final comments and problems. The “if” part of the proof of Theorem 2.1
is clearly constructive in the sense that, given polynomials satisfying (8)–(24), we
recursively built one pair of chains (α, β) that are the similarity invariant chains of
matrices A,B satisfying the required conditions. One of the referees suggested the
much more difficult construction of an algorithm to give all pairs of chains that solve
our problem. This is certainly possible, at least when all the prescribed polynomials
(3) are nonzero, for in that case only a finite number of prime factors, say, π1, . . . , πw ∈
P, appear in the story, i.e., only a finite number of Hπ of Theorem 3.1 are not equal
to {(0, 0)}. (Note that if ρ ∈ P is not a factor of some nonzero polynomial in (3), then
Hρ is the recession cone [4, p. 60] of all “hexagons” Hπ defined by (35)–(38). So, if
one of (3) is zero, no Hπ is a singleton; and thus if F is infinite, we have an infinite
number of solutions to our problem.) In the finite case an algorithm to generate all
the desired pairs of chains may be designed along the following rough lines. Note that
it applies with no degree restrictions on the prime factors.

First we consider the sets deg(πk)Hπk
, k = 1, . . . , w, corresponding to the rel-

evant prime factors; each one is a finite set of integral points that looks like the
one in Figure 1, whose SW-corner V is, for the current value of k, given by Vk =
deg(πk)(aπk

, bπk
); it is convenient to reduce each one of these sets to the origin, i.e.,

to consider the set Lk, such that deg(πk)Hπk
= Vk +Lk. Next, n and m being given,

we consider all w-tuples, (P1, . . . , Pw), of integral pairs Pi such that
(i) P1 = V1 + · · ·+ Vw;
(ii) Pk+1 ∈ Pk + Lk for 1 � k < w;
(iii) (n,m) ∈ Pw.

Finding such w-tuples may be visualized as a kind of brick game, where the sets Lk

are translated in Z
2 in such a way that the translated L1, . . . ,Lw form an overlapping
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chain linking P1 to (n,m). Obviously, such (P1, . . . , Pw) gives us one way of writing
(n,m) as a member of the set H of Theorem 3.1. If xπk

, yπk
are the coordinates of

Vk+Pk+1−Pk, we have w systems like (31)–(34), one system for each π ∈ {π1, . . . , πw},
that we have to solve with respect to the unknowns xπki, yπki (all other symbols in
(31)–(34) have fixed values, including the xπk

, yπk
!) to produce the required chains of

similarity invariant factors.
So, to answer the referee’s request, we still need two subroutines: the first one

to play the “hexagon” overlapping game to produce all (P1, . . . , Pw) satisfying (i)–
(iii), and a second routine, much easier to conceive, to generate all integral chain
solutions of (31)–(34). Our main result gives conditions for the existence of at least
one (P1, . . . , Pw) satisfying (i)–(iii) in the case in which deg(πk) is 1 or 2.

As any other general result, Theorem 2.1 generates a corollary for each choice
of polynomial chains α, α, β, β. There are many interesting concrete problems that
have not been solved so far and that can be settled by our methods. Let us give
some sample problems, with hints on how a complete solution may be obtained. The
examples mostly involve the minimal polynomials of our matrices, but other (groups
of) similarity invariant factors may be considered instead. The first problem occurs
when we prescribe the minimal polynomials of both A and B.

Minimal polynomials problem. Given two nonzero monic polynomials ϕ and
ψ, find necessary and sufficient conditions for the existence of square F-matrices A

and B, of orders n and m, having minimal polynomials ϕ and ψ, respectively, such
that A is a principal submatrix of B.

To apply the main theorem we have to assume that all prime factors of ϕ and ψ
have degree 1 or 2. The search for a solution is organized in four steps.
Step 1. Find chains α, α, β, β to translate the problem in the form (4)–(7). In our

example, the natural choice for our lower and upper chains is

α := (1, . . . , 1, ϕ), α := (ϕ, . . . , ϕ, ϕ),

β := (1, . . . , 1, ψ), β := (ψ, . . . , ψ, ψ).

Step 2. These chains do not, in general, interlace in the sense of (8)–(9). So we
redefine αi, αi, βj , βj by replacing these by αι

i, α
σ
i , β

ι
j , β

σ
j as given above (8)–(9). In

the current example, the new values are

α := (1, . . . , 1, ϕ), α := (g, . . . , g︸ ︷︷ ︸
2n−m

, ϕ, . . . , ϕ︸ ︷︷ ︸
m−n

),

β := (1, . . . , 1, ψ), β := (g, . . . . . . . . . , g, g︸ ︷︷ ︸
n

, ψ, . . . , ψ︸ ︷︷ ︸
m−n

),




(71)

where g denotes gcd{ϕ,ψ}. Clearly, if m � 2n, then αi = ϕ for i = 1, . . . , n.
Step 3. In this concrete problem, the new chains (71) satisfy (8)–(9). This means

that we already know that there exist chains of monic polynomials αi, βj satisfying
(4)–(6); now the problem is to force α1 · · ·αn to have degree n and β1 · · ·βm to have
degree m. To cope with this degree requirement is, according to Theorem 2.1, the
same as satisfying (10)–(24). So we replace in (10)–(24) the parameters a, a

F
, etc.,

by the values they currently have in terms of the degrees and the numbers of F-roots
of ϕ,ψ, and g. The 15 conditions we obtain in this way constitute a solution to our
problem.
Step 4. For the sake of mathematical elegance, it is desirable to reduce this set

of 15 conditions to a smaller set of “independent” conditions, i.e., the final result is
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cleaner if it does not contain needless repetitions. For example, in the case in which
2n � m, we may reduce the set of 15 conditions to a subset of only 6. Here is the
result.

Corollary 4.1. In the case in which 2n � m and all prime factors of ϕ and ψ
have degree 1 or 2, the minimal polynomials problem has a solution if and only if the
following conditions hold:

deg ϕ � n � n deg ϕ ,(10∗)

deg ψ � m � (m− n) deg ψ + n deg g ,(11∗)

m+ deg ϕ � n+ (m− n) deg ψ + deg g .(13∗)

(19∗) If equality holds in (13∗) and g has no F-roots, then m ≡ (m−n) deg ψ;

(20∗) If ϕ has no F-roots, then n is even;

(21∗) If ψ has no F-roots, then m is even.

Proof. We use the notations a, b, c (resp., a
F
, b

F
, c

F
) for the degrees (resp., number

of F-roots) of the polynomials ϕ,ψ, g, respectively. These definitions of a, b, a
F
, b

F
agree

with the use made in (10)–(24); the other parameters in (10)–(24) have, in the current
example, the following values:

a′ = na , A = na , b′ = (m− n)b+ c , B = (m− n)b+ nc ,

a′
F
, = na

F
, A

F
, = na

F
, b′

F
, = (m− n)b

F
+ c

F
, B

F
, = (m− n)b

F
+ nc

F
.

If we enter these values in (10)–(24), a corresponding system of 15 conditions is
obtained; after elimination of redundant conditions, only 6 conditions survive, namely,
those displayed as (10∗)–(21∗), where the starred condition (k∗) is originated by the
corresponding (k), with k running from 10 to 24. We have thus eliminated 9 condi-
tions from (10)–(24) and slightly modified the remaining 6. We give no more proof
details.

Another problem that can be solved by this method occurs when we start with
a given matrix A and establish divisibility bounds on the minimal polynomial of B.
We give only the final result, and with no proof details.

Corollary 4.2. We are given an n-square matrix A over F, with similarity
invariant polynomials α1 | . . . |αn and two nonzero monic polynomials ψ and Ψ such
that ψ |Ψ. Assume that all prime factors of α1 . . . αnψΨ have degree 1 or 2. For
m > n, there exists an m-square matrix B over F, whose minimal polynomial lies
in the divisibility interval [ψ,Ψ] and has A as a principal submatrix if and only if (i)
α2n−m |Ψ; (ii) b � m � B, where

b := deg lcm{α2n−m, ψ}+
∑

i<2n−m

deg αi and B :=

m∑
j=1

deg gcd{αj ,Ψ} ;

and (iii) m− b is even whenever the polynomials gcd{αi,Ψ}/αi−2m+2n, for i < m,
and Ψ/ lcm{α2n−m, ψ} have no roots in F.

Of course we might also consider and easily solve the “dual” problem where the
chain of similarity invariant factors of B is fixed and the minimal polynomial of A is
given a divisibility bound. The result and proof are left to the reader.

This kind of problem may as well include prescriptions on the spectrum (i.e.,
the set of eigenvalues) of a matrix because that is the set of F̄-roots of its minimal
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polynomial. So the sentence “the spectrum of A is contained in a finite set Λ and
contains a set Σ,” with both sets contained in F̄, may be expressed in the form
αn |αn |αn for appropriately chosen polynomials αn and αn.

Acknowledgments. We are indebted to the referees for very carefully reading
the paper, for giving us valuable suggestions to improve the presentation and contents
of the paper, and for providing technical corrections in section 3.2.
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Abstract. Stochastic automata networks (SANs) have been developed and used in the last
fifteen years as a modeling formalism for large systems that can be decomposed into loosely connected
components. In this work, we extend the near complete decomposability concept of Markov chains
(MCs) to SANs so that the inherent difficulty associated with solving the underlying MC can be
forecasted and solution techniques based on this concept can be investigated. A straightforward
approach to finding a nearly completely decomposable (NCD) partitioning of the MC underlying a
SAN requires the computation of the nonzero elements of its global generator. This is not feasible
for very large systems even in sparse matrix representation due to memory and execution time
constraints. We devise an efficient decompositional solution algorithm to this problem that is based
on analyzing the NCD structure of each component of a given SAN. Numerical results show that the
given algorithm performs much better than the straightforward approach.

Key words. Markov chains, stochastic automata networks, near complete decomposability,
state classification

AMS subject classifications. 60J27, 60J10, 65F30, 65F10, 65F50
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1. Introduction. Stochastic automata networks (SANs) [16, 18, 13, 17, 19, 21,
22, 9, 1, 6, 12, 24, 3] provide a methodology for modeling large systems with inter-
acting components. The main idea is to decompose the system of interest into its
components and to model each component separately. Once this is done, interactions
and dependencies among components can be brought into the picture and the model
finalized. With this decompositional approach, the global system ends up having as
many states as the product of the number of states of the individual components.
The benefit of the SAN approach is twofold. First, each component can be modeled
much easier compared to the global system due to state space reduction. Second,
space required to store the description of components is minimal compared to the
case in which transitions from each global state are stored explicitly. However, all
this happens at the expense of increased analysis time [13, 22, 1, 9, 6, 12, 24, 3].

An intimately related way of coping with the state space explosion problem is
to consider hierarchical decompositions arising in queueing network and superposed
stochastic Petri Net formalisms [4, 2, 5]. SANs which do not have dependencies among
automata are, in fact, a special case of hierarchical Markovian models. Although
somewhat distant from the problem domain compared to the SAN approach, there
are recent results showing that hierarchical representations lend themselves naturally
to distributed steady state analysis (see [5, p. 79]).

An important issue in choosing an efficient iterative solver for SANs is the con-
ditioning [15] associated with the underlying Markov chain (MC). Recent numerical
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experiments [11] show that two-level iterative solvers perform very well with nearly
completely decomposable (NCD) partitionings [8] having balanced block sizes when
the MC to be solved for its steady state vector is ill-conditioned. Block iterative meth-
ods based on classical splittings (block Jacobi, block Gauss–Seidel, block SOR) for
SANs are introduced in [24]. Results with iterative aggregation-disaggregation type
[23, 20, 10, 11] solvers for SANs appear in [1]. However, two-level iterative solvers
considered so far do not exploit NCD partitionings. It should be emphasized that
iterative aggregation-disaggregation based on NCD partitionings has certain rate of
convergence guarantees [20] that may be useful for very large MCs.

In this paper, we extend the concept of near complete decomposability to SANs
so that the inherent difficulty associated with solving the underlying MC can be
forecasted and solution techniques based on this concept can be investigated. In
doing this, we utilize the graph theoretic ideas for SANs given in [13]. In the next
section, we review basic concepts of the SAN formalism and introduce NCD MCs.
In section 3, we make assumptions regarding the description of a continuous-time
SAN model and discuss how we proceed when we encounter an underlying MC with
transient states and/or multiple essential subsets of states. In section 4, we present
a three step algorithm that finds an NCD partitioning of the MC underlying a SAN
based on a user specified decomposability parameter without computing the global
generator matrix. In the first three subsections we discuss the three steps of the
proposed algorithm, and in the last subsection we give a summary of its complexity
analysis. Numerical results with the algorithm on a SAN model are presented in
section 5. We conclude in section 6.

The extended version of this paper can be found in [14]. Therein, we discuss in
more detail the approach presented in this paper and provide the algorithms for each
of the three steps of the NCD partitioning algorithm introduced here, their detailed
complexity analysis, and the results of experiments with two other SAN models.

2. Background. In the next two subsections, we discuss basic concepts related
to the SAN formalism as a modeling paradigm and introduce NCD MCs.

2.1. SAN overview. In a SAN (see [21, Chapter 9]), each component of the
global system is modeled by a stochastic automaton. When automata do not interact
(i.e., when they are independent of each other), description of each automaton consists
of local transitions only. In other words, local transitions are those that affect the
state of one automaton. Local transitions can be constant (i.e., independent of the
state of other automata) or they can be functional. In the latter case, the transition
is a nonnegative real valued function that depends on the state of other automata.
Interactions among components are captured by synchronizing transitions. Synchro-
nization among automata happens when a state change in one automaton causes a
state change in other automata. Similar to local transitions, synchronizing transitions
can be constant or functional.

A continuous-time system of N components can be modeled by a single stochastic
automaton for each component. Local transitions of automaton i ∈ {1, 2, . . . , N} (de-
noted by A(i)) are modeled by the local transition rate matrix Q

(i)
l . When there are

E synchronizing events in the system, A(i) has the corresponding synchronizing tran-

sition matrix Q
(i)
ej that represents its contribution to synchronization j ∈ {1, 2, . . . , E}

and associated with it the diagonal corrector matrix Q̄
(i)
ej . The automaton that trig-

gers a synchronizing event is called the master; the others that get affected by the
event are called the slaves. Matrices associated with synchronizing events are either
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transition rate matrices (corresponding to master automata) or transition probability
matrices (corresponding to slave automata). If A(i), i ∈ {1, 2, . . . , N}, is not involved
in event j, then Q

(i)
ej = Q̄

(i)
ej = Ini

, where ni is the number of states in A(i) and Ini
is

the identity matrix of order ni.
The continuous-time Markov chain (CTMC) underlying the global system can be

obtained from

Q =
N⊕
i=1

Q
(i)
l +

E∑
j=1

N⊗
i=1

Q(i)
ej +

E∑
j=1

N⊗
i=1

Q̄(i)
ej ,(1)

where
⊕

is the tensor sum operator and
⊗

is the tensor product operator (see [7]). We
refer to the tensor representation in (1) associated with the CTMC as the descriptor
of the SAN. When there are functional elements, tensor products become generalized
tensor products [19]. Assuming that the states of automata and the global states
are numbered starting from 1, the global state s that corresponds to the state vector
(s1, s2, . . . , sN ) is given by s = 1 +

∑N
i=1(si − 1)

∏N
k=i+1 nk, where si ∈ {1, 2, . . . , ni}

denotes the state of A(i).

2.2. NCD MCs. NCD MCs [15] are irreducible stochastic matrices that can be
symmetrically permuted [8] to the block form

Pn×n =




P11 P12 . . . P1K

P21 P22 . . . P2K

...
...

. . .
...

PK1 PK2 . . . PKK




in which the nonzero elements of the off-diagonal blocks are small compared with those
of the diagonal blocks [21, p. 286]. Hence, it is possible to represent an NCD MC as

P = diag(P11, P22, . . . , PKK) + E,

where the diagonal blocks Pii are square and possibly of different order. The quantity
‖E‖∞ is referred to as the degree of coupling and is taken to be a measure of the
decomposability of P . When the chain is NCD, it has eigenvalues close to 1, and
the poor separation of the unit eigenvalue implies a slow rate of convergence for
standard matrix iterative methods [10, p. 290]. Hence, NCD MCs are said to be
ill-conditioned [15, p. 258]. We should remark that the definition of NCDness is given
through a discrete-time Markov chain (DTMC). The underlying CTMC of a SAN
can be transformed through uniformization [21, p. 24] to a DTMC for the purpose of
computing its steady state vector as in

P = I +
1

α
Q,(2)

where α ≥ max1≤i≤n |Q(i, i)|. To preserve NCDness in this transformation, α must
be chosen as max1≤i≤n |Q(i, i)|.

An NCD partitioning of P corresponding to a user specified decomposability
parameter ε can be computed as follows (see [8] for details). First, construct an
undirected graph whose vertices are the states of P by introducing an edge between
vertices i and j if P (i, j) ≥ ε or P (j, i) ≥ ε, and then identify its connected com-
ponents1 (CCs). Each CC forms a subset of the NCD partitioning. Notice that for

1Not to be confused with the word component, which we have been using so far to mean “sub-
system.”
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a given value of ε, the maximum number of subsets in a computed partitioning is
unique.

3. On continuous-time SAN descriptions and state classification. There
is no standard specification for the description of a SAN model. In the next subsection,
we state definitions and propositions that enable us to transform a continuous-time
SAN description to one that is more convenient to work with when developing the
NCD partitioning algorithm.

3.1. Description of a continuous-time SAN model. Without loss of gener-
ality, we restrict ourselves to the case in which row sums of synchronizing transition
probability matrices are either 0 or 1.

Definition 1. A SAN description is said to be proper if and only if each syn-
chronizing transition probability matrix has row sums of 0 or 1.

The SAN descriptions of the three applications we consider in the numerical
experiments are proper. However, in a given SAN description, row sums between 0
and 1 can very well be present in synchronizing transition rate matrices. Proposition 1
shows what should be done when such a case is encountered.

Proposition 1. A given SAN description can be transformed to a SAN descrip-
tion that is proper.

Proof. Without loss of generality, consider a SAN description of N automata
and one synchronizing event. There are two possible cases. In the first case, row

sums of the synchronizing transition probability matrix Q
(k)
e1 corresponding to slave

automaton k are all equal to some constant β such that 0 < β < 1. This is the

trivial case; we can replace Q
(k)
e1 with Q̂

(k)
e1 = 1

βQ
(k)
e1 and Q

(m)
e1 with Q̂

(m)
e1 = βQ

(m)
e1 ,

where m is the index of the master automaton of the synchronizing event. Row sums

of the transformed matrix Q̂
(k)
e1 are 1. In the second case, row sums of Q

(k)
e1 are

not equal, and some are between 0 and 1. This implies that transition rates of the
master automaton m of the synchronizing event depend on the state of automaton k.

Therefore, it is possible to replace Q
(k)
e1 with a matrix that has row sums of 0 or 1 by

introducing functional transitions to Q
(m)
e1 as follows. Let βl, l = 1, 2, . . . , nk, be the

sum of row l in Q
(k)
e1 . We replace Q

(k)
e1 with Q̂

(k)
e1 in which Q̂

(k)
e1 (i, j) = Q

(k)
e1 (i, j)/βi if

0 < βi < 1, else Q̂
(k)
e1 (i, j) = Q

(k)
e1 (i, j), for j = 1, 2, . . . , nk. We also replace Q

(m)
e1 with

Q̂
(m)
e1 in which Q̂

(m)
e1 (i, j) = βlQ

(m)
e1 (i, j) if 0 < βl < 1, else Q̂

(m)
e1 (i, j) = Q

(m)
e1 (i, j), for

i, j = 1, 2, . . . , nm when A(k) is in state l. The transformed matrix Q̂
(k)
e1 has row sums

of 0 or 1.

Given a synchronizing event, the above modifications must be made for each of
its synchronizing transition probability matrices that has row sums between 0 and
1. After modifying the synchronizing event matrices, the corresponding diagonal
corrector matrices must also be modified accordingly. The new SAN description has
synchronizing transition probability matrices with row sums of 0 or 1, and therefore
is proper.

The generalization to E (> 1) synchronizing events is straightforward.

Observe that the transformation of a SAN description discussed in the proof of
Proposition 1 may cause the number of functional elements in the synchronizing tran-
sition rate matrices of automata to increase. However, the number of synchronizing
events as well as the nonzero structure of the synchronizing transition matrices of
automata remain unchanged.
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Now we introduce a definition related to the separability of synchronizing transi-
tion rates from local transition rates.

Definition 2. Synchronizations are separable from local transitions in a given
SAN description if and only if for any synchronizing event t whose master is automa-

ton m and i, j = 1, 2, . . . , nm, Q
(m)
et (i, j) 	= 0 implies Q

(m)
l (i, j) = 0.

Definition 2 may seem to be specifying an artificial condition at first, yet the
condition is satisfied by the three applications we consider. As we shall see in the
next section, this property enables the preprocessing of local transition rate matrices
separately from synchronizing transition matrices which significantly improves the
complexity of the NCD partitioning algorithm we propose. Even though the three
SAN descriptions we consider have separable synchronizations, one may very well
encounter those that do not satisfy this property. Proposition 2 shows that a SAN
description whose synchronizations are not separable can be handled in the framework
discussed in this paper.

Proposition 2. A given SAN description can be transformed to a new SAN
description whose synchronizations are separable from local transitions.

Proof. Assume that the given SAN description does not satisfy the condition in
Definition 2. Without loss of generality, let t be the event, m its master, and (i, j)

the indices of the problematic element. Decompose Q
(m)
l into three terms as

Q
(m)
l = R

(m)
l +Q

(m)
l (i, j)uiu

T
j −Q

(m)
l (i, j)uiu

T
i ,

where ui is the ith column of the identity matrix. HereR
(m)
l is a transition rate matrix;

the second term is a matrix with a single nonzero transition rate at element (i, j); and

the third term is the diagonal corrector of the second term. Now, let R
(m)
l be the local

transition rate matrix of automaton m, and introduce the new synchronizing event

v with master automaton m; Q
(m)
ev (= Q

(m)
l (i, j)uiu

T
j ) is the rate matrix associated

with automaton m and synchronizing event v, and Q̄
(m)
ev (= −Q(m)

l (i, j)uiu
T
i ) is its

diagonal corrector. All other matrices corresponding to synchronizing event v are
equal to identity. Now, recall the following identity from tensor algebra:

A
⊕

(Q
(m)
l +Q(m)

ev + Q̄(m)
ev )

⊕
B

=
(
A
⊕

Q
(m)
l

⊕
B
)
+
(
I
⊗

Q(m)
ev

⊗
I
)
+
(
I
⊗

Q̄(m)
ev

⊗
I
)
.

Compare its right-hand side with (1). The new SAN description has separable syn-
chronizations.

The generalization to the cases when event t has more than one problematic
element and the SAN description has more than one synchronizing event that are not
separable from local transitions is straightforward.

The number of synchronizing events in the new SAN description obtained through
the transformation discussed in the proof of Proposition 2 is larger than the number of
synchronizing events in the original SAN. The difference in the number of synchroniz-
ing events corresponds to the number of the synchronizing events in the original SAN
that are not separable. Nevertheless, assuming that identity matrices are not stored
explicitly, the described transformation does not increase the number of nonzeros in
the transformed SAN description.

Our next definition related to the SAN description involves the number of nonzero
elements in synchronizing transition rate matrices. Without loss of generality, we
restrict ourselves to the case where all synchronizing events in a SAN are simple.
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Definition 3. Synchronizations in a given SAN description are simple if and

only if for any synchronizing event t whose master is automaton m, Q
(m)
et has only

one nonzero element.

In a SAN description whose synchronizations are simple, each synchronizing event
can be characterized by a value that corresponds to the synchronizing transition rate
of the event. In the next section, we show how to take advantage of this property.
In most of the cases, we will not encounter SAN descriptions whose synchronizations
are simple. The next proposition shows how SAN descriptions that do not satisfy the
condition of Definition 3 can be handled in the framework of our approach.

Proposition 3. A given SAN description can be transformed to a new SAN
description whose synchronizing events are all simple.

Proof. Assume that the given SAN description does not satisfy the condition
in Definition 3. Without loss of generality, let t be the event, m its master, and

nz the number of nonzeros in Q
(m)
et . Decompose Q

(m)
et into nz simple synchronizing

transition rate matrices thereby creating nz new synchronizing events with master
automaton m. The slave automata of the new synchronizing events are the slave
automata of synchronizing event t. The transition probability matrices and their
diagonal correctors associated with the new slave automata are, respectively, equal
to the transition probability matrix and its diagonal corrector associated with the
slave automata for synchronizing event t. All other matrices corresponding to the
new synchronizing events are equal to identity. The new SAN description has simple
synchronizations.

The generalization to E (> 1) synchronizing events that are not simple is straight-
forward.

Application of the transformation described in the proof of Proposition 3 to a
SAN description whose synchronizing events are not simple leads to an increase in the
number of synchronizing events. The number of the simple synchronizing events in the
new SAN description is equal to the number of nonzero elements in the synchronizing
transition rate matrices of the original SAN. Note that the described transformation
does not change the synchronizing transition probability matrices and their diagonal
correctors. Hence, it is possible to keep the number of nonzero elements in the new
SAN description the same as in the original SAN description.

In the next subsection, we discuss how we proceed when we encounter an under-
lying MC with transient states and/or multiple essential subsets of states.

3.2. State classification in SANs. As discussed in subsection 2.2, NCD MCs
are irreducible by definition. However, the MC underlying a SAN may very well
be reducible. When the MC underlying the given SAN has transient states and/or
multiple essential subsets of states, NCD analysis can be carried out on the essential
subsets of states one subset at a time. We name the states that do not belong to
the essential subset of interest as uninteresting. We remark that uninteresting states
should be omitted from further consideration when running the NCD partitioning
algorithm.

We have implemented a state classification (SC) algorithm that classifies the states
in the global state space of a SAN into essential and transient subsets following [21,
pp. 25–26]. The detailed description of the SC algorithm is given in [14]. The input
parameters of the SC algorithm are local transition rate matrices and synchronizing
event matrices of the SAN. The output of the algorithm is an integer array of length
n in which states corresponding to the essential subset of interest are marked.
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4. NCD partitioning algorithm for SANs. The following is our proposed
solution algorithm that computes NCD partitionings of the MC underlying a SAN
without generating Q (or P ).

Algorithm 1. NCD partitioning of MC underlying SAN for given ε.
Step 1. Q→ P transformation.
Step 2. Preprocessing synchronizing events.
Step 3. Constructing NCD connected components.

Step 1 computes the scalar α in (2) that describes the transformation of the
global generator Q to a DTMC P through uniformization. In the next subsection, we
show how this can be achieved efficiently by inspecting the diagonal elements in local
transition rate matrices and the nonzero elements in diagonal corrector matrices.

Step 2 considers the locations of off-diagonal nonzero elements in the global gen-
erator Q. Off-diagonal nonzero elements in local transition rate matrices cannot
contribute to the same nonzero element in Q due to the fact that these matrices
form a tensor sum. Hence, their analysis is straightforward. However, off-diagonal
nonzero elements in synchronizing transition rate matrices may contribute to the same
nonzero element in Q since these matrices form a sum of tensor products. Therefore,
it is necessary to identify those synchronizing events that may influence the NCD
partitioning of the MC underlying the SAN by contributing to the value of the same
nonzero element in Q. In subsection 4.2, we explain how this is done.

Finally, Step 3 determines the NCD CCs by analyzing local transition rate ma-
trices and matrices corresponding to synchronizing events identified in Step 2 using ε
and the value of α computed in Step 1. This is discussed in subsection 4.3.

4.1. Q → P transformation. The CTMC Q can be transformed to a DTMC
P using (2) after α = max1≤i≤n |Q(i, i)| is computed. Since Q is a CTMC, we have
Q(i, i) = −∑j �=i Q(i, j) for i = 1, 2, . . . , n. Note also that only the off-diagonal
elements in P contribute to NCDness. Regarding the off-diagonal elements in Q,
which determine the off-diagonal elements in P , we make the following observations.

Remark 1. Each nonzero local transition rate in a SAN contributes to a different
off-diagonal element in Q; two or more nonzero local transition rates cannot contribute
to the same off-diagonal element in Q.

This observation follows immediately from the term
⊕N

i=1 Q
(i)
l in (1) and the

definition of tensor sum.

Remark 2. A nonzero off-diagonal element in Q for a SAN with separable
synchronizations is formed either of a nonzero local transition rate or of nonzero
synchronizing transition rates but not of both.

This observation follows from the definition of the SAN descriptor in (1) and
Definition 2.

From Remarks 1 and 2 and from (1) and (2), P without its main diagonal follows

as P ∗ =
⊕N

i=1(
1
αQ

(i)
l ) +

∑E
j=1

⊗N
i=1 Q̂

(i)
ej , where Q̂

(i)
ej = 1

αQ
(i)
ej if A(i) is the master of

event j; otherwise, Q̂
(i)
ej = Q

(i)
ej .

Remark 3. Dependencies among automata may arise either as explicit functions
whose values depend on the states of automata other than the ones in which they are
defined or implicitly by the existence of zero rows in synchronizing event matrices
associated with slave automata. The latter case corresponds to the disabling of the
synchronized transition when the slave automaton is in local state corresponding to
the zero row.

From now on, by dependencies we refer to both explicit and implicit dependencies
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as discussed in Remark 3. A naive solution for a SAN having dependencies is to
compute explicitly each diagonal element of Q and to find the element with maximum
magnitude. However, this is expensive. To reduce the complexity, we propose to
partition automata into dependency sets.

Definition 4. Let G(V, E) be a digraph in which vi corresponds to A(i) and
(vi, vj) ∈ E if transitions in A(i) depend on the state of A(j) either explicitly or
implicitly as discussed in Remark 3. Then, the dependency sets of a SAN, denoted by
Dk, k = 1, 2, . . . , ND, are the connected components of the dependency graph G.

Assuming that the dependency sets of the SAN are known and referring to

max Dk = max

∣∣∣∣∣∣
⊕

i,A(i)∈Dk

diag(Q
(i)
l ) +

∑
j,ej∈MDk

⊗
i,A(i)∈Dk

diag(Q̄(i)
ej )

∣∣∣∣∣∣(3)

as the maximum of the dependency set Dk, where diag returns a vector consisting of
the diagonal elements of its matrix argument and MDk

is the set of synchronizing
events whose masters are in Dk, the diagonal element with maximum magnitude of
the MC underlying a SAN can be obtained from

α =

ND∑
k=1

max Dk.(4)

The proof of this result is given in [14].
Observe that (4) is valid for irreducible MCs underlying SANs. When transient

states and/or multiple essential subsets of states are present, the diagonal element with
maximum magnitude given by (4) may not belong to the essential subset of interest
(see subsection 3.2). In the presence of uninteresting states, we can compute α by
finding the maximums of allND dependency sets (see (3) and (4)). For dependency set
Dk, this task amounts to the enumeration of

∏
i,A(i)∈Dk

ni states and an equal number
of floating-point comparisons. Now, observe that to max Dk of the dependency set Dk

corresponds a state Sk. Hence, if the global state s that corresponds to S1, S2, . . . , SND
maps into the essential subset of interest, then α given by (4) is taken as the diagonal
element with maximum magnitude. However, if s is an uninteresting state, we omit
from further consideration the element corresponding to max Dk for k = 1, 2, . . . , ND
and proceed as in the following paragraph.

In the first step, for k = 1, 2, . . . , ND we find the next largest value denoted by
next max Dk from (3) and the corresponding state S̃k. In order to find next max Dk

rapidly, the vectors

∣∣∣∣∣∣
⊕

i,A(i)∈Dk

diag(Q
(i)
l )+

∑
j,ej∈MDk

⊗
i,A(i)∈Dk

diag(Q̄(i)
ej )

∣∣∣∣∣∣ , k = 1, 2, . . . , ND,

should be stored as sorted. In the second step, we find t such that next max Dt ≥
next max Dk for k = 1, 2, . . . , ND. Finally, we replace max Dt with next max Dt, St

with S̃t, and omit the element corresponding to next max Dt from further considera-
tion. If the updated global state s maps to a state in the essential subset of interest,
then α given by (4) is taken as the diagonal element with maximum magnitude. Else
we go back to the first step. Since finite MCs have at least one recurrent state in each
essential subset, the algorithm is terminating.



SANs AND NEAR COMPLETE DECOMPOSABILITY 589

Our final remark is about the special case of a SAN with a single dependency
set; that is, ND = 1 and D1 = {A(1),A(2), . . . ,A(N)}. In this case, finding α =
max D1 amounts to enumerating all diagonal elements of Q since we have the equality⊕

i,A(i)∈D1
diag(Q

(i)
l ) +

∑
j,ej∈MDk

⊗
i,A(i)∈D1

diag(Q̄
(i)
ej ) = diag(Q). Therefore, for

a SAN with a single dependency set, there is no need to sort and store diag(Q) as
suggested. When finding the maximum of diag(Q), we test an element of diag(Q)
only if its index corresponds to a state in the essential subset of interest.

Example. This example shows the computation of the diagonal element with
maximummagnitude ofQ for the following SAN that has functional and synchronizing
transitions. The parameters are N = 3, E = 2, n1 = 2, n2 = 3, n3 = 2; f = 3 when
A(1) is in state 1, and f = 5 when A(1) is in state 2. The master of synchronizing
event 1 is A(3), and the master of synchronizing event 2 is A(2). The matrices are

Q
(1)
l =

( −2 2
1 −1

)
, Q

(2)
l =


 −2 2 0

2 −5 3
1 3 −4


, Q

(3)
l =

( −f f
0 0

)
,

Q(1)
e1 = Q̄(1)

e1 =

(
1 0
0 0

)
, Q(1)

e2 =

(
0 1
1 0

)
, Q̄(1)

e2 = I,

Q(2)
e1 =


 0 0 1

1 0 0
1 0 0


, Q̄(2)

e1 = I, Q(2)
e2 =


 0 0 5

0 0 0
0 0 0


, Q̄(2)

e2 =


 −5 0 0

0 0 0
0 0 0


,

Q(3)
e1 =

(
0 0
5 0

)
, Q̄(3)

e1 =

(
0 0
0 −5

)
, Q(3)

e2 = Q̄(3)
e2 = I.

The given SAN has two dependency sets: D1 = {A(1),A(3)} and D2 = {A(2)}.
Note that A(3) functionally depends on the state of A(1) due to functional transition

f as well as due to synchronizing event 1 (see Q̄
(1)
e1 ). Hence, the diagonal element

with maximum magnitude of Q is comprised of two terms. The maximum of D1 is
given by

max D1 = max
∣∣∣diag(Q(1)

l )
⊕

diag(Q
(3)
l ) + diag(Q̄(1)

e1 )
⊗

diag(Q̄(3)
e1 )
∣∣∣

= max

∣∣∣∣∣∣∣∣



−2− f
−2− 0
−1− f
−1− 3


+




0
−5
0
0



∣∣∣∣∣∣∣∣
= max

∣∣∣∣∣∣∣∣



−5
−2
−6
−4


+




0
−5
0
0



∣∣∣∣∣∣∣∣
= 7.

On the other hand, D2 is a singleton, and therefore the maximum of D2 is given by

max D2 = max
∣∣∣diag(Q(2)

l ) + diag(Q̄(2)
e2 )
∣∣∣ = max

∣∣∣∣∣∣

 −2−5
−4


+


 −50

0



∣∣∣∣∣∣ = 7.
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Since the underlying MC is irreducible, α = max D1 +max D2 = 14 as verified on

Q =




−12 3 2 0 0 0 2 0 0 0 5 0
0 −14 0 2 5 0 0 2 0 0 0 5
2 0 −10 3 3 0 0 0 2 0 0 0
5 2 0 −12 0 3 0 0 0 2 0 0
1 0 3 0 −9 3 0 0 0 0 2 0
5 1 0 3 0 −11 0 0 0 0 0 2
1 0 0 0 5 0 −13 5 2 0 0 0
0 1 0 0 0 5 0 −8 0 2 0 0
0 0 1 0 0 0 2 0 −11 5 3 0
0 0 0 1 0 0 0 2 0 −6 0 3
0 0 0 0 1 0 1 0 3 0 −10 5
0 0 0 0 0 1 0 1 0 3 0 −5




.

As pointed out at the beginning of this subsection, an NCD partitioning of P that
corresponds to a user specified decomposability parameter ε is determined by the off-
diagonal elements in P . In the next subsection we concentrate on those off-diagonal
elements that originate from the synchronizing transition rates of the SAN.

4.2. Preprocessing synchronizing events. Transition rates from different
synchronizing event matrices may sum up to form a nonzero in the generator ma-
trix Q. Hence, in some cases it may not be possible to determine the value of an
off-diagonal element in Q by inspecting each automaton separately. The aim of Step
2 in Algorithm 1 is to find sets of those synchronizing events that may influence the
NCD partitioning of Q. We name these sets as potential sets of synchronizing events.
The potential sets are disjoint, and their union is a subset of the set of synchroniz-
ing events. The input parameters of Step 2 are synchronizing event matrices, ε, and
α computed in Step 1. The output of Step 2 is NP potential sets denoted by Pr,
r = 1, 2, . . . , NP .

There are two cases in which synchronizing events may influence the NCD par-
titioning of Q. First, a simple synchronizing event has the corresponding transition
rate greater than or equal to αε. Second, a set of synchronizing events contribute
to the same element in Q, and the sum of the synchronizing transition rates of the
events in the set is greater than or equal to αε.

In the first case, each synchronizing event with transition rate greater than or
equal to αε forms a potential set that is a singleton. When the transition rate of a
synchronizing event is a function, its value can be evaluated only on the global state
space. This can be done in Step 3 of Algorithm 1 when NCD CCs of the SAN are
formed. Hence, if the synchronizing transition rate is a function and the maximum
value of the function is not known in advance, then the corresponding synchronizing
event also forms a potential set that is a singleton. Regarding the second case, we
make the following observation. The position of a synchronizing transition rate in
Q is uniquely determined by all synchronizing transition matrices that correspond to
the synchronizing event. This can be seen from (1). Hence, we have the following
proposition.

Proposition 4. In a SAN with simple synchronizations, the set E∗ of synchro-
nizing events contribute to the same nonzero element of Q if and only if there exists

at least one nonzero element with the same indices in the matrices Q
(i)
ej for all ej ∈ E∗

and i = 1, 2, . . . , N .
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Proof. The proof follows from (1), the definition of tensor product, and Defini-
tions 2 and 3.

Those synchronizing events that are not classified as potential sets of singletons
must be tested for the condition in Proposition 4. The test of two events, t and u,

for the condition requires the comparison of the indices of nonzero elements in Q
(i)
et

and Q
(i)
eu for i = 1, 2, . . . , N ; that is, we test N pairs of matrices. For k events, the

number of matrix pairs that need to be tested is Nk(k − 1)/2. Note that for three

events, t, u, and v, the fact that the pairs (Q
(i)
et , Q

(i)
eu ) and (Q

(i)
eu , Q

(i)
ev ) each have at

least one nonzero element with the same indices for i = 1, 2, . . . , N does not imply
that the events t and v also satisfy the condition. In other words, the condition is not
transitive. This further complicates the test for the condition in Proposition 4.

In order to avoid excessive computation associated with the test, we consider the
set of synchronizing events P as a potential set if for all eu ∈ P there exists ev ∈ P
such that the condition in Proposition 4 is satisfied for synchronizing events u and v,
and the sum of transition rates of synchronizing events in P is greater than or equal to
αε. According to this definition, we form potential sets as follows. Let L be the set of
synchronizing events that are not classified as potential sets of singletons. We choose
event ev ∈ L, remove it from L, and test ev with each event in L for the condition
in Proposition 4. Let K be the set of events that satisfy this condition. Then, if the
sum of the transition rates of synchronizing event v and those in K is greater than or
equal to αε, we remove the events that are in K from L and form the potential set
P = {ev} ∪ K. We repeat this procedure for all events in L until L = ∅.

Example (continued). Let ε = 0.3, implying αε = 4.2. The transition rate of
the master automaton of simple synchronizing event 1 is 5 and greater than αε (see

Q
(3)
e1 (2, 1)). Hence, the first potential set, P1, consists of synchronizing event 1 only.

The second synchronizing event of the SAN also forms a potential set. See Q
(2)
e2 (1, 3)

for justification. Thus, P1 = {e1} and P2 = {e2}. Now, consider the case in which
ε = 0.4, implying αε = 5.6. Both transition rates of synchronizing events 1 and 2 are
less than αε. Hence, we have to test these two events for the condition in Proposition 4;

that is, we check if each of the three pairs of matrices (Q
(1)
e1 , Q

(1)
e2 ), (Q

(2)
e1 , Q

(2)
e2 ), and

(Q
(3)
e1 , Q

(3)
e2 ) have at least one nonzero element with the same indices. However, the

condition in Proposition 4 is not satisfied. Thus, the number of potential sets for the
case of ε = 0.4 is zero. This implies that neither of the synchronizing events influence
the NCD partitioning of the underlying MC. Therefore, when ε = 0.4, synchronizing
events of the SAN are omitted from further consideration in Step 3 of Algorithm 1.

4.3. Constructing NCD connected components. As indicated in Remark 2,
a nonzero element in the global generator of a SAN originates either from a local
transition rate or from one or more synchronizing transition rates. Hence, NCD
CCs of the underlying MC are determined by (i) constant local transition rates that
are greater than or equal to αε, (ii) functional local transition rates that can take
values greater than or equal to αε, or (iii) transition rates of synchronizing events
that are in the potential sets Pr, r = 1, 2, . . . , NP . These three different possibilities
are considered in Step 3 of Algorithm 1. The input parameters of Step 3 are local
transition rate matrices and synchronizing event matrices, ε, α computed in Step 1,
and potential sets formed in Step 2. The output of Step 3 is the set of NCD CCs of
the underlying MC.

First, we consider possibility (i) in which local transition rates are constant, and

assume that Q = Ql (see (1)). Using αε, we can find the NCD CCs of Q
(i)
l , i =
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1, 2, . . . , N . Let C(i) be the set of NCD CCs of Q
(i)
l , where a member of C(i), denoted

by c(i), is a partition of states from A(i). Let B and H be sets in which each member
of either set is also a set. In other words, B as well as H is a set of sets. We define the
binary operator � between the two sets B and H as B �H = {b× h | b ∈ B, h ∈ H},
where × is the ordinary Cartesian product operator. Then, based on the graph
interpretation of the tensor sum operator discussed in [13], the set of NCD CCs is
given by C = C(1) � C(2) � · · · � C(N). Observe that if C(i), i = 1, 2, . . . , N , are
singletons, then C is a singleton as well; that is, the underlying MC is not NCD for
given ε. One can take advantage of the same property when there are only K (< N)
C(i) that are singletons. In this case, we renumber the automata so that these K sets
assume indices from (N −K + 1) to N . Then these K sets can be replaced with the
set C[N−K+1] = {{1, 2, . . . , nN−K+1} × {1, 2, . . . , nN−K} × · · · × {1, 2, . . . , nN}}.

Now we bring into the picture functional local transition rates and consider pos-
sibility (ii). Let us assume that the automata of the given SAN can be reordered and
renumbered so that transitions of automaton i depend (if at all) on the states of higher
indexed automata, but they do not depend on the states of lower indexed automata
(see [12] for details). Since Cartesian product is associative, � is also associative, and
one can rewrite the expression for C as

C =
(
C(1) �

(
C(2) � · · · �

(
C(N−1) � C(N)

)
· · ·
))

.(5)

Given C[k] = (C(k)�(C(k+1)�· · ·�(C(N−1)�C(N)) · · ·)), the union of all members of C[k]

is a set that is equivalent to the product state space of A(k),A(k+1), . . . ,A(N). There-
fore, taking into account the assumed ordering of automata, functional transition rates
of A(k) can be evaluated and NCD CCs of C[k] can be updated accordingly. More for-

mally, let Q
(k)
l (sk, s̃k) be a functional element, i.e., Q

(k)
l (sk, s̃k) = f . Then the NCD

CCs c[k],c̃[k] ∈ C[k] must be joined if (sk, sk+1, . . . , sN ) ∈ c[k], (s̃k, sk+1, . . . , sN ) ∈ c̃[k],
and f(sk, sk+1, . . . , sN ) ≥ αε.

Example (continued). We illustrate possibilities (i) and (ii) on the SAN descrip-
tion by omitting synchronizing events 1 and 2. Synchronizing events are treated
in possibility (iii). We set ε = 0.3 implying αε = 4.2 and assume that the au-
tomata are ordered as A(2), A(3), A(1). First, we find the NCD CCs of all lo-
cal transition rate matrices as in possibility (i) by treating functional transition
rates as zero. Inspection of local transition rate matrices shows that local transi-
tion rates of all automata are less than αε. Hence, we have C(1) = {{11}, {21}},
C(2) = {{12}, {22}, {32}}, and C(3) = {{13}, {23}}. The subscripts in the states
enable us to distinguish between states with identical indices but that belong to

different automata. According to (5), we form the NCD CCs of Q
(3)
l

⊕
Q

(1)
l , i.e.,

C(3) � C(1) = {{(13, 11)}, {(13, 21)}, {(23, 11)}, {(23, 21)}}. Then we continue with

possibility (ii). The value of the functional transition rate Q
(3)
l (1, 2) (= f) depends

on the state of A(1) only. Hence, we can evaluate f when C(3) � C(1) is formed. The
functional transition rate f evaluates to 5, which is larger than αε, when A(1) is in
state 2. Therefore, we join {(13, 21)} and {(23, 21)}. Finally, the NCD CCs of Ql are
given by

C = C(2) � (C(3) � C(1)) = {{12}, {22}, {32}} � {{(13, 11)}, {(13, 21), (23, 21)}, {(23, 11)}}
= {{(12, 13, 11)}, {(12, 23, 11)}, {(22, 13, 11)}, {(22, 23, 11)}, {(32, 13, 11)}, {(32, 23, 11)},
{(12, 13, 21), (12, 23, 21)}, {(22, 13, 21), (22, 23, 21)}, {(32, 13, 21), (32, 23, 21)}}.

Now we consider possibility (iii). When possibilities (i) and (ii) are handled,
the union of all members in C is a set that corresponds to the global state space of
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the SAN. The transition rate of synchronizing event t can be taken into account as
follows. Let (s1, s2, . . . , sN ) ∈ c and (s̃1, s̃2, . . . , s̃N ) ∈ c̃, where c, c̃ ∈ C. Then c

and c̃ must be joined if
∏N

i=1 Q
(i)
et (si, s̃i) ≥ αε. Since the global state space of the

SAN is usually very large, it may take a significant amount of time to find all pairs c
and c̃ that satisfy this condition. Fortunately, the situation can be improved. Let p,

1 < p ≤ N , be the smallest index among automata involved in event t, i.e., Q
(i)
et = Ini

for i = 1, 2, . . . , p− 1. We rewrite the first two terms of (1) as

N⊕
i=1

Q
(i)
l +

E∑
j=1

N⊗
i=1

Q(i)
ej =

(
p−1⊕
i=1

Q
(i)
l

)⊕
Q

[p]
l +

(
p−1⊗
i=1

Ini

)⊗
Q[p]

et +

E∑
j=1,j �=t

N⊗
i=1

Q(i)
ej ,

(6)

where Q
[p]
l =

⊕N
i=p Q

(i)
l and Q

[p]
et =

⊗N
i=p Q

(i)
et . From the definition of tensor sum, the

first two terms of expression (6) can be written as(
p−1⊕
i=1

Q
(i)
l

)⊕
Q

[p]
l +

(
p−1⊗
i=1

Ini

)⊗
Q[p]

et =

(
p−1⊕
i=1

Q
(i)
l

)⊕(
Q

[p]
l +Q[p]

et

)
.(7)

From (7), it can be seen that the transition rate of synchronizing event t can be taken
into account on the smaller state space C(p) �C(p+1) � · · · � C(N). The same idea can
be extended to the potential sets formed in Step 2. In other words, if for Pr, there

exists σr, 1 < σr ≤ N , such that Q
(i)
ej = Ini

for i = 1, 2, . . . , σr − 1 and all ej ∈ Pr,
then transition rates of synchronizing events in Pr can be taken into account when
the set C[σr] = C(σr)�C(σr+1)�· · ·�C(N) is formed. We remark that for the assumed
ordering of automata, all functional transitions that may be present in synchronizing
transition matrices of events in Pr can be evaluated when C[σr] is formed.

Example (continued). For ε = 0.3, each of the two synchronizing events of the
SAN is classified as a potential set. We assume the same ordering of automata,
i.e., A(2), A(3), A(1). After renumbering the automata, let the new indices of the
automata be 1̃, 2̃, 3̃, respectively. For the given ordering of automata, the smallest
index among automata involved in event 1 as well as in event 2 is 1̃. Hence, the
transition rates of events 1 and 2 can be taken into account when C[1̃] = C is formed.
Due to the transition rate of synchronizing event 1, we join the NCD CCs that have
the members (12, 23, 11) and (32, 13, 11), (22, 23, 11) and (12, 13, 11), (32, 23, 11) and
(12, 13, 11). Similarly, due to synchronizing event 2, we join the NCD CCs that have
the members (12, 13, 11) and (32, 13, 21), (12, 13, 21) and (32, 13, 11), (12, 23, 11) and
(32, 23, 21), (12, 23, 21) and (32, 23, 11). For justification, see C formed in the example
following possibility (ii) and the SAN description.

When the automata of a SAN have cyclic dependencies, they cannot be ordered
as discussed. Such cases can be handled as follows. Let G(V, E) be the digraph in
which vi corresponds to A(i) and (vi, vj) ∈ E if transitions in A(i) depend on the
state of A(j) (see Definition 4). Let GSCC be the digraph obtained by collapsing each
SCC of G to a single vertex. This graph is acyclic and the automata of the SAN
can be ordered topologically with respect to GSCC . Assuming that the automata
are in this order, let p be the smallest index among cyclically dependent automata.
Then we can evaluate all functions in the cyclically dependent automata when C[p] is
formed. The special case in which a cyclic dependency is created by transitions in the
synchronizing transition matrices of a particular event can be handled in the same
way as discussed in possibility (iii). There, the potential set Pr, r ∈ {1, 2, . . . , NP},
is taken into account when C[σr] is formed. Assuming that the automata are ordered
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topologically with respect to GSCC , all functions in the matrices of synchronizing
events that belong to Pr can be evaluated when C[σr] is formed.

Our final remark is about a SAN with more that one essential subset of states
and/or transient states. For 1 < i ≤ N , we do not have a one-to-one mapping
between the global state space and the union of all members in C[i]. Hence, we
cannot say whether a member of c[i] ∈ C[i] maps to a state in the essential subset
of interest or to an uninteresting state. Therefore, the decomposition of C as in (5)
that allows us to handle functional local transition rates and synchronizing transition
rates on a smaller state space cannot be used. This is because one or both of the
members that belong to the joined NCD CCs may map to an uninteresting state.
For a SAN with uninteresting states, possibilities (ii) and (iii) should be considered
on the global state space. Hence, the NCD CCs c, c̃ ∈ C should be joined only if
the members under consideration from each of the two sets map into the essential
subset of interest. When we compute C = C(1) � C(2) � · · · � C(N), uninteresting
states must also be omitted from consideration. From the definition of the binary
operator �, if si and s̃i are in the same NCD CC of C(i), then it must be that
(s1, s2, . . . , si−1, si, si+1 . . . , sN ) and (s1, s2, . . . , si−1, s̃i, si+1 . . . , sN ) are in the same
NCD CC of C. When uninteresting states are present, we exercise the additional
constraint that (s1, s2, . . . , si−1, si, si+1 . . . , sN ) and (s1, s2, . . . , si−1, s̃i, si+1 . . . , sN )
must belong to the essential subset of interest.

In the next subsection, we summarize for Algorithm 1 the detailed space and time
complexity analysis that appears in [14] and apply the results to our example.

4.4. Complexity analysis of Algorithm 1. The core operation performed by
an algorithm that finds the NCD CCs of a MC is floating-point comparison. Hence, we
provide the number of floating-point comparisons performed in Algorithm 1. Regard-
ing the algorithm’s storage requirements, we remark that its three steps are executed
sequentially. Hence, the maximum amount of memory required by Algorithm 1 is
upper bounded by an integer array of length O(n).

For the sake of simplicity, we assume that the MC underlying the SAN is irreduc-
ible. In Step 1, the number of floating-point comparisons is given by

∑ND

k=1

∏
i,A(i)∈Dk

ni.
For the best case in which each dependency set is a singleton, the number of floating-
point comparisons reduces to

∑N
i=1 ni. On the other hand, if all automata form a

single dependency set, we have the upper bound
∏N

i=1 ni = n. In Step 2, the lower
bound on the number of floating-point comparisons is E, and it corresponds to the
case in which the transition rate of each simple synchronizing event is greater than
or equal to αε. The upper bound is equal to 1

2E(E + 1) floating-point comparisons.
This number of floating-point comparisons is achieved when the transition rate of each
simple synchronizing event is less than αε and the transition rates of synchronizing
events do not sum up in Q. The number of floating-point comparisons in Step 3
depends strongly on the number of functional transitions and synchronizing events as
well as the automata ordering. Assuming that in Step 2 of Algorithm 1 synchronizing
event r is classified as the potential set Pr, r = 1, 2, . . . , E, and the automata are
ordered as discussed in possibility (ii) in subsection 4.3, the number of floating-point
comparisons in Step 3 is given by

N∑
i=1

nz
(i)
l +

N−1∑
i=1

nfi

N∏
j=i+1

nj +

E∑
r=1

N∏
j=σr,j �=mr

nz(j)
er ,

where nz
(i)
l is the number of nonzero off-diagonal elements in Q

(i)
l , nfi is the number
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of functional transitions in Q
(i)
l , nz

(j)
er is the number of nonzeros in Q

(i)
er , and mr is

the index of the master automaton of event r. Finally, the number of floating-point
comparisons performed in Algorithm 1 is given by

E +

N∑
i=1

(ni + nz
(i)
l ) +

N−1∑
i=1

nfi

N∏
j=i+1

nj +

E∑
r=1

N∏
j=σr,j �=mr

nz(j)
er

in the best case, and

n+
1

2
E(E + 1) +

N∑
i=1

nz
(i)
l +

N−1∑
i=1

nfi

N∏
j=i+1

nj +

E∑
r=1

N∏
j=σr,j �=mr

nz(j)
er

in the worst case.
Step 3 of Algorithm 1 also incurs floating-point multiplications when synchroniz-

ing events are handled. Computation of a single nonzero transition originating from
synchronizing event r requires (N − σr) floating-point multiplications. For synchro-

nizing event r, we compute
∏N

j=σr,j �=mr
nz

(j)
er elements. Hence, the maximum number

of floating-point multiplications in Step 3 is
∑E

r=1[(N − σr)
∏N

j=σr,j �=mr
nz

(j)
er ]. Ob-

serve that this expression is almost the same as the last term of the expression for
the number of floating-point comparisons performed in Algorithm 1. Hence, assum-
ing that the time it takes to perform floating-point multiplication and floating-point
comparison are of the same order, the time complexity of Algorithm 1 is roughly the
number of floating-point comparisons.

Example (continued). We calculate the number of floating-point comparisons per-
formed by Algorithm 1 to find an NCD partitioning of the MC underlying the SAN.We
use the same input parameters for Algorithm 1 as in subsection 4.3; that is, ε = 0.3 and
the automata are ordered as A(2), A(3), A(1). Following the three steps of Algorithm 1
on our example, we see that Step 1 takes n1n3+n2 = 7 floating-point comparisons to
find the maximums of 2 dependency sets, and Step 2 takes 2 floating-point comparisons
to form the 2 potential sets of singletons. Step 3 takes 7+2+3+4=16 floating-point
comparisons, where 7 is the number of comparisons to find C(1), C(2), C(3); 2 is the
number of comparisons to handle the functional local transition of A(3); and 3 and
4 are the numbers of comparisons to process transition rates of synchronizing events
1 and 2, respectively. Thus, the total number of floating comparisons performed in
Algorithm 1 is 25. The number of floating-point multiplications performed to process

synchronizing events 1 and 2 is (N−1)(nz(1)
e1 nz

(2)
e1 +nz

(1)
e2 nz

(3)
e2 ) = 14. When the global

generator is stored in sparse format, the total number of floating-point comparisons
performed by the straightforward algorithm that finds NCD CCs of Q is 57, which is
almost two times as large as the corresponding value of Algorithm 1.

5. Numerical results. We implemented the SC algorithm and Algorithm 1 in
C++ as part of the software package PEPS [18]. We ran all the experiments on a
Sun UltraSparcstation 10 with 128 MBytes of RAM. To verify the NCD partitionings
obtained for a given SAN, we compared our results with the straightforward approach
of generating in core the submatrix of Q corresponding to the essential subset of states
obtained using the SC algorithm and finding its NCD CCs. We remark that the same
data structure for NCD CCs is used in Algorithm 1 and the straightforward approach.

The input parameters of Algorithm 1 are the user specified decomposability pa-
rameter ε, the vector output by the SC algorithm in which states corresponding to the
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essential subset of interest are marked, and a file in PEPS format that contains the
description of the SAN under consideration and the dependencies among automata.
We remark that the only modification that we make on the SAN description is the
transformation of each synchronizing event to the simple form (if the SAN is not
already in that form). Note that this transformation is taken into account in the
reported results.

As test problems, we use the three SAN models that appear in [24]. We name
them resource sharing, three queues, and mass storage. Here, we present the results of
experiments with the three queues problem. The results of experiments with the other
two problems appear in [14]. The SAN model of the three queues problem consists
of four automata A(1),A(2),A(31),A(32) with, respectively, C1, C2, C3, C3 states and
two synchronizing events. The state space size is given by n = C1C2C

2
3 and there is a

single subset of C1C2C3(C3+1)/2 essential states. Functional transition rates appear
in local transition rate and synchronizing event matrices. There are two dependency
sets D1 = {A(1),A(31),A(32)} and D2 = {A(2)}. Detailed description of the three
queues problem and its parameters can be found in [12]. In our experiments, we use
the values of real parameters in [24].

Results of experiments for the three queues problem are presented in Table 1. All
timing results are in seconds. In Table 1, n denotes the number of states in the global
state space of the particular SAN under consideration, ness denotes the number of
states in the essential subset, nzess denotes the number of nonzero elements in the
submatrix of Q corresponding to the essential subset of states, and SC denotes the
time for state classification. For each problem, we indicate in parentheses under
n the values of the integer parameters used. The column ε denotes the value of
the decomposability parameter used and |CCs| denotes the number of NCD CCs
corresponding to ε when transient states are removed. The column NCD S contains
timing results for Algorithm 1. The columns Gen. and NCD N, respectively, contain
timing results to generate in core the submatrix of Q corresponding to the essential
subset of states and to naively compute its NCD partitioning for given ε after the SC
algorithm is executed. We have varied the value of ε in each problem to see how the
performance of Algorithm 1 changes for different number of NCD CCs.

We remark that the difference between the time required to generate in core the
submatrix of Q corresponding to the essential subset of states for a given SAN and
the time to find the corresponding NCD partitionings using Algorithm 1 is notice-
able. Compare columns Gen. and NCD S, and also compare the sum of columns Gen.
and NCD N with column NCD S. Moreover, there are cases for which it is not pos-
sible to generate in core the submatrix of Q corresponding to the essential subset of
states on the particular architecture. Hence, the straightforward approach of finding
NCD partitionings is relatively more restricted with memory and is slower than using
Algorithm 1.

The time spent for state classification does not involve any floating-point opera-
tions, whereas the time spent to generate in core the submatrix of Q corresponding to
the essential subset of states primarily involves floating-point arithmetic operations.
The overhead associated with evaluating functions slows down both tasks dramati-
cally. Compare columns SC and Gen. with columns NCD S and NCD N. The time
spent by the SC algorithm is larger than the time spent by Algorithm 1 in all exper-
iments. This is not surprising since the former is based on finding SCCs while the
latter is based on finding CCs. The difference is more pronounced when there are
multiple dependency sets for which Algorithm 1 can bring in considerable savings.
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Table 1
Results of the three queues problem (C1, C2, C3).

n ness nzess SC ε |CCs| NCD S Gen. NCD N
68,850 36,720 207,279 0.82 0.10 1 0.10 0.39 0.05

(18,17,15) 0.22 544 0.22 0.09
0.25 4,590 0.13 0.07
0.35 36,720 0.11 0.06

202,400 106,260 608,474 2.63 0.10 1 0.30 1.24 0.17
(23,22,20) 0.22 924 0.68 0.28

0.25 10,120 0.38 0.24
0.35 106,260 0.33 0.23

756,000 390,600 2,264,460 9.83 0.10 1 1.03 4.58 0.62
(30,28,30) 0.22 1,652 2.46 1.04

0.25 25,200 1.37 0.92
0.35 390,600 1.12 0.90

1,414,875 727,650 4,239,795 19.04 0.10 1 1.88 8.37 1.16
(35,33,35) 0.22 2,277 4.60 1.94

0.25 40,425 2.46 1.71
0.35 727,650 2.02 1.56

6,875,000 3,506,250 20,632,250 96.37 0.10 1 8.63
(50,55,50) 0.22 5,445 21.85

0.25 137,500 11.57
0.35 3,506,250 9.18

9,150,625 4,658,500 27,445,825 131.34 0.10 1 11.25
(55,55,55) 0.22 5,995 33.04

0.25 166,375 14.24
0.35 4,658,500 12.44

The case of |CCs| = 1 corresponds to smaller ε and implies the largest number
of nonzeros taken into account from automata matrices in Algorithm 1 and from
the submatrix of Q corresponding to the essential subset of states in the naive NCD
partitioning algorithm. The case of |CCs| = ness corresponds to larger ε and implies
larger temporary data structures being used by both algorithms when determining
NCD CCs. Hence, for increasing ε, the results in columns NCD S and NCD N either
increase then decrease.

6. Conclusion. In this work, we have considered the application of the near
complete decomposability concept to SANs. The definitions, propositions, and re-
marks presented in sections 3 and 4 have enabled us to devise an efficient algorithm
that computes NCD partitionings of the MC underlying a SAN. The approach is
based on determining the NCD connected components of a SAN from the description
of individual automata without generating the global transition rate matrix. We have
also implemented a state classification algorithm for SANs that classifies each state
in the global state space as essential or transient. The output of the state classi-
fication algorithm is used in the NCD partitioning algorithm for SANs. The time
and space complexities of the NCD partitioning algorithm depend on the number of
automata, the number of synchronizing events, the number of functions, the number
of essential states of interest, the sparsity of automata matrices, the dependency sets,
and the ordering of automata. Future work should focus on taking advantage of the
partitionings computed by the devised algorithms in two-level iterative solvers.
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1. Introduction and background. In this paper we are going to describe an
alternative to the Arnoldi method that resolves some difficulties with its implicitly
restarted version. To understand the difficulties and their solution requires a detailed
knowledge of the Arnoldi process. We therefore begin with a survey, which will also
serve to set the notation for this paper.

LetA be a matrix of order n and let u1 be a vector of 2-norm one. Let u1, u2, u3, . . .
be the result of sequentially orthogonalizing the Krylov sequence u1, Au1, A

2u1, . . . .
In 1950, Lanczos [6] showed that if A is Hermitian then the vectors ui satisfy a three-
term recurrence of the form

βkuk+1 = Akuk − αkuk − βk−1uk−1,(1.1)

a recursion that in principle allows the economical computation of the uj .
There is an elegant representation of this recursion in matrix terms. Let

Uk = (u1 u2 · · · uk)

be the matrix formed from the Lanczos vectors uj . Then there is a tridiagonal matrix
T formed from the α’s and β’s in (1.1) such that

AUk = UkTk + βkuk+1e
T
k ,(1.2)

where ek is the vector whose last component is one and whose other components are
zero. From the orthogonality of the uj , it follows that Tk is the Rayleigh quotient

Tk = UH
k AUk.

We will call (1.2) a Lanczos decomposition.
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Lanczos appreciated the fact that even for comparatively small k the matrix Tk
could contain accurate approximations to the eigenvalues of A. When this happens,
the column space Uk of Uk will usually contain approximations to the corresponding
eigenvectors. Such an approximation—call it z—can be calculated by computing
a suitable eigenpair (µ,w) of Tk and setting z = Ukw. This process is called the
Rayleigh–Ritz method; µ is called a Ritz value and z a Ritz vector.

In 1951, Arnoldi [1], building on Lanczos’s work, showed that ifA is non-Hermitian,
then the Lanczos decomposition becomes

AUk = UkHk + βkuk+1e
T
k ,(1.3)

where Hk is upper Hessenberg. We will call (1.3) an Arnoldi decomposition. Once
again, Hk may contain accurate approximations to the eigenvalues of A, especially
those on the periphery of the spectrum of A. Moreover, approximations to the eigen-
vectors may be obtained by the natural generalization of the Rayleigh–Ritz process.

Arnoldi decompositions are essentially unique. Specifically, if Hk is unreduced—
that is, if its subdiagonal elements are nonzero—then up to scaling of the columns
of Uk+1 and the rows and columns of Hk, the decomposition is uniquely determined
by the space spanned by Uk+1.

1 In particular, the Krylov subspace of an unreduced
Arnoldi decomposition has a unique starting vector.

Since Hk is not tridiagonal, the Arnoldi vectors do not satisfy a three-term re-
currence. To compute uk+1 all the columns of Uk must be readily available. If n is
large, these vectors will soon consume all available storage, and the process must be
restarted. The problem then becomes how to choose a new u1 that does not discard
the information about the eigenvectors contained in Uk. There have been several
proposals, whose drawbacks have been nicely surveyed by Morgan [11].

In 1992, Sorensen [14] suggested an elegant way to use the QR algorithm to restart
the Arnoldi process. Specifically, suppose we have an Arnoldi decomposition

AUm = UmHm + βmum+1e
T
m(1.4)

of order m that cannot be further expanded because of lack of storage. For some
fixed k, choose m−k shifts κ1, . . . , κm−k and use them to perform m−k steps of the
implicitly shiftedQR algorithm on the Rayleigh quotientHm. The effect is to generate
an orthogonal matrix Q such that QHHmQ is upper Hessenberg. Then from (1.4)

A(UmQ) = (UmQ)Q
HHmQ+ βmum+1e

T
mQ

or

AŨm = ŨmH̃m + um+1c
H.

Sorensen then observed that the structure of Q is such that the first k−1 components
of c are zero. Consequently, if we let H̃k be the leading principal submatrix of H̃m of
order k and set

βkũk+1 = γ̄kum+1 + h̃k+1,kuk+1,(1.5)

then

AŨk = ŨkH̃k + ũk+1e
T
k

1This fact is a direct consequence of the implicit Q theorem, which says that if H = QHAQ is an
unreduced Hessenberg matrix then Q is determined by its first or last column. See [4, Theorem 7.4.2].
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is an Arnoldi decomposition of order k. This process of truncating the decomposition
is called implicit restarting.

A second key observation of Sorensen suggests a rationale for choosing the shifts.
Specifically, if p(t) = (t− κ1I) · · · (t− κm−kI), then

ũ1 =
p(A)u1

‖p(A)u1‖ .

It follows that if we choose the shifts to lie in the part of the spectrum that we are not
interested in then the implicit restart process deemphasizes these very eigenvalues.

Each iteration of Sorensen’s algorithm consists of two stages: an expansion stage,
in which the decomposition is expanded until it is inconvenient to go further, and a
contraction or purging stage, in which unwanted parts of the spectrum are suppressed.
The contraction phase has two variants. In the exact variant, the shifts are taken to
be unwanted eigenvalues of Hm. If, for example, we were concerned with stability,
we might choose to retain only the eigenvalues with largest real parts. In the other,
more general variant, the shifts are not necessarily eigenvalues of Hm. For example,
they might be the zeros of a Chebyshev polynomial spanning an ellipse containing
unwanted eigenvalues.

The implicitly restarted Arnoldi algorithm has been remarkably successful and
has been implemented in the widely used ARPACK package [9]. However, the method
has two important drawbacks.

First, for the exact restart procedure to be effective the unwanted Ritz values
µ must be moved to the end of Hm, so that the Rayleigh quotient has the form
illustrated below for k = 3 and m = 6:



h h h h h h
h h h h h h
0 h h h h h
0 0 0 µ h h
0 0 0 0 µ h
0 0 0 0 0 µ



.(1.6)

If Hm is unreduced—that is, if the elements of its first subdiagonal are nonzero—then
mathematically Hm must have the form (1.6). In the presence of rounding error,
however, the process can fail (for a treatment of this phenomenon, see [17]). This has
lead Lehoucq and Sorensen to propose an elaborate method for permanently ridding
the decomposition of persistent unwanted Ritz values [8].

The second problem is to move converged Ritz values µ to the beginning of Hk,
so that it assumes the form illustrated below:



µ h h h h h
0 µ h h h h
0 0 h h h h
0 0 h h h h
0 0 0 h h h
0 0 0 0 h h



.

When the converged Ritz values are thus deflated (or locked), one does not have to
update the Arnoldi u1 and u2 in the Arnoldi decomposition. Lehoucq and Sorensen
have proposed a complicated deflation algorithm.
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Most of the complications in the purging and deflating algorithms come from the
need to preserve the structure of the Arnoldi decomposition (1.3)—in particular, to
preserve the Hessenberg form of the Rayleigh quotient and the zero structure of the
vector ek. The purpose of this paper is to show that if we relax the definition of an
Arnoldi decomposition, we can solve the purging and deflating problems in a natural
and efficient way. Since the method is centered about the Schur decomposition of the
Rayleigh quotient, we will call the method the Krylov–Schur method.

The decompositions and algorithms proposed in this paper are not without precur-
sors. Fokkema, Sleijpen, and van der Vorst [3] explicitly use Schur vectors to restart
the Jacobi–Davidson algorithm. Stathopoulos, Saad, and Wu [15] point out that
because the unprecondition Jacobi–Davidson algorithm is equivalent to the Arnoldi
algorithm, one can also use Schur vectors to restart the latter. Lehoucq [7] has
used Schur vectors in the deflation process in [8]. Closer to home, for symmetric
matrices Wu and Simon [18] exhibit what might be called a Krylov-spectral decom-
position, a special case of our Krylov–Schur decomposition to be introduced later.
Finally, Morgan [12] has applied an orthogonal Krylov decomposition to the problem
of restarting GMRES. What distinguishes our approach is the explicit introduction
of general Krylov decompositions whose subspaces are invariant under certain formal
operations—operations that can be used to derive and analyze new algorithms.

In the next section we introduce Krylov decompositions and, in particular, the
Krylov–Schur decomposition, which lies at the heart of our method. Section 3 treats
the Krylov–Schur method and its relation to the implicitly restarted Arnoldi method.
In section 4 we treat the numerical stability of the combined steps. In section 5 we
show how to deflate vectors and subspaces from a Krylov decomposition. In section 6
we compare the work done by the implicitly restarted Arnoldi and the Krylov–Schur
methods. We end with some general comments. Throughout this paper ‖ · ‖ will
denote the vector and matrix 2-norm, and ‖ · ‖F will denote the Frobenius norm (see
[16, section 1.4.1]).

2. Krylov decompositions. The structure of an Arnoldi decomposition re-
stricts the operations we can perform on its Rayleigh quotient. The following defini-
tion introduces a less constraining decomposition.

Definition 2.1. A Krylov decomposition of order k is a relation of the form

AUk = UkBk + uk+1b
H
k+1,(2.1)

where Bk is of order k and the columns of (Uk uk+1) are independent. The columns
of (Uk uk+1) are called the basis for the decomposition, and they span the space of the
decomposition. If the basis is orthonormal, we say the decomposition is orthonormal.
The matrix Bk is called the Rayleigh quotient of the decomposition.

This definition removes practically all the restrictions imposed on an Arnoldi
decomposition. The vectors of the decomposition are not required to be orthonormal
and the vector bk+1 and the matrix Bk are allowed to be arbitrary. Nonetheless, we
shall see that the relation (2.1) is sufficient to insure that (Uk uk+1) is a basis for a
Krylov subspace.

The name “Rayleigh quotient” is appropriate for the matrix Bk. For if (Vk vk+1)
H

is a left inverse of (Uk uk+1), then Bk = V H
k AUk. In particular, if (µ,Ukw) is an

eigenpair of A, then (µ,w) is an eigenpair of Bk. Thus the Rayleigh–Ritz procedure
extends to Krylov decompositions.

The subspaces of Krylov decompositions are closed under two classes of transfor-
mations: translation and similarity. The first allows us to change the vector uk. The
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second allows us to change the pair (Bk, Uk) along with bHk+1. In what follows we will

drop subscripts in k and write our Krylov decomposition in the form AU = UB+ubH.
To introduce the operation of translation, let

γũ = u− Ug,

where γ �= 0. Then it is easily verified that

AU = U(B + gbH) + ũbH,

where b̃H = γbH, is a Krylov decomposition with the same space as the original. This
gives us considerable freedom to replace u by linear combinations of u and U , although
the fact that γ �= 0 implies that the vector ũ always contains some component along
u. In particular, we can choose ũ so that ‖ũ‖ = 1 and UHũ = 0.

To introduce similarity transformations, let W be nonsingular. Then

A(UW−1) = (UW−1)(WBW−1) + u(bHW−1) ≡ AŨ = Ũ B̃ + ub̃H

is a Krylov decomposition whose space is the same as the original. Because the
Rayleigh quotient of the new decomposition is similar to that of the old, we say that
the two decompositions are similar.2

We will say that two Krylov decompositions related by a sequence of translations
and similarities are equivalent. We are now going to show that any Krylov decom-
position is equivalent to an Arnoldi decomposition. Since the space of an Arnoldi
decomposition is a (possibly restarted) Krylov subspace, the result justifies the name
Krylov decomposition.

Theorem 2.2. Let

AU = UB + ubT(2.2)

be a Krylov decomposition of order k. Then (2.2) is equivalent to an Arnoldi decompo-
sition. If the Hessenberg part of the Arnoldi decomposition is unreduced, the Arnoldi
decomposition is essentially unique.

Proof. The reduction, which is constructive, proceeds in four stages.
1. By a similarity transformation, orthogonalize the columns of U .
2. By a translation, transform u so that it is of norm one and is orthogonal to
R(U).

3. By a unitary similarity transformation, reduce b to a multiple of ek.
4. Finally, by a unitary similarity reduce B to Hessenberg form. The reduction

is performed rowwise by Householder transformations beginning with the last
row, as illustrated in the following Wilkinson diagram:



b b b b b
b b b b b
b3 b b b b
b2 b2 b b b
b1 b1 b1 b b


 .

2A referee has pointed out that these two types of transformations can be combined. Specifically,
we say that the Arnoldi decompositions AU = UB + ubT and AV = V B + vbT are equivalent if
there is a nonsingular matrix Ŵ = (W g

0 γ
) such that (V v) = (U u)Ŵ . With W = I we obtain a

translation; with g = 0 and γ = 1 we obtain a similarity.
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The final reduction to Hessenberg form does not introduce nonzero elements into
the first k−1 components of b, so that the result of this algorithm is an Arnoldi
decomposition. The uniqueness in the unreduced case follows from the uniqueness of
unreduced Arnoldi decompositions.

The proof of Theorem 2.2 illustrates the power of translations and similarities to
bring a Krylov decomposition into a useful form without losing the Krylov subspace
property. In particular, any Krylov decomposition corresponds to an orthonormal
Krylov decomposition in which the columns of the basis are orthonormal. (From here
on, all our Krylov decompositions will be orthonormal.) Further, we can reduce the
Rayleigh quotient to Schur form. The resulting Krylov–Schur decomposition is the
basis of the main algorithm in this paper, to which we now turn.

3. The Krylov–Schur method. A step of the Krylov–Schur method begins
and ends with a Krylov–Schur decomposition of the form

AUk = UkSk + uk+1b
H
k+1,

where the letter S (for Schur) stresses the triangularity of the Rayleigh quotient. It
will be more convenient to work with the equivalent factored form

AUk = Uk+1Ŝk,

where

Ŝk =

(
Sk

bHk+1

)
.

Like the implicitly restarted Arnoldi method the Krylov–Schur method consists of
an expansion phase, in which the underlying Krylov sequence is extended, and a con-
traction phase, in which the unwanted Ritz values are purged from the decomposition.
We will treat each in turn.

The expansion proceeds as in the usual Arnoldi algorithm: the vector Auk+1 is
orthogonalized against Uk+1 and normalized to give uk+2, after which Sk+1 is formed
from Sk. The following pseudocode implements this procedure. We assume that Uk+1

and Ŝk are contained in arrays U and S.

1. v = A ∗ U [:, k + 1],

2. w = UH ∗ v,
3. v = v − U ∗ w,

(3.1)
4. ν = ‖v‖2,
5. U = (U v/ν),

6. Ŝ =

(
Ŝ w
0 ν

)
.

Note that in a working implementation we would have to reorthogonalize to insure
that the vector v is orthogonal to the column space of U to working accuracy (see
[16, Algorithm 4.1.13]).

After this process the array Ŝ has the form illustrated below for k = 3:


s s s h
0 s s h
0 0 s h
b b b h
0 0 0 h


 .
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Here the s’s stand for the elements of the original Sk and the b’s for the elements
of bk+1. The process may be repeated. After m−k steps, the array S has the form
illustrated below for k = 3 and m = 6:



s s s h h h
0 s s h h h
0 0 s h h h
b b b h h h
0 0 0 h h h
0 0 0 0 h h
0 0 0 0 0 h



.(3.2)

At this point the Rayleigh quotient, which resides in S[1:m, 1:m], is reduced to
Schur form to give the Arnoldi–Schur decomposition

AUm = UmSm + um+1b
H
m+1.(3.3)

This reduction to Schur form begins with a reduction of the Rayleigh quotient to
Hessenberg form, and some minor savings can be obtained at this stage by taking
advantage of the structure illustrated in (3.2). Although (3.3) suggests that we are
computing the entire decomposition, including Um, in fact it will be more efficient to
defer the computation of the columns of Um until later. We will return to this point
in section 6.

We now turn to the problem of purging the unwanted Ritz values from the
Krylov–Schur decomposition (3.3)—the contraction phase of the method. The key
is the observation that a Krylov–Schur decomposition can be truncated at any point.
Specifically, if we partition a Krylov–Schur decomposition in the form

A(U1 U2) = (U1 U2)

(
S11 S12

0 S22

)
+ u(bH1 bH2 ),(3.4)

then

AU1 = U1S11 + ubH1

is also a Krylov–Schur decomposition. Thus the purging problem can be solved by
moving the unwanted Ritz values into the southeast corner of the Rayleigh quotient
and truncating the decomposition.

The process of using unitary similarities to move eigenvalues around in a Schur
form has been well studied. The current front-running algorithm [2], which has been
implemented in the lapack routine xTREXC, is quite reliable—far more so than im-
plicit QR. Consequently, our deflation algorithm consists of little more than moving
the unwanted Ritz values, which are visible on the diagonals of Sm, to the southeast
corner of the Rayleigh quotient and truncating the decomposition.

The following theorem shows just what a combined expansion and contraction
step produces.

Theorem 3.1. Let

P := AU = UH + βueT
k

be an unreduced Arnoldi decomposition and let

Q := AV = V S + ubH
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be an equivalent Krylov–Schur form. Suppose that an implicitly restarted Arnoldi
cycle is performed on P and a Krylov–Schur cycle is performed on Q. If the same
Ritz values are discarded in both and those Ritz values are distinct from the other Ritz
values, then the resulting decompositions are equivalent.

Proof. We must show that the subspaces associated with the final results are the
same. First note that the expansion phase results in equivalent decompositions. In
fact, since R(U) = R(V ) and in both cases we are orthogonalizing the same Krylov
sequence, the vectors uk+1 . . . um+1 and vk+1, . . . , vm+1 are the same up to multiples
of modulus one.

Now assume that both algorithms have gone through the expansion phase and
have moved the unwanted Ritz values to the end of the decomposition. At this point
denote the first decomposition by

P̂ := AÛ = ÛĤ + β̂ûeT
m

and the second by

Q̂ := AV̂ = V̂ Ŝ + ûb̂H.

Note that for both methods, the final truncation leaves the vector û unaltered. Since
V̂ = ÛW for some unitary W , we have

Ŝ = V̂ HAV̂ =WHÛHAÛW =WHĤW.

Thus Ĥ and Ŝ are similar and have the same Ritz values. Thus it makes sense to say
that both methods reject the same Ritz values.

Let P be the unitary transformation applied to the Rayleigh quotient in P̂, and
let Q be the one applied to the Rayleigh quotient of Q̂. Then we must show that
the subspaces spanned by ÛP [:, 1:k] and V̂ Q[:, 1:k] are the same. For brevity, set
Pk = P [:, 1:k] and Qk = Q[:, 1:k].

By construction R(Pk) is the eigenspace P of Schur vectors of Ĥ corresponding
to the retained Ritz values. Likewise, R(Qk) is the eigenspace Q of Schur vectors of Ŝ
corresponding to the retained Ritz values. By hypothesis these eigenspaces are simple
and hence are the same. Since WHŜW = Ĥ, the matrix WHP̂k spans Q. Hence there
is a unitary matrix R such that Qk =WHPkR. We then have

V̂ Qk = ÛWWHPkR = ÛPkR.

It follows that V̂ Qk and ÛPk span the same subspace.
The import of this theorem is that no matter how you perform the expansion and

contraction, mathematically you end up with a decomposition that has been filtered
through the polynomial (t − µ1) . . . (t − µm−k). However, the procedure based on
the Krylov–Schur form is numerically more reliable than the one based on implicit
restarting.

4. Numerical stability. We now briefly consider the numerical stability of the
algorithm. From standard techniques of rounding error analysis it can be shown that
as the Krylov–Schur algorithm proceeds, the computed Krylov decompositions satisfy

AU = UB + ubH +R,(4.1)

where ‖R‖/‖A‖ is of the order of the rounding unit and grows slowly. If U is computed
with reorthogonalization in the expansion phase, UHU = I+F , where ‖F‖ is the order
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of the rounding unit and also grows slowly. The following theorem shows that we can
throw the residual error R back on the matrix A.

Theorem 4.1. Let (4.1) be satisfied and assume that U is of full rank. Let
E = −RU†, where U† = (UHU)−1UH is the pseudoinverse of U . Then

(A+ E)U = UB + ubH,(4.2)

and

‖R‖
‖U‖ ≤ ‖E‖ ≤ ‖R‖‖U

†‖.

The lower bound holds for any matrix E satisfying (4.2).
Proof. The equation (4.2) is established by direct verification. The upper bound

follows from taking norms in the definition of E. On the other hand, if E is any
matrix satisfying (4.2), then EU = −R, and ‖R‖ ≤ ‖E‖‖U‖, which establishes the
lower bound.

Since U is nearly orthonormal, ‖U‖ and ‖U†‖ are near one. Hence the theorem
shows that the computed generalized Arnoldi decomposition is an exact decomposition
of a matrix near A. In this sense the Krylov–Schur algorithm (as well as the implicitly
restarted Arnoldi algorithm) is backward stable.

5. Deflation and convergence. We now turn to the problem of deflating con-
verged vectors from an orthonormal Krylov decomposition. We shall see later that if
the concern is with a single Ritz vector then the deflation is easy. However, we can
also use Krylov decompositions to deflate approximate eigenvectors or eigenspaces
that are not obtained by a Rayleigh–Ritz procedure. Moreover, dependencies among
the vectors to be deflated can cause the deflation procedure to require smaller resid-
uals in the individual vectors. Consequently, we give a general analysis that covers
both of these points.

We say a Krylov decomposition has been deflated if it can be partitioned in the
form

A(U1 U2) = (U1 U2)

(
B11 B12

0 B22

)
+ u(0 bH2 ).

When this happens, we have AU1 = U1B11, so that U11 spans an eigenspace of A.
There are two advantages to deflating a converged eigenspace. First, by freezing

it at the beginning of the Krylov decomposition we insure that the remaining space of
the decomposition remains orthogonal to it. In particular, this gives algorithms the
opportunity to compute more than one independent eigenvector corresponding to a
multiple eigenvalue.

The second advantage of the deflated decomposition is that we can save operations
in the contraction phase of an Arnoldi or Krylov–Schur cycle. The expansion phase
does not change, and we end up with a decomposition of the form

A(U1 U2 U3) = (U1 U2 U3)


B11 B12 B13

0 B22 B23

0 B23 B33


+ βueT

m.

Now since B11 is uncoupled from the rest of the Rayleigh quotient, we can apply all
subsequent transformations exclusively to the eastern part the Rayleigh quotient and
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to (U2 U3). If the order of B11 is small, the savings will be marginal; but as its size
increases during the course of the algorithm, the savings become significant.

Of course, we will never have an exact eigenspace in our decompositions. Instead
we will have a basis, say UW , for an approximate eigenspace and an approximation
representation M of A on that subspace. The following theorem relates the norm of
the residual A(UW )− (UW )M to the quantities in the decomposition we must set to
zero in order to deflate.

Theorem 5.1. Let

AU = UB + ubH(5.1)

be an orthonormal Krylov decomposition, and let (M,Z) = (M,UW ) be given with U
and W orthonormal. Let (W W⊥) be unitary, and set

B̃ =

(
WH

WH
⊥

)
B(W W⊥) =

(
B̃11 B̃12

B̃21 B̃22

)

and

b̃H = bH(W W⊥) = (b̃H1 b̃H2 ).

Then

‖AZ − ZM‖2F = ‖B̃21‖2F + ‖b̃1‖2F + ‖B̃11 −M‖2F,(5.2)

where ‖ · ‖F denotes the Frobenius norm.
Proof. From (5.1) we have AZ − ZM = UBW − UWM + ubHW . If we set

(Ũ1 Ũ2) = (Z Ũ2) = U(W W⊥),

then

AZ − ZM = U(W W⊥)

[(
WH

WH
⊥

)
B(W W⊥)

(
I

0

)
−
(
I

0

)
M

]

+ ubH(W W⊥)

(
I

0

)

= (Ũ1 Ũ2)

(
B̃11 −M
B̃21

)
+ ub̃H1 .

The theorem now follows on taking norms.
To see the consequences of this theorem, suppose that AZ − ZM is small, and,

using (W W⊥), we transform the Krylov decomposition AU −UB = ubH to the form

A(Ũ1 Ũ2) = (Ũ1 Ũ2 u)


B̃11 B̃12

B̃21 B̃22

b̃H1 b̃H2


 .(5.3)

Then by (5.2) ∥∥∥∥
(
B̃21

b̃H1

)∥∥∥∥
F

≤ ‖AZ − ZM‖F,(5.4)
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with equality if and only if M is the Rayleigh quotient WHBW . Thus if the residual
norm ‖AZ − ZM‖F is sufficiently small, we may set B̃21 and b̃1 to zero to get the
deflated

A(Ũ1 Ũ2) ∼= (Ũ1 Ũ2)

(
B̃11 B̃12

0 B̃22

)
+ u(0 bH2 ).(5.5)

The deflation procedure that leads to (5.5) is backwards stable. If we restore the
quantities that were zeroed in forming (5.5), we get the following relation:

A(Ũ1 Ũ2) = (Ũ1 Ũ2)

(
B̃11 B̃12

0 B̃22

)
+ u(0 bH2 ) + Ũ2B̃21 + ub̃H1 .

If we write this decomposition in the form

AŨ = Ũ B̆ + ub̆H +R, where R = Ũ2B̃21 + ub̃H1 ,

then

‖R‖F ≤ ‖AZ − ZM‖F.

If we now set E = RŨH, then (A + E)Ũ = Ũ B̆ + ub̆H. We may summarize these
results in the following theorem.

Theorem 5.2. Under the hypotheses of Theorem 5.1, write the deflated decom-
position (5.5) in the form

AŨ ∼= Ũ B̆ + ub̆H.

Then there is an E satisfying

‖E‖F ≤ ‖AZ − ZM‖F(5.6)

such that

(A+ E)Ũ = Ũ B̆ + ub̆H.

Equality holds in (5.6) if and only if M is the Rayleigh quotient ZHAZ =WHBW .
Because backward stability is commonly used to determine convergence, Theo-

rems 5.1 and 5.2 suggest how one might combine convergence testing and deflation.
Given an approximate pair (M,UW ), we transform to the tilde form as in Theo-
rem 5.1 and compute the backward error that would result from deflation. If this is
small enough compared with A, we deem the pair to have converged and deflate.3

In practice we will seldom encounter a converging subspace unless it is a 2-dimen-
sional subspace corresponding to a complex eigenvalue in a real Schur decomposition.
Instead we will be confronted with converged, normalized Ritz pairs (µi, ẑi) (i =
1, . . . , p) of one kind or another, and the vectors in these pairs cannot be guaranteed to
be orthogonal. If we arrange the vectors in a matrix Ẑ and set M̂ = diag(µ1, . . . , µp),

the residual R̂ = AẐ − ẐM̂ must be small because the individual residuals are small.

3If the concern is with eigenvalues that are small compared with ‖A‖F, we may have to demand
a smaller backward error to get accurate results. For more, see the discussion of convergence in [13].
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The deflation procedure requires an orthonormal basis for the approximate eigen-
space in question, which is given by the QR factorization

Ẑ = ZT(5.7)

of Ẑ. Unfortunately, the residual for Z becomes

R = R̂T−1 = AẐT−1 − ẐM̂T−1 = AZ − ZM,

where M = TM̂T−1. If the columns of Ẑ are nearly dependent, ‖T−1‖ will be large,
and the residual may be magnified—perhaps to the point where the deflation cannot
be performed safely. The effects of dependency on a different deflation algorithm have
also been noted in [8].

It may seem paradoxical that we could have, say, two vectors each of which we can
deflate but which taken together cannot be deflated. The resolution of this paradox
is to remember that we are not deflating two vectors but the subspace spanned by
them. If the vectors are nearly dependent, they must be very accurate to determine
their common subspace accurately.

As we have mentioned, the deflation procedure is not confined to eigenpairs calcu-
lated by a Rayleigh–Ritz procedure. For example, it can be used to deflate harmonic
Ritz vectors [10] or refined Ritz vectors [5]. However, if Ritz vectors are the concern,
there is an easy way to deflate them in the Krylov–Schur method. After a cycle of
the algorithm, let the current decomposition have the form

A(U1 U2) = (U1 U1)

(
S11 S12

0 S22

)
+ u(0 bH2 ).

Here U1 represents a subspace that has already been deflated, and S22 is the Schur
form that remains after the contraction phase.

In this decomposition, to deflate the Ritz pair corresponding to the (1, 1)-element
of S22 we must set the first component of b2 to zero. Consequently, all we have to do
to deflate is to verify that that component satisfies our deflation criterion. If some
other diagonal element of S22 is the candidate for deflation, we can exchange it into
the (2, 2)-position and test as above.

6. Assessment. In comparing the Krylov–Schur algorithm with the implicitly
restarted Arnoldi algorithm, we must distinguish the sources of work in the algorithms.
The first is the multiplication of a vector by A. Since A will usually be sparse, the
cost of this product is unpredictable in general, but it is reasonable to assume that it
forms a significant part—perhaps the dominant part—of the computation.

The second source of work is the expansion of the decompositions from one of
order k to one of order m. It is easily seen from (3.1) that the work is 2n(m2 − k2)
floating-point adds and multiplies, assuming reorthogonalization is performed. This
count is the same for both algorithms.

In the contraction step, both algorithms must transform the Rayleigh quotient
and accumulate the transformations in U . For efficiency, we do not accumulate the
transformations in U as they are generated but instead accumulate them in an m×m
matrix Q and then compute the new Uk in the form

UmQ[:, 1:k].(6.1)

If n � m, the last step will dominate the transformations applied to the Rayleigh
quotient and their accumulation in Q.
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For the Krylov–Schur method we must compute the Schur decomposition of the
Rayleigh quotient and transform the triangular factor. This means that Q will be
full, and the final accumulation step (6.1) will require nkm floating-point additions
and multiplications.

For the implicitly restarted Arnoldi we must also compute the Schur decomposi-
tion of the Rayleigh quotient Hm. But it is used only to determine the shifts, which
are applied directly to Hm. The structure of the transformations is such that Q[:, 1:k]
is zero below its m−k subdiagonal. This means that the operation count for (6.1) is
nmk − 1

2k
2 additions and multiplication.

To put things together, ifm = 2k and reorthogonalization is performed during the
expansion, the Krylov–Schur algorithm has an operation count of 7nk2 whereas im-
plicitly restarted Arnoldi has an operation count of 61

2nk
2. Thus implicitly restarted

Arnoldi is marginally superior to Arnoldi–Schur when it comes to accumulation of
transformations. Against this must be set the fact that Krylov–Schur deflates in an
inexpensive and natural manner and does not require a special routine for purging.

7. Concluding remarks. The Krylov–Schur method admits variations. An im-
portant one is based on the observation that we can truncate a Krylov decomposition
at any point where the Rayleigh quotient is block triangular [see (3.4)]. This means
that when A is real we can work with real Schur forms of the Rayleigh quotient and
avoid the necessity of complex arithmetic. The algorithm for exchanging eigenvalues
mentioned above will also move the 2×2 blocks of the real Schur form so that the
contraction phase proceeds as usual. In deflation, the block in question is moved to
the position just after the previously deflated eigenvalues and blocks, and two com-
ponents of b are tested. An unusual feature of complex eigenvectors is that they may
fail to deflate, not because they are dependent on other deflated vectors, but because
the real and imaginary parts of their eigenvectors are not sufficiently independent.

When A is Hermitian, the Krylov–Schur method becomes a restarted Lanczos
algorithm—in fact the algorithm of Wu and Simon [18]. The Rayleigh quotient is
diagonal, so that reordering of the eigenvalues reduces to simple permutations. More-
over, because the eigenvectors of the Rayleigh quotient are orthogonal, a Ritz pair
with a small residual norm ε will deflate with backward error of order ε.

Since the Krylov–Schur method works explicitly with the eigenvalues of the Ray-
leigh quotient, it is an exact-shift method. Nonetheless, it stands ready to help the
general shift method to deflate Ritz pairs and to get rid of unwanted pairs. One
simply computes a Krylov–Schur form of the current decomposition and performs the
procedures described above. Theorem 2.2 assures us that we can then return to a
pure Arnoldi decomposition.

In fact Theorem 2.2 is really the heart of the matter. It allows us to operate freely
on the Rayleigh quotient with the knowledge that we are always attached to a Krylov
sequence. It is hoped that this freedom will find other applications.
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Abstract. Matrix polynomials of the form P (λ) = Iλ2+A1λ+A0 (where A0 and A1 are n×n
Hermitian matrices and λ is a complex variable) arise in many applications. The numerical range of
such a polynomial is

W (P ) = {λ ∈ C : x∗P (λ)x = 0 for some nonzero x ∈ C
n}

and it always contains the spectrum of P (λ), i.e., the set of zeros of detP (λ). Properties of the
numerical range are developed in detail, taking advantage of the close connection between W (P ) and
the classical numerical range (field of values) of the (general) complex matrix A := A0 + iA1.

Eigenvalues and nondifferentiable points on the boundary are examined and a procedure for the
numerical determination of W (P ) is presented and used for several illustrations. Some extensions of
the theory to more general polynomials P (λ) are also discussed, as well as special cases describing
vibrating systems.

Key words. matrix polynomial, numerical range, eigenvalue, boundary
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1. Introduction and fundamental concepts. Consider the n×n self-adjoint
quadratic matrix polynomial

P (λ) = A2λ
2 +A1λ+A0,(1)

where Aj (j = 0, 1, 2) are n × n Hermitian matrices and λ is a complex variable. A
complex number λ0 is called an eigenvalue of P (λ) if the equation P (λ0)x = 0 has a
nonzero solution in C

n. The set of all eigenvalues of P (λ) is known as the spectrum
of P (λ) and is written

σ(P ) = {λ ∈ C : detP (λ) = 0}.
The numerical range of P (λ) is defined as

W (P ) = {λ ∈ C : x∗P (λ)x = 0 for some nonzero x ∈ C
n}.(2)

Evidently, W (P ) is always closed and contains σ(P ). For P (λ) = Iλ − A, W (P )
coincides with the classical numerical range (field of values) of matrix A,

F (A) = {x∗Ax ∈ C : x ∈ C
n with x∗x = 1}.

This paper presents a careful discussion of properties of W (P ) with emphasis on
the connections with the spectrum of P (λ), and also on monic polynomials. In the case
of F (A) a classical result (see [D], for example) states that nondifferentiable points
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on the boundary ∂F (A) are necessarily eigenvalues of A. Generalizations of this and
related results to points on ∂W (P ) are considered in sections 4 and 5. The results
are illustrated with several examples and, in sections 7, 8, and 9, with descriptions of
the numerical ranges of damped systems and gyroscopic systems from the theory of
vibrations.

A nonzero vector x0 in KerP (λ0) is known as an eigenvector of P (λ) corresponding
to the eigenvalue λ0, and vectors x1, x2, . . . , xk are said to be associated with x0 if

p∑
j=1

1

j!
P (j)(λ0)xp−j = 0 ; p = 1, 2, . . . , k.

The system of vectors x0, x1, x2, . . . , xk is called a Jordan chain (of length k + 1) of
P (λ) corresponding to the eigenvalue λ0 and generates fundamental solutions of the
differential equation

A2u
′′(t) +A1u

′(t) +A0u(t) = 0.

The spectrum of P (λ) either coincides with the complex plane C or contains no
more than 2n points. The multiplicity of λ0 as a root of the equation detP (λ) = 0 is
called the algebraic multiplicity of λ0. The dimension of the kernel, KerP (λ0), is called
the geometric multiplicity of λ0 and is no greater than the algebraic multiplicity. If
both multiplicities coincide, then the corresponding eigenvalue λ0 is called semisimple.
In this case, all the Jordan chains of the eigenvalue λ0 have length equal to 1.

It is obvious that W (P ) (for (1)) is symmetric with respect to the real axis, and
it is known that W (P ) is bounded if and only if 0 /∈ F (A2) (see [LR]). Moreover,
if W (P ) is bounded, then it has either 1 or 2 connected components. If W (P ) is
unbounded, then it may have as many as 4 connected components.

In our discussion, we will need the joint numerical range of the triple (A0, A1, A2),

JNR(A0, A1, A2) = {(x∗A0x, x
∗A1x, x

∗A2x) ∈ R
3 : x ∈ C

n, x∗x = 1}.(3)

The joint numerical range JNR(A0, A1, A2) is convex for n ≥ 3 [AT]. If n = 2, then
it is either convex or the surface of an ellipsoid.

Most of the results of this paper are also valid for quadratic polynomials on
an infinite-dimensional Hilbert space H, whose coefficients are self-adjoint bounded
linear operators, provided W (P ), F (A), and JNR(A0, A1, A2) are replaced by their
closuresW (P ), F (A), and JNR(A0, A1, A2), respectively. This modification is needed
to account for the fact that the numerical ranges of operators need not be compact
sets. The basic exception is Theorem 6. This result is proved in the matrix case only,
because we use the properties of normal eigenvalues of matrices. As a consequence,
Theorem 7, Corollary 8, and Theorem 14 (for nonreal points) are also proved for the
matrix case only. The rest of the results are valid in the infinite-dimensional case,
since their proofs are based on the connection between the boundaries of numerical
ranges (and it is not assumed that ∂F (A) ⊂ F (A) or ∂W (P ) ⊂W (P )).

2. The nonmonic case. Let P (λ) = A2λ
2 + A1λ+ A0 (A2 �= 0) be an n× n

self-adjoint quadratic matrix polynomial with numerical range W (P ) as in (2) and let
the joint numerical range of its coefficients be JNR(A0, A1, A2) as in (3). Suppose
that (a0, a1, a2) ∈ R

3 and the equation a2λ
2 + a1λ+ a0 = 0 has nonreal roots λ0 and

λ0. Then for every point (b0, b1, b2) of the open halfline

ε = {t(a0, a1, a2) ∈ R
3 : t ∈ (0,+∞)},
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the equation b2λ
2 + b1λ+ b0 = 0 has the same roots. So, if we define the supporting

cone of JNR(A0, A1, A2) as

K =
⋃
t>0

tJNR(A0, A1, A2),(4)

then

W (P ) = {λ ∈ C : a2λ
2 + a1λ+ a0 = 0, (a0, a1, a2) ∈ JNR(A0, A1, A2)}

= {λ ∈ C : a2λ
2 + a1λ+ a0 = 0, (a0, a1, a2) ∈ K}

= {λ ∈ C : a2λ
2 + a1λ+ a0 = 0, (a0, a1, a2) ∈ ∂JNR(A0, A1, A2)}.

Consequently, two conjugate complex numbers λ0 and λ0 belong to W (P ) if and only
if the line

ε = {t(|λ0|2,−2Reλ0, 1) ∈ R
3 : t ∈ R}

intersects JNR(A0, A1, A2). Note also that (0, 0, 0) ∈ JNR(A0, A1, A2) if and only if
(0, 0, 0) ∈ K and, in this case, W (P ) ≡ C.

Theorem 1. Let P (λ) = A2λ
2 + A1λ + A0 be an n × n self-adjoint matrix

polynomial with W (P ) �= C and let λ0 ∈ W (P )\R and (b0, b1, b2) ∈ K be such that
b2λ

2
0 + b1λ0 + b0 = 0. Then λ0 ∈ ∂W (P )\R if and only if (b0, b1, b2) ∈ ∂K.
Proof. Since W (P ) �= C, then (0, 0, 0) /∈ JNR(A0, A1, A2), and if λ0 ∈ ∂W (P )\R,

then there exists a sequence {λk}k∈N ∈ C\(R∪W (P )) converging to λ0. The sequence
of corresponding lines

εk = {t(|λk|2,−2Reλk, 1) ∈ R
3 : t ∈ R} ; k ∈ N,

converges to the line

ε0 = {t(|λ0|2,−2Reλ0, 1) ∈ R
3 : t ∈ R}.

(Here, the absolute value of tan(ε̂1, ε2) is considered as the distance between the lines
ε1 and ε2.)

Since λk /∈ W (P ) (k ∈ N), the lines εk do not intersect JNR(A0, A1, A2). Thus,
ε0 is a supporting line of JNR(A0, A1, A2) and, consequently, (b0, b1, b2) is a boundary
point of K.

For the converse assume that (b0, b1, b2) ∈ ∂K. Then ε0 = {t(b0, b1, b2) ∈ R
3 : t ∈

R} is a supporting line of JNR(A0, A1, A2) and there exists a sequence of lines

εk = {t(b0,k, b1,k, b2,k) ∈ R
3 : b21,k < 4b0,kb2,k, t ∈ R} ; k ∈ N,

converging to ε0 such that εk ∩ JNR(A0, A1, A2) = ∅ for every k ∈ N. If λk and λk

are the nonreal roots of equation

b2,kλ
2 + b1,kλ+ b0,k = 0 ; k ∈ N,

then the sequence {λk}k∈N converges to λ0 (because the roots of a polynomial depend
continuously on the coefficients of the polynomial). Moreover, {λk}k∈N ∈ C\(R ∪
W (P )) and λ0 is a boundary point of W (P )\R.

Corollary 2. Let P (λ) be a matrix polynomial as in Theorem 1, let λ0 ∈
W (P )\R, and let (a0, a1, a2) ∈ JNR(A0, A1, A2) such that a2λ

2
0 + a1λ0 + a0 = 0.

Then λ0 ∈ ∂W (P ) if and only if (a0, a1, a2) ∈ ∂JNR(A0, A1, A2) ∩ ∂K.
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3. The monic case. If the matrix polynomial P (λ) in (1) is monic, i.e., A2 = I,
then JNR(A0, A1, A2) is just the numerical range of the associate matrix A = A0 +
iA1. Moreover,

W (P ) = {λ ∈ C : λ2 + a1λ+ a0 = 0, a0, a1 ∈ R and a0 + ia1 ∈ F (A)}.

Theorem 3. Let P (λ) be an n×n monic self-adjoint matrix polynomial, let λ0 ∈
W (P )\R, and let a0+ ia1 ∈ F (A) such that λ2

0+a1λ0+a0 = 0. Then λ0 ∈ ∂W (P )\R
if and only if a0 + ia1 ∈ ∂F (A).

Proof. Consider the cone K in (4). The joint numerical range JNR(A0, A1, I) in
(3) is a convex subset of the plane {(u, v, 1) ∈ R

3 : (u, v) ∈ R
2} ⊂ R

3. Consequently,
∂JNR(A0, A1, I) ∩ ∂K = {(u, v, 1) ∈ R

3 : u + iv ∈ ∂F (A)}, and the result follows
immediately from Corollary 2.

A method for the numerical determination of ∂F (A) is presented in [HJ]. Using
this method and Theorem 3, an algorithm to determine points on ∂W (P ) can be
formulated and is used in subsequent examples. Unit vectors x ∈ C

n are found such
that x∗Ax ∈ ∂F (A), and then the nonreal roots of polynomials

x∗P (λ)x = λ2 + (x∗A1x)λ+ x∗A0x

are boundary points of W (P ). Thus, ∂W (P ) is a double image of the curve ∂F (A).
Since ∂F (A) may include linear segments (which is certainly the case when A is
normal), special provision is made for generating points on such segments (see Step 3
below). The algorithm has the following form:

Step 1. Choose a partition 0 = θ0, θ1, . . . , θs = 2π of the interval [0, 2π] and set the
number of points, R, to be interpolated on linear segments.

Step 2. For k = 1, 2, . . . , s compute the largest eigenvalue λk of the matrix

Hk = cos θkA0 − sin θkA1

and a corresponding eigenvector yk. The point a0+ia1 = y∗kA0yk+iy∗kA1yk =
y∗kAyk is a point of ∂F (A). Check for a linear segment joining the kth and
(k − 1)st boundary points. If there isn’t one, go to Step 3; if there is, inter-
polate a set of R− 1 points in the linear segment and then go to Step 3.

Step 3. For all k and for all interpolated points on linear segments, compute the
zeros of λ2 + a1λ + a0. These are either nonreal points of ∂W (P ) or real
points of W (P ).

In the following examples and elsewhere, observe the relative positions of F (A)
and the parabola D = {u + iv ∈ C : u, v ∈ R, v2 = 4u}. Note also that the
eigenvalues of P (λ) are indicated along with ∂W (P ). These examples will be useful
in what follows.

Example 1. Consider P (λ) = Iλ2 +A1λ+A0 with

A1 =




0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0


 , A0 =




1.1 1 0 0
1 1.1 0 0
0 0 0.1 0
0 0 0 2.1


 .

The first part of Figure 1 shows the boundary of F (A) and parabola D. Since F (A)
is “inside” D, W (P ) has no real points and consists of two connected components.
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Fig. 1. A numerical range with two components.
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Fig. 2. A numerical range with one component.

Example 2. For the coefficients

A1 =

[
0 2.8i
−2.8i 0

]
, A0 =

[
1.5 1
1 1.5

]
,

∂F (A) and ∂W (P ) are sketched in Figure 2. Now F (A) is an elliptic disc which
intersects with D, so the part of F (A) “inside” D is mapped onto the nonreal part of
W (P ), etc.

Example 3. Take

A1 = (−i)

 0 0.2 −0.2
−0.2 0 0.2
0.2 −0.2 0


 , A0 =


 0.3 0.2 0.5

0.2 0.5 0.3
0.5 0.3 0.2


 ,

and see Figure 3. Note the presence of linear segments on ∂F (A).

It will be useful to introduce the closure of the nonreal points in W (P ), say
S := W (P )\R. Then the real part of W (P ) can be written as a disjoint union:

R ∩W (P ) = (R ∩ S) ∪ (W (P )\S).(5)

Proposition 4. Assume that S �= ∅.
(i) If a0 + ia1 ∈ D ∩ F (A), then −a1/2 ∈ R ∩ S.
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Fig. 3. Linear segments on ∂F (A).

(ii) Conversely, if λ0 ∈ R ∩ S, then there exists a nonzero x ∈ C
n such that

a0 + ia1 := x∗A0x+ i(x∗A1x) ∈ D ∩ F (A).

Proof. (i) a0 + ia1 ∈ F (A) implies that there is an x �= 0 such that a0 =
x∗A0x, a1 = x∗A1x. In addition, if a0 + ia1 ∈ D, then there is an x �= 0 such that
a2
1 = 4a0. Thus, λ

2 + a1λ+ a0 = (λ+ a1/2)
2 and −a1/2 ∈ R ∩W (P ).

If R∩W (P ) = {−a1/2}, then W (P ) has only one component and it follows that
−a1/2 ∈ R ∩ S.

If R∩W (P ) is not a singleton and −a1/2 /∈ S, then there is no sequence of nonreal
points in W (P ) converging to −a1/2. It follows that F (A) must lie “outside” D and,
since F (A) is convex, D ∩ F (A) = {a0 + ia1}. But this would imply that W (P ) ⊂ R

and S = ∅, and a contradiction is obtained. Hence −a1/2 ∈ R ∩ S.
(ii) If a real λ0 ∈ S, then, since W (P ) is closed, λ0 ∈ W (P ). Furthermore,

there exists a sequence {λk} of nonreal points in W (P ) converging to λ0 and there
is an x �= 0 such that λ2 + a1λ + a0 = 0. Then there is a corresponding sequence
{a0k+ ia1k} ⊂ F (A), and also in D, such that a0k+ ia1k → a0 + ia1 ∈ D. Since F (A)
is closed, a0 + ia1 ∈ F (A) as well.

4. Eigenvalues on the boundary. Next we investigate the eigenvalues of P (λ)
on ∂W (P ) for monic P (λ). In particular, the eigenvalues of P (λ) on ∂W (P ) are di-
rectly connected with the eigenvalues of A on ∂F (A). This is illustrated in Example 1,
where A has eigenvalues 0.1 and 2.1 on ∂F (A), and there are corresponding eigenval-
ues ±i√0.1 and ±i√2.1 of P (λ) on ∂W (P ).

The next lemma is easily proved (see [MP2]).
Lemma 5. Let y0 ∈ C

n be a common eigenvector of A0 and A1 corresponding to
eigenvalues µ0 and µ1, respectively. Then the zeros of λ

2 + µ1λ+ µ0 are eigenvalues
of P (λ) and y0 is the corresponding eigenvector of P (λ).

Now consider the nonreal part of ∂W (P ).
Theorem 6. Let P (λ) = Iλ2+A1λ+A0 be an n×n monic self-adjoint quadratic

matrix polynomial, let λ0 ∈W (P )\R, and let a0 + ia1 ∈ F (A) such that λ2
0 + a1λ0 +

a0 = 0. Then λ0 is an eigenvalue of P (λ) on ∂W (P ) if and only if a0 + ia1 is an
eigenvalue of matrix A = A0 + iA1 on ∂F (A).

Proof. Assume that λ0 is an eigenvalue of P (λ) on ∂W (P ). By Theorem 1.1 in
[MP1], 0 is an eigenvalue of matrix P (λ0) on the boundary of F (P (λ0)). Consequently,
by Theorem 1.6.6 in [HJ], there exists a unitary matrix V such that

V ∗P (λ0)V = Iλ2
0 + (V ∗A1V )λ0 + V ∗A0V = 0k ⊕ T0,(6)
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where 1 ≤ k ≤ n, 0k is the k×k zero matrix, and T0 is an (n−k)×(n−k) nonsingular
upper triangular matrix (depending on λ0). Thus,

V ∗(Reλ0A1 +A0)V + iV ∗(Imλ0A1)V = 0k ⊕ T0 − Iλ2
0 = 0k ⊕ T0 + I(a1λ0 + a0).

After comparing Hermitian and skew-Hermitian parts, we obtain

V ∗A1V = −2Reλ0Ik ⊕H1 = a1Ik ⊕H1

and

V ∗A0V = |λ0|2Ik ⊕H0 = a0Ik ⊕H0,

where H0 and H1 are (n−k)× (n−k) Hermitian matrices and Ik is the k×k identity
matrix. So, V ∗(A0 + iA1)V = (a0 + ia1)Ik⊕ (H0 + iH1) and a0 + ia1 is an eigenvalue
of matrix A = A0 + iA1. Moreover, by Theorem 3, a0 + ia1 is a boundary point of
F (A).

For the converse, assume that a0+ia1 ∈ ∂F (A) is an eigenvalue ofA corresponding
to the unit eigenvector y0 of A. By Theorem 3, λ0 is a boundary point of W (P ) and
by Theorem 1.6.6 in [HJ], a0+ ia1 is a normal eigenvalue of matrix A. So there exists
a unitary matrix U , with y0 as its first column (Schur’s theorem) such that

U∗AU = (a0 + ia1)⊕ T,

where T is an (n−1)× (n−1) upper triangular matrix. We write H(T ) = (T +T ∗)/2
and S(T ) = (T − T ∗)/(2i), the Hermitian and the skew-Hermitian part of matrix T ,
respectively. Then

U∗A0U + iU∗A1U = a0 ⊕H(T ) + i (a1 ⊕ S(T ))

and, consequently,

U∗A0U = a0 ⊕H(T ) and U∗A1U = a1 ⊕ S(T ).

Hence, A0y0 = a0y0 and A1y0 = a1y0 and, using Lemma 5, λ0 is an eigenvalue of
P (λ).

If a0 + ia1 ∈ σ(A) ∩ ∂F (A) and the equation λ2 + a1λ + a0 = 0 has a real root
λ0, then by the proof of Theorem 6, λ0 is an eigenvalue of P (λ), but it may belong
to the interior of W (P ).

Note that in the previous theorem, the eigenvalues λ0 ∈ σ(P ) ∩ ∂W (P ) and
a0 + ia1 ∈ σ(A) ∩ ∂F (A) have the same eigenvectors, i.e.,

KerP (λ0) ≡ Ker[(a0 + ia1)I −A].

Theorem 7. Let λ0 be a nonreal eigenvalue of P (λ) = Iλ2 + A1λ + A0 on the
boundary of W (P ). Then

(i) λ0 is a semisimple eigenvalue of P (λ),
(ii) λ0 and λ0 have the same eigenspace, and
(iii) if λ1 is an eigenvalue of P (λ), λ1 �= λ0, λ0, then the eigenspaces of λ1 and λ0

are orthogonal, i.e., KerP (λ1) ⊆ KerP (λ0)
⊥.
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Proof. (i), (ii) As in the proof of Theorem 6, there exists a unitary matrix V such
that

V ∗P (λ)V = Iλ2 + (a1Ik ⊕H1)λ+ a0Ik ⊕H0 (1 ≤ k ≤ n).

It is claimed that λ0 does not belong to the spectrum of the (n−k)×(n−k) self-adjoint
matrix polynomial

Q(λ) := Iλ2 +H1λ+H0.

To see this assume, on the contrary, that λ0 ∈ σ(Q). Then λ0 is a boundary point of
the numerical range W (Q) ⊆ W (P ). Applying Theorem 6, it follows that a0 + ia1 ∈
σ(H0 + iH1)∩ ∂F (H0 + iH1), and so a0 + ia1 must be a normal eigenvalue of matrix
H0 + iH1. Thus, there exists an (n− k)× (n− k) unitary matrix W such that

W ∗(H0 + iH1)W = (a0 + ia1)⊕ (S0 + iS1),

where S0 and S1 are (n− k − 1)× (n− k − 1) Hermitian matrices. Hence, with V as
above,

(Ik ⊕W )∗V ∗(A0 + iA1)V (Ik ⊕W ) = (a0 + ia1)Ik+1 ⊕ (S0 + iS1)

and, consequently,

(Ik ⊕W )∗V ∗AjV (Ik ⊕W ) = ajIk+1 ⊕ Sj ; j = 0, 1.

So,

(Ik ⊕W )∗V ∗P (λ0)V (Ik ⊕W ) = 0k+1 ⊕ T1

for an (n− k− 1)× (n− k− 1) matrix T1, which is a contradiction because T0 in (6)
is nonsingular. Thus, a0 + ia1 /∈ σ(H0 + iH1) and λ0 /∈ σ(Q).

Part (i) now follows because λ0 /∈ σ(Q) and

V ∗P (λ)V = (λ2 + a1λ+ a0)Ik ⊕Q(λ).(7)

Thus, λ0 is a nonreal zero of λ2 + a1λ+ a0. Part (ii) also follows from (7) because, in
this representation, λ0 and λ0 have the same eigenvectors.

(iii) Let λ1 be an eigenvalue of P (λ), for which λ1 �= λ0, λ0, with a corresponding
eigenvector y ∈ C

n. Then λ1 ∈ σ(Q) in (7) and

P (λ1)y =
[
V1 V2

] [ (λ2
1 + a1λ1 + a0)Ik 0

0 Q(λ1)

] [
V ∗

1

V ∗
2

]
y = 0,

where V =
[
V1 V2

]
and the image of V1 is the eigenspace of λ0 (which is necessarily

semisimple). Since λ2
1+a1λ1+a0 �= 0, V ∗

1 y = 0, i.e., the eigenspace of λ1 is orthogonal
to that of λ0.

Corollary 8. Let λ1, λ2, . . . , λk be k distinct nonreal eigenvalues of P (λ) (with
positive imaginary parts) on ∂W (P ), and let m1,m2, . . . ,mk be their respective alge-
braic multiplicities. Then there exists a unitary matrix V such that

V ∗P (λ)V = D(λ)⊕Q(λ),

where D(λ) is a matrix polynomial of size m1 +m2 + · · ·+mk of the form

D(λ) = (λ− λ1)(λ− λ1)Im1 ⊕ · · · ⊕ (λ− λk)(λ− λk)Imk
,

and Q(λ) is a monic self-adjoint matrix polynomial such that

σ(Q) = σ(P )\{λ1, λ1, λ2, λ2, . . . , λk, λk}.
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5. Nondifferentiable boundary points. Consider a closed set Ω ⊂ C. A
point ξ ∈ ∂Ω is called a sharp point (or corner) of Ω if there exist a real number r > 0
and angles ϕ1, ϕ2, and ψ0 with 0 ≤ ϕ2 − ϕ1 ≤ ψ0 < π such that

ϕ1 ≤ Arg(z − ξ) ≤ ϕ2

for every z ∈ Ω ∩ S(ξ, r), where S(ξ, r) is the disc center ξ and radius r. The angles
ϕ1, ϕ2 are called the supporting angles for the sharp point ξ. (See Langer, Markus,
and Tretter [LMT]. This definition is equivalent to that appearing in [HJ].)

Let P (λ) = Iλ2+A1λ+A0 be an n×n monic self-adjoint matrix polynomial and
A = A0 + iA1. Sharp points of F (A) are eigenvalues of matrix A on ∂F (A) (see [D]
or [HJ]), and sharp points of W (P ) are eigenvalues of P (λ) on ∂W (P ) (see [MP1]).
Now consider, more generally, the nondifferentiable points of ∂W (P ). Note that since
F (A) is convex, the sharp points of F (A) are the only nondifferentiable points of
∂F (A).

Consider a point a0+ ia1 ∈ ∂F (A) (a0, a1 ∈ R) such that the equation λ2+a1λ+
a0 = 0 has two nonreal roots λ0 and λ0, where

λ0 =
−a1 + i

√
4a0 − a2

1

2
.

Assume also that C ⊂ ∂F (A) is a continuous and rectifiable curve with a0 + ia1 as
an endpoint. For every point µ = a0 + ia1 + reiϕ (r ∈ (0,+∞) and ϕ ∈ [0, 2π]) on C,
close enough to a0 + ia1, the equation

λ2 + (a1 + r sinϕ)λ+ a0 + r cosϕ = 0

has two nonreal roots λµ and λµ, say.
If µ ∈ C converges to a0 + ia1 along C, then r converges to 0 and ϕ converges to

an angle ϕ0 ∈ [0, 2π). Assume that ϕ0 �= 0, π. Then a calculation gives

lim
µ→a0+ia1

tanArg(λµ − λ0) =
−2 cotϕ0 + a1√

4a0 − a2
1

.(8)

First consider nonreal points on ∂W (P ).
Theorem 9. Let P (λ) = Iλ2+A1λ+A0 be an n×n monic self-adjoint quadratic

matrix polynomial, let λ0 ∈ ∂W (P )\R, and let a0+ia1 ∈ ∂F (A) such that λ2
0+a1λ0+

a0 = 0. Then λ0 is a nondifferentiable point of ∂W (P ) if and only if a0 + ia1 is a
sharp point of F (A).

This theorem is illustrated in Example 3, where ±i are sharp points of W (P )
with corresponding sharp point at the point 1 on F (A).

Proof. If we assume that a0 + ia1 is a sharp point of F (A) of zero angle (i.e.,
ϕ1 = ϕ2), then F (A) is a linear segment and a0+ia1 is an endpoint of F (A). Moreover,
F (A) has no interior points and, by Theorem 3, W (P ) also has no interior points.
Since a0 + ia1 is an endpoint of F (A) (by the continuous dependence of the roots
of polynomials on their coefficients), the nonreal roots λ0 and λ0 are endpoints of
W (P )\R, and hence sharp points of ∂W (P ).

Now suppose that a0 + ia1 ∈ ∂F (A) and is not a sharp point of zero angle.
Then there exists a real number r > 0 such that for every b0 + ib1 ∈ S(a0 +
ia1, r) (b0, b1, a0, a1 ∈ R), the equation λ2 + b1λ + b0 = 0 has nonreal roots. Fur-
thermore, the curve ∂F (A)∩ S(a0 + ia1, r) is the union of two curves C1 and C2 such
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that C1∩C2 = {a0+ ia1}. The point a0+ ia1 is either a sharp point or a differentiable
point of C1 ∪ C2.

Case (i). Let a0 + ia1 be a sharp point of C1 ∪ C2, with supporting angles ϕ1 and
ϕ2 such that 0 < ϕ2 − ϕ1 ≤ ψ0 < π. Without lost of generality, we can assume that
C1 and C2 are closed linear segments. It follows from (8) that if ϕ1, ϕ2 �= 0 or π, then

lim
µ1→a0+ia1

tanArg(λ1 − λ0) = −2 cotϕ1 + a1√
4a0 − a2

1

and

lim
µ2→a0+ia1

tanArg(λ2 − λ0) = −2 cotϕ2 + a1√
4a0 − a2

1

,

where µ1 and µ2 are constrained to lie on C1 and C2, respectively, and λ1, λ2 ∈ ∂W (P )
are the nonreal roots of the corresponding quadratic equations. Since 0 < ϕ2 − ϕ1 <
ψ0 ≤ π, we have cotϕ1 �= cotϕ2 and hence∣∣∣∣ lim

µ1→a0+ia1

Arg(λ1 − λ0)− lim
µ2→a0+ia1

Arg(λ2 − λ0)

∣∣∣∣ �= π.

Thus, λ0 is a nondifferentiable point of ∂W [P (λ)].
If one of the angles ϕ1 and ϕ2 is equal to 0 or π, then obviously cotϕ1 �= cotϕ2,

and we have the same conclusion.
Case (ii). Let a0 + ia1 be a differentiable point of ∂F (A) and ϕ0 be the angle

made by the tangent to C1 ∪ C2 at a0 + ia1 with the positive direction along the real
axis.

If ϕ0 �= 0, π, then cotϕ0 = cot(ϕ0 + π) and, consequently, taking limits along C1
and C2,

lim
µ1→a0+ia1

tanArg(λ1 − λ0) = lim
µ2→a0+ia1

tanArg(λ2 − λ0).

Since ϕ0 �= 0 or π,

(Imµ1 − a1)(Imµ2 − a1) < 0⇒ Re(λ1 − λ0)Re(λ2 − λ0) < 0

⇒ lim
µ1→a0+ia1

Arg(λ1 − λ0) �= lim
µ2→a0+ia1

Arg(λ2 − λ0).

So ∣∣∣∣ lim
µ1→a0+ia1

Arg(λ1 − λ0) − lim
µ2→a0+ia1

Arg(λ2 − λ0)

∣∣∣∣ = π,

and λ0 is a differentiable point of ∂W (P ).
If ϕ0 = 0 or π, then

lim
µj→a0+ia1

Arg(λj − λ0) =
π

2
or

3π

2
; j = 1, 2.

Moreover, (Reµ1−a0)(Reµ2−a0) < 0 and (Imµ1−a1)(Imµ2−a1) > 0. Consequently,
Im(λ1 − λ0)Im(λ2 − λ0) < 0. Thus,

lim
µ1→a0+ia1

Arg(λ1 − λ0) �= lim
µ2→a0+ia1

Arg(λ2 − λ0)
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Fig. 4. Nonorthogonal intersection of ∂W (P ) and the real axis.
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Fig. 5. Orthogonal intersection of ∂W (P ) and the real axis.

and λ0 is a differentiable point of ∂W (P ). The proof is complete.
Points of particular interest are the points where ∂W (P )\R intersects the real

axis. The next two examples will be helpful.
Example 4. Take

A1 = i

[
0

√
4 +
√
12

−
√
4 +
√
12 0

]
, A0 =

[
2 1
1 2

]
,

and see Figure 4. Note that F (A) just touches the parabola D and, consequently,
W (P ) ∩ R consists of single points.

Example 5. This is a perturbation of Example 4. Take

A1 =

[
0.05 2.7i
−2.7i 0.05

]
, A0 =

[
2 1
1 2

]
,

and see Figure 5.
The graphs of Figures 2 and 5 illustrate Theorem 10, and Figure 4 illustrates

Theorem 11.
Theorem 10. Let P (λ) = Iλ2 +A1λ+A0 be an n×n monic self-adjoint matrix

polynomial, let λ0 ∈ R ∩ (∂W (P )\R), and let a0 + ia1 ∈ F (A) (a0, a1 ∈ R and A =
A0 + iA1) such that λ

2
0 + a1λ0 + a1 = 0. Assume that the next two conditions hold:

(i) a0 + ia1 is not a differentiable point of ∂F (A) such that its supporting line
has an angle ϕ0 with the real axis for which cotϕ0 = a1/2;
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(ii) F (A) is not a line segment at an angle ϕ0 with the real axis for which cotϕ0 =
a1/2.

Then the curve ∂W (P )\R intersects the real axis orthogonally at λ0.
Proof. Since λ0 ∈ (∂W (P )\R) ∩ R, there exists a sequence

{λk}k∈N ∈ ∂W (P )\R

converging to λ0 such that Imλk > 0 (k ∈ N). The sequence

{|λk|2 − i2Reλk}k∈N

converges to a0 + ia1 and, by Theorem 3, |λk|2 − i2Reλk ∈ ∂F (A) for every k ∈ N.
So a0 + ia1 is a boundary point of F (A). Moreover, λ0 is a double root of equation
λ2 + a1λ+ a0 = 0, i.e., λ0 = −a1/2.

For every k ∈ N, we can write

|λk|2 − i2Reλk = |λk+1|2 − i2Reλk+1 + rke
iϕk ,

where rk > 0 and ϕk ∈ [0, 2π). Then, after some computations, it is found that

limk→+∞ tanArg(λk − λk+1)

= limk→+∞
−4 cosϕk−4 sinϕkReλk+1+rk sin2 ϕk

2 sinϕk

(√
|λk|2−(Reλk)2+

√
|λk+1|2−(Reλk+1)2

) .
If the sequence {ϕk}k∈N ∈ [0, 2π) converges to an angle ϕ0 ∈ (0, 2π)\π such that
cotϕ0 �= −λ0 = a1/2, then

lim
k→+∞

tanArg(λk − λk+1) = ±∞.(9)

Hence, the curve ∂W (P )\R intersects the real axis orthogonally at λ0.
If the sequence {ϕk}k∈N ∈ [0, 2π) converges to 0 or π, then

lim
k→+∞

sinϕk = 0, lim
k→+∞

cosϕk = ±1,

and (9) holds.
Note that if a0 + ia1 is a sharp point of F (A) with supporting angles ϕ1 �= ϕ2,

then cotϕ1 �= a1/2 or cotϕ2 �= a1/2, and the proof is complete.
If a point λ0 ∈ R ∩ (∂W (P )\R) is an isolated point of W (P ) ∩ R, then it follows

from Theorem 10.15 of [GLR] that λ0 is an eigenvalue of P (λ). The next result holds
for special points of this kind and casts some light on the exceptional cases of the
preceding theorem.

Theorem 11. Let P (λ) be a matrix polynomial as in Theorem 10, let λ0 ∈
R ∩ (∂W (P )\R), and let a0 + ia1 ∈ ∂F (A) (a0, a1 ∈ R and A = A0 + iA1) such
that λ2

0 + a1λ0 + a0 = 0. If λ0 is an isolated point of W (P ) ∩ R and a0 + ia1 is a
differentiable point of ∂F (A) such that its supporting line has an angle ϕ0 with the
real axis, then cotϕ0 = a1/2.

Proof. Consider the parabola D = {u + iv ∈ C : u, v ∈ R, v2 = 4u}. Then
v2 − 4u < 0 if and only if u + iv lies “inside” the parabola D. Observe that our
hypotheses imply that (∂W (P )\R) is not empty. Consequently, there must be nonreal
points in W (P ).
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Obviously, λ0 ∈ ∂W (P )∩D. Since λ0 is an isolated point of W (P )∩R and there
are nonreal points in W (P ), there exists a real r > 0 such that

[∂F (A) ∩ S(a0 + ia1, r)]\{a0 + ia1}

lies “inside” parabola D. Moreover, a0 + ia1 is a differentiable point of ∂F (A) and,
consequently, the curves D and ∂F (A) have a common supporting line at the point
a0 + ia1. If a0 and a1 are nonzero, then sinϕ0 and cosϕ0 are also nonzero and

tanϕ0 cotϕ0 = 1⇒ cotϕ0 = ±a1/2.

Furthermore, cotϕ0 > 0 if and only if a1 > 0. Thus, cotϕ0 = a1/2.
Finally, if a0 = a1 = 0, then ϕ0 = π/2 and cotϕ0 = a1/2 = 0.

6. Eigenvalue types. Let P (λ) = Iλ2+A1λ+A0 be an n×n monic self-adjoint
matrix polynomial and let its numerical range be W (P ) as in (2). A real eigenvalue
λ0 ∈ σ(P ) is said to have positive (negative) type if x∗P ′(λ0)x > 0 (x∗P ′(λ0)x < 0)
for all nonzero x ∈ KerP (λ0). Eigenvalues of either positive or negative type are
said to have definite type and are necessarily semisimple. Real eigenvalues of P (λ)
which are not of definite type are said to be of mixed type. It is easy to verify that
if λ0 ∈ σ(P ) ∩ R is of mixed type, then there exists a nonzero vector x0 ∈ KerP (λ0)
such that x∗

0P
′(λ0)x0 = 0.

With this notation, P (λ) is said to be hyperbolic if, for all nonzero x, x∗P (λ)x = 0
has two distinct real roots. In particular, W (P ) ⊂ R. This class is well understood
(see the monograph of Markus [M], for example) and all the eigenvalues are known to
have definite type. However, the class of polynomials P (λ) with all eigenvalues real
and of definite type is wider, and, in general, we do not have the inclusion W (P ) ⊂ R.
Such polynomials are said to be quasi-hyperbolic. For example, if all eigenvalues are
real and distinct, then they are necessarily definite and the system is quasi-hyperbolic.
This notion was introduced in [L1] (see also [LMM]), and a sufficient condition for
P (λ) to be quasi-hyperbolic can be formulated in terms of W (P ).

First recall the decomposition of (5) and assume that S �= ∅.
Proposition 12. If λ0 is an eigenvalue of P (λ) in W (P )\S, then λ0 has definite

type.
Proof. If λ0 is not of definite type, there exists a nonzero x ∈ C

n such that
x∗P ′(λ0)x = 0. This implies that x∗P (λ0)x = 0 has a double root and, hence, that
a1 + ia0 ∈ D ∩ F (A). It follows from Proposition 4 that λ0 = −a1/2 ∈ R ∩ S, and
this contradicts the disjointness of the union in (5).

Corollary 13. If all eigenvalues of P (λ) are real and those in S have definite
type, then P (λ) is quasi-hyperbolic.

Finally, we estimate the length of Jordan chains corresponding to eigenvalues of
P (λ) on the boundary of W (P ).

Theorem 14. Let P (λ) = Iλ2+A1λ+A0 be an n×n monic self-adjoint matrix
polynomial and let λ0 be an eigenvalue of P (λ) on ∂W (P ).

(i) If λ0 is not real or λ0 ∈W (P )\S, then λ0 is a semisimple eigenvalue of P (λ).
(ii) If λ0 ∈ R∩ ∂W (P )\R and it satisfies the conditions of Theorem 10, then the

length of the corresponding Jordan chains is not greater than 2.
Proof. (i) See Theorem 7 and Proposition 12.
(ii) Obviously, there exists a cone

L = {z ∈ C : ϕ1 ≤ Arg(z − λ0) ≤ ϕ2, 0 < ϕ2 − ϕ1 ≤ ψ0 < π}
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and a real number r > 0 such that

L ∩ S(λ0, r) ∩W (P ) = {λ0}.
Thus, the result follows from Theorem 2 in [MM].

7. Damped vibrating systems. This section consists of some remarks putting
this discussion in the context of known results for damped vibrating systems (from
Chapter 13 of [GLR], for example).

For our purposes, a “damped vibrating system” means a matrix polynomial of
the form (1) with A2 > 0, A1 ≥ 0, and A0 ≥ 0. Without loss of generality, P (λ) may
be assumed to be monic. Thus, in this section P (λ) = Iλ2 + A1λ + A0 with A1 ≥ 0
and A0 ≥ 0. It is easily seen that, for matrix polynomials of this kind, the spectrum
is always in the closed left half of the complex plane. Similarly, the numerical range,
W (P ) is also in the closed left half plane.

A damped vibrating system is said to be weakly damped if, for all nonzero x ∈ C
n,

(x∗A1x)
2 < 4(x∗x)(x∗A0x).(10)

Clearly, this is just the case in which F (A) lies “inside” the parabola D of section 3.
Furthermore, W (P ) has two components, one in the upper half plane, and the other
its reflection in the lower half plane. Of course, there are no real eigenvalues. Recall
that there is a factorization

P (λ) = (Iλ− Z∗)(Iλ− Z),

with the spectrum of Z (of Z∗) inside one of the components of W (P ). It follows that
for λ ∈ R, P (λ) > 0.

Note also that for a weakly damped system P (λ), all principal subsystems (i.e.,
determined by a principal submatrix of P (λ)) are also weakly damped. This is simply
because, for a principal subsystem, (10) is required to hold on a subset of nonzero
vectors of C

n. Thus the numerical range of a principal subsystem is a subset of W (P ).
A damped vibrating system is said to be overdamped if the inequality above is

reversed. Then F (A) lies “outside” the parabola D and P (λ) is hyperbolic. Hence,
W (P ) ⊂ R and all eigenvalues are real. In this case, a factorization

P (λ) = (Iλ− Y )(Iλ− Z)

is possible with all eigenvalues of Z strictly greater than all those of Y . (More gen-
erally, a self-adjoint polynomial of the form (1) can always be written as a product
of linear factors, but the separation of eigenvalues of P (λ) between the two factors
may be complicated (see Chapter 11 of [GLR]).) Note also that overdamped systems
are strongly stable in the sense that all neighboring systems, with the same symme-
tries, are also overdamped. Finally, observe that principal subsystems of overdamped
systems are also overdamped so that their numerical ranges are also nested.

Frequently, systems are neither weakly damped nor overdamped. Example 6 is
of this kind.

Example 6. Take

A1 =




6 1 1 0 0 0
1 5 2 1 0 0
1 2 3 2 1 1
0 1 2 2 1 0
0 0 1 1 1 0
0 0 1 0 0 2



, A0 =




2 0 0 0 0 0
0 2 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 2 0
0 0 0 0 0 3



.
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Fig. 6. A damped vibrating system.

It can be shown that A1 > 0. F (A) and W (P ) are sketched in Figure 6.

A convenient assumption often made in applications is known as proportional
damping. After reduction to the case A2 = I, this simply means that A1 is a real
linear combination of I and A0. In this case, F (A) is just a linear segment and W (P )
is made up of segments of the real axis and/or nonreal arcs.

More generally, if it is assumed that A1 and A0 can be simultaneously diagonalized
with a unitary similarity, then A = A1 + iA0 is a normal matrix and F (A) is a
(possibly degenerate) polygon. The hypotheses are now equivalent to assuming that
P (λ) = A2λ

2 + A1λ + A0 can be transformed to a diagonal matrix polynomial by
congruence.

Finally, if the condition A0 ≥ 0 is relaxed to admit any Hermitian A0, then it is
easy to see that any eigenvalue of P (λ) in the open right half plane is necessarily real
and of definite type. First, it is clear that any nonreal point of W (P ) must be in the
closed left half plane, and it only remains to apply Proposition 12. It is also true that
the number of eigenvalues in the open right half plane is just the number of negative
eigenvalues of A0. (Results of this kind are known in more general settings; see [AP]
and references there, for example.)

8. Systems with variable damping. In the paper [GLR2] a study has been
made of parameter-dependent systems of the form

Ps(λ) = Iλ2 + sA1λ+A0, s > 0.

In particular, when A1 > 0, the transition from a weakly to a strongly damped
system as s increases was considered. The s-dependent numerical range provides
an interesting view of this process. There is a family of associate matrices A(s) =
A0 + isA1 and, clearly, s1 > s2 implies that F (A(s1)) lies “higher” than F (A(s2)).
Now F (A(s)) is always contained in a vertical strip with boundaries defined by the
extreme eigenvalues of A0. As s increases F (A(s)) moves “upward” (and also changes
shape).

It was shown by example in [GLR2] that the number of real eigenvalues of Ps(λ)
does not necessarily increase with s. Thus, the curves λ(s) in the complex λ-plane
have preimages in the plane of F (A(s)) which may cross the curve D more than once.

In contrast, it is shown in [FGK] that, as s increases, once the first real eigenvalue
occurs, say at s = s0 (so that F (A(s0)) ∩ D �= ∅), then there is at least one real
eigenvalue for all s > s0.



630 PETER LANCASTER AND PANAYIOTIS PSARRAKOS

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

x 10
4

-600

-400

-200

0

200

400

600

                     REAL    AXIS                      ( NUMERICAL  RANGE  F(A) )

IM
A

G
IN

A
R

Y
   

 A
X

IS

-300 -200 -100 0 100 200 300

-300

-200

-100

0

100

200

300

IM
A

G
IN

A
R

Y
   

 A
X

IS

                     REAL    AXIS                      ( NUMERICAL  RANGE  W(P) )

Fig. 7. A gyroscopic system.

9. Gyroscopic systems. As with damped systems, a gyroscopic system is, for
us, a quadratic matrix function. Physical models first lead to consideration of a
function of the form

Q(µ) = Mµ2 +Gµ+K,(11)

where M,G, and K are real n× n matrices and

M > 0, GT = −G, KT = K.

As usual, the reduction to the case M = I is straightforward. To include these
systems in our notations, introduce a new eigenvalue parameter λ = iµ and the
matrix polynomial

P (λ) = Iλ2 + iGλ−K =: Iλ2 +A1λ+A0.

Because (iG)∗ = iG, P (λ) is a self-adjoint matrix polynomial, and our ideas can be
applied to this formulation. It is well known that σ(Q), and hence σ(P ), has Hamil-
tonian symmetry, i.e., eigenvalues are distributed in the complex plane symmetrically
with respect to both the real and imaginary axes. It is easily seen that W (P ) enjoys
this same symmetry. Notice that Examples 1–4 are all gyroscopic systems.

Under the conditions of Corollary 13 (in particular, when σ(P ) ⊂ W (P )\S) all
the eigenvalues of P (λ) are definite and the system (11) is strongly stable (see [L2], for
example). In Example 4, all the eigenvalues are real, but the system is not strongly
stable. As in Example 5, there are perturbations which produce nonreal eigenvalues.

Example 7. An eight-degrees-of-freedom modal approximation to a mechanical
system (see [Mr]) yields the coefficient matrices

M =

[
M1 0
0 M1

]
, G =

[
0 −G1

G1 0

]
, K =

[
K1 0
0 K1

]
,

where M1 = diag[0.2 0.8 0.2 1/9], G1 = 150diag[0.4 1.6 0.4 7/36], and

K1 =



−2800 −1200 0 −1200
−1200 −15600 −1200 0

0 −1200 −2800 1200
−1200 0 1200 561.48


 .

Since the eigenvalues are real and distinct (see Figure 7), the system is quasi-
hyperbolic (see also Corollary 13), although this cannot be deduced directly from
properties of W (P ) itself.
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Abstract. This paper treats a set of equations of the form X +A�F(X)A = Q, where F maps
positive definite matrices either into positive definite matrices or into negative definite matrices, and
satisfies some monotonicity property. Here A is arbitrary and Q is a positive definite matrix. It is
shown that under some conditions an iteration method converges to a positive definite solution. An
estimate for the rate of convergence is given under additional conditions, and some numerical results
are given. Special cases are considered, which cover also particular cases of the discrete algebraic
Riccati equation.

Key words. matrix equation, iteration methods, operator monotone functions, hermitian pos-
itive definite matrices
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1. Introduction. Let P(n) denote the set of n×n positive semidefinite matrices.
We consider the following class of nonlinear matrix equations

X +A�F(X)A = Q,(1.1)

where F(·) : P(n) → P(n) is either monotone (meaning that 0 ≤ X ≤ Y implies
that F(X) ≤ F(Y )) or antimonotone (meaning that 0 ≤ X ≤ Y implies that
F(X) ≥ F(Y )). In particular, we shall be interested in the case where F(X) is gener-
ated by a function from [0,∞) to [0,∞) which is either operator monotone or operator
antimonotone. For example, F(x) = xr is operator monotone for 0 < r ≤ 1, while
F(x) = x−1 is operator antimonotone (see, e.g., [2], where a thorough study of opera-
tor monotone functions is presented). Also, in (1.1) A is an arbitrary n×nmatrix, and
Q and X are in P(n). We also shall consider the case where F(·) : P(n) → −P(n)
and is antimonotone.

In the case where F is monotone we shall often assume that F , A, and Q satisfy
the additional requirement that

A�F(Q)A < Q.(1.2)

This type of nonlinear matrix equation often arises in the analysis of ladder networks,
dynamic programming, control theory, stochastic filtering, statistics and in many
applications [1].

Several authors [1, 3, 4, 5, 12, 13, 17, 16] have considered such a nonlinear ma-
trix equation problem. Compare also [15], where a different type of nonlinear matrix
equation was studied. Anderson, Morley, and Trapp [1] discussed the existence of
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the positive solution to the matrix equation (1.1) when F(X) = X−1 and with the
right-hand side being an arbitrary matrix, while Engwerda, Ran, and Rijkeboer [3]
established and proved theorems for the necessary and sufficient conditions of exis-
tence of a positive definite solution of the matrix equation as in [1]. They discussed
both the real and complex cases and established recursive algorithms to compute the
largest and smallest solutions of the equation. Also Engwerda [4] proved the existence
of the positive definite solution of the real matrix equation (1.1) when the right-hand
side is the identity matrix, and he also found an algorithm to calculate the solution.
In [12] the first author obtained necessary and sufficient conditions for existence of
a positive definite solution of the matrix equation (1.1) with several forms of F(·),
without any conditions on the equation. In [8] some properties of a positive definite
solution of the equation for F(X) = X−2 and with A normal were investigated. In
[17, 16] several numerical algorithms for finding solutions for the case F(X) = X−1

were proposed.

The goal of this paper is to discuss the matrix equation (1.1), with general function
F(X) which is either monotone or antimonotone. Closely connected to this equation
is the map G(X) = Q − A�F(X)A. We shall also be interested in the dynamics
of the map G. We use iterative methods to obtain numerically a solution of the
nonlinear matrix equation (1.1) under some additional conditions. In the case where
F : [0,∞) → [0,∞) is operator monotone Banach’s fixed point theorem is a basic
theorem to establish the existence of a positive definite solution and to obtain the
rate of convergence for the sequence which is generated by an iteration method. Some
numerical examples are given. For antimonotone functions a different method for
proving necessary and sufficient conditions for existence of a positive definite solution
is given.

The paper is organized as follows. In section 2, we discuss the monotone case.
Some properties of G are studied. Under some conditions on F we obtain the rate of
convergence of the iterative sequence of approximate solutions and a stopping crite-
rion. Section 3 discusses the antimonotone case. Section 4 illustrates the performance
of the method with some numerical examples and contains some remarks on the ma-
trix equation (1.1) and on the results in the preceding sections. Section 5 discusses
the equation (1.1) for maps F that map positive definite matrices into negative defi-
nite matrices and are antimonotone. An application to the discrete algebraic Riccati
equation is given.

The following notations are used throughout the rest of the paper. The notation
A ≥ 0 (A > 0) means that A is positive semidefinite (positive definite), A� denotes
the complex conjugate transpose of A, and I is the identity matrix. Moreover, A ≥ B
(A > B) is used as a different notation for A − B ≥ 0 (A − B > 0). This induces a
partial ordering on the hermitian matrices. When we say that a hermitian matrix is
the smallest (largest) in some set, then this is always meant with respect to the partial
ordering induced in this way. We denote by ρ the largest eigenvalue of A�A. The
norm used in this paper is the spectral norm of the matrix A, i.e., ‖ A ‖=√ρ(AA�),
unless otherwise noted.

Associated to (1.1) is the map G defined by G(X) = Q − A�F(X)A, which will
play an important role in our analysis. Observe that a solution of (1.1) is a fixed point
of G. By G2(X) we denote G(G(X)), and by Gj(X) the jth iterate of G on X.

2. The monotone case. We start with some preliminary results. We will estab-
lish and prove some theorems concerning the dynamics of G first. Then we shall apply
Banach’s fixed point theorem to obtain a positive definite solution of (1.1) under some
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restrictions on the map F . Also we obtain some relations between the eigenvalues of
the solution of (1.1) and the eigenvalues of the matrix A.

Lemma 2.1. Let F be monotone on P(n). Assume (1.2) holds. If X is a positive
semidefinite solution of (1.1), then

Q ≥ X ≥ Q−A�F(Q)A = G(Q).(2.1)

In particular, X is positive definite.
Proof. From the matrix equation (1.1), we get immediately 0 ≤ X ≤ Q and

A�F(X)A ≤ Q. Since X is a positive semidefinite solution of (1.1), by the monotonic-
ity of F we have that F(X) ≤ F(Q). Therefore, 0 < Q−A�F(Q)A ≤ Q−A�F(X)A =
X.

First we show that condition (1.2) implies the existence of a fixed point of G2,
and so implies either a periodic orbit of period 2 of the map G or a fixed point of G,
and gives information concerning the location of periodic orbits and, in particular, of
fixed points of G.

Theorem 2.2. If F is monotone on P(n) and (1.2) holds, then the following
hold true.

(i) For any positive definite matrix X for which G(X) is positive definite we have
G(Q) ≤ G2(X) ≤ Q, and the set {X = X� | G(Q) ≤ X ≤ Q} is mapped into
itself by G.

(ii) There always exists either a periodic orbit of period 2 of the map G or a
fixed point of G. The sequence of matrices {G(2j)(Q)}∞j=0 is a decreasing
sequence of positive definite matrices converging to a positive definite matrix
X∞, and the sequence of matrices {G(2j+1)(Q)}∞j=0 is an increasing sequence
of positive definite matrices converging to a positive definite matrix X−∞,
and the matrices X∞, X−∞ form either a periodic orbit of G of period 2, or
X∞ = X−∞, in which case it is a fixed point of G, and hence a solution of
(1.1).

(iii) Moreover, G maps the set {X = X� | X−∞ ≤ X ≤ X∞} into itself, and
any periodic orbit of G is contained in this set. In particular, any solution of
(1.1) is in between X−∞ and X∞, and if X−∞ = X∞, then there is a unique
positive definite solution.

(iv) In the case where X−∞ = X∞ this matrix is the global attractor for the map G
in the following sense: for any positive definite X for which G(X) is positive
definite as well, we have limj→∞ Gj(X) = X∞.

(v) In the case where X−∞ �= X∞ the following holds: if X ≤ X−∞, then the
orbit of X under G converges to the periodic orbit X−∞, X∞ in the sense
that limj→∞ G2j−1(X) = X∞, and limj→∞ G2j(X) = X−∞. If X ≥ X∞
and G(X) is positive definite, then the orbit of X under G converges to the
periodic orbit X−∞, X∞ in the sense that limj→∞ G2j−1(X) = X−∞, and
limj→∞ G2j(X) = X∞.

Proof. Observe that the set [Q − A�F(Q)A, Q] := {X = X�|Q − A�F(Q)A ≤
X ≤ Q} is a compact and hence complete metric space. Put G(X) = Q−A�F(X)A.
We observe that G maps the set [Q−A�F(Q)A, Q] = [G(Q), Q] into itself.

Indeed, let Y be a hermitian matrix in [Q−A�F(Q)A, Q], i.e.,

Q−A�F(Q)A ≤ Y ≤ Q;

then F(Y ) ≤ F(Q) by the monotonicity, so

G(Y ) = Q−A�F(Y )A ≥ Q−A�F(Q)A,
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and as F(Y ) ≥ 0, we have

G(Y ) = Q−A�F(Y )A ≤ Q.

That is,

Q−A�F(Q)A ≤ G(Y ) ≤ Q.

Next we show that G is antimonotone on the set [G(Q), Q], so on this set G2 is
monotone. Indeed, it is easily seen that X ≤ Y implies that

G(X)− G(Y ) = A�(F(Y )−F(X))A ≥ 0,

so G is antimonotone. It follows that G2 is monotone. Now let X be any positive
definite matrix. Then clearly G(X) ≤ Q. As G is antimonotone, this implies that
G(Q) ≤ G2(X) ≤ Q.

Also, for all j we have that G(Q) ≤ Gj(Q) ≤ Q. Taking j = 2 first, we see that
G2(Q) ≤ Q. Then applying G2 repeatedly, we see that the monotonicity of G2 on
this set implies that the sequence {G(2j)(Q)}∞j=0 is a decreasing sequence of positive
definite matrices that is bounded below by the positive definite matrix G(Q). Hence
it converges to a positive definite matrix X∞, which is a fixed point of G2. Hence
X∞,G(X∞) is a periodic orbit of G of period 2 or a fixed point.

Next take j = 3; then we see that G(Q) ≤ G3(Q). Again, applying G2 re-
peatedly, the monotonicity of G2 on [G(Q), Q] implies that the sequence of matri-
ces {G(2j+1)(Q)}∞j=0 is an increasing sequence of positive definite matrices which is
bounded above by Q. Hence this sequence has a limit X−∞, which is a fixed point of
G2. Hence X−∞,G(X−∞) is a periodic orbit of G of period 2 or a fixed point.

Now we shall show that G maps the set [X−∞, X∞] into itself. First observe
that G(Q) ≤ X∞, and thus, applying G2 repeatedly, we see that G(2j+1)(Q) ≤ X∞
for all j. It follows that X−∞ ≤ X∞. Let X−∞ ≤ X ≤ X∞. Then for all j
we have G(2j+1)(Q) ≤ X ≤ G(2j)(Q). Applying G and using the fact that G is
antimonotone, we see that G(2j+1)(Q) ≤ G(X) ≤ G(2j+2)(Q). Letting j → ∞ we see
that X−∞ ≤ G(X) ≤ X∞.

To show that G(X∞) = X−∞, observe that X−∞ ≤ G(X±∞) ≤ X∞. Now apply
G to this to get G(X∞) ≤ G2(X−∞) = X−∞. So, G(X∞) = X−∞ and G(X−∞) = X∞.

Next, let {Xj}pj=1 be a periodic orbit of G of period p. Thus Xj is a fixed point of

Gp. Obviously, by part (i) we have G(Q) ≤ Xj ≤ Q. Observe that G2p is monotonic.
Applying G2p repeatedly, we readily see that G2kp+1(Q) ≤ Xj ≤ G2kp(Q) for all
k = 0, 1, . . . . Hence, letting k →∞, we see that X−∞ ≤ Xj ≤ X∞.

Finally, we shall prove (iv) and (v). Take a positive matrix X such that G(X) is
positive definite as well. Recall that G(Q) ≤ G2(X) ≤ Q. From the antimonotonicity
of G we get that G(Q) ≤ G3(X) ≤ G2(Q). As G2 is monotone we deduce from these
inequalities that

G(2j−1)(Q) ≤ G2j(X) ≤ G(2j−2)(Q),

G(2j−1)(Q) ≤ G(2j+1)(X) ≤ G2j(Q).

It follows that if X−∞ = X∞, then Gj(X) converges to X∞ as well.
In a similar way, if X ≤ X−∞, then G(X) ≥ G(X∞) = X∞. (In particular, for

such X we have that G(X) is positive definite.) Then it follows that G(Q) ≤ G2(X) ≤
X−∞. Now use the fact that G2 is monotone to see that G2j+1(Q) ≤ G2j+2 ≤ X−∞.
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As the left-hand side in these inequalities converges to X−∞ we see that G2j(X)
converges to X−∞, and hence G2j−1(X) converges to G(X−∞) = X∞.

Likewise, ifX ≥ X∞ and G(X) is positive definite, then one uses the monotonicity
of G2 and the first part of the theorem to see that X∞ ≤ G2(X) ≤ Q. Then, again
using the monotonicity of G2 we get that X∞ ≤ G2j+2(X) ≤ G2j(Q). As the right-
hand side converges to X∞ this proves that G2j(X) converges to X∞, and hence also
G2j+1(X) converges to X−∞.

Example 2.1. As an example consider the case F(X) = X, that is, consider the
equation

X +A�XA = Q.(2.2)

The condition G(Q) > 0 now gives Q−A�QA > 0. From [9, Theorem 13.2.1], we see
that Q being positive definite implies that A is stable with respect to the unit circle.
Now consider the periodic points of G with period 2. They are fixed points of the
equation G2(X) = X, which becomes

X = Q−A�(Q−A�XA)A = G(Q) +A2�XA2.

This is a standard Stein equation, and by the same theorem in [9], this has a unique
solution. It follows that in the notation of the previous theorem, X−∞ = X∞ is a
fixed point of G, and it is the unique positive definite solution to (2.2).

That the condition G(Q) > 0 is necessary here can be seen by considering A =
( 1
0

1
−1 ). In that case A2 = I2. Taking Q = ( 2

1
1
2 ), we get G(Q) = 0. This implies

that every positive definite matrix is a solution of G2(X) = X; however, one easily
computes that a positive definite X solves (2.2) for this case if and only if X =
( 1
x̄

x
1
2+Re x ), with |x− 1

2 | < 1
2

√
3.

Example 2.2. A simple example shows that the conditions of Theorem 2.2 are
not sufficient to guarantee existence of a solution of (1.1). Indeed, take n = 1, so
that we are in the scalar case, and take Q = 4, A = 1 and F(x) = 2 for x ≤ 1 1

2 and
F(x) = 3 for x > 1 1

2 . Clearly there is no solution to (1.1), and a periodic orbit of G
is given by 1, 2.

Also, in the scalar case it is easily seen that there can be no periodic orbits of
period larger than 2. To see this, one uses the fact that the real numbers are totally
ordered. Indeed, let x1 ≤ x2 ≤ · · · ≤ xp be the numbers in a periodic orbit of G,
arranged in increasing order. Since G is antimonotone we get G(xp) ≤ · · · ≤ G(x1).
But since this is a periodic orbit, these must be the same numbers as x1, . . . , xp. Thus
G(x1) = xp and G(xp) = x1. So, x1, xp form a periodic orbit of period 2.

In order for a fixed point to exist, we need an additional assumption of F , and it
is natural to assume that F is continuous. It turns out that in this case existence of
a fixed point is guaranteed.

Theorem 2.3. If F is monotone and continuous on P(n) and if (1.2) holds, then
there exists a solution to (1.1).

Proof. As we have seen, the set [G(Q), Q] is compact in the set of all n×nmatrices.
It is easily seen to be convex as well; that is, if X and Y are in between G(Q) and Q,
then so is tX +(1− t)Y for 0 ≤ t ≤ 1. Indeed, tX− tG(Q) and (1− t)Y − (1− t)G(Q)
are positive semidefinite, and as the set of positive semidefinite matrices is a cone,
their sum is positive semidefinite as well. So tX + (1− t)Y −G(Q) ≥ 0. Likewise one
shows that Q− tX − (1− t)Y ≥ 0.

Under the condition (1.2) G maps this compact convex subset of the Banach space
of n× n matrices into itself. Since F is continuous, so is G, and hence we can apply
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the Schauder fixed point theorem (see, e.g., [7], section 106), to see that a fixed point
of G must exist.

In the scalar case if F is continuous, then it is easily seen that there is a unique
fixed point of G, but it is not necessarily obtained as the limit of the sequence Gj(Q).
In order for this to hold we need something additional.

In the next theorem, existence and uniqueness of a solution of (1.1) is proven,
and the rate of convergence of the sequence {Gj(Q)}∞j=0 is studied under an additional
condition. To do this we will use Banach’s fixed point theorem. Recall that a function
F : [0,∞)→ [0,∞) is called operator monotone if for any n and any pair of hermitian
n × n matrices A and B with A ≤ B we have F(A) ≤ F(B). See [2] for a detailed
study and a complete characterization of such functions. Observe in particular that
an operator monotone map is differentiable [2, Theorem V.3.6].

Theorem 2.4. Let F : [0,∞) → [0,∞) be operator monotone. Let α be the
smallest eigenvalue of Q − A�F(Q)A and assume that the condition (1.2) holds. If
q := ‖A‖2F ′(α) < 1, then (1.1) has a unique positive solution X∞ and the iteration
Xn+1 = Q−A� F(Xn) A, started at X0 = Q, converges to X∞ with

‖Xj+1 −Xj‖ ≤ q ‖Xj −Xj−1‖.(2.3)

Moreover, there are no periodic orbits of G, and the iteration process converges to X∞
from any positive definite X0 for which Q−A�F(X0)A is positive definite.

Proof. Observe that the set [Q − A�F(Q)A, Q] = [G(Q), Q] is a compact and
hence complete metric space and that G maps this set into itself. We shall prove that
the operator G is a strict contraction on the set [Q−A�F(Q)A, Q]. For this purpose,
let X and Y be in [Q−A�F(Q)A, Q]. Then

‖G(X)− G(Y )‖ = ‖A� (F(X)−F(Y ))A‖ ≤ ‖A‖2‖F(X)−F(Y )‖.(2.4)

Since X and Y both are greater than or equal to Q−A�F(Q)A > 0, we have

X ≥ αI and Y ≥ αI (α > 0).

(Recall that α is the smallest eigenvalue of Q − A�F(Q)A, which is positive by as-
sumption.) So we have by Theorem X.3.8 in [2] that

‖F(X)−F(Y )‖ ≤ F ′(α)‖X − Y ‖.(2.5)

By combining the two inequalities (2.4) and (2.5), we get

‖G(X)− G(Y )‖ ≤ ‖A‖2 F ′(α)‖X − Y ‖ = q ‖X − Y ‖.(2.6)

Since q < 1 by assumption, we can apply Banach’s fixed point theorem; hence (1.1)
has a unique positive solution X∞ in [Q − A�F(Q)A, Q]. By Lemma 5.5 it follows
that X∞ is the unique positive definite solution. Moreover, the sequence of successive
approximations

Xj+1 = Q−A� F(Xj) A = G(Xj), j = 0, 1, 2, . . . ,

started at X0 = Q, i.e., Xj = Gj(Q), converges to X∞.
As X−∞ = X∞ there can be no periodic orbits of G, and the convergence of

Gj(X0) to X∞ for any X0 for which G(X0) is positive definite follows from Theo-
rem 2.2. This completes the proof of the theorem.
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Corollary 2.5. If all assumptions in the above theorem are satisfied and X0 =
Q, then

‖Xj+1 −Xj‖ ≤ qj ‖X1 −X0‖ = qj‖A�F(Q)A‖.(2.7)

It follows from this that if q < 1 we have the following error bound:

‖X∞ −Xj‖ ≤ qj‖A�F(Q)A‖.
Indeed, recall that X∞ is always between two consecutive elements of the sequence
{Gj(Q)}∞j=0.

The next corollary describes the number of iterations to be taken to ensure that
‖X∞ −Xj‖ ≤ ε.

Corollary 2.6. If ε is a convergence tolerance and X0 = Q, then the number
n of iterations to be taken is at most

n =

[
ln ε− ln ‖A�F(Q) A‖

ln q

]
+ 1.

In the theory of Stein equations, i.e., equations of the form X−A�XA = Q, with
Q > 0, there are well-known results relating the eigenvalues of A andX. The following
theorem may be viewed as an analogue of these results for the type of equations under
consideration in this section.

Theorem 2.7. Let F : [0,∞) → [0,∞) be operator monotone. Let X be a
positive definite solution of (1.1), and denote by µ+ and µ− the largest and smallest
eigenvalue of X, respectively. Also, denote by q+ and q− the largest and smallest
eigenvalue of Q−X, respectively. If λ is an eigenvalue of A, then√

q−
F(µ+)

≤ |λ| ≤
√

q+
F(µ−)

.

In the particular case where Q = I, then√
1− µ+

F(µ+)
≤ |λ| ≤

√
1− µ−
F(µ−)

.

Proof. Let v be an eigenvector corresponding to an eigenvalue λ of the matrix A
and ‖v‖ = 1. Then, with the usual scalar product denoted by 〈·, ·〉, we have

〈Xv, v〉+ 〈A�F(X)Av, v〉 = 〈Qv, v〉.
So

|λ|2〈F(X)v, v〉 = 〈(Q−X)v, v〉.
Now Q −X is positive definite and q−I ≤ Q −X ≤ q+I, and the largest eigenvalue
of F(X) is F(µ+), so

|λ|2F(µ+) ≥ q−.
Likewise, as the smallest eigenvalue of F(X) is F(µ−), we have that

|λ|2F(µ−) ≤ q+.
In the case where Q = I, simply observe that q− = 1−µ+ and q+ = 1−µ−.
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3. The antimonotone case. In this section F is assumed to be antimonotone.
First, we show that this implies that G, defined by G(X) = Q− A�F(X)A, is mono-
tone. Indeed, let 0 < X ≤ Y . Then

G(Y )− G(X) = A�(F(X)−F(Y ))A,

and as F is antimonotone, the latter is positive semidefinite. So G(X) ≤ G(Y ). Next
we present necessary and sufficient conditions for the existence of a positive definite
solution.

Theorem 3.1. Let F be antimonotone on P(n). There is a positive definite
solution to (1.1) if and only if the sequence of matrices {Gj(Q)}∞j=0 is positive definite

for all j, and the sequence {(Gj(Q))−1}∞j=0 is uniformly bounded.

In this case the sequence {Gj(Q)}∞j=0 is decreasing and converges to the largest
positive definite solution of (1.1).

Proof. Suppose that X0 is an arbitrary positive definite solution of (1.1). Clearly
X0 ≤ Q. As G is monotone it follows that Gj(Q) ≥ X0 for all j. Thus Gj(Q) is
positive definite for all j. As Q − A�F(Q)A = G(Q) ≤ Q and G is monotone we see
that the sequence {Gj(Q)}∞j=0 is a decreasing sequence. As this sequence is bounded
below by X0 it converges to a positive definite solution of (1.1), which we denote
by X∞. Observe that it may be the case that X0 �= X∞, but certainly X∞ ≥ X0.
This also proves that X∞ is the largest positive definite solution. Then (Gj(Q))−1

converges to X−1
∞ and hence is uniformly bounded.

Conversely, assume that {Gj(Q)}∞j=0 is positive definite for all j, and the se-

quence {(Gj(Q))−1}∞j=0 is uniformly bounded. We have already seen that the sequence

{Gj(Q)}∞j=0 is decreasing. As each element in the sequence is positive definite, it is
also bounded below (by the zero matrix). Thus there exists a limit, again denoted by
X∞, which is positive semidefinite. We only have to show that X∞ is invertible, as
it then will follow that X∞ solves (1.1). Since {Gj(Q)}∞j=0 is a decreasing sequence

of positive definite matrices it follows that {(Gj(Q))−1}∞j=0 is an increasing sequence
of positive definite matrices. As this sequence is uniformly bounded, it has a limit,
say Y∞, which is positive definite. Then clearly Y −1

∞ = X∞, which therefore is also
positive definite.

Concerning the order of convergence we can be less explicit here than in the
previous section. In fact, in order to determine the order of convergence we would
like to have an a priori lower bound on the eigenvalues of X∞, as can be seen from
the following theorem.

Theorem 3.2. Let F : [0,∞) → [0,∞) be operator antimonotone. Assume
that (1.1) has a positive definite solution. Let β be less than or equal to the smallest
eigenvalue of the largest positive definite solution X∞. Put q = |F ′(β)| · ‖A‖2. Also
denote Xj = Gj(Q) for j = 0, 1, . . . . Then for j ≥ 1

‖Xj+1 −Xj‖ ≤ q‖Xj −Xj−1‖.
Proof. The proof uses the same methods as the proof of Theorem 2.2. In fact,

we know from the proof of the previous theorem that X∞ ≤ Xj ≤ Q for all j. Now
if X∞ ≤ Y ≤ Q, then X∞ ≤ G(Y ) ≤ X1 ≤ Q, and for X and Y in [X∞, Q] we have

‖G(X)− G(Y )‖ ≤ ‖A‖2‖F(X)−F(Y )‖.
As X and Y both are greater than or equal to X∞ we have that X ≥ βI and Y ≥ βI.
Then we again apply Theorem X.3.8 in [2] to finish the proof.
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In the case where A is invertible and F−1 exists and is antimonotone as well, we
can find an a priori lower bound for X∞ as follows. Suppose X is any positive definite
solution; then A�F(X)A ≤ Q, from which it follows that X ≥ F−1(A−�QA−1).
Thus in that case we can take β to be the smallest eigenvalue of F−1(A−�QA−1).
For instance, in the case where F(x) = x−1 and A is invertible, we can use such an
estimate.

4. Remarks and numerical results. So far we considered general nonlinear
matrix equations and achieved general conditions for the existence of a positive definite
solution. Moreover, we discussed an iterative algorithm from which a solution can
always be calculated numerically whenever the equation is solvable.

Let us see how this works in particular cases. As a first example, take F(x) = xr,
with 0 < r < 1, take Q = I, and take A a contraction. Then all conditions of
Theorem 2.2 are satisfied. The condition q < 1 of Theorem 2.4 becomes ρr(1−ρ)r−1 <
1, where ρ denotes ‖A‖2.

As a second example, take F(x) = 1
x . Then we can apply the results of section 3.

Assuming that A is invertible, we can take for β the minimal eigenvalue of AQ−1A�.
In the case in which we take Q = I, this is the minimal eigenvalue of AA�. We get
that F ′(β) = − 1

β2 , so q = ρ
β2 . If we would like q < 1, then that amounts to ρ < β2.

Observe that for this choice of β, however, we always have that ρ > β.
Finally, we note that the results obtained so far on the iterative procedure for

finding positive definite solutions are more general than those obtained in [3, 4, 12,
16, 17] in the sense that we deal with a larger class of matrix equations. It should
be emphasized that the methods proposed in [6, 16, 17], while performing probably
better for the special case under consideration there (F(X) = X−1), may not be so
readily applied to the very general case we have under consideration here. The reader
is referred to [6, 16, 17], where the numerical procedures are discussed and calculated
in greater detail.

In the remainder of this section, we report some numerical results. These numer-
ical results describe the performance of the algorithm. The numerical experiments
were carried out on an IBM-PC Pentium 233 MHz computer with double precision.
The machine precision is approximately 1.11×10−16. We use the FORTRAN language
with FORTRAN PowerStation (visual workbench version 1.00) to calculate the ap-
pended results. Table 1 indicates the convergence pattern of the iterative sequence of
approximate solutions. In the example we take Q = I. In Table 1 n denotes the order
of the matrix, k denotes the number of iterations, εk denotes ‖Xk+A

�F(Xk)A−I‖∞,

and Rk denotes the relative errors Rk = ‖X∞−Xk‖∞
‖X∞‖∞

, where X∞ is taken to be the

final iterate after εk < 10−8 is satisfied.
The algorithm has been tested for one form of F(X). We take F =

√
X (the

operator monotone case). Observe that here we only comment on the iterative proce-
dure described in the present paper. Although this works fine for many cases, there
is no claim that it is the best available procedure.

Example 4.1.

A =
0.5 B

‖B‖∞ , where B = (bij) = (i+ j + 1).(4.1)

In this example ρ = 0.25 and q = 0.144338 < 1.
In Table 1, the number of iterations can be expected if we use Corollary 2.6. In

the example the number of iterations is at least 8 (‖X∞ −Xj‖ < 10−8). The results
show that with this method the efficiency and the accuracy achieved are acceptable
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Table 1
Error analysis for (4.1).

n k εk Rk

4 13 1.122320E-08 1.745058E-09
6 11 7.450581E-09 1.042610E-08
8 10 1.303852E-08 1.253618E-08
10 10 3.725290E-09 4.896479E-09
12 10 3.725290E-09 4.818559E-09
14 9 6.519258E-09 8.335872E-09
16 9 2.793968E-09 3.541677E-09
18 9 1.862645E-09 2.345221E-09
20 9 1.396984E-09 1.166283E-09
22 8 9.778887E-09 1.045015E-08
24 8 8.676356E-09 6.984919E-09

in the sense that we get a numerically reliable solution (in single precision) within a
relatively small number of iterations.

5. Antimonotone F mapping positive definite to negative definite ma-
trices. In this section we consider (1.1) under the assumption that F : P(n) →
−P(n) is antimonotone. Obviously, this implies that G is a monotone map mapping
positive definite matrices into matrices that are greater than or equal to Q.

First we state a general theorem concerning this class of equations.
Theorem 5.1. Let F : P(n) → −P(n) be antimonotone. Assume there is a

positive definite matrix X̃0 such that X̃0 ≥ G(X̃0). Then the following hold true.
(i) The sequence Gj(Q) is an increasing sequence that is bounded above. Its limit,

which we denote by X−, is a solution to (1.1).
(ii) The sequence Gj(X̃0) is a decreasing sequence that is bounded below. Its limit

is a solution to (1.1).
(iii) X− is the smallest positive definite solution to (1.1). Moreover, if Xj , j =

1, . . . , p is a periodic orbit of G consisting of positive definite matrices, then
Xj ≥ X− for all j.

Proof. Observe that for any positive definite matrix X we have G(X) ≥ Q as F
maps positive definite matrices into negative definite matrices. Now X̃0 ≥ G(X̃0) ≥ Q.
Since G is monotonic, repeated application of G gives

X̃0 ≥ Gj(X̃0) ≥ Gj+1(X̃0) ≥ Gj(Q) ≥ Q.
This proves (i) and (ii).

To prove (iii), suppose Xj , j = 1, . . . , p, is a periodic orbit of G of period p. Then
Xj is a fixed point of Gp. In particular Xj ≥ Q, and then by monotonicity of Gp we
get that Xj ≥ Gkp(Q) for all positive integers k. Thus X− ≤ Xj .

Part of the theorem can be restated as follows.
Theorem 5.2. Let F : P(n)→ −P(n) be antimonotone. Assume that there is a

solution X̃0 to the inequality

X +A�F(X)A ≥ Q.
Then there is a solution to the equation

X +A�F(X)A = Q,

and the sequence {Gj(Q)}∞j=0 increases to the smallest hermitian solution of this equa-
tion.
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For an important example of this type of map consider the discrete algebraic
Riccati equation

X = A�XA+Q− (A�XB + S)(R+B�XB)−1(B�XA+ S�),

where we assume that Q = Q� and R = R� is invertible. In linear quadratic optimal
control problems usually R > 0 and Q−SR−1S� ≥ 0. It is also well known that if in
addition (A,Q − SR−1S�) is observable, the solution of interest is positive definite;
see [10]. By Proposition 12.1.1 in [10] we can restrict our attention to the case S = 0,
i.e., to the equation

X = A�XA+Q−A�XB(R+B�XB)−1B�XA,(5.1)

where we assume that Q ≥ 0 and R is positive definite. A good source of information
concerning the discrete algebraic Riccati equation is [10], where iteration methods for
solving it are also discussed. See also [14].

Here we shall restrict our attention to the particular case where Q is positive
definite. It should be noted that this is a serious restriction, as most practical ap-
plications in linear quadratic optimal control theory would have a Q which is not
invertible. However, here we are interested to see how the methods developed before
can be applied to (5.1). In the meantime we develop results for several wider classes
of equations, as will be seen in what follows.

For this equation we first reduce to the case where R = I by replacing B by
BR− 1

2 . Then it is of the form (1.1) with

F(X) = −X +XB(I +B�XB)−1B�X.

We shall show that F maps positive definite matrices to negative definite matrices
and is antimonotone. Indeed, first observe that

B(I +B�XB)−1 = (I +BB�X)−1B,

so that

F(X) = −X +X(I +BB�X)−1BB�X
= −X +X(I +BB�X)−1{(I +BB�X)− I}
= −X(I +BB�X)−1.

For X invertible we get

F(X) = −(X−1 +BB�)−1.

Clearly it follows that F maps P(n) into −P(n). Furthermore, if X ≥ Y > 0 then
0 < X−1 + BB� ≤ Y −1 + BB�, and hence (X−1 + BB�)−1 ≥ (Y −1 + BB�)−1, so
that F is antimonotone.

Compare Theorem 5.2 to [11, Theorem 3.1]. There, a similar statement was
proved concerning the discrete algebraic Riccati equation. It should be noted, how-
ever, that the result in [11] does not follow from the above theorem.

Let us see how we can apply Theorem 5.1 to the case of the discrete algebraic
Riccati equation (5.1). We shall only consider a special case, namely the case where,
as before, R = I and Q is positive definite, but in addition we require A to be stable.
First we observe that in that case F(X) = −X + H(X), where H : P(n) → P(n).
That situation is treated in the following theorem.
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Theorem 5.3. Let F : P(n) → −P(n) be antimonotone. Assume F(X) =
−X +H(X), where H : P(n)→ P(n), and that A is stable. Denote by X̃0 the unique
solution to the Stein equation

X −A�XA = Q.(5.2)

Then the sequence {Gj(X̃0)} is a decreasing sequence of positive definite matrices
having a positive definite limit X+, and X+ is the largest positive definite solution of

X +A�F(X)A = Q.

Proof. Observe that G(X̃0) = Q − A�F(X̃0)A = Q + A�X̃0A − A�H(X̃0)A =
X̃0 − A�H(X̃0)A ≤ X̃0. So we can apply Theorem 5.1 to see that the sequence
{Gj(X̃0)} is a decreasing sequence having a positive definite limit X+, which is a
solution to (1.1). So we only have to show that it is the largest positive definite
solution.

Let X be any positive definite solution to (1.1). Then

X̃0 −X = Q+A�X̃0A− (Q−A�F(X)A)
= A�(X̃0 + F(X))A
= A�(X̃0 −X)A+A�H(X)A.

So X̃0 −X solves the Stein equation

X̃0 −X −A�(X̃0 −X)A = A�H(X)A.

AsH(X) is positive definite and A is stable we see that X̃0−X is positive semidefinite.
So X ≤ X̃0. As G is monotone, this implies that X = Gj(X) ≤ Gj(X̃0) for all positive
integers j, so that X ≤ X+.

Observe that this result can be applied directly to the discrete algebraic Riccati
equation under the assumptions that Q is positive definite and A is stable. (Recall
that we may assume that R = I without loss of generality.) That yields the following
result.

Corollary 5.4. Let A be stable and let Q be positive definite. Let X̃0 be the
unique solution of the Stein equation (5.2). Define the sequence of matrices {Xj} by

Xj+1 = Q+A�XjA−A�XjB(R+B�XjB)−1B�XjA,

with X0 = X̃0. Then this sequence of matrices decreases to the largest positive definite
solution of (5.1).

Define the sequence of matrices {Qj} by

Qj+1 = Q+A�QjA−A�QjB(R+B�QjB)−1B�QjA,

with Q0 = Q. Then this sequence of matrices increases to the smallest positive definite
solution of (5.1).

This result is well known—as a matter of fact it can be proven that under the
present conditions there is a unique positive definite solution (see, e.g., [10, Theorem
13.5.3]). To obtain this result we need to use much more of the structure of the map
F . We start with a lemma.

Lemma 5.5. Assume that F : P(n) → −P(n) is antimonotone and is of the
form F(X) = −X +XH(X)X, where H satisfies H(X)XH(X) ≤ H(X). Then for
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every positive definite solution X of X = G(X) the matrix AX defined by AX =
A−H(X)XA is stable.

Proof. Let X be a positive definite solution of (1.1) and compute

X −A�
XXAX

= X −A�XA+ 2A�XH(X)XA−A�XH(X)XH(X)XA
= Q+A�XH(X)XA−A�XH(X)XH(X)XA.

From the assumption on H it follows that X −A�
XXAX is positive definite. As X is

positive definite we get that AX is stable (see, e.g., [9, section 13.2]).

The next theorem describes conditions which are satisfied in the case of the dis-
crete algebraic Riccati equation and which allow us to deduce that there is a unique
positive definite solution.

Theorem 5.6. Let F(X) = −X +XH(X)X map positive definite matrices into
negative definite matrices, and let it be antimonotone. Assume that H satisfies the
following two properties:

H(X)XH(X) ≤ H(X),(5.3)

H(Y )−H(X) = H(X)(X − Y )H(Y ).(5.4)

Then there is a unique positive definite solution to the equation

X −A�XA+A�XH(X)XA = Q.(5.5)

Proof. From the results obtained so far it follows that we only have to show that
X+ = X−. To do this, put A± = A−H(X±)X±A. As (5.3) holds, we can apply the
previous lemma to see that both these matrices are stable. Now compute

X+ −X− −A�
+(X+ −X−)A−

= X+ −X− − (A� −A�X+H(X+))X+(A−H(X−)X−A)
+ (A� −A�X+H(X+))X−(A−H(X−)X−A)

= X+ −A�X+A+A�X+H(X+)X+A
+ A�X+H(X−)X−A−A�X+H(X+)X+H(X−)X−A
− X− +A�X−A−A�X−H(X−)X−A
− A�X+H(X+)X−A+A�X+H(X+)X−H(X−)X−A.

Using the fact that X+ and X− are both solutions to (5.5) we see that

X+ −X− −A�
+(X+ −X−)A−

= A�X+(H(X−)−H(X+) +H(X+)X−H(X−)−H(X+)X+H(X−))X−A = 0,

where the last equality follows from (5.4). As A+ and A− are both stable, the equation
Y − A�

+Y A− = 0 has a unique solution, being the zero matrix. It follows that
X+ = X−, as desired.

It is easily seen in the case of the discrete algebraic Riccati equation that both con-
ditions (5.3) and (5.4) are satisfied. Indeed, in that case H(X) = B�(R+B�XB)−1B,
where we may assume without loss of generality that R = I, as before. Then
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H(X)XH(X)
= B(I +B�XB)−1B�XB(I +B�XB)−1B�

= B(I +B�XB)−1B� −B(I +B�XB)−2B�

≤ B(I +B�XB)−1B� = H(X).

Also,

H(Y )−H(X)
= B{(I +B�Y B)−1 − (I +B�XB)−1}B�

= B(I +B�XB)−1{(I +B�XB)− (I +B�Y B)}(I +B�Y B)−1B�

= B(I +B�XB)−1B�(X − Y )B(I +B�Y B)−1B�

= H(X)(X − Y )H(Y ).

Thus the theorem above can be applied directly to the discrete algebraic Riccati
equation.

Corollary 5.7. Assume that Q is positive definite and that A is a stable matrix.
Then the algebraic Riccati equation (5.1) has a unique positive definite solution, which
is the stabilizing solution.
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Abstract. In this paper we find a characterization for when a multivariable trigonometric
polynomial can be written as a sum of squares. In addition, the truncated moment problem is
addressed. A numerical algorithm for finding a sum of squares representation is presented as well.
In the one-variable case, the algorithm finds a spectral factorization. The latter may also be used to
find inner-outer factorizations.
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1. Introduction. The classical Riesz–Fejer factorization theorem states that a
trigonometric polynomial

q(z) =

m∑
i=−m

qiz
i, |z| = 1,

on the unit circle that solely takes on nonnegative values can be written as

q(z) = |p(z)|2, |z| = 1,(1.1)

where p(z) is a polynomial that has no zeros in the disk D = {z ∈ C : |z| < 1}. A
proof of this result based on the fundamental theorem of algebra may be found in [36,
pp. 117–118]. For matrix-valued and operator-valued functions a similar result holds
true; [34] and [24] proved the matrix-valued case, [22] the compact operator-valued
case, and [35] the general operator-valued case. Based on an observation that was
made in [17] we propose in this paper a simple algorithm that computes the spectral
factorization (1.1). This algorithm is a straightforward application of semidefinite
programming. Existing techniques for finding spectral factorizations use realization
theory and come down to finding positive semidefinite solutions to Riccati equations
(see, e.g., [28], [21], [16], [11], [31], [41], and references therein). Most literature
applies to the continuous-time case, but the discrete-time case (which is relevant to
this paper) may be converted to the continuous-time case (see, e.g., [23]). In addition,
we use the spectral factorization algorithm to find inner-outer factorizations.

The multivariable analogue of the observation made in [17] allows for a charac-
terization when a trigonometric polynomial of two or more variables may be written
as a sum of squares. Based on this observation we present a simple algorithm for de-
termining whether a matrix-valued trigonometric polynomial on the d-torus may be
written as a sum of squares. It has been known since [12] and [33] that nonnegativity
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of the trigonometric polynomial does not ensure the existence of a representation as
a sum of squares, and thus the above algorithm provides at least a numerical solution
to this problem. In addition, we discuss the representation problem for trigonometric
polynomials that are positive on an arc of the unit circle.

As was shown in [33] the question of sum of squares representations and the
positive truncated moment problem are related by duality. Using this duality we shall
characterize when the truncated moment problem with finite data has a solution.

The factorization, sum of squares, and moment problem have numerous applica-
tions. We mention here Darlington synthesis in electrical network theory ([15]; see
also [4], [5], [6], and [27]), stability of control systems (see, e.g., [32], [7], [8], [10], [14],
[21], [16], [31], [41]), and prediction theory for stationary stochastic processes (see
[29], [39], [40], [25], [26]).

The paper is organized as follows. In section 2 we give necessary and sufficient
conditions for a multivariable trigonometric polynomial to be written as a sum of
squares. Moreover, we remind the reader how in the one-variable result the spectral
factorization may be singled out. Subsequently, algorithms for finding spectral fac-
torizations and sums of squares representations are outlined and numerical results are
presented. In section 3 we give a characterization for the existence of a solution to
the positive truncated moment problem.

2. Factorizations and sum of squares representations. LetH,K be Hilbert
spaces and let B(H,K) be the Banach space of bounded linear operators acting H →
K. We denote B(H,H) by B(H). We also let S ⊆ Z

d be a halfspace. That is,
S ∩ (−S) = (0), S ∪ (−S) = Z

d, and S + S ⊆ S. The standard halfspace in Z is
E1 = {0, 1, 2, . . .}, and in Z

d the standard halfspace is given by

Ed = ({0} × Ed−1) ∪ ({1, 2, . . .} × Z
d−1), d = 2, 3, . . . .

Let Λ+ be a finite subset of S that contains 0 ∈ Z
d, and consider an operator-valued

trigonometric polynomial on the d-torus T
d

Q(z) =
∑

k∈Λ+−Λ+

Qkz
k, z ∈ T

d,

where zk = (z1, . . . , zd)(k1,...,kd) := zk1
1 zk2

2 · · · zkd

d . Here Qk, k ∈ Λ+−Λ+, are operators
on H, and for subsets A and B of Z

d, we define A−B = {a− b : a ∈ A, b ∈ B}. The
following theorem gives a characterization when Q(z) may be written as P (z)∗P (z)
where P has Fourier support in Λ+. Let δjk denote the Kronecker delta on Z

d, i.e.,

δjk =

{
0 otherwise,
1, j = k.

For any set A we denote its cardinality by |A|.
Theorem 2.1. Let H be a Hilbert space, S a halfspace of Z

d, 0 ∈ Λ+ ⊆ S a finite
set, and Q(z) =

∑
k∈Λ+−Λ+

Qkz
k a B(H)-valued trigonometric polynomial. Denote

by F the affine subspace of B(H|Λ+|) given by

F =


(Fjk)j,k∈Λ+ :

∑
j,k∈Λ+

Fjkδl,j−k = Ql, l ∈ Λ+ − Λ+


 .
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There exists a pseudopolynomial P (z) =
∑

k∈Λ+
Pkz

k where Pk ∈ B(H,K) for some
Hilbert space K so that

Q(z) = P (z)∗P (z), z ∈ T
d,(2.1)

if and only if F contains a positive semidefinite operator. In that case, K may be
chosen to be a subspace of H|Λ+|.

Proof. “if.” Let P (z) =
∑

k∈Λ+
Pkz

k satisfy (2.1). Put G = row(Pk)k∈Λ+ and

F = G∗G ∈ B(H |Λ+|). Clearly F ≥ 0, and one easily checks that (2.1) is equivalent
to F ∈ F .

“only if.” Let F ∈ F be positive semidefinite. Factorize

F = G∗G, G ∈ B(K,H|Λ+|),(2.2)

by, for instance, taking G = F 1/2 and K = closure RanF 1/2 ⊆ B(H|Λ+|). Write
Λ+ = {0 = k0, k1, . . . , k|Λ+|−1},

G = [Pk0Pk1 · · ·Pk|Λ+|−1
] :

|Λ+|−1⊕
j=0

H → K,

and put P (z) =
∑|Λ+|−1

j=0 Pkj
zkj . One easily checks that (2.2) yields (2.1).

For the case when Λ+ = {0, 1, . . . , n} ⊆ Z the above observation was made
in [17]. Note that when dimH = n < ∞, that is, when Q(z) is scalar or matrix

valued, Theorem 2.1 yields that Q(z) may be written as Q(z) =
∑l

k=1 Pk(z)∗Pk(z)
with Pk(z) ∈ C

n×1 and l = rankF . Thus we obtain the following corollary. For a
pseudopolynomial p(z) =

∑
pkz

k we denote by supp(p̂) its Fourier support {k ∈ Z
d :

pk �= 0}.
Corollary 2.2. Let Q(z) be an n × n matrix-valued trigonometric polynomial

on T
d with Fourier support in Λ+ − Λ+. Then there exists a representation

Q(z) =

l∑
k=1

Pk(z)∗Pk(z), z ∈ T
d,(2.3)

with Pk(z) ∈ C
n×1 and supp(P̂k) ⊆ Λ+, k ∈ {1, . . . , l}, if and only if F as in Theorem

2.1 contains a positive semidefinite element. In that case the lowest possible number
of terms in (2.3) equals

min
F∈F,F≥0

rankF.(2.4)

In the case that Q(z) =
∑

k∈Λ+−Λ+
Qkz

k has coefficients Qk that are real matrices,
then Pk, k = 1, . . . , l, may also be chosen to have real vector coefficients.

Proof. The proof follows directly from the proof of Theorem 2.1.
In the classical case, d = 1 and Λ+ = {0, 1, 2, . . . ,m}, the quantity in (2.4) is

bounded above by rank(Q0). Though this may be proven using the matrix-valued
Riesz–Fejer factorization theorem we will next prove it using the basic notion of the
Schur complement.
Proposition 2.3. Let Qk, k ∈ {−m, . . . ,m}, be given n × n complex matrices,

and consider the compact set

F+ =


(Fij)

m
i,j=0 ≥ 0 :

m∑
p=k

Fp,p−k = Qk


 .
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If F+ is nonempty, then it contains an element of rank less than or equal to rankQ0.
One may find such a member of F+ by maximizing traceF00 (or by maximizing
traceFmm).

Proof. Assume F �= ∅. Since f(F ) = traceF00 is a continuous function on the com-
pact set F+, a maximizer F = (Fij)

m
i,j=0 for f exists. We claim that rankF00 = rankF .

Suppose this is not the case, i.e., rankF > rankF00. Then the Schur complement S
of F00 in F (for a definition see, e.g., [3]) is not zero. Write

S = (Sij)
m
i,j=1.

Let q ∈ {1, . . . ,m} be so that S11 = · · · = Sq−1,q−1 = 0 but Sqq �= 0. (Such q exists,

since 0 �= S ≥ 0.) Define now F̃ = (F̃ij)
m
i,j=0 by

F̃ = F −
[

0 0

0 (Sij)
m
i,j=1

]
+

[
(Sij)

m
i,j=q 0

0 0

]
,

where the diagonal zero block matrices are of block size 1× 1 and q× q, respectively.
Since, by definition of a Schur complement,

F −
[

0 0

0 S

]
≥ 0,

we get that F̃ ≥ 0. In addition, notice that
∑m

p=k F̃p,p−k = Qk, where we used
the fact that S ≥ 0 and Sii = 0 implies that Sij = 0 for all j. Thus it follows

that F̃ ∈ F+. Since traceSqq > 0, we get that f(F̃ ) > f(F ) gives a contradiction.
Thus rankF = rankF00. Moreover, since 0 ≤ F00 ≤

∑m
p=0 Fpp = Q0 we get that

rankF00 ≤ rankQ0. When maximizing traceFmm one may reason analogously.
As was observed in [17] (based on results in [37]) the element in F+ that has a

maximal F00 in the Loewner ordering leads to a spectral factorization. Since F00 ≥ F̃00

and traceF00 = traceF̃00 imply F00 = F̃00, we in fact get the spectral factorization
by maximizing trace F00. Consequently, we may propose the following algorithm for
finding spectral factorizations. As an aside, we mention that maximizing traceFmm

leads to a co-outer factorization (see [17]).
Algorithm 1. Finding spectral factorizations of matrix-valued trigonometric

polynomials.
Let Qk, k ∈ {−m, . . . ,m}, be given n× n complex matrices, and define F+ as in

Proposition 2.3.
Step 1. Use one of the existing semidefinite programming packages ([38], [1],

possibly with interface [18]) to see whether F+ �= ∅. If so, go to Step 2; If not, no
factorization exists.

Step 2. Use semidefinite programming to find F∗ := argmaxF∈F+
traceF00.

Step 3. Write F∗ as

F∗ =




P ∗
0
...
P ∗
n


 (P0 · · · Pn ) ,

which can be done by performing a Cholesky factorization. The spectral factor is now
given by P (z) =

∑n
i=0 Piz

i.
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We implemented this using [1], which was very simple. To cite one experiment,
let

Q0 =

(
1 0
0 1

)
, Q1 =

(
0.2000 0.4000
0.3000 0.1000

)
, Q2 =

(
0.0200 0.0400
0.0100 0.0400

)
,

and let Q−j = Q∗
j , j = 1, 2. Then we find the spectral factorization Q(z) = P ∗(z)P (z)

with

P0 =

(
0.9066 −0.1601

0 0.8815

)
, P1 =

(
0.2093 0.4095
0.3654 0.1578

)
, P2 =

(
0.0221 0.0441
0.0154 0.0534

)
.

Clearly, the algorithm is as good, simple, and accessible as the semidefinite package
that one uses. We do observe, though, that in at least some cases simpler algorithms
are available; e.g., in the case when n = 1 and one has a strictly positive trigonomet-
ric polynomial, the spectral factorization problem is equivalent to finding a positive
definite solution X to the matrix equation X +A∗X−1A = Q, where Q > 0 (see, e.g.,
[20]). The simple Schur complement-based algorithm discussed in [2], [20], and [19]
to solve this problem is very elementary and seems to work very well. In such cases,
using a semidefinite programming package is clearly overkill.

As is well known (see, e.g., [21]), as soon as one can determine spectral factor-
izations one may find inner-outer factorizations. Recall that for a rational matrix
function A(z) on the unit circle, the factorization A(z) = Fi(z)Fo(z) is called inner-
outer if Fi(

1
z )∗Fi(z) = I, z ∈ T, and Fo has a right inverse which is analytic in D

(i.e., Fi is inner and Fo is outer). An inner-outer factorization exists if rankA(z) is
constant for |z| = 1. In order to obtain an inner-outer factorization of A(z) when
A(z) has full rank on T, one may proceed as follows. Find a spectral factorization
of A( 1

z )∗A(z). Call the spectral factor Fo(z), and let Fi(z) = A(z)Fo(z)−1. Then
A(z) = Fi(z)Fo(z) is a spectral factorization. When we let

A(z) =

(
z2 + 1 z

2 + z − z2 3− z2

)
,

we find

A

(
1

z

)∗
A(z) =

(− 1
z2 + 1

z + 8 + z − z2 − 3
z2 + 4

z + 7− 2z2

− 2
z2 + 7 + 4z − 3z2 − 3

z2 + 11− 3z2

)
.

Performing Algorithm 1 on this rational matrix function yields

F0(z) =

(
2.2361 + 0.8944z − 0.4472z2 2.6833 + 0.4472z − 0.8944z2

0.4472z − 1.3416z2 1.3416− 0.8944z − 0.4472z2

)
,

and by putting Fi(z) = A(z)Fo(z)−1, we find an inner-outer factorization.

We now address the multivariable case.

Algorithm 2. Finding a sums of squares representation.

Let Λ+ ⊂ S ⊂ Z
d and Qk ∈ C

n×n, k ∈ Λ+ − Λ+, be given, and define F as in
Theorem 2.1. Let P denote the cone of positive semidefinite matrices (of size n|Λ+|).

Step 1. Use one of the existing semidefinite programming packages ([38], [1],
possibly with interface [18]) to see whether F ∩ P �= ∅. If so, go to Step 2; if not, no
sum of squares representation exists.
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Step 2. Choose F ∈ F ∩ P, and write F as F = col(P ∗
k )k∈Λ+

row(Pk)k∈Λ+
, so

that Pk has rankF rows. (One may use a Cholesky factorization for this and discard
zero rows and columns.) Then

Q(z) =

rankF∑
�=1

P (�)(z)∗P (�)(z), col(P (�)(z))rankF
�=1 :=

∑
k∈Λ+

Pkz
k.

For example, for Λ+ = {(0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1)} and q000 = 2, q100 =
.5, q110 = .2, q111 = .2, q010 = .04, q001 = .06, q011 = .08 (and setting q−k = qk for the
appropriate k), we find

q(z1, z2, z3) = |1.2839 + 0.3894z1 + 0.1558z1z2 + 0.1558z1z2z3|2
+|0.2000z1 − 0.1033z1z2 + 0.0967z1z2z3|2
+|0.2138z1z2 + 0.2138z1z2z3|2, (z1, z2, z3) ∈ T

3.

In finding this solution we have computed F∗ = argmaxF∈F∩PtraceF00 and used
it for the sum of squares representation. It is an open question, however, how to
characterize in the several-variable case the sum of squares representation that leads
to this maximal traceF00. To provide one more example, we let f(z, w) = |1 + z|2 +
|1 + w|2, |z| = |w| = 1, and Λ+ = {0, 1} × {0, 1}. Maximizing traceF00 the algorithm
finds the sum of squares representation

f(z, w) = |1.4151 + 0.7067z + 0.7067w|2 + |0.7067z − 0.7067w|2.
There are also other representations that one may find using semidefinite pro-

gramming. For instance, it is shown in [30] that a trigonometric polynomial q(z) of
degree m that is nonnegative on the arc {eit : t ∈ [−γ, γ]} (0 < γ ≤ π) may be
written in the form

q(z) = |p(z)|2 + (z + 1/z − 2 cos(γ))|r(z)|2, z ∈ T,(2.5)

where p(z) and r(z) are polynomials of degree m and m−1, respectively. In fact, in [30]
the more general case of a union of several arcs is treated. Using the theory developed
in this section we may now propose an algorithm for finding a representation (2.5). In
[30] a basic construction using the fundamental theorem of algebra and trigonometric
identities is described.
Algorithm 3. Finding a representation (2.5).
Let q0, . . . , qm be given complex numbers, and put q−j = qj , j = 1, . . . ,m. Let

F =


(fij)

m
i,j=0 :

m∑
p=k

fp,p−k = qk, k = −m, . . . ,m


 .

Step 1. Use one of the existing semidefinite programming packages ([38], [1],
possibly with interface [18]) to see whether there exist positive semidefinite matrices
A ∈ C

(m+1)×(m+1) and B ∈ C
m×m so that

A +

(
0 0
B 0

)
+

(
0 B
0 0

)
− 2 cos(γ)

(
B 0
0 0

)
∈ F .(2.6)

(Notice that the 2× 2 block decompositions are all of different sizes, as the zeros are
of size 1×m, 1× 1, or m× 1.) If so, pick such A and B, and continue to Step 2. If
not, no representation (2.5) exists.
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Step 2. Use semidefinite programming to find rank ≤ 1 positive semidefinite Ã
and B̃ so that the diagonal sums of A and Ã coincide and the diagonal sums of B
and B̃ coincide (use Proposition 2.3).

Step 3. Write

Ã = col(pi)
m
i=0row(pi)

m
i=0, B̃ = col(ri)

m−1
i=0 row(ri)

m−1
i=0 .

Putting p(z) =
∑m

i=0 piz
i and r(z) =

∑m−1
i=0 riz

i one finds the desired representation
(2.5).

Performing this algorithm on the data q0 = 3, q1 = 4− 2
√

2, q2 = 2−√2, q3 = 1,
and γ = 3π

4 , we obtain the representation

q(z) = |0.8672− 0.5394z + 0.5394z2 − 0.8672z3|2

+

(
z +

1

z
+
√

2

)
|1.3237− 1.0681z + 1.3237z2|2.

This algorithm is based on the following proposition.
Proposition 2.4. There exists a representation (2.5) if and only if there exists

positive semidefinite matrices A ∈ C
(m+1)×(m+1) and B ∈ C

m×m so that (2.6) holds.
In that case A and B may be chosen to be of rank 1.

Proof. Suppose that (2.5) holds with p(z) = p0 + · · · + pmzm and r(z) = r0 +
· · ·+ rm−1z

m−1. Put

A = col(pi)
m
i=0row(pi)

m
i=0, B = col(ri)

m−1
i=0 row(ri)

m−1
i=0 .

Clearly A ≥ 0, B ≥ 0, and one easily checks that equality (2.5) implies (2.6).
Conversely, suppose positive semidefinite matrices A = (aij)

m
i,j=0 ∈ C

(m+1)×(m+1)

and B = (bij)
m−1
i,j=0 ∈ C

m×m satisfy (2.6). By Proposition 2.3 we may find positive

semidefinite matrices Ã = (ãij)
m
i,j=0 ∈ C

(m+1)×(m+1) and B̃ = (b̃ij)
m−1
i,j=0 ∈ C

m×m both

of rank ≤ 1 so that A and Ã have the same sums along diagonals (i.e.,
∑

i−j=k aij =∑
i−j=k ãij for all appropriate k), and so that B and B̃ have the same sums along

diagonals. Notice that since (2.6) holds we also have that

Ã +

(
0 0
B̃ 0

)
+

(
0 B̃
0 0

)
− 2 cos(γ)

(
B̃ 0
0 0

)
∈ F(2.7)

holds. Now write

Ã = col(pi)
m
i=0row(pi)

m
i=0, B̃ = col(ri)

m−1
i=0 row(ri)

m−1
i=0 ,

where pi, ri ∈ C, and put p(z) = p0 + · · · + pmzm and r(z) = r0 + · · · + rm−1z
m−1.

One now easily checks that (2.7) implies (2.5).
It should be observed that in our implementation we considered only the real

case, as the semidefinite programming package we used only deals with real symmetric
matrices. It is not hard, though, to convert the complex case to the real case when
one uses the observation that A + Bi, with A,B ∈ R

n×n, is positive semidefinite if
and only if (A

B
−B
A ) is.

3. The positive truncated moment problem. Dual to the factorization
problem is the truncated moment problem, as is well explained in [33]. In this section,
we present the following observation on the moment problem. Let Λ be a subset of
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Z
d and let H be a Hilbert space. A sequence {ck}k∈Λ−Λ of bounded linear operators

on H is called positive semidefinite with respect to Λ if for every sequence of {hk}k∈Λ

of elements in H with finite support we have that∑
k,l∈Λ

〈ck−lhk, hl〉 ≥ 0.

For a positive B(H)-valued Borel measure µ on T
d the moments of µ are defined by

ck(µ) =

∫
Td

zkdµ(z),

where k = (k1, . . . , kd) ∈ Z
d. A positive Borel measure µ on T

d is called a positive
extension of {ck}k∈Λ−Λ if ck = ck(µ) for every k ∈ Λ − Λ. We have the following
characterization for the existence of a positive extension.
Theorem 3.1. Let Λ ⊆ Z

d and {ck}k∈Λ−Λ be given operators on the Hilbert
space H. Then {ck}k∈Λ−Λ has a positive extension if and only if the operator matrix

(ck−l)k,l∈Λ

lies in the closed cone generated by the operator matrices

[col(zk)k∈Λ][col(zk)k∈Λ]∗ ⊗A, z ∈ T
d, A ∈ B+(H),(3.1)

where B+(H) is the cone of positive semidefinite operators on H.
In [13] it was proven that every (n + 1) × (n + 1) singular positive semidefinite

complex Toeplitz matrix lies in the cone generated by

[col(zk)nk=0][col(zk)nk=0]∗, |z| = 1.(3.2)

Though not explicitly mentioned, it should be observed that Carathéodory uses the
Riesz–Fejer factorization theorem in his proof. Since

In+1 =
1

n + 1

∑
[col(e

2πki
n+1 )nk=0][col(e

2πki
n+1 )nk=0]∗,

we get that every positive semidefinite (n + 1) × (n + 1) Toeplitz matrix lies in the
cone generated by (3.2). This combined with Theorem 3.1 yields the classical result
[13] that for d = 1, Λ = {0, . . . ,m}, and H = C the positive truncated moment has a
solution for {ck}mk=−m if and only if

(ck−l)
m
k,l=0 ≥ 0.

The negative result by [12] and [33] and the later ones by [9] imply that for Λ ⊆
Z

2,H = C, unless

Λ = {0, 1, . . . ,m} × {0, 1}, Λ = {0, 1, . . . ,m} × {0, 1} \ {(m, 1)},

Λ = {0, 1, . . . ,m} × {0},
or trivial variations of it (see [9]), the corresponding cone of positive semidefinite
Toeplitz matrices (ck−l)k,l∈Λ is strictly larger than the cone generated by the ma-
trices in (3.1). It is an interesting question what the extreme points of the positive
semidefinite Toeplitz matrices are.
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Proof of Theorem 3.1. Without loss of generality we may assume that 0 ∈ Λ ⊆ S
for some halfspace S of Z

d. Indeed, pick any halfspace and let λ0 = min Λ where the
minimum is taken with respect to the linear order induced by S. Now put Λ̃ = Λ−λ0.
Then Λ̃ − Λ̃ = Λ − Λ and 0 ∈ Λ̃ ⊆ S. By [33, Lemma 1.2] we have that {ck}k∈Λ−Λ

has a positive extension if and only if

trace[(ck−l)k,l∈ΛF ] ≥ 0(3.3)

for all trace class F = (Fjk)j,k∈Λ which have the property that by putting Ql =∑
j,k∈Λ Fjkδl,j−k, l ∈ Λ−Λ, we obtain a trigonometric polynomial Q(z) =

∑
l∈Λ−Λ Qlz

l

that takes on nonnegative values only. Next, observe that checking that Q(z) ≥ 0 for
all z ∈ T

d is equivalent to checking that

trace((col(zk)k∈Λ[col(zk)k∈Λ]∗ ⊗A)F ) = trace(Q(z)A) ≥ 0

for all z ∈ T
d and all A ∈ B+(H). In other words, if we denote by C the closed cone

generated by (3.1), then Q(z) ≥ 0 if and only if F belongs to the cone C∗ that is the
dual of C. Condition (3.3) tells us now that {ck}k∈Λ−Λ has a positive extension if and
only if (ck−l)k,l∈Λ ∈ (C∗)∗ = C.

We observe that the positive measure that corresponds to the moments {zkA}k∈Zd ,
z ∈ T, is the Dirac measure that has value A at z, and 0 elsewhere on the d-torus.
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Abstract. Let A be a matrix with entries in the field of real numbers. In this paper we
give necessary and sufficient conditions for the existence of real matrices B and C, with prescribed
characteristic polynomials, such that A = BC.
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1. Introduction. Some papers have been published studying the possibility of
writing a square matrix as the product of two matrices with prescribed spectra. Wu
[15] proved that any complex singular matrix A can be written as the product of
two nilpotent matrices, except when A is a 2 × 2 nilpotent matrix of rank 1. Laffey
[6] and Sourour [12] proved that Wu’s theorem is valid in any field F . Sourour [11]
proved that if A is a nonscalar nonsingular n × n matrix over a field F , b1, . . . , bn,
c1, . . . , cn ∈ F and detA = b1 · · · bnc1 · · · cn, then there exist matrices B,C ∈ Fn×n,
with eigenvalues b1, . . . , bn and c1, . . . , cn, respectively, such that A = BC. Horn and
Johnson [5, Theorem 4.5.4] extended Sourour’s theorem to the case where exactly
n− rankA of the elements b1, . . . , bn, c1, . . . , cn are equal to zero. Assuming that A is
an n× n singular matrix over a field F , Sourour and Tang [13] gave a necessary and
sufficient condition for the existence of matrices B and C, with prescribed spectra,
such that A = BC.

In all these papers, the prescribed eigenvalues belong to the field F . An obvious
problem is to consider the case where some of those eigenvalues are allowed to be in
F̄ \ F , as follows.

Problem 1. Given A ∈ Fn×n and monic polynomials f, g ∈ F [x] of degree n,
find necessary and sufficient conditions for the existence of matrices B,C ∈ Fn×n,
with characteristic polynomials f and g, respectively, such that A = BC.

This problem seems to be much harder, and the authors were not able to solve it
in general fields.

The purpose of this paper is to give a solution when F is the field R of real
numbers.

2. Partial results in arbitrary fields. Although our purpose is to solve Prob-
lem 1 over the field of real numbers, some partial and related results are known to be
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valid in arbitrary fields. These results are presented in this section and will be used
to prove our main theorem. Let F denote a field.

Suppose that a matrix A ∈ Fn×n can be written as a product of matrices B,C ∈
Fn×n, with characteristic polynomials f, g, respectively. Then it is easy to see that
every matrix A′ ∈ Fn×n, similar to A, can be written as a product of matrices
B′, C ′ ∈ Fn×n, with characteristic polynomials f, g, respectively. As a square matrix
is similar to its transpose, it follows that A ∈ Fn×n can also be written as a product
of matrices C ′′, B′′ ∈ Fn×n, with characteristic polynomials g, f, respectively.

Lemma 2. Let f ∈ F [x] be a monic irreducible polynomial of degree 2. Let
A ∈ F 2×2 be a nilpotent matrix of rank 1. Then there exist no matrices B,C ∈ F 2×2

such that one of them is nilpotent, the other has characteristic polynomial f, and
A = BC.

Proof. In order to get a contradiction, suppose that there exist matrices B,C ∈
F 2×2 such that one of them is nilpotent, the other has characteristic polynomial f,
and A = BC. Without loss of generality, suppose that C is a nilpotent matrix of rank
1. Then there exists a nonsingular matrix X ∈ F 2×2 such that

X−1CX =

[
0 1
0 0

]
.

Suppose that X−1BX = [bi,j ]. Clearly, X−1AX has eigenvalues 0, b2,1. Therefore
b2,1 = 0 and B has two eigenvalues in F, which is impossible.

Wu [15] proved the following lemma when F is the field of complex numbers.
Proofs valid in arbitrary fields can be found in Laffey [6] and Sourour [12].

Lemma 3. Let A ∈ Fn×n be a singular matrix. Then there exist nilpotent
matrices B,C ∈ Fn×n such that A = BC if and only if A is not a 2 × 2 nilpotent
matrix of rank 1.

Lemma 4. Let c1, . . . , cn−1 ∈ F, with n ≥ 3. Then there exist e1, . . . , en ∈
F (n−1)×1 such that all the invariant factors of

[ xIn−1 0 ]− [ e1 · · · en ]

are constant polynomials and [ e2 · · · en ] has eigenvalues c1, . . . , cn−1.
Proof. Let η = #{i ∈ {1, . . . , n − 1} : ci = 0}. If η > 0, then suppose, without

loss of generality, that cn−η = · · · = cn−1 = 0.
If η = 0, let

[
e1 · · · en

]
=
[

0 diag(c1, . . . , cn−1)
]
.

If 1 ≤ η ≤ 2, let

[
e1 · · · en

]
=


 0 diag(c1, . . . , cn−3) 0 0

0 0 cn−2 1
1 0 0 0


 .

If η = 3, let

[
e1 · · · en

]
=




0 diag(c1, . . . , cn−η−1) 0 0 0
0 0 −1 −1 1
0 0 1 1 0
1 0 0 0 0


 .
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If η ≥ 4 and η is even, let

[
e1 · · · en

]
=




0 diag(c1, . . . , cn−η−1) 0 0 0
0 0 0 0 1
1 0 0 0 0
0 0 Itη−2 0 0


 .

If η ≥ 5 and η is odd, let

[
e1 · · · en

]
=




0 diag(c1, . . . , cn−η−1) 0 0 0 0 0
0 0 −1 −1 0 0 1
0 0 1 1 0 0 0
1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 Itη−4 0 0



.

Throughout this paper, we shall make use of some results on matrix completions
that we recall in the following lemmas. The first one is the well-known Sá–Thompson
theorem [8, 10].

Lemma 5. Let D ∈ F p×p, E ∈ Fn×n, with p < n. Let δ1 | · · · | δp ∈ F [x] and
ε1 | · · · | εn ∈ F [x] be the invariant factors of xIp − D and xIn − E, respectively.
Then there exists a matrix E′ ∈ Fn×n similar to E containing D as a principal
submatrix if and only if εi | δi for every i ∈ {1, . . . , p}, and δi | εi+2n−2p for every
i ∈ {1, . . . ,min{p, 2p− n}}.

Zaballa [16] has given a complete description of the possible similarity classes of a
square matrix when some rows (or columns) are fixed and the others vary. The next
lemma is a particular case of [16, Corollary III]. Lemma 7 is a trivial consequence of
[16, Theorem 5.1]. Recall that a matrix A ∈ Fn×n is nonderogatory if and only if its
minimum and characteristic polynomials coincide if and only if xIn − A has exactly
one nonconstant invariant factor.

Lemma 6. Let p, q be positive integers, A1 ∈ F p×p, A2 ∈ F p×q, n = p + q.
Suppose all the invariant factors of

[
xIp −A1 −A2

]
(2.1)

are constant polynomials. Let D ∈ Fn×n be a nonderogatory matrix. Then there exists
a matrix E ∈ Fn×n similar to D such that xIn − E contains (2.1) as a submatrix.

Given an arbitrary monic polynomial f ∈ F [x] of degree n, there exists a non-
derogatory matrix with characteristic polynomial f , e.g., the companion matrix of
f . It follows from Lemma 6 that if all the invariant factors of (2.1) are constant
polynomials, then there exists a nonderogatory matrix E ∈ Fn×n with characteristic
polynomial f such that xIn − E contains (2.1) as a submatrix. (See also [14].)

Lemma 7. Let A1 ∈ F (n−1)×(n−1), A2 ∈ F (n−1)×1. Suppose that (2.1), with p =
n−1, has at most one nonconstant invariant factor. Then there exists a nonderogatory
matrix E ∈ Fn×n such that xIn−E contains [ xIn−1 −A1 −A2 ] as a submatrix.

The following lemma is a simple consequence of [17, Theorem 3.1].
Lemma 8. Let E ∈ Fn×n be a nonderogatory matrix. Then there exists e ∈ Fn×1

such that all the invariant factors of [ xIn − E −e ] are constant polynomials.
Lemma 9. Let A ∈ Fn×n be a nonsingular matrix and c1, . . . , cn ∈ F . Then

there exist A′, C ∈ Fn×n such that A′ is similar to A, C has eigenvalues c1, . . . , cn,
and A′C is nonderogatory.
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Proof. By induction on n. If n = 1, the result is trivial. Suppose that n ≥ 2. Let
α1 | · · · | αn be the invariant factors of xIn−A. Let δi = αi, i ∈ {1 . . . , n−2}, δn−1 =
αn−1(x−1)k, where k is a nonnegative integer chosen so that deg(δ1 · · · δn−1) = n−1.
It follows from Lemma 5 that A is similar to a matrix of the form[

A0 a
∗ ∗

]
∈ Fn×n,

where A0 ∈ F (n−1)×(n−1) and xIn−1 − A0 has invariant factors δ1 | · · · | δn−1. Since
0 is not a root of δ1 · · · δn−1, A0 is nonsingular. According to the induction assump-
tion, there exist X0, C0 ∈ Fn×n such that X0 is nonsingular, C0 has eigenvalues
c1, . . . , cn−1, and X0A0X

−1
0 C0 is nonderogatory. According to Lemma 8, there exists

a vector e ∈ F (n−1)×1 such that all the invariant factors of[
xIn−1 −X0A0X

−1
0 C0 −e ](2.2)

are constant polynomials. Then

C ′ =
[

C0 X0A
−1
0 X−1

0 (e− acnX0)
0 cn

]

has eigenvalues c1, . . . , cn. On the other hand, A is similar to a matrix of the form

A′ =
[

X0A0X
−1
0 X0a

∗ ∗
]
∈ Fn×n.

As the invariant factors of (2.2) and xIn −A′C ′ interlace [8, 10], it follows that A′C ′

is nonderogatory.
Lemma 10. Let A ∈ Fn×n and c1, . . . , cn ∈ F . Suppose that

#{i ∈ {1, . . . , n} : ci �= 0} ≤ rankA.

Then there exist A′, B ∈ Fn×n such that A′ is similar to A, B is nonderogatory, and
A′B has eigenvalues c1, . . . , cn.

Proof. The proof is obtained by induction on n. If n = 1, the result is trivial.
Suppose that n ≥ 2.

Suppose that A is nonsingular. According to Lemma 9, there exist D,C ∈ Fn×n

such that D is similar to A−1, C has eigenvalues c1, . . . , cn, and B = DC is non-
derogatory. Then D−1 is similar to A and D−1B has eigenvalues c1, . . . , cn.

Now suppose that A is singular. Then A is similar to a matrix of the form[
A0 a
0 0

]
∈ Fn×n,

where A0 ∈ F (n−1)×(n−1). Without loss of generality, suppose that cn = 0. Choose
b ∈ F 1×(n−1) such that rank(A0 + ab) = rankA. According to the induction as-
sumption, there exist X0, B0 ∈ F (n−1)×(n−1) such that X0 is nonsingular, B0 is non-
derogatory, and X−1

0 (A0 + ab)X0B0 has eigenvalues c1, . . . , cn−1. It follows from the
interlacing relations for the invariant factors [8, 10] that [ xIn−1 −Bt

0 −bBt
0X

t
0 ]

has at most one nonconstant invariant factor. It follows from Lemma 7 that there
exists a nonderogatory matrix of the form

B =

[
B0 ∗

bX0B0 ∗
]
∈ Fn×n,



660 S. FURTADO, L. IGLÉSIAS, AND F. C. SILVA

while A is similar to

A′ =
[

X−1
0 A0X0 X−1

0 a
0 0

]
.

Clearly A′B has eigenvalues c1, . . . , cn.
For every positive integer n, let

Jn =

[
0 In−1

0 0

]
∈ Fn×n.

In particular, J1 = 0 ∈ F .
The problem considered in this paper is closely related with the problem of de-

scribing the possible eigenvalues of AB, where A and B run over prescribed similarity
orbits. This question has not been solved, although partial results are known. In the
next lemma, we give another partial result that will be used to prove our main theo-
rem. For results analogous to the next lemma, see [7, Theorem 3] and [9, Lemma 3].

Lemma 11. Let A,B ∈ Fn×n, c1, . . . , cn ∈ F . Suppose that one of the matrices
A,B is singular, the other is nonderogatory, and

#{i ∈ {1, . . . , n} : ci �= 0} ≤ min{rankA, rankB}.
Then there exist matrices A′, B′ ∈ Fn×n, similar to A,B, respectively, such that A′B′

has eigenvalues c1, . . . , cn, except if, simultaneously, n = 2, c1 = c2 = 0, one of the
matrices A,B is nilpotent of rank 1, and the other does not have eigenvalues in F .

Proof. The exception is a consequence of Lemma 2. Let c1, . . . , cn ∈ F . Note that
if A′ and B′ are similar to A and B, respectively, and A′B′ has eigenvalues c1, . . . , cn,
then A′t and B′t are similar to A and B, respectively, and B′tA′t has eigenvalues
c1, . . . , cn. From now on, without loss of generality, suppose that A is singular, B is
nonderogatory, and cn = 0.

The proof follows by induction on n. As the case A = 0 is trivial, suppose that
A �= 0. Suppose that n = 2.

• If A has two eigenvalues equal to zero and c1 �= 0, then there exist d1, d2 ∈ F
such that A and B are, respectively, similar to

A′ =
[

0 1
0 0

]
and B′ =

[
0 d1

c1 d2

]
.

• If A has two eigenvalues equal to zero and c1 = 0, then B has two eigenvalues
b1, b2 ∈ F , and A and B are, respectively, similar to

A′ =
[

0 1
0 0

]
and B′ =

[
b1 1
0 b2

]
.

• If A has eigenvalues a1, 0, with a1 �= 0, then there exist d1, d2 ∈ F such that
A and B are, respectively, similar to

A′ =
[

a1 0
0 0

]
and B′ =

[
a−1
1 c1 1
d1 d2

]
.

In any case, A′B′ has eigenvalues c1, 0.
Suppose that n ≥ 3. As A is singular, xIn−A has at least one elementary divisor

that is a power of x.
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Case 1. Suppose that all the elementary divisors of xIn −A that are powers of x
have degree 2.

Subcase 1.1. Suppose that xIn−A has exactly one elementary divisor equal to x2.
Then A is similar to a matrix of the form A0⊕J2, where A0 is nonsingular. According
to Lemma 10, there exist A′

0, B0 ∈ F (n−2)×(n−2) such that A′
0 is similar to A0, B0 is

nonderogatory, and A′
0B0 has eigenvalues c1, . . . , cn−2. According to Lemma 8, there

exists e ∈ F 1×(n−2) such that all the invariant factors of[
xIn−2 −B0

−e
]

are constant polynomials. Then all the invariant factors of
 xIn−2 −B0 0

−e x− u
0 −1


 ,

where u = −1+traceB− traceB0, are constant polynomials. According to Lemma 6,
B is similar to a matrix of the form

B′ =


 B0 0 ∗

e u v
0 1 1




for some v ∈ F . Since e �= 0, there exists V ∈ F (n−2)×1 such that v− eV = cn−1. Let

X =


 In−2 0 V

0 1 0
0 0 1


 .

Then B′ is similar to

B′′ = XB′X−1 =


 B0 ∗ h

e u cn−1

0 1 1


 ,

where h ∈ F (n−2)×1. Let

Y =


 In−2 A′−1

0 h h
0 1 0
0 0 1


 .

Then A is similar to A′ = Y (A′
0 ⊕ J t

2)Y
−1 and A′B′′ has eigenvalues c1, . . . , cn.

Subcase 1.2. Suppose that xIn − A has at least two elementary divisors equal to
x2. Then A is similar to a matrix of the form

A′ = A0 ⊕
[

0r 0r
Ir 0r

]
,

where, if n = 2r, the block A0 vanishes and, if n > 2r, then A0 ∈ F (n−2r)×(n−2r) is
nonsingular. Without loss of generality, suppose that cn−r+1 = · · · = cn = 0; also
suppose that, if 2r < n,

#{i ∈ {1, . . . , n− 2r} : ci �= 0} ≤ rankA0.
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If there exists i ∈ {n − 2r + 1, . . . , n − r} such that ci �= 0, suppose, without loss of
generality, that cn−r �= 0 and let

B2,3 = diag(cn−2r+1, . . . , cn−r) ∈ F r×r;

otherwise, let

B2,3 = 0r−2 ⊕
[

0 0
1 0

]
∈ F r×r.

Let B2,2 = Jr. Note that B2,3 has eigenvalues cn−2r+1, . . . , cn−r and all the invariant
factors of [ xIr −B2,2 −B2,3 ] are constant polynomials.

Subcase 1.2.1. Suppose that n = 2r. According to Lemma 6, B is similar to a
matrix of the form

B′ =
[

B2,2 B2,3

∗ ∗
]
∈ Fn×n.

Then A′B′ has eigenvalues c1, . . . , cn.
Subcase 1.2.2. Suppose that n > 2r. According to Lemma 10, there exist

A′
0, B1,1 ∈ F (n−2r)×(n−2r) such that A′

0 is similar to A0, B1,1 is nonderogatory,
and A′

0B1,1 has eigenvalues c1, . . . , cn−2r. According to Lemma 8, there exists e ∈
F (n−2r)×1 such that all the invariant factors of[

xIn−2r −B1,1 −e ]
are constant polynomials. Let B1,2 =

[
e 0

] ∈ F (n−2r)×r. Then all the invariant
factors of [

xIn−2r −B1,1 −B1,2 0
0 xIr −B2,2 −B2,3

]

are constant polynomials. According to Lemma 6, B is similar to a matrix of the
form

B′ =


 B1,1 B1,2 0

0 B2,2 B2,3

∗ ∗ ∗


 ∈ Fn×n.

On the other hand, A is similar to

A′′ = A′
0 ⊕

[
0r 0r
Ir 0r

]

and A′′B′ has eigenvalues c1, . . . , cn.
Case 2. Suppose that xIn − A has at least one elementary divisor of the form

xp, with p �= 2. Then A is similar to a matrix of the form A0 ⊕ Jp, where A0 ∈
F (n−p)×(n−p). (When p = n, A0 does not exist.) Without loss of generality, suppose
that

#{i ∈ {1, . . . , n− p} : ci �= 0} ≤ rankA0 = rankA− p+ 1,

#{i ∈ {n− p+ 1, . . . , n} : ci �= 0} ≤ p− 1.

Subcase 2.1. Suppose that p = 1. According to Lemma 10, there exist A′
0, B0 ∈

F (n−1)×(n−1) such that A′
0 is similar to A0, B0 is nonderogatory, and A′

0B0 has
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eigenvalues c1, . . . , cn−1. Then A is similar to A′ = A′
0 ⊕ [0]. According to Lemma 5,

B is similar to a matrix of the form

B′ =
[

B0 ∗
∗ ∗

]
∈ Fn×n.

Clearly, A′B′ has eigenvalues c1, . . . , cn.
Subcase 2.2. Suppose that p ≥ 3. According to Lemma 4, there exist e1, . . . , ep ∈

F (p−1)×1 such that all the invariant factors of [ xIp−1 0 ] − [ e1 · · · ep ] are
constant and [ e2 · · · ep ] has eigenvalues cn−p+1, . . . , cn−1.

Subcase 2.2.1. Suppose that p = n. Then A is similar to A′ = J t
p. According to

Lemma 6, B is similar to a matrix of the form

B′ =
[

e1 · · · en
∗

]
∈ Fn×n.

Then A′B′ has eigenvalues c1, . . . , cn.
Subcase 2.2.2. Suppose that p < n. According to Lemma 10, there exist A′

0, B0 ∈
F (n−p)×(n−p) such that A′

0 is similar to A0, B0 is nonderogatory, and A′
0B0 has

eigenvalues c1, . . . , cn−p. According to Lemma 8, there exists e ∈ F (n−p)×1 such
that all the invariant factors of [ xIn−p −B0 −e ] are constant polynomials. Let

B1 = [ e 0 ] ∈ F (n−p)×p. Bearing in mind the Kronecker canonical form (cf. [3]),
we see that [ xIp−1 0 ]− [ e1 · · · ep ] is strictly equivalent to [ xIp−1 0 ]−
[ 0 Ip−1 ]. It follows easily that there exists a nonsingular matrix

X =

[
X0 0
∗ ∗

]
∈ F p×p,

where X0 ∈ F (p−1)×(p−1), such that

X−1
0

[
e1 · · · ep

]
X =

[
0 Ip−1

]
.

Then all the invariant factors of

[
xIn−1 0

]−
[

B0 B1X
−1

0 e1 · · · ep

]

are constant polynomials. According to Lemma 6, B is similar to a matrix of the
form

B′ =


 B0 B1X

−1

0 e1 · · · ep
∗ ∗


 ∈ Fn×n.

Then A is similar to A′ = A′
0 ⊕ J t

p and A′B′ has eigenvalues c1, . . . , cn.
Lemma 12. Let A ∈ Fn×n be a singular matrix and f ∈ F [x] be a monic

polynomial of degree n such that f(0) �= 0. Let c1, . . . , cn ∈ F . Suppose that

#{i ∈ {1, . . . , n} : ci �= 0} ≤ rankA.

Then there exist B,C ∈ Fn×n such that B has characteristic polynomial f, C has
eigenvalues c1, . . . , cn, and A = BC, except if, simultaneously, A is a 2× 2 nilpotent
matrix of rank 1, f is irreducible, and c1 = c2 = 0.
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Proof. The exception is a consequence of Lemma 2. If A = 0, the result is trivial.
Suppose that A �= 0 and it is false that, simultaneously, A is a 2× 2 nilpotent matrix
of rank 1, f is irreducible, and c1 = c2 = 0. Let D ∈ Fn×n be a nonderogatory
matrix with characteristic polynomial f . Then D−1 is also a nonderogatory matrix.
Moreover the characteristic polynomial of D−1 is reducible whenever f is reducible.
According to Lemma 11, there exists a nonsingular matrix X ∈ Fn×n and a matrix
E ∈ Fn×n similar to D−1 such that C = EX−1AX has eigenvalues c1, . . . , cn. Then
A = (XE−1X−1)(XCX−1).

Lemma 13. Let A ∈ Fn×n, n ≥ 2, be a singular matrix and f ∈ F [x] be a monic
polynomial of degree n such that f �= xn and f(0) = 0. Then there exist B,C ∈ Fn×n

such that B has characteristic polynomial f, C is nilpotent, and A = BC.

Proof. By induction on n. If A = 0, the result is trivial. Suppose that A �= 0.
Suppose that n = 2. Since A is singular, A is similar to

A′ =
[

0 1
0 a

]

for some a ∈ F . Suppose that f = x(x− b), with b ∈ F \ {0}. Then

A′ =
[

b 0
ab 0

] [
0 b−1

0 0

]
.

Suppose that n > 2. Let s be the number of eigenvalues of A equal to 0 and let
r be the number of roots of f equal to 0. Suppose that f = xrh.

Case 1. Suppose that A is similar to J3. Suppose that f = x(x2 − bx− a). Let

B =


 b a −ab+ 1

1 0 0
0 0 0


 and C =


 0 0 1

0 b −b2
0 1 −b


 .

Clearly, B has characteristic polynomial f , C is nilpotent, and A is similar to BC.

Case 2. Suppose that r ≥ 2 and s ≥ 2. Then A is similar to a matrix of the form

A′ =


 0 0 a1

0 0 0
0 a2 A0


 ,

where a1 =
[

1 0 · · · 0
] ∈ F 1×(n−2) and a2 ∈ F (n−2)×1. (See [2, Lemma 3].)

Let B1,1 = C1,1 = J2. Choose l ∈ F (n−2)×1 such that A0 −
[

l 0
]
is singular and

is not a nilpotent matrix of rank 1. Let B2,1 =
[

a2 l
]
and

C1,2 =

[
0 0 · · · 0
1 0 · · · 0

]
∈ F 2×(n−2).

According to either the induction assumption or Lemma 12, there exist B2,2, C2,2 ∈
F (n−2)×(n−2) such that B2,2 has characteristic polynomial xr−2h, C2,2 is nilpotent,
and A0 −B2,1C1,2 = B2,2C2,2. Then A′ = BC, where

B =

[
B1,1 0
B2,1 B2,2

]
and C =

[
C1,1 C1,2

0 C2,2

]
.(2.3)
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Case 3. Suppose that s > r = 1 and Case 1 is not satisfied. In this case, A is
similar to a matrix of the form

A′ =
[

0 0
A2,1 A2,2

]
,

whereA2,2 ∈ F (n−1)×(n−1) is singular and is not similar to J2. According to Lemma 12,
there exist B2,2 ∈ F (n−1)×(n−1) with characteristic polynomial h and a nilpotent ma-
trix C2,2 ∈ F (n−1)×(n−1) such that A2,2 = B2,2C2,2. Let C2,1 = B−1

2,2A2,1. Then
A′ = BC, where

B =

[
0 0
0 B2,2

]
and C =

[
0 0

C2,1 C2,2

]
.

Case 4. Suppose that r ≥ s = 1. In this case, there exists a nonsingular matrix
A2,2 ∈ F (n−1)×(n−1) such that, for every A1,2 ∈ F 1×(n−1), A is similar to

[
0 A1,2

0 A2,2

]
.

Choose B2,1 ∈ F (n−1)×1 and C1,2 ∈ F 1×(n−1) so that A2,2 −B2,1C1,2 is singular and
not similar to J2. According to either the induction assumption or Lemma 12, there
exist B2,2, C2,2 ∈ F (n−1)×(n−1) such that B2,2 has characteristic polynomial xr−1h,
C2,2 is nilpotent, and A2,2 −B2,1C1,2 = B2,2C2,2. Then A is similar to BC, where B
and C have the forms (2.3), with B1,1 = C1,1 = 0.

Lemma 14. Let A ∈ Fn×n be a nonzero singular matrix, let g ∈ F [x] be a monic
polynomial of degree n, and let b ∈ F \ {0}. Then there exist B,C ∈ Fn×n such that
B has characteristic polynomial f = (x− b)xn−1, C has characteristic polynomial g,
and A = BC.

Proof. If g = xn, the result has been proved in Lemma 13. If g(0) �= 0, the result
follows from Lemma 12. Now suppose that g �= xn and g(0) = 0. The proof continues
by induction on n.

Suppose that n = 2. Then A is similar to

A′ =
[

a 1
0 0

]

for some a ∈ F , B = diag(b, 0) has characteristic polynomial f , there exist u, v ∈ F
such that

C =

[
b−1a b−1

u v

]

has characteristic polynomial g, and A′ = BC.
Now suppose that n > 2. Suppose that g = xh. As A is singular, A is similar to

a matrix of the form

A′ =
[

A0 0
a 0

]
,

where A0 ∈ F (n−1)×(n−1) and a ∈ F 1×(n−1).
Case 1. Suppose that a = 0. Choose k ∈ F (n−1)×1 and l ∈ F 1×(n−1) such that

A0 − kl is a nonzero singular matrix. According to the induction assumption, there
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exist B0, C0 ∈ F (n−1)×(n−1) such that B0 has characteristic polynomial (x− b)xn−2,
C0 has characteristic polynomial h, and A0 − kl = B0C0. Then A is similar to BC,
where B and C have the forms

B =

[
B0 k
0 0

]
and C =

[
C0 0
l 0

]

and have characteristic polynomials f and g, respectively.

Case 2. Suppose that a �= 0. Choose l ∈ F 1×(n−1) such that A0−lb−1a is singular
and is not a nilpotent matrix of rank 1. According to either Lemma 12 or Lemma 13,
there exist B0, C0 ∈ F (n−1)×(n−1) such that B0 is nilpotent, C0 has characteristic
polynomial h, and A0 − lb−1a = B0C0. Then A′ = BC, where B and C have the
forms

B =

[
B0 l
0 b

]
and C =

[
C0 0
b−1a 0

]

and have characteristic polynomials f and g, respectively.

Lemma 15. Let A ∈ Fn×n and let f, g ∈ F [x] be monic polynomials of degree
n. If there exist B,C ∈ Fn×n such that B has characteristic polynomial f, C has
characteristic polynomial g, and A = BC, then xn−rankA divides fg.

Proof. As A = BC, we have rankA ≥ rankB + rankC − n. Therefore η ≤ ν + µ,
where η = n− rankA, ν = n− rankB, µ = n− rankC are the numbers of elementary
divisors of xIn − A, xIn − B, xIn − C, respectively, that are powers of x. Hence
xη | xν+µ = xνxµ | fg.

Lemma 16. Let A ∈ Fn×n and let f, g ∈ F [x] be monic polynomials of degree n.
Suppose that n > 2 and rankA ≤ 1. If xn−rankA divides fg, then there exist B,C ∈
Fn×n such that B has characteristic polynomial f, C has characteristic polynomial g,
and A = BC.

Proof. First, suppose that A = 0. In this case, xn divides fg. Suppose that
f = xkf1 and g = xn−kg1. Let B0 ∈ F (n−k)×(n−k) and C0 ∈ F k×k be matrices with
characteristic polynomials f1 and g1, respectively. Then A = (0k ⊕B0)(C0 ⊕ 0n−k).

Now suppose that rankA = 1. Let xn−1(x−a), where a ∈ F, be the characteristic
polynomial of A. As xn−1 divides fg, we have f = xkf1 and g = xlg1 for some
nonnegative integers k, l such that k+l = n−1. We assume, without loss of generality,
that k ≤ l.

Case 1. Suppose that k = 0. Then l = n− 1 and g = xn−1(x− c) for some c ∈ F .
It follows from Lemma 6 that there exists a matrix of the form

B =




0 a ∗ ∗
1 0 ∗ ∗
0 1 ∗ ∗
0 0 ∗ ∗


 ∈ Fn×n

with characteristic polynomial f . On the other hand,

C =

[
c 0
1 0

]
⊕ 0n−2

has characteristic polynomial g. Then A is similar to BC.
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Case 2. Suppose that k > 0. It follows from Lemma 6 that there exist matrices
of the forms

B =




0k 0 0 0
0 1 ∗ ∗
0 1 ∗ ∗
0 0 ∗ ∗


 , C =



∗ ∗ ∗ 0
∗ ∗ ∗ 0
0 1 a 0
0 0 0 0l


 ∈ Fn×n

with characteristic polynomials f and g, respectively. Then A is similar to

BC = 0k−1 ⊕

 0 0 0

1 a 0
1 a 0


⊕ 0n−k−2.

Lemma 17. Let A ∈ F 2×2 be a singular matrix and let f, g ∈ F [x] be monic
polynomials of degree 2. Then there exist B,C ∈ F 2×2 such that B has characteristic
polynomial f , C has characteristic polynomial g, and A = BC if and only if one of
the following conditions is satisfied:
(a17) A = 0 and x2 divides fg;
(b17) A is nilpotent of rank 1, (fg)(0) = 0, and at least one of the polynomials f, g

is reducible and different from x2;
(c17) A is not nilpotent and (fg)(0) = 0.
Proof. Necessity. If A = 0, the necessity of (a17) has already been proved in

Lemma 15. As A is singular, the necessity of the condition (fg)(0) = 0 is trivial. If
A is nilpotent of rank 1, the necessity of (b17) follows from Lemmas 2 and 3.

Sufficiency. Suppose that (a17) is satisfied. If x2 divides f , let B = 0 and let C
be any matrix with characteristic polynomial g. If x2 divides g, let B be any matrix
with characteristic polynomial f and let C = 0. If f = x(x − b) and g = x(x − c),
with b, c ∈ F , then A = 0 = diag(b, 0) diag(0, c).

Now suppose that A �= 0. If one of the polynomials f, g has the form x(x−b), with
b ∈ F \{0}, then the proof follows from Lemma 14. Otherwise, one of the polynomials
f, g is equal to x2. Without loss of generality, suppose that f = x2. If A is nilpotent
of rank 1, then g = (x− c1)(x− c2), with c1 ∈ F , c2 ∈ F \ {0}, the matrices B = J2

and C = diag(c1, c2) have characteristic polynomials f and g, respectively, and BC
is similar to A. If A is not nilpotent, then A has characteristic polynomial x(x− a),
with a ∈ F \ {0}, B = J2 has characteristic polynomial f , there exist c1, c2 ∈ F such
that

C =

[
0 c1
a c2

]

has characteristic polynomial g, and BC is similar to A.
Lemma 18. Let A ∈ F 2×2 be a nonscalar nonsingular matrix and let f, g ∈ F [x]

be monic polynomials of degree 2. Suppose that at least one of the polynomials f, g is
reducible. Then there exist B,C ∈ F 2×2 such that B has characteristic polynomial f ,
C has characteristic polynomial g, and A = BC if and only if detA = (fg)(0).

Proof. The necessity of the condition detA = (fg)(0) is trivial. In order to prove
the sufficiency, suppose, without loss of generality, that f is reducible. Let C ∈ F 2×2

be a nonderogatory matrix with characteristic polynomial g. According to [9], there
exist matrices A′, D ∈ F 2×2, similar to A,C−1, respectively, such that B = A′D has
characteristic polynomial f . Then A′ = BD−1, where B and D−1 have characteristic
polynomials f and g, respectively.



668 S. FURTADO, L. IGLÉSIAS, AND F. C. SILVA

3. Main result. In this section, we solve Problem 1 when F is the field R of
real numbers. The case A = 0 has already been considered in Lemmas 15, 16, and 17
and the nonsingular scalar case is trivial. From now on, we shall assume that A is
nonscalar. We shall consider separately the case n = 2 since it has a more irregular
solution.

Lemma 19. Suppose that f = x2 + bx+1 and g = x2 + cx+1 are real irreducible
polynomials. Let A ∈ R

2×2 be a nonscalar matrix. Then there exist matrices B,C ∈
R

2×2 such that B and C have characteristic polynomials f and g, respectively, and
A = BC if and only if detA = 1, traceA belongs to

(
−∞,

1

2

(
cb−

√
4− b2

√
4− c2

)]
∪
[
1

2

(
cb+

√
4− b2

√
4− c2

)
,+∞

)
,(3.1)

and
• b �= c or traceA �= 2,
• b �= −c or traceA �= −2.

Proof. As f and g are irreducible, it follows that max{|b|, |c|} < 2. Note that

−2 ≤ 1

2

(
cb−

√
4− b2

√
4− c2

)
<

1

2

(
cb+

√
4− b2

√
4− c2

)
≤ 2.

Necessary condition. Let A′, B′, C ′ ∈ R
2×2 be matrices simultaneously similar to

A,B,C, respectively, where C ′ is the companion matrix of g. Then

B′ =
[ −b− r s

(−br − r2 − 1)/s r

]
, C ′ =

[
0 1
−1 −c

]
(3.2)

for some r, s ∈ R, s �= 0, A′ = B′C ′, and traceA = traceA′ = −s−rc+(−br−r2−1)/s.
The real map t(r, s) = −s − rc + (−br − r2 − 1)/s, with domain R × (R \ {0}), has
range given by (3.1).

Suppose that b = c and traceA = 2. Then the equation t(r, s) = 2 has a unique
real solution: r = 0 and s = −1. By replacing these values in (3.2), we deduce
that A′ = B′C ′ is scalar, which is a contradiction. Analogously, it is impossible that
b = −c and traceA = −2.

Sufficient condition. With the previous notation, choose (r, s) ∈ R × (R \ {0})
such that t(r, s) = traceA. Let B′, C ′ be the matrices (3.2) and let A′ = B′C ′. Since
A and A′ have the same trace and the same determinant and are nonscalar, A and
A′ are similar. Because B′, C ′ have characteristic polynomials f and g, respectively,
the proof is complete.

The next lemma is easy to prove and, jointly with Lemmas 17, 18, and 19, com-
pletes the study of the case n = 2.

Lemma 20. Let f = x2 + b1x + b0 and g = x2 + c1x + c0 be real irreducible
polynomials and let A ∈ R

2×2 be a nonscalar matrix. Then there exist matrices
B,C ∈ R

2×2 such that B and C have characteristic polynomials f and g, respectively,
and A = BC if and only if there exist matrices B′, C ′ ∈ R

2×2 such that B′ and C ′

have characteristic polynomials f ′ = x2 +(b1/
√
b0)x+1 and g′ = x2 +(c1/

√
c0)x+1,

respectively, and (1/
√
b0c0)A = B′C ′.

Corollary 21. Let f = x2 + b1x+ b0 and g = x2 + c1x+ c0 be real irreducible
polynomials and let A ∈ R

2×2 be a nonscalar matrix with real eigenvalues. Then there
exist matrices B,C ∈ R

2×2 such that B and C have characteristic polynomials f and
g, respectively, and A = BC if and only if detA = b0c0 and
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• b1
√
c0 �= c1

√
b0 or traceA �= 2

√
b0c0,

• b1
√
c0 �= −c1

√
b0 or traceA �= −2√b0c0.

Proof. First suppose that b0 = c0 = 1. The necessity has been stated in
Lemma 19.

Let us prove the sufficiency. Since A has real eigenvalues and detA = 1, it follows
that | traceA| ≥ 2. According to a remark in the proof of Lemma 19, traceA belongs
to (3.1). Hence the proof is a consequence of Lemma 19.

The general case reduces to the case b0 = c0 = 1 by applying Lemma 20.
Lemma 22. Let A ∈ R

n×n be a nonscalar matrix, let T be a finite subset of R

such that 0 �∈ T, and let d ∈ R \ {0}. Suppose that n ≥ 3 and xIn − A has at most
n− 2 nonconstant invariant factors. Then A is similar to a matrix of the form

[
A1,1 A1,2

A2,1 A2,2

]
∈ R

n×n,

where A1,1 ∈ R
2×2 is nonscalar and has real eigenvalues, detA1,1 = d, trace A1,1 �∈ T,

• A2,2 − A2,1A
−1
1,1A1,2 has real eigenvalues and trace(A2,2 − A2,1A

−1
1,1A1,2) �∈ T

if n = 4,
• A2,2 −A2,1A

−1
1,1A1,2 is not a nonsingular scalar matrix if n ≥ 4.

Proof. Suppose that n = 3. Choose t ∈ R\T such that the polynomial x2− tx+d
has real roots. As xI3 −A has exactly one nonconstant invariant factor, A is similar
to a companion matrix and, therefore, is similar to a matrix of the form


 1 0 −d

0 1 t
0 0 1




 0 0 ∗

1 0 ∗
0 1 ∗




 1 0 d

0 1 −t
0 0 1


 ,

which has the prescribed form.
Suppose that n ≥ 4. Due to [16, Corollary I] and the fact that xIn − A has at

most n− 2 nonconstant invariant factors, A is similar to a matrix of the form

D =


 0 D1,2 D1,3

I2 D2,2 D2,3

0 D3,2 D3,3


 ∈ R

n×n,

where D2,2 and D3,3 are square blocks.
Case 1. Suppose that n = 4.
• If D1,2 is nonscalar, choose λ1, λ2 ∈ R such that λ1 �= λ2, λ1λ2 = d, and

λ1 + λ2 �∈ T . Choose µ1, µ2 ∈ R such that µ1 �= µ2, −detD1,2 = λ1λ2µ1µ2

and µ1 + µ2 �∈ T . According to either Sourour’s theorem [11] or Lemma 12,
there exist L,M ∈ R

2×2 with eigenvalues λ1, λ2 and µ1, µ2, respectively, such
that −D1,2 = LM .

• If D1,2 = aI2, with a ∈ R, choose λ1, λ2 ∈ R such that λ1 �= λ2, λ1λ2 = d,
λ1 + λ2 �∈ T, and −aλ−1

1 − aλ−1
2 �∈ T . Let L = diag(λ1, λ2) and M =

diag(−aλ−1
1 ,−aλ−1

2 ). Then −D1,2 = LM .
In any case, A is similar to

[
I2 L
0 I2

]
D

[
I2 −L
0 I2

]
,

which has the prescribed form.
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Case 2. Suppose that n ≥ 5. Let

X =

[
I2 A1,1

0 I2

]
⊕ In−4,

where A1,1 ∈ R
2×2 is a nonscalar matrix with real eigenvalues such that detA1,1 =

d and traceA1,1 �∈ T . If XDX−1 has already the prescribed form, the proof is
complete. Otherwise, it follows that D3,3 = aIn−4 for some a ∈ R \ {0}. Choose
W ∈ R

2×(n−4) \ {0}. Let

Y =


 I2 0 W

0 I2 0
0 0 In−4


 ∈ R

n×n.

Then Y XDX−1Y −1 has the prescribed form.
The next theorem is our main result.
Theorem 23. Let A ∈ R

n×n be a nonscalar matrix. Let f, g ∈ R[x] be monic
polynomials of degree n, where n ≥ 3.

Then there exist B,C ∈ R
n×n such that B has characteristic polynomial f, C has

characteristic polynomial g, and A = BC if and only if (fg)(0) = detA and xn−rankA

divides fg.
Proof. The necessity of the first condition is trivial and the necessity of the second

condition has been proved in Lemma 15.
From now on, suppose that (fg)(0) = detA and xn−rankA divides fg in order to

prove the sufficiency. The proof continues by induction on n. If xn−1 divides one of
the polynomials f, g, then the proof follows from Lemmas 3, 12, 13, and 14. The case
rankA ≤ 1 has already been considered in Lemma 16. From now on, suppose that
rankA > 1 and xn−1 divides neither f nor g.

Case 1. Suppose that xIn − A has exactly n − 1 nonconstant invariant factors.
Then A is similar to

A′ = [a]⊕
[

a 1
0 b

]
⊕ aIn−3

for some a, b ∈ R, with a �= 0. It follows from Lemma 6 that there exist matrices

B =

[ ∗ aIn−1

∗ 0

]
, C =

[
0 ∗

In−1 ∗
]
∈ R

n×n,

with characteristic polynomials f and g, respectively. As det(BC) = detA = an−1b,

BC =

[
aIn−1 ∗

0 b

]
.

If BC is nonscalar, then BC is similar to A and the proof is complete. Now suppose
that BC = aIn. Let X ∈ R

n×n be a nonsingular matrix such that

X−1BX =




B1 ∗
. . .

0 Bp


 ,

where p = n/2 and the blocks B1, . . . , Bp are of size 2×2 if n is even, and p = (n+1)/2
and the blocks B1, . . . , Bp−1 are of size 2 × 2 if n is odd. Note that B1 ⊕ · · · ⊕ Bp
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and aB−1
1 ⊕ · · · ⊕ aB−1

p have characteristic polynomials f and g, respectively. Let

e ∈ R
2×k be a matrix of rank 1, where k = 2 if n is even, and k = 1 if n is odd. Then

B′ = B1 ⊕ · · · ⊕Bp−2 ⊕
[

Bp−1 e
0 Bp

]
and C ′ = aB−1

1 ⊕ · · · ⊕ aB−1
p

have characteristic polynomials f and g, respectively, and B′C ′ is similar to A.
Case 2. Suppose that xIn − A has at most n − 2 nonconstant invariant factors.

Suppose that f = f1f2 and g = g1g2, where f1 = x2−a1x−a0 and g1 = x2−b1x−b0,
with a0b0 �= 0. Then A is similar to a matrix of the form described in Lemma 22,
with d = a0b0. Note that[

A1,1 A1,2

A2,1 A2,2

] [
I2 −A−1

1,1A1,2

0 In−2

]
=

[
A1,1 0
A2,1 A2,2 −A2,1A

−1
1,1A1,2

]
.

Therefore

detA = (detA1,1)(det(A2,2 −A2,1A
−1
1,1A1,2))

and

rank(A2,2 −A2,1A
−1
1,1A1,2) = rankA− 2.

According to either Lemma 18 or Corollary 21, there exist B1,1, C1,1 ∈ R
2×2 such

that B1,1 has characteristic polynomial f1, C1,1 has characteristic polynomial g1, and
A1,1 = B1,1C1,1. Let C1,2 = B−1

1,1A1,2 and B2,1 = A2,1C
−1
1,1 . On the other hand,

there exist B2,2, C2,2 ∈ R
(n−2)×(n−2) such that B2,2 has characteristic polynomial f2,

C2,2 has characteristic polynomial g2, and A2,2 − A2,1A
−1
1,1A1,2 = B2,2C2,2. This last

conclusion follows from the induction assumption when n ≥ 5, follows from either
Lemma 18 or Corollary 21 when n = 4, and is trivial when n = 3. Then A is similar
to BC, where B and C have the forms (2.3).

Recently, Freitas [1, Proposition 5.2] has shown that Sourour’s theorem can be
used to describe possible eigenvalues of the quadratic polynomial x2In + xB + C,
where C ∈ Fn×n is a fixed square matrix and B varies on Fn×n. Freitas’s argument
runs as follows.

Suppose that Sourour’s theorem (or any of its generalizations) allows us to write
C as the product of two matrices M and L with characteristic polynomials f and g,
respectively. Then

[
0 In
−C M + L

]
=

[
In 0
L In

] [
L In
0 M

] [
In 0
−L In

]

has characteristic polynomial fg. It follows from [4, Theorem 1.1] that the eigenvalues
of x2In − x(M + L) + C are the roots of fg.
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Abstract. The problem of the computation of the stochastic matrix G associated with discrete-
time quasi-birth-death (QBD) Markov chains is analyzed. We present a shifted cyclic reduction
algorithm and show that the speed of convergence of the latter modified algorithm is always faster
than that of the original cyclic reduction.
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1. Introduction. The block tridiagonal and block Toeplitz structure of the
probability transition matrix P associated with quasi-birth-death (QBD) problems,
i.e.,

P =




B0 B1 0
A0 A1 A2

A0 A1
. . .

0
. . .

. . .


 ,

allowed the design of fast and reliable methods for computation of the stochastic
matrix G [16, 11, 10, 2, 3, 4, 12, 5]. Here, A0, A1, A2, B0, B1 are k × k nonnegative
matrices such that A0 + A1 + A2 is irreducible, and P is irreducible, stochastic, and
positive recurrent. Moreover, we assume without loss of generality [7] that G has only
one eigenvalue of modulus one.

These fast methods rely on the property that the matrix G, which solves the
nonlinear matrix equation

G = A0 + A1G + A2G
2,(1.1)

can be computed by solving the infinite block tridiagonal, block Toeplitz system




I −A1 −A2 0
−A0 I −A1 −A2

−A0 I −A1
. . .

0
. . .

. . .







G
G2

G3

...


 =



A0

0
0
...


 .(1.2)

∗Received by the editors May 9, 2000; accepted for publication (in revised form) by D. Calvetti
June 8, 2001; published electronically December 14, 2001.

http://www.siam.org/journals/simax/23-3/37195.html
†Sprint Corporation, Network Planning and Design, 7171 W. 95th Street Overland Park, KS

66212 (charlie.he@mail.sprint.com).
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Recently in [2, 3, 4] Bini and Meini devised a new quadratically convergent and
numerically stable algorithm for the computation of G based on a functional repre-
sentation of cyclic reduction, which applies to general M/G/1 type Markov chains [16]
and which extends the method of Latouche and Ramaswami [10].

The aim of this paper is to introduce a shifted cyclic reduction algorithm for QBDs
and to show that the speed of convergence of a shifted cyclic reduction algorithm is
always faster than that of the original cyclic reduction algorithm.

More precisely, since G has a known eigenvalue (equal to 1) and a known cor-
responding right eigenvector, we may apply a shifting technique, which consists of
moving the eigenvalue 1 to 0 and maintaining the remaining ones. This trick leads
to a new quadratic matrix equation having as its solution a singular matrix H such
that G = H + euT , where e is the vector having all the entries equal to 1, and u is
a known arbitrary vector with positive entries such that uTe = 1. Thus the problem
of the computation of G is reduced to the problem of the computation of H, which
shares with G all the eigenvalues except for the eigenvalue 1, which is moved to 0.

In order to compute H we apply the cyclic reduction algorithm and show that the
shifting leads to a faster convergence. In the standard cyclic reduction algorithm, the
error of the approximation to G is O((1/σ)2

j

) as j →∞, where σ = min{|λ| : |λ| >
1, φ(λ) = 0} and φ(λ) = det(−A0+(I−A1)λ−A2λ

2). With the shifting technique the

error is O((θ/σ)2
j

), where θ is any real number such that max{|λ| : |λ| < 1, φ(λ) =
0} < θ < 1. Thus the convergence speed can be greatly increased when σ ≈ 1 or
θ 	 1.

Finally, we introduce a means to measure the conditioning of the quadratic matrix
equations, and we prove that the shifted equation is better conditioned than the
original one. This is important because even though the shifting technique leads to a
better rate of convergence, it destroys the nonnegativity and the M-matrix properties
of the blocks generated at each step of standard cyclic reduction, and in principle
this fact could lead to a loss of accuracy of the results. We have performed several
numerical experiments which show that the shifted cyclic reduction algorithm is fast
and numerically accurate.

The paper is organized as follows. In section 2 we recall the cyclic reduction
algorithm for QBDs. In section 3 we apply the shifting technique and show how the
solutions of the shifted matrix equation are related to the solution of the original one.
In section 4 we analyze the convergence properties of the cyclic reduction algorithm
applied to the shifted matrix equation. In section 5 we study the conditioning of the
two matrix equations. In section 6 we present some numerical results.

2. The cyclic reduction algorithm. In this section we recall the cyclic reduc-
tion algorithm for QBDs described in [3].

Let us consider the system (1.2). By recursively applying block cyclic reduction,
i.e., an odd-even permutation of block rows and block columns, followed by one step
of Gaussian elimination, the following sequence of infinite block tridiagonal systems
is generated:




I − Â
(j)
1 −A(j)

2 0

−A(j)
0 I −A

(j)
1 −A(j)

2

−A(j)
0 I −A

(j)
1

. . .

0
. . .

. . .







G

G2j+1

G2·2j+1

...


 =



A0

0
0
...


 , j ≥ 0,(2.1)



A SHIFTED CYCLIC REDUCTION 675

where A
(0)
0 = A0, Â

(0)
1 = A

(0)
1 = A1, A

(0)
2 = A2, and the blocks Â

(j)
1 , A

(j)
i , i = 0, 1, 2,

j ≥ 1, are defined by the recurrences

A
(j+1)
0 = A

(j)
0

(
I −A

(j)
1

)−1

A
(j)
0 ,

A
(j+1)
1 = A

(j)
1 + A

(j)
0

(
I −A

(j)
1

)−1

A
(j)
2 + A

(j)
2

(
I −A

(j)
1

)−1

A
(j)
0 ,

A
(j+1)
2 = A

(j)
2

(
I −A

(j)
1

)−1

A
(j)
2 ,

Â
(j+1)
1 = Â

(j)
1 + A

(j)
2

(
I −A

(j)
1

)−1

A
(j)
0 .

(2.2)

The sequences of matrices generated by the above relations allow the fast computation
of the matrix G. Indeed, from (2.1) it follows that

(I − Â
(j)
1 )G−A

(j)
2 G2j+1 = A0.(2.3)

On the other hand, if we denote by R the minimal nonnegative solution of the matrix
equation R = A2 + RA1 + R2A0, then the following equation holds (see [3, 10]):

−A(j)
2 + R2j

(I −A
(j)
1 )−R2·2j

A
(j)
0 = 0.

Moreover, the maximum modulus eigenvalue of R is real, simple, and unique, and
it is equal to 1/σ (see [7]), where σ = min{|λ| : |λ| > 1, φ(λ) = 0}, and φ(λ) =
det(−A0 + (I − A1)λ − A2λ

2). Thus, there exists an operator norm || · || such that
||R|| = ρ(R), where ρ(R) denotes the spectral radius of R; hence, we obtain

||A(j)
2 || ≤ ρ(R)2

j

(||I −A
(j)
1 ||+ ρ(R)2

j ||A(j)
0 ||).

Since the matrices A
(j)
1 and A

(j)
0 are bounded in norm [3], it follows that ||A(j)

2 || =

O(ρ(R)2
j

) and from (2.3), since G2j+1 is bounded, that

(I − Â
(j)
1 )G−A0 = O

((
1

σ

)2j)
.(2.4)

Hence an approximation of the matrix G is given by (I − Â
(j)
1 )−1A0 for j sufficiently

large.

Due to the double exponential convergence to zero of the sequence A
(j)
2 , just a

small number of steps can be sufficient to reach a good approximation of G.
The rate of convergence is given by 1/σ, and it is therefore related to the closeness

to the unit circle of the smallest zero of φ(λ) of modulus larger than 1.
In the next section we present a trick to improve the rate of convergence; indeed,

we show that by applying a deflating technique, which consists of removing the zero
λ = 1 of φ(λ), the rate of convergence can be reduced to θ/σ, where θ is any real
number such that max{|λ| : |λ| < 1, φ(λ) = 0} < θ < 1.

3. A shifted matrix equation. Since G has a known eigenvalue 1 and a known
eigenvector e where e is the k-dimensional vector having all the entries equal to 1, we
can modify G so that the eigenvalue 1 is shifted to 0. This shifting technique improves
the convergence speed of the cyclic reduction algorithm.

Set H = G−euT , where u is any vector whose elements are positive and such that
uTe = 1. Then the eigenvalues of H are those of G except that in H the eigenvalue
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1 of G is replaced by 0. Moreover, e is an eigenvector of H corresponding to the
eigenvalue 0, and hence He = 0. So we have

G = H + euT and G2 = (H + euT )2 = H2 + euTH + euT .

By replacing G by H in (1.1) we obtain that H solves the following shifted equation:

B0 + B1H + B2H
2 = H,(3.1)

where

B0 = A0 + (A1 + A2 − I)euT = A0(I − euT ),
B1 = A1 + A2eu

T ,
B2 = A2.

(3.2)

So the computation of the matrix G can be reduced to the computation of the matrix
H = G− euT , which solves the nonlinear matrix equation (3.1).

3.1. Spectral properties of the shifted matrix polynomial. The rank 1
corrections of the matrices A0 and A1 have the effect of keeping unchanged all the
zeros of the polynomial φ(λ) = detA(λ), A(λ) = −A0 + (I −A1)λ−A2λ

2, except for
the zero λ = 1, which is moved to λ = 0. Indeed, the following result holds.

Theorem 3.1. The zeros of the polynomial ψ(λ) = detB(λ), B(λ) = −B0 +(I−
B1)λ−B2λ

2, are

{λ : detA(λ) = 0, λ = 1} ∪ {0}.
To prove the above theorem we need to introduce some notations and some results

on pairs of matrices (see [8]).
Definition 3.2. Let A and B be n×n complex matrices. We define Λ(A,B) by

Λ(A,B) = {λ ∈ C : det(A− λB) = 0}.
If λ ∈ Λ(A,B), λ is called an eigenvalue of the pair (A,B). If λ is an eigenvalue of
the pair (A,B), then there exists a nonzero vector x such that Ax = λBx, and such
an x is called an eigenvector of the pair (A,B) corresponding to the eigenvalue λ.

Theorem 3.3. If A and B are n× n complex matrices, then there exist unitary
matrices U and V such that UHAV = R and UHBV = R̃ where R and R̃ are upper
triangular. If for some i, rii and r̃ii are both zero, then Λ(A,B) = C. Otherwise

Λ(A,B) = {rii/r̃ii : r̃ii = 0, i = 1, . . . , n}.
Note that v1, the first column of V , is an eigenvector of the pair (A,B) corre-

sponding to the eigenvalue r11/r̃11.
Definition 3.4. Two pairs of matrices (A,B) and (C,D) are said to be equiva-

lent if there exist nonsingular matrices L and M such that C = LAM and D = LBM .
It is easy to verify that if (A,B) and (C,D) are equivalent pairs, then Λ(A,B) =
Λ(C,D).

Proof of Theorem 3.1. Let

Λ(A) = {λ ∈ C : detA(λ) = 0}, Λ(B) = {λ ∈ C : detB(λ) = 0}.
If we set

S =

[
I −A1 −A0

I 0

]
and T =

[
A2 0
0 I

]
,
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it is easy to verify that Λ(A) = Λ(S, T ). Similarly, if we set

S̃ =

[
I −B1 −B0

I 0

]
,

then Λ(B) = Λ(S̃, T ).
Now if we let

L =

[
I −A2eu

T

0 I

]
and M =

[
I euT

0 I

]
,

then by direct computation one can verify that

S̃ = L

(
S − T

[
e
e

]
[0,uT ]

)
M and T = LTM.

So

Λ(B) = Λ(S̃, T ) = Λ

(
S − T

[
e
e

]
[0,uT ], T

)
.

Note that the vector [eT , eT ]T is an eigenvector of the pair (S, T ) corresponding
to the eigenvalue 1. So there exist unitary matrices U and V such that

UHSV = R and UHTV = R̃

with

v1 =
1√
2k

[
e
e

]
.

Since v1 is an eigenvector of the pair (S, T ) corresponding to the eigenvalue 1, we
have r11/r̃11 = 1. By Theorem 3.3 we know that

Λ(A) = Λ(S, T )
= { r11r̃11

, r22r̃22
, . . . ,

rl,l
r̃l,l
}

= {1, r22r̃22
, . . . ,

rl,l
r̃l,l
}.

(3.3)

Here we assumed that r̃i,i = 0 for i = l + 1, . . . , 2k.

Since UHT [eT , eT ]T = R̃V H(
√

2kv1) =
√

2kr̃11e1, where e1 is the first standard
unit vector of length 2k, and the first component of the row vector [0,uT ]V is 1/

√
2k,

it follows that the matrix

UH

{
S − T

[
e
e

]
[0,uT ]

}
V = R− UHT

[
e
e

]
[0,uT ]V

is upper triangular and has r11 − r̃11, r22, . . . , r2k,2k as its diagonal elements. Hence
by Theorem 3.3 we have

Λ(B) = Λ(S̃, T )

= Λ

(
S − T

[
e
e

]
[0,uT ], T

)
= { r11−r̃11

r̃11
, r22r̃22

, . . . ,
rl,l
r̃l,l
}

= {0, r22r̃22
, . . . ,

rl,l
r̃l,l
}.

(3.4)

From (3.3) and (3.4) we see that Λ(B) is the same as Λ(A) except that in Λ(B)
1 ∈ Λ(A) is replaced by 0.
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3.2. Solutions of the shifted matrix equation. The blocks B0, B1, B2 are
such that H = G−euT solves the nonlinear matrix equation (3.1). The following the-
orem shows how the minimal nonnegative solutions of the nonlinear matrix equations
(3.5) are transformed by the shifting.

Theorem 3.5. Let u be positive, and let G, R, S, and F be the minimal non-
negative solutions of the matrix equations

G = A0 + A1G + A2G
2,

S = A0S
2 + A1S + A2,

R = R2A0 + RA1 + A2,
F = A0 + FA1 + F 2A2,

(3.5)

respectively. Then H = G − euT , K = (I − euTS)S(I − euTS)−1, T = R, and
V = F − wuT (I − A1 − A0S)−1, where w = (1 − uTSe)−1A0(I − S)e, solve the
matrix equations

H = B0 + B1H + B2H
2,

K = B0K
2 + B1K + B2,

T = T 2B0 + TB1 + B2,
V = B0 + V B1 + V 2B2.

(3.6)

Proof. First observe that if u is positive, then uTSe < 1, since Se ≤ e and S is
substochastic [9, 14]; hence I − euTS is nonsingular.

The matrix H solves the first equation of (3.6) by construction. For the matrix
K we have

B0K
2 + B1K + B2

= B0(I − euTS)S2(I − euTS)−1 + B1(I − euTS)S(I − euTS)−1 + B2

=
(
A0(I − euT )S2 +

(
A1 + (A0e− e)uTS + A2eu

T
)
S

+ A2(I − euTS)
)

(I − euTS)−1

= (S − euTS2)(I − euTS)−1 = K.

For the matrix T = R, since [9] R = A2(I −A1 −A2G)−1 and

A2e = R(I −A1 −RA0)e = R
(
I −A1 −A2(I −A1 −A2G)−1A0

)
e

= R(I −A1 −A2G)e = RA0e,

we obtain

B2 + RB1 + R2B0 = A2 + R(A1 + A2eu
T ) + R2A0(I − euT )

= A2 + RA1 + R2A0 + RA2eu
T −R2A0eu

T

= R + R(A2e−RA0e)uT = R.

Concerning the matrix V , observe that I −B1 −B0K is nonsingular, since I −A1 −
A0S − B2G is nonsingular [9, 14], and I − A1 − A0S − B2G = (I − B1 − B0K −
B2H)(I − euTS) = (I −B1 −B0K)(I −KH)(I − euTS). It can be shown by direct
substitution that V = B0(I − B1 − B0K)−1 solves the last matrix equation in (3.6).
By rewriting the matrix V in terms of the blocks A0, A1, A2 we obtain that

V = A0(I − euT )(I −A1 −A0S −A2eu
T )−1.
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On the other hand, by applying the Sherman–Woodbury–Morrison formula [8], we
have

(I −A1 −A0S −A2eu
T )−1 = (I −A1 −A0S)−1

+ (1− uT (I −A1 −A0S)−1A2e)−1(I −A1 −A0S)−1A2eu
T (I −A1 −A0S)−1

= (I −A1 −A0S)−1 + (1− uTSe)−1SeuT (I −A1 −A0S)−1

=
(
I − (1− uTSe)−1SeuT

)
(I −A1 −A0S)−1.

From the latter equation and from the relation F = A0(I−A1−A0S)−1 [9], we obtain

V = F + (1− uTSe)−1A0Seu
T (I −A1 −A0S)−1

− (A0e + (uTSe)(1− uTSe)−1A0e
)
uT (I −A1 −A0S)−1

= F −wuT (I −A1 −A0S)−1,

where w = (1− uTSe)−1A0(I − S)e.
The spectral properties of the solutions of the shifted matrix equations allow us

to prove that the rate of convergence is improved with respect to standard cyclic
reduction. Let us define

θ̄ = max{|λ| : |λ| < 1, φ(λ) = 0},
σ = min{|λ| : |λ| > 1, φ(λ) = 0}.(3.7)

The convergence properties which will be proved in the next section rely on the fact
that θ̄ < 1, σ = 1/ρ(R) > 1, S and R have the same eigenvalues (see [14]), and thus
also K and R, and ρ(K) = 1/σ < 1.

4. A shifted cyclic reduction algorithm. In this section we apply the cyclic
reduction algorithm to solve the shifted matrix equation (3.1), and we show that the
rate of convergence is improved with respect to the same algorithm applied to the
original matrix equation (1.1).

By following the approach described in section 2, we generate by means of cyclic
reduction the sequence of infinite block tridiagonal systems:



I − B̂
(j)
1 −B(j)

2 0

−B(j)
0 I −B

(j)
1 −B(j)

2

−B(j)
0 I −B

(j)
1

. . .

0
. . .

. . .







H

H2j+1

H2·2j+1

...


 =



B0

0
0
...


 , j ≥ 0,(4.1)

where B
(0)
0 = B0, B̂

(0)
1 = B

(0)
1 = B1, B

(0)
2 = B2, and the blocks B̂

(j)
1 , B

(j)
i , i = 0, 1, 2,

j ≥ 1, are defined by the recurrences

B
(j+1)
0 = B

(j)
0

(
I −B

(j)
1

)−1

B
(j)
0 ,

B
(j+1)
1 = B

(j)
1 + B

(j)
0

(
I −B

(j)
1

)−1

B
(j)
2 + B

(j)
2

(
I −B

(j)
1

)−1

B
(j)
0 ,

B
(j+1)
2 = B

(j)
2

(
I −B

(j)
1

)−1

B
(j)
2 ,

B̂
(j+1)
1 = B̂

(j)
1 + B

(j)
2

(
I −B

(j)
1

)−1

B
(j)
0 .

(4.2)

In the shifted case the problem of the nonsingularity of the blocks I −B
(j)
1 must

be considered. In fact, in the original case the matrices I − A
(j)
1 are nonsingular M-

matrices for any j, since I − A
(j)
1 can be viewed as a Schur complement of the block
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(2j+1 − 1) × (2j+1 − 1) matrix obtained by truncating the infinite matrix (1.2) at
the block size 2j+1 − 1 (see [1, 6]), and this finite matrix is a nonsingular M-matrix.

Analogously, the matrix I −B(j)
1 can be viewed as a Schur complement of the matrix

Q2j+1−2, where Qn is the (n + 1)× (n + 1) block matrix

Qn =




I −B1 −B2 0

−B0
. . .

. . .

. . .
. . . −B2

0 −B0 I −B1


 .(4.3)

Thus, the (j + 1)st step of cyclic reduction can be performed, i.e., I −B(j)
1 is nonsin-

gular, if and only if Q2j+1−2 is nonsingular [1]. Based on this property, we prove the
following result.

Theorem 4.1. Let u be any positive vector such that uTe = 1 and let H =
G−ueT , K = (I−euTS)S(I−euTS)−1, where G and S are the minimal nonnegative
solutions of the matrix equations G = A0 + A1G + A2G

2, S = A0S
2 + A1S + A2.

Let B
(j)
0 , B

(j)
1 , B

(j)
2 , B̂

(j)
1 be the blocks generated at the jth step of cyclic reduction,

j ≥ 1. Then the following conditions are equivalent:
1. I − (HK2j+1−1)(KH2j+1−1) is nonsingular;

2. I − (KH2j+1−1)(HK2j+1−1) is nonsingular;

3. I −B
(j)
1 is nonsingular.

Proof. The matrix I − B
(j)
1 is nonsingular if and only if Q2j+1−2 is nonsingular,

where Qn is defined in (4.3). For simplicity of notation, set n = 2j+1 − 2. Observe
that the matrix W = I − B1 − B0K − B2H is nonsingular, since W = (I − A1 −
A0S − A2G)(I − euTS) and I − A1 − A0S − B2G is nonsingular (see [9, 14]). Let
x = (xi)i=0,...,n such that Qnx = 0. Therefore, since I − B1 − B0K − B2H is
nonsingular, then

xi = Hir + Kn−is, i = 0, . . . , n,

where r and s are suitable vectors such that the boundary conditions

(I −B1)x0 −B2x1 = 0,
−B0xn−1 + (I −B1)xn = 0

(4.4)

are satisfied (see [15]). By imposing the above equalities, we obtain that r and s must
solve the following homogeneous linear system:

[
I −B1 −B2H ((I −B1)K −B2)Kn−1

((I −B1)H −B0)Hn−1 I −B1 −B0K

] [
r
s

]
= 0,

which can be written as[
I −B1 −B2H B0K

n+1

B2H
n+1 I −B1 −B0K

] [
r
s

]
= 0,(4.5)

since H and K solve the matrix equations (1.1), (3.1). Hence, x = 0 if and only if
r = s = 0. Now, the block diagonal entries in the matrix of (4.5) are nonsingular
since I −B1−B0K −B2H = (I −B1−B2H)(I −HK) = (I −B1−B0K)(I −KH),
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and I − B1 − B0K − B2H is nonsingular. By computing the Schur complement of
I −B1 −B2H in I −B1 −B0K we obtain the matrix

S1 = I −B1 −B0K −B2H
n+1(I −B1 −B2H)−1B0K

n+1

= I −B1 −B0K −B2H
n+2Kn+1.

Thus, S1 (and hence Qn) is nonsingular if and only if (I − B1 − B0K)−1S1 = I −
KHn+2Kn+1 is nonsingular. By taking the Schur complement of I − B1 − B0K in
I −B1 −B2H we complete the proof of the theorem.

The above theorem gives necessary and sufficient conditions for the applicabil-
ity of cyclic reduction. Since ρ(H) < 1 and ρ(K) < 1, the matrix Zj = I −
(HK2j+1−1)(KH2j+1−1) is nonsingular for sufficiently large values of j. From the
numerical experiments that we have performed, and from the fact that the matrix
I − (GS2j+1−1)(SG2j+1−1) is nonsingular for any value of j, we conjecture that also
Zj is nonsingular for any value of j. However, if it were not, the cyclic reduction
algorithm can still be applied by performing a different permutation of block rows
and columns, which allows one to skip the steps that cannot be performed for the sin-

gularity of the blocks I −B
(j)
1 . (We refer to the paper [1] for details of this subject.)

Henceforth we assume that the matrices I −B
(j)
1 are nonsingular for any j. The

convergence properties stated by the next theorem enable us to efficiently compute
the matrix H.

Theorem 4.2. Let B
(j)
0 , B

(j)
1 , B

(j)
2 be the blocks generated at the jth step of

cyclic reduction. Then B
(j)
1 , (I −B

(j)
1 )−1 are bounded, and for any operator norm it

holds that ||B(j)
2 || = O((1/σ)2

j

) and ||B(j)
0 || = O(θ2j

) for any θ̄ < θ < 1, where θ̄ and
σ are defined in (3.7).

Proof. From (4.1), at each step j the following equations hold:

H2j

= B
(j)
0 + B

(j)
1 H2j

+ B
(j)
2 H2·2j

,(4.6)

K2j

= B
(j)
0 K2·2j

+ B
(j)
1 K2j

+ B
(j)
2 ,(4.7)

and therefore

(I −B
(j)
1 )−1B

(j)
0 + H2j

+ (I −B
(j)
1 )−1B

(j)
2 H2·2j

= 0,(4.8)

(I −B
(j)
1 )−1B

(j)
2 + K2j

+ (I −B
(j)
1 )−1B

(j)
0 K2·2j

= 0.(4.9)

We first prove that the matrices C
(j)
0 = (I − B

(j)
1 )−1B

(j)
0 and C

(j)
2 = (I −

B
(j)
1 )−1B

(j)
2 are bounded in norm.

Since the maximum modulus eigenvalue of R, and thus of K, is real, simple,
and unique [7], then there exists an operator norm || · ||K such that ||K||K = ρ(K).
Moreover, let ε > 0 such that ρ(H) + ε < 1, and let || · ||H,ε be an operator norm such
that ||H||H,ε ≤ ρ(H) + ε (see [8]).

Let αj = ||C(j)
0 ||H,ε. If αj is not bounded, then there exists a subsequence αjh

such that αjh diverges to infinity. From (4.8) we have

αjh ≤ ||C(jh)
2 ||H,ε||H2·2jh ||H,ε + ||H2jh ||H,ε

≤ (ρ(H) + ε)2
jh
(

(ρ(H) + ε)2
jh ||C(jh)

2 ||H,ε + 1
)
.

Thus,

||C(jh)
2 ||H,ε ≥

(
αjh

(ρ(H) + ε)2
jh
− 1

)
1

(ρ(H) + ε)2
jh
,
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and, since αjh diverges to infinity, for the equivalence of matrix norms, there exists a
constant c′ > 0 such that

||C(jh)
2 ||K ≥ c′

αjh

(ρ(H) + ε)2
jh
.(4.10)

Moreover, there exist a constant c′′ > 0 such that

||C(j)
0 ||K ≤ c′′||C(j)

0 ||H,ε = c′′αj .(4.11)

Thus, from (4.9) and (4.11), we have

||C(jh)
2 ||K ≤ c′′αjhρ(K)2·2

jh
+ ρ(K)2

jh
.

Hence, from (4.10), we obtain

c′
αjh

(ρ(H) + ε)2
jh
≤ c′′αjhρ(K)2·2

jh
+ ρ(K)2

jh
,

which contradicts the assumption that αjh goes to infinity. By using a similar ar-

gument we can prove that C
(j)
2 is also bounded in norm. Thus, from (4.8), for any

operator norm || · || there exists a constant γ such that

||C(j)
0 || ≤ γ(ρ(H) + ε)2

j

.(4.12)

Similarly, from (4.9) for any operator norm || · || there exists a constant γ′ such that

||C(j)
2 || ≤ γ′ρ(K)2

j

.(4.13)

From (4.12) and (4.13), since

I −B
(j+1)
1 = (I −B

(j)
1 )(I − C

(j)
0 C

(j)
2 + C

(j)
2 C

(j)
0 ),

we have

||I −B
(j+1)
1 || ≤ ||I −B

(j)
1 ||(1 + σj),

where σj = O((ρ(H)+ε)2
j

ρ(K)2
j

). Thus the matrices I−B(j)
1 , and hence the matrices

B
(j)
1 , are bounded in norm. Similarly, it holds that

||(I −B
(j+1)
1 )−1|| ≤ 1

1− σj
||(I −B

(j)
1 )−1||,

and thus ||(I −B
(j)
1 )−1|| is bounded.

Now, from the boundedness of ||I −B(j)
1 ||, and from (4.6) and (4.7), by applying

the same argument used to derive (4.12) and (4.13), we can show that ||B(j)
2 || and

||B(j)
0 || are bounded, and thus that ||B(j)

0 || = O((ρ(H) + ε)2
j

), ||B(j)
2 || =

O(ρ(K)2
j

).
The matrix G can be directly recovered, without computing the matrix H, ac-

cording to the following result.
Theorem 4.3. For any operator norm || · || and for any θ̄ < θ < 1, it holds that

A0 − (I − B̂
(j)
1 )G = O

((
θ

σ

)2j)
.(4.14)
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Proof. From the relation

(I − B̂
(j)
1 )H −B

(j)
2 H2j+1 −B0 = 0

and from Theorem 4.2, it follows that for any operator norm ||·|| and for any θ̄ < θ < 1,
it holds that

B0 − (I − B̂
(j)
1 )H = O

((
θ

σ

)2j)
.

On the other hand, it can be easily proved by induction that (I − B̂
(j)
1 )e = A0e for

any j ≥ 0. Thus, by replacing H with G− euT and B0 with A0 −A0eu
T , we arrive

at (4.14).
From the above result, compared with (2.4), it follows that the shifted cyclic

reduction can be much faster than the original one. Indeed, if the second largest
modulus eigenvalue θ̄ of G is far from the unit circle, then the rate of convergence is
much improved.

Thus, the deflating technique leads to a better rate of convergence but destroys the
nonnegativity and M-matrix properties of the blocks generated at each step. Indeed,

generally neither I − B
(j)
1 is an M-matrix, nor are B

(j)
0 , B

(j)
2 nonnegative matrices.

(From the numerical experiments, it seems that I − B̂
(j)
1 is an M-matrix for j =

0, 1, . . . .) In principle this fact could lead to a loss of accuracy of the results obtained
with the shifting technique. In practice, we have not observed any differences, in terms
of accuracy, between the results obtained with the two algorithms. Furthermore, as
we will prove in the next section, the shifted equation is better conditioned than the
original one.

5. Conditioning of the shifted matrix equation. In this section we intro-
duce a measure of the conditioning of the matrix equation, and we show that the
shifted equation is better conditioned than the original one.

Consider the matrix equation (1.1) and a perturbed equation

G +�G = (A0 +�A0) + (A1 +�A1)(G +�G) + (A2 +�A2)(G +�G)2.(5.1)

Using (1.1) this perturbed equation simplifies up to the first order in �G,

(I −A1 −A2G)�G−A2(�G)G = �A,(5.2)

where

�A = �A0 + (�A1)G + (�A2)G2.

Note that (5.2) can be written

Wvec(�G) = vec(�A),(5.3)

where

W = I ⊗ (I −A1 −A2G) + GT ⊗ (−A2)

and vec(A) is the k2-dimensional vector obtained by arranging columnwise the entries
of the matrix A.
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Let Λ(M) denote the set of all eigenvalues of any square matrix M .
Theorem 5.1. The k2 × k2 matrix W is nonsingular. Furthermore

min{|λ| : λ ∈ Λ(W )} = 1− ρ(A1 + A2G + A2).

Proof. Let S be the Schur canonical form of GT . Then the matrix W is similar
to

W̃ = I ⊗ (I −A1 −A2G) + S ⊗ (−A2).

Due to the upper triangular structure of S and the fact that Λ(S) = Λ(G), it is easy
to see that

Λ(W ) = Λ(W̃ ) =
⋃

λ∈Λ(G)

Λ(I −A1 −A2G− λA2).

Note that whenever λ ∈ Λ(G),

ρ(A1 + A2G + λA2) ≤ ρ(|A1 + A2G + λA2|)
≤ ρ(A1 + A2G + |λ|A2)

≤ ρ(A1 + A2G + A2)

< 1.

In the last step we used the fact that since A0 + A1 + A2 is irreducible and positive
recurrent, the matrix A1 + A2G + A2 has spectral radius less than 1. It follows that
0 does not belong to Λ(W ), and hence W is nonsingular. Clearly

min{|λ| : λ ∈ Λ(W )} = 1− ρ(A1 + A2G + A2).

Since W is nonsingular,

vec(�G) = W−1vec(�A).

Hence

‖�G‖F = ‖vec(�G)‖2

≤ ‖W−1‖2‖vec(�A)‖2

=
1

σmin(W )
‖�A0 + (�A1)G + (�A2)G2‖F

≤
√
k

σmin(W )
(‖�A0‖F + ‖�A1‖F + ‖�A2‖F ).

Here σmin(W ) is the minimum singular value of the matrix W . Therefore we may view
1/σmin(W ) as a condition number of (1.1). Even though 1/min{|λ| : λ ∈ Λ(W )} ≤
1/σmin(W ), we may consider

1

min{|λ| : λ ∈ Λ(W )} =
1

1− ρ(A1 + A2G + A2)
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as a number which reflects the conditioning of (1.1).
Consider now the shifted matrix equation (3.1) and the perturbed equation

H +�H = (B0 +�B0) + (B1 +�B1)(H +�H) + (B2 +�B2)(H +�H)2.

As before, this perturbed equation simplifies up to the first order in �H,

(I −B1 −B2H)�H −B2(�H)H = �B,(5.4)

where

�B = �B0 + (�B1)H + (�B2)H2.

Note that (5.4) can be written

Qvec(�H) = vec(�B),

where

Q = I ⊗ (I −B1 −B2H) + HT ⊗ (−B2).

Note that

B1 + B2H = A1 + A2eu
T + A2(G− euT ) = A1 + A2G.

Hence

Q = I ⊗ (I −A1 −A2G) + HT ⊗ (−A2).

Note that if we denote Λ(G) by

Λ(G) = {λ1, λ2, . . . , λk}

with

1 = λ1 > |λ2| ≥ · · · ≥ |λk|,

then

Λ(H) = {λ2, λ3, . . . , λk, 0}

and |λ2| = θ̄.
Theorem 5.2. The k2 × k2 matrix Q is nonsingular. Furthermore

min{|λ| : λ ∈ Λ(Q)} ≥ 1− ρ(A1 + A2G + θ̄A2),

and the equality holds if λ2 is a positive real number.
Proof. As in the proof of Theorem 5.1 it is easy to see that

Λ(Q) = Λ(Q̃) =
⋃

λ∈Λ(H)

Λ(I −A1 −A2G− λA2).

Note that since ρ(H) = θ̄ = |λ2| whenever λ ∈ Λ(H),
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ρ(A1 + A2G + λA2) ≤ ρ(|A1 + A2G + λA2|)
≤ ρ(A1 + A2G + |λ|A2)

≤ ρ(A1 + A2G + |λ2|A2)

< 1.

In the last step we used the fact that

ρ(A1 + A2G + |λ2|A2) < ρ(A1 + A2G + A2) < 1.

It follows that 0 does not belong to Λ(Q), and hence Q is nonsingular. Clearly

min{|λ| : λ ∈ Λ(Q)} ≥ 1− ρ(A1 + A2G + |λ2|A2),

and the equality holds if λ2 is a positive real number.

Since Q is nonsingular,

vec(�H) = Q−1vec(�B).

Hence

‖�H‖F = ‖vec(�H)‖2
≤ ‖Q−1‖2‖vec(�B)‖2
=

1

σmin(Q)
‖�B0 + (�B1)H + (�B2)H2‖F

≤ 2
√
k

σmin(Q)
(‖�B0‖F + ‖�B1‖F + ‖�B2‖F ).

Here σmin(Q) is the minimum singular value of the matrix Q. Comparing the bound
of ‖�G‖F here we have an extra factor 2 because H = G − euT is the difference of
two stochastic matrices.

So we may view 1/σmin(Q) as a condition number of the shifted equation (3.1).
Even though 1/min{|λ| : λ ∈ Λ(Q)} ≤ 1/σmin(Q), we may consider 1/min{|λ| : λ ∈
Λ(Q)} as a number which reflects the conditioning of the shifted equation (3.1). Since
1/min{|λ| : λ ∈ Λ(Q)} ≤ 1/(1− ρ(A1 + A2G + θ̄A2)),

1

1− ρ(A1 + A2G + θ̄A2)

is a number which reflects the conditioning of the shifted equation (3.1). The inequal-
ity

1

1− ρ(A1 + A2G + θ̄A2)
<

1

1− ρ(A1 + A2G + A2)

suggests that the shifted equation (3.1) has a better conditioning than the original
equation (1.1).
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6. Numerical results. We have tested the cyclic reduction algorithm and the
shifted cyclic reduction algorithm on the examples in [13] using Matlab. In the case
of the cyclic reduction algorithm, we stopped when

‖Â(j)
1 − Â

(j−1)
1 ‖∞ ≤ 10−12,

and we accepted

G̃ =
(
I − Â

(j)
1

)−1

A0

as an approximation of G. Similarly, in the case of a shifted cyclic reduction, we
stopped when

‖B̂(j)
1 − B̂

(j−1)
1 ‖∞ ≤ 10−12,

and we accepted

G̃ =
(
I − B̂

(j)
1

)−1

A0

as an approximation of G. For each example we have reported tables with the number
of iterations, the residual error, Res., which is defined by ‖G̃−A0 −A1G̃−A2G̃

2‖∞,
and the closeness to stochasticity, Stoc., which is defined by ‖G̃e−e‖∞, for standard
and shifted cyclic reduction. For particular examples we have also reported tables with
the values of θ̄, of σ, 1/σ, and θ̄/σ, to show the reduction of the rate of convergence,
and tables with 1− ρ(A1 + A2G + A2), 1 − ρ(A1 + A2G + θ̄A2), σmin(W ), σmin(Q)
that show the conditioning of the original and shifted matrix equations. Even though
we proved that 1−ρ(A1 +A2G+A2) < 1−ρ(A1 +A2G+ θ̄A2), it does not mean that
σmin(W ) < σmin(Q). See the first row of columns σmin(W ) and σmin(Q) in Table
6.6.

Example 1. In this example we define 24×24 matrices A′
0, A′

1, and A′
2 as follows:

(A′
0) =

{
192(1− i/24), i = j,
0, i = j,

(A′
2) =

{
192ρd, i = j,
0, i = j,

and

(A′
1) =




ar(M − i)/M, i− j = −1,
ir, i− j = 1,
αi, i− j = 0,
0 elsewhere.

Here i and j are integers between 0 and 23, a, r, M , and ρd are parameters, and αi

are such that (A′
0 + A′

1 + A′
2)e = 0. Now A0, A1, and A2 are A0 = −(A′

1)−1A′
0,

A1 = 0, A2 = −(A′
1)−1A′

2. Tables 6.1, 6.2, and 6.3 report the results obtained by
choosing different values of M while we fix r = 1/300, a = 18.244, and ρd = 0.280.
Tables 6.4, 6.5, and 6.6 report the results obtained by choosing different values of ρd
while we fix r = 1/100, a = 18.244, and M = 512.
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Table 6.1
Example 1: r = 1/300, a = 18.244, ρd = 0.280.

Cyclic reduction Shifted cyclic reduction
M Iter. Res. Stoc. Iter. Res. Stoc.

64 19 1.6 · 10−16 3.2 · 10−12 18 5.1 · 10−16 4.4 · 10−16

128 20 2.2 · 10−16 8.4 · 10−13 19 6.9 · 10−16 4.4 · 10−16

256 21 3.0 · 10−16 5.9 · 10−12 19 4.6 · 10−16 4.4 · 10−16

512 22 2.2 · 10−16 1.4 · 10−12 19 4.7 · 10−16 4.4 · 10−16

1024 23 2.4 · 10−16 2.1 · 10−11 19 5.3 · 10−16 5.6 · 10−16

2048 24 3.0 · 10−16 6.1 · 10−11 19 5.0 · 10−16 4.4 · 10−16

4096 25 2.6 · 10−16 5.4 · 10−11 19 5.0 · 10−17 6.7 · 10−16

8192 26 3.1 · 10−16 3.9 · 10−10 19 4.8 · 10−16 6.7 · 10−16

16384 27 2.2 · 10−16 2.0 · 10−11 19 5.9 · 10−17 6.7 · 10−16

32768 29 1.3 · 10−16 1.1 · 10−9 19 3.5 · 10−16 4.4 · 10−16

65536 34 2.2 · 10−16 5.5 · 10−8 19 5.0 · 10−16 6.7 · 10−16

Table 6.2
Example 1: r = 1/300, a = 18.244, ρd = 0.280.

M θ̄ σ 1/σ θ̄/σ

64 0.9999 1.0002 0.9998 0.9997
128 0.9999 1.0001 0.9999 0.9998
256 0.9999 1.000039 0.999961 0.9998
512 0.9999 1.000019 0.999981 0.9998
1024 0.9999 1.000009 0.999991 0.9998
2048 0.9999 1.000004 0.999996 0.9998
4096 0.9999 1.000002 0.999998 0.9999
8192 0.9999 1.000001 0.999999 0.9999
16384 0.9999 1.0000004 0.9999996 0.9999
32768 0.9999 1.0000001 0.9999999 0.9999
65536 0.9999 1.000000002 0.999999998 0.9999

Table 6.3
Example 1: r = 1/300, a = 18.244, ρd = 0.280.

M 1− ρ(A1 +A2G+A2) 1− ρ(A1 +A2G+ θ̄A2) σmin(W ) σmin(Q)

64 1.4 · 10−4 2.2 · 10−4 2.7 · 10−5 3.8 · 10−5

8192 7.1 · 10−7 1.1 · 10−4 1.5 · 10−7 1.5 · 10−5

65536 1.6 · 10−9 1.0 · 10−4 3.5 · 10−10 1.5 · 10−5

Example 2. In this example we construct a QBD problem defined by the k × k
matrices A0 = R+δI, A1 = A2 = R, where R is a matrix having null diagonal entries
and constant off-diagonal entries, and 0 < δ < 1. As was observed in [13], the rate
ρ = pT (A1 + 2A2)e, where pT (A0 + A1 + A2) = pT , pT e = 1, is exactly 1 − δ. We
have tested with eight different δ values. Tables 6.7, 6.8, and 6.9 report the results
obtained with k = 16, and Tables 6.10 and 6.11 report the results obtained with sizes
k = 32 and k = 64, respectively.
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Table 6.4
Example 1: r = 1/100, a = 18.244, M = 512.

Cyclic reduction Shifted cyclic reduction
ρd Iter. Res. Stoc. Iter. Res. Stoc.

0.01 6 2.2 · 10−16 4.4 · 10−16 6 3.9 · 10−16 2.2 · 10−16

0.025 7 3.3 · 10−16 6.6 · 10−16 7 5.7 · 10−16 4.4 · 10−16

0.05 10 1.5 · 10−16 8.9 · 10−16 10 3.0 · 10−16 4.4 · 10−16

0.075 12 2.2 · 10−16 9.0 · 10−15 12 6.1 · 10−16 4.4 · 10−16

0.1 14 2.2 · 10−16 2.2 · 10−15 14 4.2 · 10−16 4.4 · 10−16

0.12 14 2.2 · 10−16 2.8 · 10−14 14 3.9 · 10−16 4.4 · 10−16

0.14 15 2.2 · 10−16 2.1 · 10−13 15 5.1 · 10−17 4.4 · 10−16

0.16 16 2.2 · 10−16 1.5 · 10−14 16 5.3 · 10−16 4.4 · 10−16

0.18 16 2.2 · 10−16 5.9 · 10−14 16 4.7 · 10−17 3.3 · 10−16

0.2 17 2.2 · 10−16 1.0 · 10−14 16 4.5 · 10−16 6.7 · 10−16

0.22 18 2.2 · 10−16 4.3 · 10−13 17 6.0 · 10−16 3.3 · 10−16

0.24 18 2.3 · 10−16 7.8 · 10−13 17 3.7 · 10−16 6.7 · 10−16

0.26 19 1.9 · 10−16 8.6 · 10−13 17 5.0 · 10−16 4.4 · 10−16

0.28 20 2.3 · 10−16 3.5 · 10−12 17 5.1 · 10−16 3.3 · 10−16

0.29 22 2.6 · 10−16 1.8 · 10−11 17 3.7 · 10−16 2.2 · 10−16

0.29568 31 2.6 · 10−16 1.9 · 10−8 17 6.0 · 10−16 4.4 · 10−16

Table 6.5
Example 1: r = 1/100, a = 18.244, M = 512.

ρd θ̄ σ 1/σ θ̄/σ
0.01 0.9998 4.3182 0.2316 0.2315
0.025 0.9998 1.7714 0.5645 0.5644
0.05 0.9998 1.0814 0.9248 0.9246
0.075 0.9998 1.0170 0.9833 0.9831
0.1 0.9998 1.0063 0.9938 0.9936
0.12 0.9998 1.0034 0.9966 0.9964
0.14 0.9997 1.0021 0.9979 0.9977
0.16 0.9997 1.0013 0.9987 0.9984
0.18 0.9997 1.0009 0.9991 0.9988
0.2 0.9997 1.0006 0.9994 0.9991
0.22 0.9997 1.0004 0.9996 0.9993
0.24 0.9996 1.0002 0.9998 0.9994
0.26 0.9996 1.0001 0.9999 0.9995
0.28 0.9996 1.0001 0.9999 0.9995
0.29 0.9996 1.000019 0.99998 0.9995
0.29568 0.9995 1.00000003 0.99999997 0.9995

Table 6.6
Example 1: r = 1/100, a = 18.244, M = 512.

p 1− ρ(A1 +A2G+A2) 1− ρ(A1 +A2G+ θ̄A2) σmin(W ) σmin(Q)
0.01 0.6265 0.6265 0.6259 0.6175
0.28 4.0 · 10−5 3.4 · 10−4 8.7 · 10−6 5.3 · 10−5

0.29568 1.9 · 10−8 3.2 · 10−4 3.6 · 10−9 4.4 · 10−5
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Table 6.7
Example 2: k = 16.

Cyclic reduction Shifted cyclic reduction
δ Iter. Res. Stoc. Iter. Res. Stoc.

10−1 8 5.7 · 10−16 1.3 · 10−15 5 2.8 · 10−16 3.3 · 10−16

10−2 11 6.5 · 10−16 7.2 · 10−15 4 3.7 · 10−16 0.0
10−3 14 6.7 · 10−16 9.7 · 10−14 4 1.9 · 10−16 2.2 · 10−16

10−4 17 6.4 · 10−16 8.8 · 10−13 4 4.5 · 10−16 2.2 · 10−16

10−5 21 1.1 · 10−15 1.2 · 10−11 4 3.5 · 10−16 4.4 · 10−16

10−6 24 6.5 · 10−16 5.8 · 10−11 4 2.5 · 10−16 8.9 · 10−16

10−7 27 6.3 · 10−16 1.4 · 10−9 4 2.5 · 10−16 6.7 · 10−16

10−8 29 7.0 · 10−16 3.5 · 10−9 4 2.5 · 10−16 4.4 · 10−16

Table 6.8
Example 2: k = 16.

δ θ̄ σ 1/σ θ̄/σ

10−1 0.0783 1.3333 0.75 0.0587
10−2 0.0174 1.0303 0.9706 0.0140
10−3 0.0207 1.0030 0.9970 0.0207
10−4 0.0216 1.0003 0.9997 0.0216
10−5 0.0217 1.00003 0.99997 0.0217

Table 6.9
Example 2: k = 16.

δ 1− ρ(A1 +A2G+A2) 1− ρ(A1 +A2G+ θ̄A2) σmin(W ) σmin(Q)

10−1 0.1 0.3765 0.1 0.3234
10−5 1.0 · 10−5 0.3261 1.0 · 10−5 0.2310
10−8 1.0 · 10−8 0.3261 1.0 · 10−8 0.2721

Table 6.10
Example 2: k = 32.

Cyclic reduction Shifted cyclic reduction
δ Iter. Res. Stoc. Iter. Res. Stoc.

10−1 8 1.3 · 10−15 1.1 · 10−15 5 1.2 · 10−15 8.9 · 10−16

10−2 11 9.5 · 10−16 1.1 · 10−14 4 4.1 · 10−16 7.8 · 10−16

10−3 14 1.4 · 10−15 8.0 · 10−14 4 5.4 · 10−16 1.1 · 10−15

10−4 17 1.6 · 10−15 3.7 · 10−12 4 6.8 · 10−16 1.8 · 10−15

10−5 21 1.1 · 10−15 1.0 · 10−11 4 5.1 · 10−16 6.6 · 10−16

10−6 24 1.2 · 10−15 2.1 · 10−10 4 5.5 · 10−16 8.9 · 10−16

10−7 27 1.1 · 10−15 7.9 · 10−10 4 6.5 · 10−16 1.0 · 10−15

10−8 29 8.2 · 10−16 1.4 · 10−8 4 7.1 · 10−16 7.8 · 10−16

Table 6.11
Example 2: k = 64.

Cyclic reduction Shifted cyclic reduction
δ Iter. Res. Stoc. Iter. Res. Stoc.

10−1 8 2.8 · 10−15 4.9 · 10−15 5 2.0 · 10−15 1.8 · 10−15

10−2 11 3.1 · 10−15 1.1 · 10−14 4 1.4 · 10−15 2.7 · 10−15

10−3 14 3.1 · 10−15 1.8 · 10−13 4 1.3 · 10−15 1.1 · 10−15

10−4 17 2.4 · 10−15 4.6 · 10−12 4 1.2 · 10−15 2.9 · 10−15

10−5 21 2.3 · 10−15 2.9 · 10−11 4 1.6 · 10−15 4.4 · 10−16

10−6 24 3.3 · 10−15 2.8 · 10−10 4 1.4 · 10−15 2.4 · 10−15

10−7 27 2.4 · 10−15 1.9 · 10−10 4 1.3 · 10−15 3.8 · 10−15

10−8 29 2.6 · 10−15 1.7 · 10−8 4 1.2 · 10−15 3.3 · 10−15
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Abstract. In this paper we develop new techniques for stabilizing factored approximate inverse
preconditioners (AINV) using pivoting. This method yields stable preconditioners in many cases
and can provide successful preconditioners in many situations when the underlying system is highly
indefinite. Numerical examples illustrate the effectiveness of this approach.
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1. Introduction. Many applications lead to solving large sparse linear systems
of the form

Ax = b,(1.1)

with A ∈ R
n,n and b ∈ R

n. In many cases, such systems are not only very large but
also exceedingly difficult to solve by iterative techniques because A is ill-conditioned
or highly indefinite or both. In some instances these equations arise from special
applications, and solvers tailored to the underlying physical problem may give the
best results. However, there are situations in which “general purpose” solvers are
desirable. Such is the case when building general purpose software, or when the
linear system has very little inherent structure. General purpose solvers have many
other advantages, the most significant being that changes in the physics or model
do not require the development of new methods. For these situations, preconditioned
Krylov-subspace solvers (see, e.g., [16, 25, 13]) are often seen as promising alternatives
to “black-box” direct solution methods. Among all preconditioning techniques, those
based on incomplete LU factorizations (see, e.g., [20, 21, 22]) are known to give
excellent results for many important classes of problems, such as those arising from
the discretization of elliptic partial differential equations.

Motivated by the emergence of parallel computing platforms, researchers have de-
veloped a number of new techniques in recent years, which approximate directly the
inverse of A. A few of these approaches are based on minimizing the norm ‖I −AM‖
in some appropriate norm [19, 17, 15, 9], while others approximately solve the equa-
tion W�AZ = D, where the unknown matrices Z,W are unit upper triangular and
D is a diagonal matrix; see, e.g., [24, 4, 5, 1, 18]. In particular, the algebraic behav-
ior of the latter class of methods bears strong similarities to that of incomplete LU
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decompositions, e.g., they are stable for M - and H-matrices. See [6] for a detailed
analysis of factored approximate inverses and incomplete LU decompositions. With-
out describing the details of these relations we briefly sketch both methods to describe
these links.

For solving the linear system (1.1), incomplete LU techniques begin by approxi-
mately constructing a factorization

A ≈ LDU,

where L,U� are lower triangular matrices, with unit diagonal, and D is diagonal.
One way to construct these decompositions is to partition A as

A =

[
B F
E C

]
∈ R

n,n

with B ∈ R and the other blocks have corresponding size. Then A is factored as

[
B F
E C

]
=

[
1 0
LE I

]
︸ ︷︷ ︸

L

[
DB 0
0 S

]
︸ ︷︷ ︸

D

[
1 UF

0 I

]
︸ ︷︷ ︸

U

,(1.2)

where

S = C − LEDBUF ∈ R
n−k,n−k(1.3)

denotes the so-called Schur complement. The exact LU decomposition of A (if it
exists) can be obtained by successively applying (1.2) to the Schur complement S.
Even if there exists a decomposition (1.2) for A and for S, there is no need to compute
LE and UF , S exactly when constructing a preconditioner. A common approach for
reducing fill-in consists of discarding entries of LE and UF of small size and defining
the approximate Schur complement only with these sparsified vectors L̃E and ŨF .
We will use

S̃ = B − L̃EDBŨF(1.4)

as one possible definition of an approximate Schur complement. The associated ILU
algorithm is roughly given by Algorithm 1.

Algorithm 1 (incomplete LU factorization (ILU)).
Let A = (aij)ij ∈ R

n,n and let τ ∈ (0, 1) be a drop tolerance. Compute A ≈ LDU .
Set L = U = I, S = A.

for i = 1, . . . , n
dii = sii
for j = i+ 1, . . . , n

pj = sji/dii, qj = sij/dii
drop entries |pj |, |qj | if they are less than τ
lji = pj, uij = qj
for k = i+ 1, . . . , n

skj = skj − lkidiiuij
end

end
end
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Practical versions of incomplete LU decompositions are typically implemented
in a slightly different way. It is usually not advisable to update the whole matrix
Ŝ = (skl)k,l�i by a rank-1 modification. Instead, the leading row of Ŝ is typically
computed, and the transformations on the other rows are postponed. In essence this
means that the so-called I, K, J version of Gaussian elimination is used. For details,
see [24]. In addition to saving memory, this has the advantage that all updates and
modifications are performed only once for each row, thus making it possible to use
very simple sparse row storage schemes such as the compressed sparse row (CSR)
format.

In [4, 5] algorithms have been presented that directly compute upper unit trian-
gular matrices W and Z such that W�AZ ≈ D is approximately diagonal. Here we
choose to outline a version (Algorithm 2) that has already been used for the symmet-
ric positive definite case [1, 18]. In short, at any given step i the algorithm performs
a Gram–Schmidt step to A-orthogonalize the columns wj , j = i+ 1, . . . , n, against zi
and then the columns zj , j = i+1, . . . , n, against wi. Dropping is then applied to the
resulting columns. Clearly, A-orthogonality is only achieved approximately.

Algorithm 2 (factored approximate inverse (AINV)).
Let A = (aij)ij ∈ R

n,n and let τ ∈ (0, 1) be a drop tolerance. Compute A−1 ≈
ZD−1W�.
Set p = q = (0, . . . , 0) ∈ R

n, Z = [z1, . . . , zn] = In, W = [w1, . . . , wn] = In.

for i = 1, . . . , n
dii = w�

i Azi
for j = i+ 1, . . . , n

pj =
(
w�

j Azi
)
/dii, qj =

(
w�

i Azj
)
/dii

wj = wj − wi pj, zj = zj − zi qj
for all l � i: drop entries wlj, zlj if their absolute values are less than τ .

end
end

Suppose that Algorithms 1 and 2 do not break down. In step i of Algorithm 1, en-
tries in the ith row and ith column of the Schur complement (skl)k,l�i are eliminated.
Analogously Algorithm 2 eliminates the off-diagonal entries in row i and column i of
(w�

k Azl)k,l�i. If no dropping is applied, then we would obtain

(skl)k,l�i =
(
w�

k Azl
)
k,l�i

.(1.5)

This can been seen, e.g., from (1.2) using L−1 =W� and U−1 = Z. This means that
pj and qj (resp., dii) play similar roles in both algorithms.

The main advantage of this observation is the possibility of exploiting these con-
nections to adapt pivoting techniques used in (incomplete) Gaussian elimination and
to carry them over to sparse approximate inverse techniques, with the goal of improv-
ing the performance of factored approximate inverses.

2. Approximate inverses with pivoting. One way to exploit the connection
between approximate inverses and ILUs is to introduce pivoting to approximate in-
verses. This can be done by first adding pivoting to Algorithm 1 and then using
relation (1.5) to transfer pivoting strategies to Algorithm 2. The main reason for
introducing pivoting to Algorithms 1 and 2 is the fact that the algorithms might
encounter a zero or small pivot during the computation. At some step i of either
algorithm it may turn out that dii ≈ 0, in which case the algorithms break down.
It is possible to shift the zero pivots away by adding an artificial small perturbation
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(e.g., 10−8) to dii, but this will rarely solve the problem. Instead, we could ensure
that zero pivots do not occur, and this is traditionally achieved by pivoting in direct
Gaussian elimination. This technique was implemented in incomplete factorizations
as well [22]. Although this makes the underlying data structure more complex, it
often stabilizes the processes and even ensures that the growth in the element size
of L,U will remain fairly moderate. However, unlike complete Gaussian elimination,
ILU with pivoting might still break down.

We first discuss how column and row pivoting could be added to Algorithm 1. We
will introduce column and row interchanges that keep the algorithm consistent when
τ = 0 is used. In other words, the algorithm without dropping will compute Π�AΣ =
LDU , where Π and Σ are permutation matrices that will be determined throughout
the process. If π and σ are permutation vectors associated with permutation matrices
Π and Σ, then we will sometimes write A(π, σ) for the permuted matrix Π�AΣ.

Suppose that a diagonal pivot sii is not satisfactory. The property to be satisfied
by, say, a column pivot k ≥ i at step i, could be a criterion such as

|sik| ≥ α |sij | for j ≥ i
for a prescribed constant 0 < α � 1. After the column interchange takes place, one
could consider in addition the analogous row criterion

|sii| ≥ α |sji| for j ≥ i.
If this inequality is no longer satisfied, a row interchange will be performed. This
process can alternate between both criteria and usually takes a few steps to complete,
in many cases requiring just one step. It allows a better selection by iterating on the
choice of the pivots, if necessary, without entailing substantial additional cost in most
cases. With pivoting, (1.2) locally changes to

[
I O

O Π̂

]�
︸ ︷︷ ︸

Π�

[
B F
E C

] [
I O

O Σ̂

]
︸ ︷︷ ︸

Σ

≈
[

I O

Π̂�LE I

] [
DB O

O Π̂�SΣ̂

] [
I UF Σ̂
O I

]
,

(2.1)
where equality holds, if no dropping is applied. The approximate identity (2.1) shows
that the columns of U − I also need to be interchanged with respect to the column
pivoting step. The rows of L − I need to be processed similarly if row pivoting is
applied. The additional row pivoting step is not so common in practice.

This may be more expensive due to the additional overhead for computing not
only the leading row of the Schur complement, but also its leading column. In par-
ticular, we note that this version of pivoting is hard to implement with the common
I, K, J variant of Gaussian elimination, since columns of the Schur complement are
not available and their corresponding data structure is expensive to obtain.

After showing how pivoting affects Algorithm 1 it is now easy to extend naturally
the idea of pivoting to Algorithm 2. To do so we only have to keep in mind that
W = L−� and Z = U−1 if τ = 0 is used. Clearly the columns of W − I and Z − I
have to be permuted analogously to the rows of L − I and columns of U − I. If no
dropping is applied, then (1.5) now reads

(skl)k,l�i =
(
w�

k A(π, σ)zl
)
k,l�i

.(2.2)

This restricts the application of π and σ to the initial matrix A if we reorder columns
of Z − I and W − I. This leads to Algorithm 3.
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Algorithm 3 (factored approximate inverse with pivoting (AINVP)).
Let A = (Aij)ij ∈ R

n,n and let τ be drop tolerance. Compute A−1 ≈ ZD−1W�.
Set p = q = (0, . . . , 0) ∈ R

n, Z = [z1, . . . , zn] = In, W = [w1, . . . , wn] = In,
and π = σ = (1, . . . , n).

for i = 1, . . . , n
while pivots not satisfactory

for all j � i: pj = w�
j A(π, σ)zi.

Find a column pivot k � i.
Interchange columns i, k of Z − I and components i, k of p and σ.
for all j � i : qj = w�

i A(π, σ)zj.
Find a row pivot l � i.
Interchange columns i, l of W − I and components i, l of q and π.

end
dii = pi.
for j = i+ 1, . . . , n

pj = pj/dii, qj = qj/dii.
wj = wj − wipj, zj = zj − ziqj.
for all l � i: drop entries wlj, zlj, if their absolute values are less than τ .

end
end

Note that the while-loop in Algorithm 3 is optional and has been included for the
purpose of greater generality. If no dropping is applied, we obtain W�A(π, σ)Z = D,
by construction. Pivoting for a related direct projection method can already be found
in [3]. Instead of usingW�AZ to compute p and q, onlyW�A is used, which is equiv-
alent in this case because no dropping is applied. In a sense Algorithm 3 generalizes
the pivoting approach of [3] in that it is applied to an incomplete factorization and
both row and column interchanges are performed.

As it is described, Algorithm 3 does not specify any rule on how to select the pivots
k and l. A reasonable strategy could be to choose k such that |pk| is maximal, and
this obviously requires p to be computed before pivoting is applied. We observe that
in Algorithm 3 now the p and q columns are inside the while-loop which searches for
adequate pivots. Indeed, p and q must be recomputed whenever q (resp., p) requires
an interchange. In the situation when one pivoting step is applied for any i, there is no
need to recompute p and q. However, when more than one pivoting step is required,
one of p or q at least must be recomputed. In this case the algorithm incurs some
additional overhead. Clearly, any pivoting strategy should try to keep this additional
overhead small. For better stability in Algorithm 3 the pivot pk should satisfy

|pk| � αmax
m
|pm|

for some constant 0 < α � 1, e.g., α = 0.1. However, since Algorithm 3 is a biorthog-
onalization technique, i.e., the outcome is to compute Z and W , we should ensure
that |pk| = |qk| � αmaxm |qm| is also fulfilled to guarantee that the entries of both
factors Z and W are sufficiently bounded. Algorithm 4 gives us a simple and rela-
tively inexpensive strategy for controlling the growth of the entries in Z and W and
for stabilizing Algorithm 3.

Algorithm 4 (controlled pivoting).
Prescribe a tolerance α ∈ (0, 1], e.g., α = 0.1
satisfied p=false, satisfied q=false
while not satisfied p
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for all j � i: pj = w�
j A(π, σ)zi

if |pi| < αmaxm |pm|
satisfied q=false, choose k such that |pk| = maxm |pm|.
Interchange column i and k of Z − I and components i and k of σ.

end
satisfied p=true
if not satisfied q
for all j � i: qj = w�

i A(π, σ)zj
end
if |qi| < αmaxm |qm|.
satisfied p=false, choose l such that |ql| = maxm |qm|
Interchange column i and l of W − I and components i and l of π.

end
satisfied q=true

end
An additional improvement for preventing too many pivoting steps might be to

prescale the rows and/or columns of A. As a rule, more than one pivoting step, say,
column pivoting, is performed in any given step of Algorithm 3. However, in order
for |pi| � αmaxm |pm| to imply that |pi| = |qi| � αmaxm |qm| it is necessary that
entries of q have magnitudes that are comparable to those of p. By (2.2), p and q are
the first column/row of (

w�
k A(π, σ)zl

)
k,l�i

before a further step of pivoting is applied. If W and Z are moderately bounded,
which is more or less achieved by pivoting, then A(π, σ) having rows of comparable
absolute row sums might be a good start to prevent too many pivoting steps.

One might of course think of other pivoting strategies, especially in the context of
parallel computations. Pivoting is undoubtedly harder to implement in parallel. As is
often done, however, it is possible to exploit relaxed pivoting to search for satisfactory
pivots locally, i.e., in each processor. This means that k and l are restricted to a
certain subset to maintain distributed storage schemes. Other strategies could be, for
example, to restrict k and l in order to keep the lower right (n− i)× (n− i) part of
W�A(π, σ)Z as sparse as possible.

3. Numerical results. This section presents numerical experiments to validate
the algorithms. Additional details and comments on the implementations of the al-
gorithms will also be provided.

• All input matrices are assumed to be given in the CSR format [24].
• The matrices are initially scaled such that they have unit 1-norm for any row.
As mentioned in section 2 this is done to reduce the number of necessary
column/row interchanges.
• W� and Z� are stored in CSR format.
• Interchanges of columns of W (resp., Z) are performed by interchanging only
the references (pointers) instead of the whole data array.
• The computation of p and q in Algorithm 3 requires a multiplicationA(π, σ)zi,
A(π, σ)�wi. To be efficient, this operation must be done in sparse-sparse
mode. If A is given in CSR format, only A(π, σ)�wi is easy to access, while
A(π, σ)zi requires A� to be stored in CSR format. For this purpose we
initially compute the pattern of A� in CSR format, but we omit the nu-
merical values. The nonzero components of the computed vectors A(π, σ)zi,
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A(π, σ)�wi are stored as a full vector but with an additional index list of
the nonzeros. The index list is important to inherit the sparse nature of this
vector when the computations are performed. Otherwise dense computations
would slow down the algorithm. See, e.g., [24, p. 291] for this kind of tech-
nique. Finally to compute, for all j � i, w�

j (A(π, σ)zi) and z
�
j (A(π, σ)

�wi)
we use a list which contains the nontrivial columns of W and Z, i.e., those
columns which contain more than just the diagonal entry. The use of permu-
tation vectors π and σ requires us to have the inverse permutations π−1, σ−1

which are computed simultaneously.
• Two values were used for the parameter α which controls the pivoting process:
α = 0.1 and α = 1.0.
• Two different values were used for the drop tolerance: τ = 0.1 and τ = 0.01.

For the numerical experiments several collections were chosen from the Harwell–
Boeing collection [11], the SPARSKIT collection [23], and finally from the Davis
collection [10]. Throughout the computations the matrices were initially reordered
using the symmetric minimum degree ordering [14]. But clearly for specific problems
other orderings can be more beneficial (cf. [2]). Note that for unsymmetric matrices
other orderings might be used. See, e.g., [7] for a reordering (MIP) for approximate
inverses.

The computations were performed on an IBM RS6000 (44P model 270) under
AIX 4.3 with 4GB memory. The approximate inverse algorithms were implemented
in C. Dynamic memory allocation in C is a flexible and convenient tool to use rel-
ative to a “manual” memory management that would be required under standard
FORTRAN 77. However, the overhead is sometimes nonnegligible, since the memory
manager cannot take advantage of the underlying structure of the problem, leading
to nonoptimal layout of data in memory.

We used GMRES(30) and QMR as iterative solvers. The iteration was stopped
after the residual norm was less than

√
eps times the initial residual norm, where

eps ≈ 2.2204 · 10−16 denotes the machine precision. For some matrices a smaller
tolerance was necessary, since the exact solution (1, . . . , 1)� was not sufficiently well
approximated. In this case eps was used. The iteration was stopped after 500 steps.
Every iterative solution which broke down or did not converge within this number of
steps was noted as a failure. The approximate inverse algorithms were compared with
the SPARSKIT algorithms ILUT and ILUTP [24] using the same settings.

We briefly describe the results for several matrices and then give detailed numer-
ical results for several selected examples. We focus on examples where we observed
major differences for AINV with and without pivoting.

To give a rough idea on how the method performed on the selected collections,
we summarize in Table 3.1 which method successfully solved how many problems
with respect to the parameters τ and α. The tests were done on 94 matrices from
the Harwell–Boeing collection, 26 matrices from the Davis collection, and 58 matrices
from the SPARSKIT collection.

From Table 3.1 one gets the impression that Algorithm 3 (AINVP) behaves
slightly better than ILUTP. This might be due to the following reasons.

1. AINVP uses column and row pivoting to ensure that W and Z are well-
bounded. Pivoting applied only to the columns, for example, would locally
bound only one factor. But this is essentially what ILUTP does. For reasons
of efficiency, pivoting with respect to the rows is not done.

2. Dropping in AINVP seems to be less harmful than in ILUTP. Approximation
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Table 3.1
Summary of results: Total of 178 matrices. Number of successful computed problems for drop

tolerance τ and pivot threshold α.

Parameters
Preconditioner Accelerator τ = 0.1 τ = 0.01

α = 0.1 α = 1.0 α = 0.1 α = 1.0

Harwell–Boeing collection (94 test matrices)
AINV GMRES(30) 35 39
AINV QMR 38 38

AINVP GMRES(30) 57 63 78 86
AINVP QMR 66 72 85 84

ILUT GMRES(30) 44 43
ILUT QMR 41 44

ILUTP GMRES(30) 53 54 69 71
ILUTP QMR 59 58 74 76

Davis collection (26 matrices)
AINV GMRES(30) 14 14
AINV QMR 14 14

AINVP GMRES(30) 12 16 17 19
AINVP QMR 15 17 18 20

ILUT GMRES(30) 14 14
ILUT QMR 14 14

ILUTP GMRES(30) 13 15 16 18
ILUTP QMR 14 15 16 17

SPARSKIT collection (58 matrices)
AINV GMRES(30) 2 6
AINV QMR 4 9

AINVP GMRES(30) 3 16 14 32
AINVP QMR 4 27 17 34

ILUT GMRES(30) 7 18
ILUT QMR 9 20

ILUTP GMRES(30) 6 9 19 19
ILUTP QMR 11 12 25 23

errors caused by dropping in AINVP behave somehow between linear and
quadratic with respect to the values that are dropped when regarding the off-
diagonal part of W�AZ. For ILUTP the analogous effect is rational, which
means that small perturbation in L,U may cause huge approximation errors
in the off-diagonal entries of L−1AU−1.

3. AINVP sometimes ends up with more fill-in. In the numerical examples
dropping was performed only with respect to a fixed drop tolerance but not
with respect to the number of nonzeros. The results show that sometimes
AINVP needs significantly more fill-in than ILUTP (e.g., Table 3.6). The
higher amount of fill-in then slows down AINVP. But the fill-in could be
reduced using more suitable symbolic factorization techniques as well as a
reformulation of the algorithm to exploit more zeros [8].

We now comment briefly on some matrix families from the three collections
(Harwell–Boeing, SPARSKIT, Davis). We use tables that indicate on which matrix
family pivoting showed improvements. The following symbols indicate how strongly
the treatment of the matrix family changed when pivoting was used:

++ + ◦ − −−
much improved improved no great changes worse much worse
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Table 3.2
Harwell–Boeing collection. Changes in each matrix family when pivoting is used for drop

tolerance τ and pivot threshold α.

Matrix family τ = 0.1 τ = 0.01
α = 0.1 α = 1.0 α = 0.1 α = 1.0

ASTROPH ◦ ◦ ◦ ◦
CHEMIMP ++ ++ ++ ++
CHEMWEST + ++ + ++
CIRPHYS ◦ ◦ ◦ ◦
ECONAUS ++ ++ ++ ++
FACSIMILE − − ◦/− ◦/−
GEMAT ◦ ◦ ◦ +
GRENOBLE ◦ + + ◦/+
LNS ◦ ◦/+ ◦/+ ◦/+
NNCENG ◦ ◦ ◦ ◦
NUCL ◦ ◦ ◦ ◦/+
OILGEN ◦ ◦/− ◦ ◦
PORES +/− ◦/+ ◦ ◦/+
PSMIGR ◦/++ ◦/++ ◦/+ ◦/+
SAYLOR ◦ ◦ ◦ ◦
SHERMAN ◦/+ ◦/++ ◦/++ ◦/++
SMTAPE(BP*) ◦ ◦ + +/++
SMTAPE(SHL*,STR*) ++ ++ ++ ++
STEAM ◦ ◦ ◦ ◦
WATT ◦ ◦ ◦ ◦

In general a + is used whenever the choice of parameters moderately improved
either the fill-in or the time for the iterative solution (or both) for several matrices of a
matrix family. If any of these two criteria were not improved, it had essentially to stay
constant. In a similar way − is used. ++ is used if the fill-in or the iterative process
were significantly improved for most of the matrices of a matrix family. This includes
the case when the iterative process changed from no convergence to convergence within
min{n, 500} steps. Again, any criteria had to stay at least constant.

For some matrix families the behavior was not uniform. In these cases we used
two symbols. If, for example, for some matrices the behavior was better, but for
others it was worse, then we used the symbol +/−.

Table 3.2 gives an overview of the matrix families of the Harwell–Boeing collec-
tion. As one can see from Table 3.2 the most significant improvements using pivoting
were achieved for the CHEMWEST (chemical engineering), ECONAUS (economic
models) families, and the shl*,str* matrices (linear programming). The opposite be-
havior was observed when pivoting was applied to the FACSIMILE matrices (chemical
kinetics). For representative examples, see Table 3.3 (chemical engineering) and Table
3.4 (thermal simulation, steam injection).

Next are some comments on matrices from the Davis collection. The improve-
ments using pivoting are summarized in Table 3.5. Pivoting was especially successful
for the strongly off-diagonal dominant ZITNEY matrices (chemical process separa-
tion). Similarly, pivoting resulted in some improvements on the SHYY (Navier–Stokes
equations) and MALLYA (light hydrocarbon recovery) matrices which are also ex-
tremely strong off-diagonal dominant. For a representative example, see Table 3.6
(chemical process separation). Here only the algorithms with pivoting worked at all.

Finally, we comment on our experiments with sample matrices from the SPARS-
KIT collection. Results are summarized in Table 3.7. Pivoting improved the solution
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Table 3.3
Matrix CHEMWEST/WEST2021. AINVP and ILUTP with different drop tolerances τ and

pivot thresholds α.

Pivot Drop Decomposition GMRES(30) QMR
Method

thresh. α tol. τ Fill-in/time[sec] Steps/time[sec] Steps/time[sec]

0.1 10−3 9.9, 1.0·100 30, 1.2·10−1 33, 2.2·10−1

AINVP 10−1 1.5, 2.0·10−1 121, 3.0·10−1 81, 4.0·10−1

1.0
10−2 2.8, 3.2·10−1 31, 9.0·10−2 37, 1.9·10−1

0.1 10−5 3.1, 2.0·10−2 14, 1.0·10−2 23, 6.0·10−2

ILUTP
1.0 10−5 3.0, 2.0·10−2 14, 2.0·10−2 27, 6.0·10−2

Table 3.4
Matrix SHERMAN/SHERMAN2. AINVP and ILUTP with different drop tolerances τ and

pivot thresholds α.

Pivot Drop Decomposition GMRES(30) QMR
Method

thresh. α tol. τ Fill-in/time[sec] Steps/time[sec] Steps/time[sec]

10−4 3.1, 5.6·10−1 371, 9.6·10−1 104, 4.9·10−1

AINV
10−5 4.7, 9.8·10−1 14, 5.0·10−2 18, 1.2·10−1

0.1 10−2 1.0, 4.3·10−1 24, 4.0·10−2 25, 9.0·10−2

AINVP 10−1 0.3, 2.3·10−1 151, 2.1·10−1 100, 2.6·10−1

1.0
10−2 0.6, 3.4·10−1 22, 3.0·10−2 24, 7.0·10−2

10−5 1.5, 2.0·10−2 82, 8.0·10−2 111, 2.2·10−1

ILUT
10−6 1.9, 3.0·10−2 10, 1.0·10−2 17, 3.0·10−2

10−5 2.0, 5.0·10−2 89, 1.0·10−1 76, 1.7·10−1

ILUTP
0.1

10−6 2.6, 8.0·10−2 8, 1.0·10−2 9, 3.0·10−2

1.0 10−5 2.3, 6.0·10−2 30, 4.0·10−2 59, 1.5·10−1

Table 3.5
Davis collection. Changes in each matrix family when pivoting is used for drop tolerance τ and

pivot threshold α.

Matrix family τ = 0.1 τ = 0.01
α = 0.1 α = 1.0 α = 0.1 α = 1.0

HAMM ◦ ◦ ◦ ◦
MALLYA ◦ ◦ ◦ ◦/+
PORTFOLIO ◦ ◦ ◦ ◦
SIMON ◦/− ◦ ◦/− ◦
SHYY ◦ ◦ ◦ +
WANG ◦/− ◦/− ◦/− ◦/−
ZITNEY ◦/+ ◦/++ ◦/++ ++

significantly for the DRIVCAV (CFD, driven cavity problems) and FIDAP (fully
coupled Navier–Stokes equations) matrices. For the TOKAMAK matrices (nuclear
physics, plasmas) the algorithms without pivoting were superior. See Table 3.8 for
examples.

In most cases the codes for ILUT/ILUTP are much faster than those for the ap-
proximate inverses. In fact the implementation of the approximate inverse algorithm
with or without pivoting is much more technical and the codes used for the experi-
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Table 3.6
Matrix ZITNEY/RDIST1. AINVP and ILUTP with different drop tolerances τ and pivot

thresholds α.

Pivot Drop Decomposition GMRES(30) QMR
Method

thresh. α tol. τ Fill-in/time[sec] Steps/time[sec] Steps/time[sec]

10−2 21.8, 9.8·101 — 248, 2.6·101
AINVP

0.1
10−3 34.5, 1.8·102 11, 8.1·10−1 11, 1.7·100

1.0 10−2 7.7, 3.5·101 50, 1.5·100 46, 2.6·100
0.1 10−2 3.2, 5.3·10−1 60, 6.0·10−1 55, 9.4·10−1

ILUTP
1.0 10−2 2.9, 4.2·10−1 23, 2.2·10−1 30, 5.0·10−1

Table 3.7
SPARSKIT collection. Changes in each matrix family when pivoting is used for drop tolerance

τ and pivot threshold α.

Matrix family τ = 0.1 τ = 0.01
α = 0.1 α = 1.0 α = 0.1 α = 1.0

DRIVCAV ◦ ◦/+ ◦/+ ◦/++
FIDAP ◦ ◦/+ ◦ ◦/+
TOKAMAK ◦/− ◦/− − −

Table 3.8
Matrix SPARSKIT/FIDAP31. AINVP and ILUT (P) with different drop tolerances τ and

pivot thresholds α.

Pivot Drop Decomposition GMRES(30) QMR
Method

thresh. α tol. τ Fill-in/time[sec] Steps/time[sec] Steps/time[sec]

10−2 9.9, 6.1·101 — 155, 1.1·101
0.1

10−3 15.8, 1.0·102 13, 6.1·10−1 13, 1.2·100
AINVP

10−1 0.6, 1.8·100 — 194, 4.6·100
1.0

10−2 3.8, 1.0·101 48, 1.1·100 37, 1.6·100
10−2 1.2, 1.0·10−1 78, 4.8·10−1 72, 8.0·10−1

ILUT
10−3 1.5, 1.3·10−1 23, 1.6·10−1 26, 3.1·10−1

10−1 1.8, 3.4·10−1 — 421, 5.7·100
ILUTP

0.1
10−2 3.7, 1.2·100 22, 2.7·10−1 24, 5.5·10−1

1.0 10−2 5.8, 3.6·100 27, 4.5·10−1 29, 9.3·10−1

ments are research codes which have not been profiled and optimized yet. A much
improved implementation is still possible; see, e.g., the numerical results in [5, 8].

After illustrating the benefits of using pivoting in the approximate inverse precon-
ditioner with several examples, we now examine the combination of pivoting with an a
priori permutation and scaling suggested in [12, 2]. At first glance the use of pivoting
and especially the use of strict pivoting seems to be a complementary approach to
gain more stability. However, it is clear that combining two different approaches in an
appropriate way can be a good compromise. We illustrate this on some matrices which
have been reordered and scaled using the method from [12, 2] together with relaxed
pivoting (α = 0.1). We compare these results with strict pivoting (α = 1) and no
a priori permutation and with only a priori permutation but no pivoting. We applied
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Table 3.9
AINV (P): Comparison of pivoting and preprocessing.

Number of successful computed problems for drop tolerance τ

τ = 10−1 τ = 10−2

Matrix Only Only Prepr.+ Only Only Prepr.+

family pivoting preproc. pivoting pivoting preproc. pivoting

(# matrices) α = 1.0 α = 0.1 α = 1.0 α = 0.1

GMRES GMRES GMRES GMRES GMRES GMRES

/ QMR / QMR / QMR / QMR / QMR / QMR

Harwell–Boeing collection (20 test matrices)

CHEMW.(11) 10 / 11 9 / 10 11 / 11 11 / 11 11 / 11 11 / 11

LNS(6) 4 / 4 4 / 6 4 / 4 5 / 6 6 / 6 6 / 6

NNC(3) 0 / 1 0 / 0 1 / 2 0 / 1 0 / 0 2 / 3

Davis collection (11 test matrices)

MALLYA(6) 0 / 0 1 / 2 1 / 2 0 / 1 2 / 2 2 / 3

ZITNEY(6) 3 / 3 0 / 0 1 / 2 4 / 5 3 / 4 6 / 6

SPARSKIT collection (64 test matrices)

DRIVC.(22) 5 / 13 4 / 8 7 / 12 15 / 17 10 / 10 14 / 14

FIDAP(37) 12 / 14 8 / 8 11 / 12 20 / 19 9 / 9 23 / 25

TOKAM.(5) 0 / 1 3 / 4 0 / 1 1 / 2 2 / 5 1 / 3

Table 3.10
Matrix BP/BP1200. AINV (P) with different versions of pivoting and preprocessing.

Version Drop Fill-in/ GMRES(30) QMR

of AINV(P) tol. τ time[sec] steps/time[sec] steps/time[sec]

Only 10−2 8.3, 4.2 ·10−1 — 56, 1.5 ·10−1

pivoting (α = 1.0) 10−3 13.4, 6.9 ·10−1 15, 3.0 ·10−2 15, 5.0 ·10−2

Only 10−1 5.1, 9.0 ·10−2 — 281, 5.5 ·10−1

preprocessing 10−2 7.3, 1.1 ·10−1 20, 3.0 ·10−2 40, 8.0 ·10−2

Preprocessing 10−1 4.8, 1.4 ·10−1 49, 5.0 ·10−2 37, 7.0 ·10−2

+ pivoting (α = 0.1) 10−2 7.5, 1.6 ·10−1 9, 1.0 ·10−2 8, 2.0 ·10−2

these algorithms to some strongly indefinite problems as well as some ill-conditioned
problems. For a summary of the results, see Table 3.9. For some problems from par-
tial differential equations (LNS, NNC, DRIVCAV, FIDAP) the factors of either AINV
version were quite dense. These systems from partial differential equations have dense
inverses even if entries of small magnitude are skipped. Therefore plain approximate
inverse techniques (without any additional techniques like multigrid) might not be
suitable to solve these specific systems. The TOKAMAK matrices (nuclear physics)
were again easier to solve without dynamic pivoting, just as was the case when no
preprocessing is applied. Conversely, several of the FIDAP matrices were solvable
only with dynamic pivoting, even if preprocessing was used. For some examples, see
Tables 3.10 (linear programming), 3.11 (chemical engineering), 3.12 (chemical process
separation), and 3.13 (light hydrocarbon recovery). These tables show that for sev-
eral problems the a priori permutation in combination with the factored approximate
inverse with dynamic pivoting results in significantly better results compared with
those cases where only one technique, either pivoting or a priori permutation, is used.
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Table 3.11
Matrix WEST/WEST2021. AINV (P) with different versions of pivoting and preprocessing.

Version Drop Fill-in/ GMRES(30) QMR

of AINV(P) tol. τ time[sec] steps/time[sec] steps/time[sec]

Only 10−1 1.5, 2.0 ·10−1 121, 3.0 ·10−1 81, 4.0 ·10−1

pivoting (α = 1.0) 10−2 2.8, 3.2 ·10−1 31, 9.0 ·10−2 37, 1.9 ·10−1

Only

preprocessing
10−2 8.1, 1.7 ·10−1 13, 3.0 ·10−2 13, 7.0 ·10−2

Preprocessing 10−1 3.5, 1.7 ·10−1 24, 4.0 ·10−2 25, 9.0 ·10−2

+ pivoting (α = 0.1) 10−2 7.8, 2.5 ·10−1 9, 2.0 ·10−2 8, 4.0 ·10−2

Table 3.12
Matrix ZITNEY/EXTR1. AINV (P) with different versions of pivoting and preprocessing.

Version Drop Fill-in/ GMRES(30) QMR

of AINV(P) tol. τ time[sec] steps/time[sec] steps/time[sec]

Only 10−2 19.3, 4.7 ·100 — 159, 2.9 ·100
pivoting (α = 1.0) 10−3 31.3, 9.8 ·100 26, 3.5 ·10−1 29, 7.4 ·10−1

Only 10−2 19.0, 5.9 ·10−1 — 183, 3.0 ·100
preprocessing 10−3 24.0, 7.2 ·10−1 21, 1.9 ·10−1 29, 4.9 ·10−1

Preprocessing 10−1 11.5, 5.5 ·10−1 — 255, 3.9 ·100
+ pivoting (α = 0.1) 10−2 16.0, 7.9 ·10−1 12, 1.2 ·10−1 12, 2.7 ·10−1

Table 3.13
Matrix MALLYA/LHR07C. AINV (P) with different versions of pivoting and preprocessing.

Version Drop Fill-in/ GMRES(30) QMR

of AINV(P) tol. τ time[sec] steps/time[sec] steps/time[sec]

Only 10−3 9.3, 1.2 ·102 — 281, 2.9 ·101
pivoting (α = 1.0) 10−4 16.5, 2.9 ·102 27, 2.0 ·100 29, 4.3 ·100
Only 10−4 14.4, 2.2 ·101 — 257, 3.2 ·101
preprocessing 10−5 17.9, 2.9 ·101 13, 1.0 ·100 13, 2.2 ·100
Preprocessing

+ pivoting (α = 0.1)
10−3 7.3, 3.3 ·101 21, 9.3 ·10−1 22, 2.0 ·100

4. Conclusions. We have presented a version of a factored approximate inverse
with enhanced stability properties. The algorithm is obtained by carrying over pivot-
ing strategies from LU decomposition techniques to approximate inverse, exploiting a
strong connection between ILU-type methods and factored approximate inverse-type
methods. A test with a fairly large collection of test matrices established clearly the
advantages of using pivoting. Pivoting in AINV increases robustness in the harder
cases and is unlikely to hamper performance too much in the easier cases. Combining
approximate inverse with pivoting, row scaling, and a technique of nonsymmetric per-
mutation developed elsewhere [2, 12] shows excellent improvements in robustness of
AINV and opens the possibility of developing reliable preconditioners for very poorly
structured matrices.
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Abstract. We consider the problem of computing low-rank approximations of matrices. The
novel aspects of our approach are that we require the low-rank approximations to be written in
a factorized form with sparse factors, and the degree of sparsity of the factors can be traded off
for reduced reconstruction error by certain user-determined parameters. We give a detailed error
analysis of our proposed algorithms and compare the computed sparse low-rank approximations
with those obtained from singular value decomposition. We present numerical examples arising from
some application areas to illustrate the efficiency and accuracy of our algorithms.
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1. Introduction. We consider the problem of computing low-rank approxima-
tions of a given matrix A ∈ Rm×n which arises in many applications areas; see
[5, 14, 17] for a few examples. The theory of singular value decomposition (SVD)
provides the following characterization of the best low-rank approximations of A in
terms of Frobenius norm ‖ · ‖F [5, Theorem 2.5.3].

Theorem 1.1. Let the singular value decomposition of A ∈ Rm×n be A = UΣV T ,

Σ = diag(σ1, . . . , σmin(m,n)), σ1 ≥ · · · ≥ σmin(m,n),

and let U and V be orthogonal. Then for 1 ≤ k ≤ min(m,n),

min(m,n)∑
i=k+1

σ2
i = min{ ‖A−B‖2F | rank(B) ≤ k}.

The minimum is achieved with bestk(A) ≡ Uk diag(σ1, . . . , σk)V
T
k , where Uk and Vk

are the matrices formed by the first k columns of U and V , respectively.
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For any low-rank approximation B of A, we call ‖A − B‖F the reconstruction
error of using B as an approximation of A. By Theorem 1.1, bestk(A) has the
smallest reconstruction error in Frobenius norm among all the rank-k approximations
of A. In certain applications, it is desirable to impose further constraints on the
low-rank approximation B in addition to requiring that it be of low rank. Consider
the case where, for example, the matrix A is sparse; it is generally not true that
bestk(A) = UkΣkV

T
k or even that its associated factors Uk and Vk also will be sparse.

Therefore, the storage requirement of bestk(A) in the factorized form bestk(A) =
UkΣkV

T
k can be even greater than that of the original matrix A. To overcome this

difficulty, we seek to find low-rank approximations that simultaneously also possess
some sparsity properties. One possibility will be to impose sparsity requirements
directly on the low-rank approximation B itself, i.e., we require that B be sparse.
However, this approach is less flexible, and it is very difficult to achieve a reasonable
reconstruction error (compared with that obtained from bestk(A), for example) using
a sparse B. Inspired by the work reported in [7, 15], we consider the approach of
writing B in a factorized form as B = XDY T and imposing sparsity requirements on
the factors X and Y instead while keeping D in positive diagonal form. Therefore,
even though X and Y are sparse, B may be rather dense, and this actually gives
the flexibility to achieve smaller reconstruction errors. One by-product of using the
factorized form is that the low-rank constraint on B is trivially satisfied once B is
in the factored form, i.e., rank(B) ≤ k if X has k columns. Although the focus of
this paper is on imposing sparsity constraints, we should also mention that other
constraints on the low-rank approximations may also be desirable: in latent class
models for two-way contingency tables [4], probabilistic latent semantic indexing [6],
and nonnegative matrix factorization [8], for example, elements of columns X and Y
represent conditional probabilities and therefore are required to be nonnegative. As
another example, in the so-called structured total least squares problems, the low-
rank approximations need to have certain structures such as Toeplitz or Hankel [12].
We also mention that there has been research on solving linear systems and linear
least squares problems with sparse solution vectors [3, 10].

The rest of the paper is organized as follows: In section 2, we cast the problem
of computing sparse low-rank approximations in the framework of an optimization
problem. We then propose algorithms and heuristics for finding approximate optimal
solutions of this optimization problem. In section 3, we give a detailed error analysis of
the proposed algorithms and heuristics. Specifically, we prove that the reconstruction
errors of the computed sparse low-rank approximations are within a constant factor
of those that are obtained by SVD. In section 4, we discuss several computational
variations of the basic algorithms proposed in section 2, and in section 5, we conduct
several numerical experiments to illustrate the various numerical and efficiency issues
of our proposed algorithms. We also compare the low-rank approximations computed
by our algorithms with those obtained by SVD and the approaches developed in [15].
In section 6, we summarize our contributions and point out future research directions.

Notation. We use σk(A) to denote the kth singular value of a matrix A in non-
increasing order. We also replace σk(A) by σk when the matrix in question is unam-
biguous. By ‖ · ‖ we denote the 2-norm of vectors or matrices.

2. Sparse low-rank approximations. We first review some previous work on
computing low-rank approximations with sparse factors. O’Leary and Peleg proposed
a method for computing low-rank approximations for image processing [11]. In [7]
Kolda and O’Leary called this semidiscrete decomposition (SDD), where they write
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a low-rank approximation as Bk = XkDkY
T
k with Xk ∈ Rm×k, Yk ∈ Rk×n, and

Dk nonnegative diagonal. Furthermore, they require that the entries of Xk and Yk
belong to the three-element set {−1, 0, 1}. The restriction on the elements of Xk and
Yk usually demands a much larger k � K in order for Bk to achieve a reconstruction
error comparable to that of bestK(A), and therefore the low-rank property of Bk may
not hold. Despite this the storage requirement of Bk in the factored form is usually
much lower than that of A, and this is certainly the major strength of SDD, as is
demonstrated in the application in latent semantic indexing. In [15], Stewart proposes
to construct low-rank approximations of a sparse matrix A by selecting a subset of its
columns and rows, i.e., he writes a low-rank approximation as Bk = AcMA

T
r , where

Ac and AT
r are certain k columns and k rows of A, respectively, and M is chosen

to minimize the error ‖A − AcMA
T
r ‖F once the left and right factors Ac and Ar

are chosen. The matrices Ac and Ar are determined by variations of QR algorithms
with a certain pivoting strategy. In general, the matrix M will be dense. Due to
the denseness of M , the storage requirement of Bk can become rather high as k
increases, and also the low-rank approximation will not be sparse if A itself is not
sparse. Numerical experiments showed that Stewart’s approach is especially effective
when A itself is close to high rank-deficiency. The approach we now propose builds
on the strength of the above two approaches: we seek an approximation that is of
low-rank and at the same time we also want to have greater control of the sparsity
properties of the low-rank approximation. To this end, we consider the following
general minimization problem:1

min ‖A−XkDkY
T
k ‖F

subject to Dk positive diagonal, Xk ∈ Rm×k, and Yk ∈ Rn×k sparse.
(2.1)

The above optimization problem in its present form is not completely specified because
the minimum depends on the sparsity constraints: the number of nonzero elements of
the left and right factors and the positions of those nonzero elements which constitute
what we call their sparse patterns. So ideally the goal is to make the reconstruction
error ‖A−XkDkY

T
k ‖F as small as possible and keep in mind the following questions:

• How do we determine good sparsity patterns for the left and right factors?
• How do we find the best approximation Bk = XkDkY

T
k with the chosen

sparsity patterns for Xk and Yk?

In this paper we will not discuss how to impose the sparsity constraints on the factors
Xk and Yk in general, but rather we will first start with a heuristic. In this section,
we propose the framework of our sparse low-rank approximation (SLRA) approach
based on the idea of deflation. As can be seen, the heuristic dynamically and implicitly
imposes sparsity constraints on Xk and Yk. See Figure 1.

Algorithm SLRA consists of a sequence of k deflation steps [13] which allows
us to build a low-rank approximation one rank at a time. This general approach is
also adopted in [7], but the actual deflation step there is very different from ours.
After k steps, Ak = A − XkDkYk with Xk = [x1, . . . , xk], Yk = [y1, . . . , yk] and
Dk = diag(d1, . . . , dk). It is worthwhile to point out that the integer k, the rank of
Bk in general, can be determined by the stopping criterion ‖A −XkDkY

T
k ‖F ≤ tol

because the error ‖A−XkDkY
T
k ‖F = ‖Ak‖F can be easily calculated by a recurrence

relation derived in section 4.

1The diagonal elements of D can certainly be constructed to be positive, as we will do in what
follows.



MATRIX LOW-RANK APPROXIMATIONS WITH SPARSE FACTORS 709

Algorithm SLRA (sparse low-rank approximation). Given a
matrix A ∈ Rm×n and an integer k ≤ min{m,n}, this algorithm
produces a positive diagonal matrix Dk and sparse matrices Xk and
Yk. At the conclusion of the algorithm, Bk ≡ XkDkY

T
k gives a low-

rank approximation of A with sparse factors.
1. [Initialize] Set A0 = A.
2. For i = 1, 2, . . . , k.

2.1. [Rank-one approximation] Find a sparse rank-one
approximation xidiy

T
i to Ai−1 with sparse unit vectors

xi and yi.
2.2. Set Ai = Ai−1 − xidiyTi .

Fig. 1. Algorithm SLRA.

The key step of Algorithm SLRA is Step 2.1, i.e., computing sparse rank-one
approximations. By Theorem 1.1 the best rank-one approximation to A is given by
uσvT with {u, σ, v} the largest singular triplet of A. The triplet {u, σ, v} can also be
used to produce a good sparse rank-one approximation. The basic idea is to sparsify
u and v to get sparse vectors x and y and choose a scalar d such that

‖A− xdyT ‖2F = min
s
‖A− xsyT ‖2F = ‖A‖2F − d2.(2.2)

Since the left and right singular vectors u and v will undergo this sparsification process,
it is not necessary to compute them to high accuracy (see the remark after Theorem
3.2). The details of Step 2.1 of SLRA are listed in Figure 2.

3. Error analysis. In this section we will compare the low-rank approxima-
tions computed by Algorithm SLRA with those obtained by SVD with respect to
the reconstruction errors. One possible potential alternative is to make the com-
parison directly with the optimal solutions of (2.1) assuming we have made more
specifications on the sparsity of Xk and Yk. For example, we can impose constraints
on the number of nonzeros of Xk and Yk and leave the positions of those nonzeros
open. This approach at the moment is rather difficult to pursue because we still
do not have a good understanding of the structures of the optimal solutions (2.1).
Fortunately, bestk(A) obtained from SVD gives the optimal solutions for (2.1) when
there are no sparsity constraints on Xk and Yk, and the heuristic of Algorithm SLRA
takes advantage of this connection. Therefore we choose to compare the low-rank
approximation Bk = UkDkV

T
k with bestk(A) computed by SVD. To proceed, we first

consider the rank-one case, assuming we have computed the largest singular triplet
exactly. Throughout the rest of the paper, we assume that A ∈ Rm×n.

Theorem 3.1. Let {u, σ, v} be the largest singular triplet of A. Use the same
notation as in Step 2.1 of Algorithm SLRA, and assume that ‖u−‖2 + ‖v−‖2 ≤ 2ε2

with ε ≤ 1/
√
3. Then

‖A− xdyT ‖F ≤
√
1 + ατ‖A− uσvT ‖F ,(3.1)

where

α =
σ2

1∑n
j=2 σ

2
j

, τ = 4ε2
(
1− ε4

(1− ε2)2
)
< 4ε2.
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Step 2.1 of Algorithm SLRA. Given a matrix A, this algo-
rithm produces a rank-one matrix xdyT with sparse vectors x and
y.

1. Compute (approximations of) the largest left and right
singular vectors u and v of A.

2. Sparsify u and v to get sparse vectors x and y with ‖x‖ =
‖y‖ = 1.
2.1. [Sort] Sort the entries of u and v in two sections:

P1u =

[
u+

u−

]
, P2v =

[
v+
v−

]
,

where P1 and P2 are the permutation matrices re-
sulted from the sorting process.

2.2. [Sparsify] Discard the second sections u− and v− to
get sparse vectors x and y:

x← PT
1

[
u+

0

]
/‖u+‖, y ← PT

2

[
v+
0

]
/‖v+‖.

3. Set d ≡ xTAy which minimizes

{‖A− xsyT ‖F | s scalar}.

Fig. 2. Step 2.1 of SLRA.

Proof. Notice that d is chosen such that ‖A− xdyT ‖2F = ‖A‖2F − d2 as shown in
(2.2); we need to derive a lower bound for |d|. To this end, partition

P1AP
T
2 =

[
A11 A12

A21 A22

]

conformably with P1u and P2v (see Step 2.1 of Algorithm SLRA). It follows from the
choice of d that

d = xTAy = uT+A11v+/(‖u+‖ · ‖v+‖).(3.2)

Recalling that Au = σv and AT v = σu, we obtain

uT+A11v+ + uT+A12v− = σ‖u+‖2, uT−A21v+ + uT−A22v− = σ‖u−‖2,

and, similarly, we have

vT+A
T
11u+ + vT+A

T
21u− = σ‖v+‖2, vT−A

T
12u+ + vT−A

T
22u− = σ‖v−‖2.

Subtracting the sum of the last two equations of the four equations above from the
sum of the first two yields

uT+A11v+ = uT−A22v− + σ(1− ‖u−‖2 − ‖v−‖2).(3.3)
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Then substituting (3.3) into (3.2) gives

|d| = |u
T
−A22v− + σ(1− ‖u−‖2 − ‖v−‖2)|

‖u+‖ · ‖v+‖(3.4)

≥ σ(1− ‖u−‖
2 − ‖v−‖2)− σ‖u−‖ · ‖v−‖
‖u+‖ · ‖v+‖

≥ σ 1−
3
2 (‖u−‖2 + ‖v−‖2)

1− 1
2 (‖u−‖2 + ‖v−‖2)

≥ σ 1− 3ε2

1− ε2

= σ

(
1− 2ε2

1− ε2
)
≥ 0.

Here we have used the fact that ‖A22‖ ≤ ‖A‖ = σ. It follows from ‖A − uσvT ‖2F =
‖A‖2F − σ2 that

‖A− xdyT ‖2F ≤ ‖A‖2F − σ2
1

(
1− 2ε2

1− ε2
)2

= (1 + ατ)‖A− uσvT ‖2F ,

where

τ = 1−
(
1− 2ε2

1− ε2
)2

= 4ε2
(
1− ε4

(1− ε2)2
)
,

completing the proof.
In practice, the exact largest singular triplet is not available, and as we mentioned

before it may not even be desirable to have it computed to high accuracy since we
will sparsify u and v by discarding some of their nonzero elements anyway during
the sparsification process. Hence, we need to consider the case when we only have
approximations of the left and right singular vectors.

Theorem 3.2. Let {u, v} be the approximate largest left and right singular vectors
of A and σ = σ1(A). Use the notation of Step 2.1 of Algorithm SLRA and that of
Theorem 3.1 and assume that ‖u−‖2 + ‖v−‖2 ≤ 2ε2. Then

‖A− xdyT ‖F ≤
√
1 + α(τ + δ)‖A− uσvT ‖F ,(3.5)

where τ is the same as that defined in Theorem 3.1 and

δ =
2− 6ε2 − η
1− 2ε2

η, η =
‖Av − σu‖+ ‖ATu− σv‖

2σ
.

Proof. Define r1 = P1(Av − σu) and r2 = PT
2 (ATu − σv). Similarly as in the

proof of (3.3), we have

uT+A11v+ = uT−A22v− + σ(1− ‖u−‖2 − ‖v−‖2) + r,
where r =

(
[uT+, u

T
−]r1 + [vT+, v

T
−]r2

)
/2 with norm ‖r‖ ≤ ησ. By (3.4) and the in-

equality ‖u+‖‖u+‖ ≥
√
1− 2ε2 we obtain

|d| ≥ σ
(
1− 2ε2

1− ε2
)
− ‖r‖
‖u+‖‖u+‖

≥ σ
(
1− 2ε2

1− ε2 −
η√

1− 2ε2

)
.
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The result (3.5) follows immediately from (2.2) and the inequality

1−
(
1− 2ε2

1− ε2 −
η√

1− 2ε2

)2

= τ +

(
2− 6ε2

1− ε2 −
η√

1− 2ε2

)
η√

1− 2ε2

≤ τ + η(2− 6ε2 − η)
1− 2ε2

= τ + δ,

completing the proof.
Remark. We notice that η defined in Theorem 3.1 measures the accuracy of the

approximate left and right singular vectors in a certain relative sense. The results in
Theorem 3.1 say that τ = O(ε2). Consequently, if ε is fixed, there is no point to com-
pute u and v to higher accuracy than O(ε2). On the other hand, given approximate
u and v and the corresponding η, we should choose ε to match their accuracy, i.e.,
ε = O(

√
η).

Now we proceed to estimate the reconstruction error of ‖A −XkDkY
T
k ‖ for the

general case with k > 1. The basic idea is to estimate {σ2
j (Ak)} in terms of {σ2

j (A)}
(recall thatAk = Ak−1−xkdkyTk ). The key of our proof is to derive a tight upper bound

on
∑k

j=1 σ
2
j (A − xdyT ) in terms of

∑k+1
j=2 σ

2
j (A). Then we will apply the bounds to

Ak−1 and xkdky
T
k step by step to obtain an upper bound of ‖Ak‖ = ‖A−XkDkY

T
k ‖

in terms of {σ2
j (A0)} with A0 = A. With the assumptions that the left and right

singular vectors are only approximate, the proof becomes rather unwieldy, and the
bounds obtained are less transparent. Therefore, in the following we will assume that
the left and right singular vectors u and v are computed exactly for each rank-one
SVD approximation in the deflation process.

Notice that if {x, d, y} is the exact largest singular triplet of A, σi(A − xdyT ) =
σi+1(A) for i = 1, . . . ,min{m,n} − 1, and σi(A − xdyT ) = 0 for i ≥ min{m,n}, i.e.,
the second largest singular value of A becomes the largest singular value of A−xdyT ,
the third largest singular value of A becomes the second largest singular value of
A− xdyT , and so on. It is easy to see that for any distinct indexes i1, . . . , ik,

k∑
j=1

σ2
ij (A− xdyT ) =

k∑
j=1

σ2
ij+1(A).

Therefore it is reasonable to expect an O(ε) estimation:

k∑
j=1

σ2
ij (A− xdyT ) =

k∑
j=1

σ2
ij+1(A) +O(ε)(3.6)

when the triplet (x, d, y) is an O(ε) approximation of (u, σ, v). We now want to
make (3.6) more precise and prove it rigorously. To this end, we first present several
technical lemmas.

Lemma 3.3. Denote d̂ = uT+A11v+/(‖u+‖ · ‖v+‖)2 and σ = σ1(A). If ‖u−‖2 +

‖v−‖2 ≤ 2ε2, assuming ε2 ≤ 1/
√
5, we then have∣∣∣∣∣σ − d̂σ
∣∣∣∣∣ ≤ c1ε2, c1 =

1 + ε2

(1− ε)2 .(3.7)

Proof. By (3.2) and (3.3) we have

d̂ = σ +
uT−A22v− − σ(‖u−‖2‖v−‖2)

‖u+‖2‖v+‖2 .



MATRIX LOW-RANK APPROXIMATIONS WITH SPARSE FACTORS 713

Hence

|d̂− σ| ≤ σ ‖u−‖‖v−‖+ ‖u−‖
2‖v−‖2

‖u+‖2‖v+‖2 .(3.8)

Writing ‖u−‖ =
√
2a cos(θ), ‖v−‖ =

√
2a sin(θ) for certain θ ∈ [0, π/2] and 0 < a ≤ ε,

and, furthermore, denoting t = a2 sin(2θ) ∈ [0, a2], we have

‖u−‖‖v−‖+ ‖u−‖2‖v−‖2
‖u+‖2‖v+‖2 =

a2 sin(2θ) + a4 sin2(2θ)

1− 2a2 + a4 sin2(2θ)
=

t+ t2

1− 2a2 + t2
.

It can be shown that the function g(t) ≡ (t + t2)/(1 − 2a2 + t2) is monotonically
increasing in the interval [0, a2] if a2 ≤ ε2 ≤ 1/

√
5. Therefore,

‖u−‖‖v−‖+ ‖u−‖2‖v−‖2
‖u+‖2‖v+‖2 ≤ g(a2) =

a2 + a4

1− 2a2 + a4
(3.9)

≤ ε2 + ε4

1− 2ε2 + ε4
= c1ε

2.

Equation (3.7) then follows from (3.8).
Lemma 3.4. Let {u, σ = σ1(A), v} be the largest singular triplet of A. Denote

E = uσvT − xdyT . If ‖u−‖2 + ‖v−‖2 ≤ 2ε2, assuming ε2 < 1/3, then

‖E‖F ≤ σ1(A)(
√
2 + ε2)ε(3.10)

and

|σj(A− xdyT )− σj+1(A)| ≤ σ1(A)(
√
2 + ε2)ε.(3.11)

Proof. Let ĥ = (σ − d̂)/σ with d̂ defined in Lemma 3.3. Then d̂ = σ(1− ĥ) and

P1EP
T
2 = σ

[
ĥ‖v+‖u+ ‖v−‖u+

‖v+‖u− ‖v−‖u−

] [
v+/‖v+‖ 0

0 v−/‖v−‖
]T
.

Hence, by (3.8) we obtain that

‖E‖2F /σ2 = (ĥ2‖u+‖2 + ‖u−‖2)‖v+‖2 + ‖v−‖2
= ĥ2‖u+‖2‖v+‖2 + ‖u−‖2 + ‖v−‖2 − ‖u−‖2‖v−‖2

≤ ‖u−‖2 + ‖v−‖2 + ‖u−‖2‖v−‖2
(
(1 + ‖u−‖‖v−‖)2
‖u+‖2‖v+‖2 − 1

)

= ‖u−‖2 + ‖v−‖2 + ‖u−‖2‖v−‖2
(‖u−‖+ ‖v−‖
‖u+‖‖v+‖

)2

≤ 2ε2 + ε4
4ε2

(1− ε2)2
≤ ε2(

√
2 + ε2)2.

Here we have used the inequality

(‖u−‖+ ‖v−‖
‖u+‖‖v+‖

)2

≤
(

2ε

1− ε2
)2

,
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which is valid for ε2 ≤ 1/3. This inequality can be proved using the same technique
as when we prove (3.9). The standard perturbation bounds for singular values [5,
section 8.6.1] now give

σj(A− xdyT ) = σj(A− uσvT + E)

≤ σj(A− uσvT ) + ‖E‖
= σj+1(A) + ‖E‖
≤ σj+1(A) + σ1(A)

(√
2 + ε2

)
ε,

completing the proof.
Remark. It can be shown that if ‖u−‖ ≤ ε and ‖v−‖ ≤ ε, then

|σj(A− xdyT )− σj+1(A)| ≤ σ1(A)

(
1 +

2ε√
1− ε2

)
ε.

Using the well-known Wielandt–Hofmann theorem [5, section 8.6.1] and Lemma 3.4,
one can prove that

(
n∑

i=k

σ2
j (A− xdyT )

)1/2

≤
(

n∑
i=k+1

σ2
j (A)

)1/2

+ σ1(A)
(√

2 + ε2
)
ε.

Therefore it is not difficult to show that

‖A−XkDkY
T
k ‖F ≤ (1 + ckε)‖A− UkΣkV

T
k ‖F ,(3.12)

with

ck =
√
2

k∑
i=1

σi(A)/

(
n∑

i=k+1

σ2
j (A)

)1/2

+O(ε).(3.13)

However, the coefficient ck seems to give a less tight bound. To derive a much tighter
bound for ‖A−XkDkY

T
k ‖F , we need the following key lemma.

Lemma 3.5. Use the notation of Step 2.1 of Algorithm SLRA and assume that
‖u−‖2 + ‖v−‖2 ≤ 2ε2 with ε2 < 1/3. Then for any distinct indexes i1, . . . , ik,

k∑
j=1

σ2
ij (A− xdyT ) ≤

k∑
j=1

σ2
ij+1(A) + σ1(A)σ2(A)ε+ cσ

2
1(A)ε

2,(3.14)

where c = c2 for k = 1 and c = 2c2 for k > 1, and c2 = (1 + c1ε
2)2(3 +

√
2c1ε) with

c1 defined in Lemma 3.3.
Proof. Let the SVD of A be A = UΣV T with Σ = diag(σ1, . . . , σn). To simplify

the notation, denote u = u1, v = v1, σ = σ1, and Σ2 = diag(σ2, . . . , σn). Denote
B = UT (A − xdyT )V . We also assume that ‖u−‖ ≤ ‖v−‖, which implies ‖u−‖ ≤ ε.
(Otherwise we can consider BBT instead of BTB in what follows.) The proof of this
lemma consists of the following three parts.

(1) We first show that the matrix BTB is a rank-3 modification of diag(0,Σ2
2),

i.e.,

BTB = diag(0,Σ2
2) + F, rank(F ) ≤ 3.(3.15)
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Thus it follows from [16, p. 202] that for distinct indexes i1, . . . , ik,

k∑
j=1

λij (B
TB) ≤

k∑
j=1

λij (diag(0,Σ
2
2)) +

k∑
j=1

λj(F ),

with the notation λj(·) denoting the jth largest eigenvalue of a symmetric matrix. To
write the above in another way, we have

k∑
j=1

σ2
ij (A− xdyT ) ≤

k∑
j=1

σ2
ij+1(A) +

k∑
j=1

λj(F ).(3.16)

To this end, partition

P1U =

[[
u+

u−

]
, U2

]
, P2V =

[[
v+
v−

]
, V2

]
, Σ =

[
σ 0
0 Σ2

]
.

(See Step 2.1 of SLRA for the definition of the permutation matrices P1 and P2.) It
can be verified that

UTxdyTV = d̂
(
e1e

T
1 − e1wT

2 − w1e
T
1 + w1e

T
2

)
,

where

w1 = (P1U)
T

[
0
u−

]
=


 ‖u−‖2

UT
2

[
0
u−

]  ≡
[
w11

w21

]
,

w2 = (P2V )
T

[
0
v−

]
=


 ‖v−‖2

V T
2

[
0
v−

]  ≡
[
w12

w22

]
.

Furthermore, we have

w11 = ‖u−‖2 = ‖w1‖2 ≤ ε2, w12 = ‖v−‖2 = ‖w2‖2 ≤ 2ε2.(3.17)

Therefore, we can write

B ≡ UT (A− xdyT )V
= diag(0,Σ2) + d̂

(
he1e

T
1 + e1w

T
2 + w1e

T
1 − w1e

T
2

)

= diag(0,Σ2) + d̂[e1, w1]

[
h 1
1 −1

]
[e1, w2]

T ,

i.e., B is a rank-2 modification of diag(0,Σ2). Here

d̂ = d/(‖u+‖ · ‖v+‖), h = (σ − d̂)/d̂.

To show that BTB is a rank-3 modification of diag(0,Σ2
2), let

w3 =

[
0

Σ2w21

]
, ∆1 =

[
h 1
1 −1

] [
1 w11

w11 w11

] [
h 1
1 −1

]
.
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Then it can be verified that

BTB = diag(0,Σ2
2) + [e1, w2, w3]∆[e1, w2, w3]

T ≡ diag(0,Σ2
2) + F,

where

∆ = d̂


 d̂∆1

[
1
−1
]

[
1 −1 ] 0


 = d̂


 d̂(h

2 + 2hw11 + w11) d̂h(1− w11) 1

d̂h(1− w11) d̂(1− w11) −1
1 −1 0


 .

Therefore, (3.15) holds.
(2) We now prove that the matrix F has a negative eigenvalue, which implies

that the last term of (3.16) is a sum of at most two largest eigenvalues of F . First
rank([e1, w2, w3]) ≥ 2 since e1 is orthogonal to w3. Without loss of generality, we
assume that rank([e1, w2, w3]) = 3. (The case when rank([e1, w2, w3]) = 2 is simpler
and can be similarly handled.) Thus by Sylvester’s law of inertia [5, Theorem 8.1.17],
the number of positive eigenvalues of F is equal to the number of positive eigenvalues
of ∆. Therefore it is enough to show that ∆ has only two positive eigenvalues. Clearly,
∆ has at least one positive eigenvalue since it has a positive diagonal element. It can be
shown that the determinant of ∆ is negative: det(∆) = −d̂2(1 + h)2 < 0. It implies
that ∆ has one and only negative eigenvalue because ∆ is obviously not negative
definite. Therefore, ∆ has exactly two positive eigenvalues, and so does F . Hence we
can write (3.16) as

k∑
j=1

σ2
ij (A− xdyT ) ≤

k∑
j=1

σ2
ij+1(A) +

min{k,2}∑
j=1

λj(F ).(3.18)

(3) We finally derive upper bounds for λ1(F ) and λ2(F ) which lead to the in-
equality (3.14). To this end, we write

F = d̂[e1, w3]

[
0 1
1 0

]
[e1, w3]

T

+ [e1, w2, w3]

[
d̂2∆2 [0,−d̂]T
[0,−d̂] 0

]
[e1, w2, w3]

T ≡ H + F̃ .

It is easy to see that λ(H) = {d̂‖w3‖, 0, . . . , 0,−d̂‖w3‖}. By (3.7) and the inequality
‖w3‖ ≤ σ2ε, we thus have

λ1(F ) ≤ d̂‖w3‖+ ‖F̃‖ ≤ σ1σ2ε(1 + c1ε
2) + ‖F̃‖,(3.19)

λ2(F ) ≤ ‖F̃‖.(3.20)

To estimate ‖F̃‖, we normalize w2 and w3 and let ŵ2 = w2/‖w2‖ and ŵ3 =
w3/‖w3‖. It is easy to see that

‖[e1, ŵ2, ŵ3]‖ ≤
√
2, ‖F̃‖ ≤ 2‖F̂‖

with d̂h = σ − d̂, and
F̂ ≡ (f̂ij)

3
i,j=1

=


 (σ − d̂)2 + d̂(2σ − d̂)w11 d̂(σ − d̂)(1− w11)‖w2‖ 0

d̂(σ − d̂)(1− w11)‖w2‖ d̂2(1− w11)‖w2‖2 −d̂‖w2‖ · ‖w3‖
0 −d̂‖w2‖ · ‖w3‖ 0


 .
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By Lemma 5.2 of [17] and the fact that f̂13 = f̂31 = f̂33 = 0, we have

‖F̂‖ ≤ max

{
|f̂11|,

∥∥∥∥
[
f̂22 f̂23
f̂32 f̂33

]∥∥∥∥
}
+ |f̂12|

≤ max
{
|f̂11|, |f̂22|+ |f̂23|

}
+ |f̂12|.

By (3.7) and (3.17), it is easy to see that ‖F̂‖ = O(ε2). Furthermore, it can be verified
that

|f̂11| ≤ |f̂22|+ |f̂23| ≤ 3σ2(1 + c1ε
2)2ε2, |f̂12| ≤

√
2c1σ

2(1 + c1ε
2)ε3,

which leads to

‖F̂‖ ≤ (1 + c1ε
2)2(3 +

√
2c1ε)σ

2ε2 ≡ c2σ2ε2

and

λ1(F ) ≤ σ1σ2ε+ c2σ
2ε2, λ2(F ) = c2σ

2ε2.

Combining the above bounds with (3.18) yields the result (3.14).
Now we are ready to prove our main theorem.
Theorem 3.6. Use the notation in Step 2.1 of Algorithm SLRA and assume in

each iteration of Step 2.1 that ‖u−‖2 + ‖v−‖2 ≤ 2ε2 with ε2 < 1/3. Then

‖A− UkΣkV
T
k ‖F ≤ ‖A−XkDkY

T
k ‖F ≤

√
1 + bkε ‖A− UkΣkV

T
k ‖F ,

where

bk =

∑k
j=1 σj(A)σj+1(A)∑n

j=k+1 σ
2
j (A)

+O(ε).

Proof. Let Ak = A−XkDkY
T
k with A0 = A, and

Xk = [x1, . . . , xk], Dk = diag(d1, . . . , dk), Yk = [y1, . . . , yk].

Then Ak = Ak−1 − xkdkyTk , where xk and yk are the sparsified version of the largest
left and right singular vectors u(k−1) and v(k−1) of Ak−1, respectively. Specifically,

we choose permutation matrices P
(k−1)
1 and P

(k−1)
2 such that

P
(k−1)
1 u(k−1) =

[
u

(k−1)
+

u
(k−1)
−

]
, P

(k−1)
2 v(k−1) =

[
v
(k−1)
+

v
(k−1)
−

]

with ‖u(k−1)
− ‖2 + ‖v(k−1)

− ‖2 ≤ 2ε2. Then

xk = (P
(k−1)
1 )T

[
u

(k−1)
+

0

]
/‖u(k−1)

+ ‖, yk = (P
(k−1)
2 )T

[
v
(k−1)
+

0

]
/‖v(k−1)

+ ‖.

Since Ak = A−XkDkY
T
k , applying Lemma 3.5 to Ak = Ak−1 − xkdkyTk , we have

‖A−XkDkY
T
k ‖2F =

n∑
j=1

σ2
j (Ak)(3.21)

≤
n∑

j=2

σ2
j (Ak−1) + σ1(Ak−1)σ2(Ak−1)ε+ cσ

2
1(Ak−1)ε

2

≤
n∑

j=k+1

σ2
j (A) +

k−1∑
j=0

σ1(Aj)σ2(Aj)ε+ c

k−1∑
j=0

σ2
1(Aj)ε

2.
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On the other hand, by Lemma 3.4 we have, with c3 =
√
2 + ε2,

σ1(Aj) ≤ σ2(Aj−1) + c3σ1(Aj−1)ε(3.22)

≤ σ3(Aj−2) + c3(σ1(Aj−2) + σ1(Aj−1))ε

≤ · · ·

≤ σj+1(A) + c3

j−1∑
i=0

σ1(Ai)ε.

Let sj =
∑j−1

i=0 σ1(Ai). Then by (3.22)

sj = σ1(Aj−1) + sj−1 ≤ σj(A) + (1 + c3ε)sj−1(3.23)

≤ σj(A) + (1 + c3ε)(σj−1(A) + (1 + c3ε)sj−2)

≤ · · ·

≤
j∑

i=1

(1 + c3ε)
j−iσi(A).

Substituting (3.23) into (3.22) gives

σ1(Aj) ≤ σj+1(A) + c3

j∑
i=1

(1 + c3ε)
j−iσi(A)ε ≡ σj+1(A) + φjε,

where φj = c3
∑j

i=1(1 + c3ε)
j−iσi(A). Similarly, we have

σ2(Aj) ≤ σj+2(A) + φjε.

Therefore,

k−1∑
j=0

σ1(Aj)σ2(Aj)(3.24)

≤
k∑

j=1

(
σj(A)σj+1(A) + (σj(A) + σj+1(A) + φj−1ε)φj−1ε

)

and

k−1∑
j=0

σ2
1(Aj) ≤

k∑
j=1

(
σ2
j (A) + 2σj(A)φj−1ε+ φ

2
j−1ε

2
)
.(3.25)

Combining (3.21), (3.24), and (3.25) we obtain that

‖A−XkDkY
T
k ‖F ≤

n∑
j=k+1

σ2
j (A) +

k∑
j=1

σj(A)σj+1(A)ε+ b̃kε
2

= (1 + bkε)‖A− UkΣkV
T
k ‖2F ,

where

b̃k =

k∑
j=1

{
cσ2

j (A) + ((1 + 2cε)σj(A) + σj+1(A) + (1 + cε)φj−1ε)φj−1

}
,
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Fig. 3. (1 + ck ∗ ε)−1 and (1 + bk ∗ ε)−1/2 (left) and the relative errors (right).

completing the proof.
The bound proved in the above theorem usually is much tighter than the bound in

(3.12). In Figure 3, for various k, we plot the quantities (1+ ckε)
−1 and (1+ bkε)

−1/2

with the O(ε) terms omitted for the matrix med (cf. section 5) on the left and the
relative error

errbest(k) =
‖A− bestk(A)‖F

‖A‖F
and the upper bounds

(1 + ckε)errbest(k) and (1 + bkε)
1/2errbest(k)

on the right.

4. Computational variations. In this section, we first discuss several compu-
tational variations of Algorithm SLRA; in particular we look at two approaches for
sparsifying vectors in Step 2.1 of Algorithm SLRA. We first briefly discuss how to
find approximations to the largest singular triplet of a matrix.

Computing largest singular triplets. As we mentioned in section 2, the largest
singular triplet {u, σ, v} does not need to be computed to high accuracy because a
sparsification process that follows will introduce errors by discarding certain nonzero
elements of u and v. There are several approaches for approximating the largest
singular triplets, such as the power method and the Lanczos bidiagonalization pro-
cess [5, 13]. Using the power method, we suggest performing several steps of power
iteration, as follows:

v ← (ATA)αv0,

v ← v/‖v‖2,
u← Av/‖Av‖2,

where v0 is an initial guess, for example, v0 = (1, . . . , 1)T , and α is a small integer,
for example, α = 3.
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For Lanczos bidiagonalization, we can run several Lanczos iterations to generate a
pair of orthogonal bases {u1, . . . , uβ} and {v1, . . . , vβ}, and a lower bidiagonal matrix
Bβ satisfying

A[v1, . . . , vβ ] = [u1, . . . , uβ ]Bβ + bβuβ+1,

AT [u1, . . . , uβ ] = [v1, . . . , vβ ]B
T
β .

The largest singular vectors a and b of Bβ will be used to obtain approximations u
and v:

v = [v1, . . . , vβ ]a, u = [u1, . . . , uβ ]b.

Sorting and sparsification. This corresponds to how to partition the computed
approximate singular vectors u and v for the sparsification process to come later. By
Theorems 3.1 and 3.2 the reconstruction error ‖A − xdyT ‖F of the sparse rank-one
approximation depends on the size of the discarded sections ‖u−‖2 and ‖v−‖2. There-
fore it makes sense to sort vectors u and v in decreasing order by their absolute values
so that the number of discarded elements is largest under the constraints ‖u−‖2 ≤ ε
and ‖v−‖2 ≤ ε, or ‖u−‖22 + ‖v−‖22 ≤ 2ε2. In particular, we find permutations P1 and
P2 such that ũ ≡ P1u = [u+

u−
], ṽ ≡ P2v = [ v+

v−
] with

|ũ1| ≥ |ũ2| ≥ · · · ≥ |ũm|, |ṽ1| ≥ |ṽ2| ≥ · · · ≥ |ṽn|.

Let ku and kv be the lengths of sections u+ and v+, respectively. Thus u+ = ũ(1 : ku)
and v+ = ṽ(1 : kv). We then choose

x = PT
1

[
ũ(1 : ku)

0

]
/‖ũ(1 : ku)‖, y = PT

2

[
ṽ(1 : kv)

0

]
/‖ṽ(1 : kv)‖.

The integers ku and kv can be determined by the following two different schemes.
• Separated scheme. In this approach, we sort the elements of u and v sepa-
rately, and ku and kv are defined by

ku = min


k
∣∣∣ k∑
j=1

ũ2
j ≥ 1− ε2


 , kv = min


k
∣∣∣ k∑
j=1

ṽ2j ≥ 1− ε2



for a given tolerance ε.
• Mixed scheme. Another approach is to set w = [uT , vT ]T and find a permu-
tation P such that Pw = w̃, |w̃1| ≥ |w̃2| ≥ · · · ≥ |w̃m+n|. We determine kw
such that

kw = min


k ≥ k0

∣∣∣ k∑
j=1

w̃2
j ≥ 2ε2


 ,

where k0 is the smallest integer such that the section w(1 : k0) contains both
u-components and v-components. Obviously, the order of the u-components
of vector w̃ implies the permutation P1, as does the order of the v-components
for P2. Therefore the main section w̃(1 : kw) also determines ũ(1 : ku) and
ṽ(1 : kv), where ku and kv are, respectively, the number of u-components and
v-components of w̃(1 : kw).
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Remark. In general, our experiments show that the mixed scheme performs better
than the separated scheme.

Choice of tolerance ε. At each iteration step of Algorithm SLRA, the tolerance
ε can be a predetermined constant or be chosen dynamically during the iteration
process. We will use, for variable tolerance, at the kth iteration

εk =
‖Ak−1‖F
‖A‖F ε,

which depends on the approximation computed by previous iterations.
Choice of k. Notice that the norm of error matrix Ak at step k can be written as

‖Ak‖2F = ‖A−XkDkYk‖2F = ‖A‖2F −
k∑

j=1

d2j .

In fact, we have

‖Ak‖2F = ‖Ak−1‖2F − d2k.
It is quite convenient to use this recurrence as a stopping criterion for Algorithm
SLRA:

‖Ak‖F ≤ tol

for the given user-specified tolerance tol.
Self-correcting mechanism. This is certainly an area that deserves further re-

search, and in the following we can only touch the tip of the iceberg. When we
use a rank-one matrix uσvT that is constructed from the exact largest singular
triplet {u, σ, v} of A, the difference A − uσvT will not have any components in
the two one-dimensional subspaces spanned by u and v, respectively. Notice that
‖A−uσvT ‖2F = ‖A‖2F −σ2, and the amount of reduction in the Frobenius norm is the
largest possible by a rank-one modification. Now when we use an inaccurate rank-one
approximation xdyT , in general, it is true that Â ≡ A− xdyT will have some compo-
nents left in the directions of u and v. Also ‖Â‖2F = ‖A‖2F − d2, and the reduction
in Frobenius norm will be smaller. The question now is the following: if we compute
the rank-one approximation x̂d̂ŷT for Â, will x̂d̂ŷT pick up some of the components
in u and v that are left by the previous rank-one approximation xdyT ? The answer
seems to be yes even though we do not have a formal proof. This indicates that Al-
gorithm SLRA has a self-correcting mechanism: errors made in early deflation steps
can be corrected by later deflation steps. We now give an example that illustrates this
phenomenon. Table 1 lists the first 10 diagonals {dj} and the singular values {σj}
of matrix A, respectively. In this example, those steps j for which dj > σj show the
self-correcting process at work.

A combinatorial optimization problem. Now we reexamine the optimization prob-
lem (2.1) for k = 1. We can impose the following constraints on the number of
nonzeros of x and y: nnz(x) = nx, nnz(y) = ny, where nx ≤ m and ny ≤ n are
fixed. Let i1, . . . , inx and j1, . . . jny be the indexes of the nonzero elements of x and
y, respectively. Then it is easy to see that the optimization problem (2.1) is reduced
to

min
x̂∈Rnx ,ŷ∈Rny

‖A([i1, . . . , inx ], [j1, . . . , jny ])− x̂dŷT ‖F ,(4.1)
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Table 1
Self-correction phenomenon.

j dj σj

1 4.5595e+05 4.5808e+05
2 3.8998e+05 4.5762e+05
3 4.5482e+05 4.5761e+05
4 3.7309e+05 3.9093e+05
5 4.4721e+05 3.9050e+05
6 3.5648e+05 3.9049e+05
7 2.2148e+05 2.2090e+05
8 1.8609e+05 2.2046e+05
9 2.3341e+05 2.2044e+05
10 2.2075e+05 1.1472e+05

where Ã ≡ A([i1, . . . , inx ], [j1, . . . jny ]) is the submatrix of A consisting of the inter-
section of rows i1, . . . , inx and columns j1, . . . jny . Therefore, by Theorem 1.1 we need

to find the largest singular triplet of Ã. Hence, the optimization problem (2.1) for
k = 1 is equivalent to the following problem:

Find nx rows and ny columns of A such that the largest singular

value of Ã is maximized.

This is a combinatorial optimization problem, and we do not know any good, i.e.,
polynomial-time, solution method for it. Step 2.1 of Algorithm SLRA does seem to
provide a heuristic for its solution. Now we give an example to illustrate this point.

Example. Consider the matrix

A =




1 0 0 1 0
1 0 1 1 1
1 0 0 1 0
0 0 1 1 0
0 1 0 1 1
0 0 0 1 0



.

The goal is to compare the computed SLRA with the optimal solution of the combi-
natorial optimization problem (4.1) computed by exhaustive search.

We first compute the sparse approximation XkDkY
T
k for k = 2 using Algorithm

SLRA with ε = 0.3 and β = 4 for computing the approximate largest singular triplet
using Lanczos bidiagonalization. The computed vectors xi and yi have the numbers
of nonzeros listed below.

nnz(x1) = 5, nnz(y1) = 4, nnz(x2) = 3, nnz(y2) = 3.

Next we compute the best rank-one approximation u1s1v
T
1 to A with the constraints

nnz(u1) = nnz(x1) and nnz(v1) = nnz(y1), and then the best rank-one approximation
u2s2v

T
2 to matrix A− u1s1v

T
1 with the constraints nnz(u2) = nnz(x2) and nnz(v2) =

nnz(y2). The above two steps for computing ui and vi are carried out using exhaustive
search. Below we list the computed components of vectors xi, yi, ui, and vi. The
two approximations give the same sparsity patterns, i.e., wherever xi (or yi) has a
zero element, ui (or vi) also has a zero element in the same position, and vice versa.
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However, notice that the values of nonzero elements are different but very close:

x1 x2 u1 u2
0.4058 0.3245 0.4111 0.3118
0.6146 0 0.6362 0
0.4058 0.3245 0.4111 0.3118
0.3583 0 0.3587 0
0.4058 −0.8885 0.3587 −0.8975

0 0 0 0

y1 y2 v1 v2
0.4508 0.5423 0.4905 0.5066

0 −0.6170 0 −0.6322
0.3075 0 0.3346 0
0.7734 0 0.7318 0
0.3226 −0.5702 0.3346 −0.5863

5. Numerical experiments. In this section, we present several numerical ex-
periments to illustrate the effectiveness and efficiency of our approach for computing
SLRAs. We will compare the performance of Algorithm SLRA with that of SVD and
the approach proposed in [15] with respect to the following two issues:

(1) the reconstruction errors, and
(2) the computational complexity and storage required.

For the numerical experiments, we generate a collection of test matrices, which are
listed below together with some relevant statistics: matrices 3, 4, 5, and 6 are term-
document matrices from the SMART information retrieval system, and the rest of the
matrices are selected from Matrix Market [2, 9]. We do not claim that the collection
is comprehensive.

Matrix m n nnz(A) Density(%)
1 ash958 958 292 19196 0.68

2 illc1033 1033 320 4732 1.43

3 cisi 5081 1469 66241 0.89

4 cacm 3510 3204 70339 0.63

5 med 5504 1033 51096 0.90

6 npl 4322 11429 224918 0.46

7 watson4 467 468 2836 1.30

8 orsirr2 886 886 5970 0.76

9 e20r1000 4241 4241 131430 0.73

Some explanation of the notation we used is in order here: m and n represent the
row and column dimensions, respectively, of the given matrix. As used before, nnz(A)
denotes the number of nonzero elements of A. Density is computed as nnz(A)/(mn),
the percentage of nonzero elements of a matrix.

In order to compare our algorithm with SPQR (sparse pivoted QR algorithm)
in [15], for each matrix A, we first use SPQR to compute a rank-k approximation
B = AcMA

T
r . We use k = 300 if min(m,n) > 500, otherwise we use k = 100. Then

we let tol(A) = ‖A−B‖F , and we seek to find a low-rank approximation using SLRA
such that

‖A−XkDkY
T
k ‖F ≤ tol(A).

Test 1. We compare the low-rank approximations computed by Algorithm SLRA
with constant tolerance ε = 0.1 and those computed by SVD. The dimension used for
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Lanczos bidiagonalization for computing the approximate largest singular vectors is
β = 4 (see the definition of β in the previous section). To illustrate the reconstruction
error ‖A−XkDkY

T
k ‖F , we use the error ratio er(k) defined by

er(k) =
‖A− bestk(A)‖F
‖A−XkDkY T

k ‖F
to measure the effectiveness of Algorithm SLRA. It is easy to see that 0 ≤ er(k) ≤ 1.
The larger the error ratio is, the more effective SLRA is. Below we list the error
ratios of SLRA with constant tolerance ε = 0.1 using the separated sorting scheme.
The rank k is chosen to be 5 ∼ 20% of the size l = min(m,n) of a given matrix A.
We also computed the average error ratio defined as

Average =
1

k

k∑
i=1

er(i),

where k is the smallest integer satisfying ‖A−XkDkY
T
k ‖F ≤ ε.

Matrix k = 5% 10% 15% 20% Average
ash958 0.9946 0.9896 0.9876 0.9845 0.9908
illc1033 0.3622 0.9160 0.9226 0.8984 0.8595
cisi 0.9866 0.9771 0.9690 0.9612 0.9778
cacm 0.9774 0.9625 0.9427 0.9221 0.9596
med 0.9882 0.9790 0.9699 0.9617 0.9790
watson4 0.9784 0.9374 0.4833 0.3166 0.7809
orsirr2 0.9217 0.8942 0.9136 0.9206 0.9274

For these matrices, Theorem 3.6 gives tight bounds for the ratios. Figure 4 plots,
with respect to k, the lower bounds (1+ bkε)

−1/2 (dashed lines) given in Theorem 3.6
and the ratio quantities er(k) (solid line) computed by the separated sorting SLRA
with ε = 0.1 for all the nine matrices. These examples show that SLRA has very high
error ratios for most of the test matrices, especially for the term-document matrices.

Test 2. In general, the mixed sorting scheme gives a smaller number of nonzero
elements for the sparse factorsXk and Yk, i.e., less storage required, than the separated
sorting scheme if we use the same tolerance sequence while the rank k of the low-
rank approximations computed by the different schemes are about the same. We
computed the low-rank approximations using Algorithm SLRA with the same variable
tolerance scheme for both the separated and mixed sorting schemes. Different starting
tolerances ε = 0.05:0.05:0.5 are used for each test matrix. In Figure 5 we plot the
ranks (left) and the total number of nonzero elements of Xk and Yk (right) computed
by SLRA with separated (top) and mixed (bottom) sorting schemes. For each test
matrix, the ranks computed by the two sorting schemes are about the same while the
mixed sorting scheme gives a smaller number of nonzero elements; this is especially
the case for the starting tolerances around ε = 0.15.

Test 3. In this test we compare, respectively, the ranks of the low-rank approx-
imations, the computation cost in flops, and storage required for SVD, SPQR, and
SLRA using variable tolerance and the mixed sorting scheme. For SLRA, we use
ε = 0.1 as the starting tolerance and β = 6 iterations for Lanczos bidiagonalization.
The low-rank approximations computed by the three approaches have the same re-
construction errors for each test matrix. In general, as we mentioned before, SVD
produces dense factors even when A is sparse. Therefore the low-rank approximation
computed by SVD requires at least (m + n + 1)k storage for its associated factors.
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Fig. 4. The computed er(k) (solid lines) and the lower bounds (1 + bkε)
−1/2 (dashed lines).

For SPQR, the rank k of the low-rank approximation Bk = AcMA
T
r is usually quite

large compared with the rank of the optimal low-rank approximation generated by
SVD. Since the matrix M is generally dense, the storage required is dominated by
M resulting in larger than k2 storage requirement. In contrast, SLRA can produce
low-rank approximations with small rank k and good degree of sparsity of the factors
Xk and Yk. (The number of nonzeros can be reduced by increasing the starting tol-
erance ε, which also increases the flops and ranks.) We list below the comparison for
the term-document matrices in the test collection:

Matrix Rank Total nnz Flops

cisi TSVD 68 449412 6925863163
SLRA 72 217401 523406959
SPQR 300 129720 568382817

cacm TSVD 63 426951 5390479001
SLRA 67 216982 478032905
SPQR 300 133784 463854304

med TSVD 79 522664 9598485598
SLRA 84 278456 658852943
SPQR 300 120444 469695010

npl TSVD 41 647472 6208537332
SLRA 44 384118 616205165
SPQR 300 227567 588513394

However, we should mention that the performance of SLRA is not as good as
SPQR when the matrix A is close to a highly rank-deficient matrix. For example, let
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Fig. 5. Plots for ranks (left) and numbers of nonzero elements of Xk and Yk (right) vs. starting
epsilon for the variable tolerance, separated (top) and mixed (bottom) sorting approaches.

A be the matrix illc1033 in the test collection. We compute, using SPQR, a rank-100
approximation B = AcMA

T
r . The storage required (the number of nonzeros) for the

computed low-rank approximation is about 20% of that for the best approximation
B∗ computed by SVD that achieves the same reconstruction error. SLRA with ε = 0.1
gives an approximation Bk that has the same reconstruction error as that of SPQR,
and the storage required is 85% of that for B∗, though the rank of Bk is close to the
optimal rank and much smaller than the rank of B. SPQR also requires less flops
for computing the low-rank approximation. In general, SPQR is very effective for
sparse matrices that are close to highly rank-deficient, and the rank of the low-rank
approximation can be predetermined. However, using SPQR is not convenient if the
user just imposes an upper bound on reconstruction error.

6. Concluding remarks. We have presented algorithms for computing matrix
low-rank approximations with sparse factors. We also gave a detailed error analysis
comparing the reconstruction errors for the low-rank approximations computed by
SVD and the low-rank approximations computed by our sparse low-rank algorithms.
Our algorithms are flexible in the sense that users can balance the tradeoff of high
sparsity levels of the computed low-rank factors and the reduced reconstruction error.
Several issues deserve further investigation: (1) We need to develop better ways for
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computing sparse rank-one approximations. As we mentioned, for example, if we fix
the number of nonzero elements in x and y, say p and q, then min ‖A − xdyT ‖F is
equivalent to the following combinatorial optimization problem: find p rows and q
columns of A such that the largest singular value of their intersection is maximized.
We are in the process of finding heuristics for solving this problem and investigating
their relationships to the sorting approach of Algorithm SLRA. (2) Once a low-rank
approximation Ak is computed, a certain refinement procedure needs to be developed
to reduce its reconstruction error and/or the number of nonzeros of its sparse factors.
(3) It will also be of great interest to consider reconstruction errors in norms other
than ‖ · ‖F .
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Abstract. It is well known that preconditioned conjugate gradient (PCG) methods are widely
used to solve ill-conditioned Toeplitz linear systems Tn(f)x = b. In this paper we present a new
preconditioning technique for the solution of symmetric Toeplitz systems generated by nonnegative
functions f with zeros of even order. More specifically, f is divided by the appropriate trigonometric
polynomial g of the smallest degree, with zeros the zeros of f, to eliminate its zeros. Using rational

approximation we approximate
√

f/g by p
q
, p, q trigonometric polynomials and consider p2g

q2
as a

very satisfactory approximation of f . We propose the matrix Mn = B−1
n (q)Bn(p2g)B

−1
n (q), where

B(·) denotes the associated band Toeplitz matrix, as a preconditioner whence a good clustering of
the spectrum of its preconditioned matrix is obtained. We also show that the proposed technique
can be very flexible, a fact that is confirmed by various numerical experiments so that in many cases
it constitutes a much more efficient strategy than the existing ones.

Key words. low rank correction, Toeplitz matrix, conjugate gradient, rational interpolation
and approximation, preconditioner

AMS subject classifications. 65F10, 65F15
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1. Introduction. In this paper we use and analyze band Toeplitz matrices as
preconditioners for the solution of the n × n ill-conditioned symmetric and positive
definite Toeplitz system

Tn(f)x = b(1.1)

by the preconditioned conjugate gradient (PCG) method, where the matrix Tn(f) ∈
R

n×n is produced by a real-valued, even, 2π-periodic function defined in the funda-
mental interval [−π, π]. Then, the (j, k) element of Tn(f) is given by the Fourier
coefficient of f , i.e.,

Tn(f)j,k = Tj−k =
1

2π

∫ π

−π

f(x)e−i(j−k)xdx, 1 ≤ j, k ≤ n,

where i is the imaginary unit.
Toeplitz matrices arise very often in a wide variety of applications, as, e.g., in

the numerical solution of differential equations using finite differences, in statistical
problems (linear prediction), in Wiener–Hopf kernels, in Markov chains, in image and
signal processing, etc. (see [13], [6], [25]). The generating function f plays a significant
role in the location and distribution of the eigenvalues of Toeplitz matrix [13], [7] and
in many cases is a priori known. As it is known for the spectrum of Tn(f) there holds
σ(Tn(f)) ⊆ [inf f, sup f ].
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Superfast direct methods can solve system (1.1) in O(n log2 n) operations, but
their stability properties for ill-conditioned Toeplitz matrices are still unclear; see, for
instance, [6].

Classical iterative methods such as Jacobi, Gauss–Seidel, and SOR are not effec-
tive since the associated spectral radius tends to 1 for large n. The method which is
widely used for the solution of such systems is the PCG method. The factors that
affect the convergence features of this method are the magnitude of the condition num-
ber κ2(Tn(f)) and the distribution of the eigenvalues. So a good preconditioner must
cluster the eigenvalues of the preconditioned system as much as possible and make
the eigenvalues that might lie outside the cluster be bounded by nonzero constants
independent of n.

If the generating function is continuous and positive, then problem (1.1) will
not be ill-conditioned and the condition number cannot increase proportionally to
n, although it can be very large. In this case system (1.1) can be handled by us-
ing a preconditioner belonging to some trigonometric matrix algebras (circulant, τ ,
Hartley; see [24], [2], [3], [23], [14]) or by band Toeplitz preconditioners with weakly
increasing bandwidth defined by a polynomial operator Sn, as was proposed in [22].
Theoretically, the latter class of preconditioners seems to perform better as n → ∞
since the number of PCG iterations tends to 1, while in the former cases this number
tends to a constant.

When f has a finite number of zeros, each one of finite multiplicity, then system
(1.1) is ill-conditioned and the condition number κ2(Tn(f)) increases proportionally
to nα where α is the largest number of the multiplicities of the zeros of f [7], [20].
To best handle this case it is necessary to know the number of multiplicities of each
one. If this number is not even, then the most suitable technique for this situation
[19] fails to make the condition number of the preconditioned matrix independent of
its dimension n, and the problem is still open. On the other hand things dramatically
change when the multiplicity of each zero is even.

In this case, it was Chan [7] who first proposed as a preconditioner for system
(1.1) the Toeplitz band matrix Bn(g) whose generating function g is a trigonometric
polynomial that has the same zeros with the same multiplicities as those of f . Next,
in [9], not only was g considered as having the zeros of f , but its degree was also
increased so that it provided additional degrees of freedom to approximate f and to
minimize the relative error ‖ f−g

g ‖∞ over all trigonometric polynomials g of a fixed
degree l. The generating function g is then computed by the Remez algorithm, which
can be very expensive from a computational point of view, especially when f has a
large number of zeros.

Recently, Serra [21] extended this method by proposing alternative techniques to
minimize ‖ f−g

g ‖∞. More specifically, he chose as g, zkgl−k, where zk is the trigonomet-
ric polynomial of minimum degree k that has all the zeros of f with their multiplicities
and gl−k is the trigonometric polynomial of degree l− k which is the best Chebyshev
approximation of f̂ = f

zk
from the space Pl−k of all trigonometric polynomials of

degree at most l−k. In addition, in the same work [21], another way was proposed of

constructing gl−k by interpolating f̂ at the l − k + 1 zeros of the (l − k + 1)st degree
Chebyshev polynomial of the first kind.

We remark that it has been proved [12] that preconditioners belonging to the
aforementioned matrix algebra, when they can be defined, produce weak clustering;
i.e., the eigenvalues of the preconditioned matrix are such that for every ε > 0 there
exists a positive β so that, except for rare exceptions, O(nβ) of the eigenvalues lie in
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the interval (0, ε).
Further preconditioning techniques based on inverses of Toeplitz matrices can be

found in [8], [11], [15].
In this paper we extend the previous methods in order to achieve a better cluster-

ing for the eigenvalues of the preconditioned matrix and propose a way of constructing
a class of preconditioners based on rational approximation or on interpolation to the
positive and continuous function

√
f/zk, with zk defined previously.

The outline of the present work is as follows. In section 2 we recall some useful
issues about the rational approximation, while in section 3 we introduce the technique
of constructing the new class of preconditioners based on rational approximation to√
f/zρ with zk and analyze the convergence of the PCG method. In section 4 we

study the flexibility and possible modification of our method, analyze its cost per
iteration, and compare it with that of previous techniques. Finally, in section 5,
results of illustrative numerical experiments are exhibited and concluding remarks
are made.

2. Preliminaries. In what follows we assume that the generating function f
is defined in [−π, π], is 2π-periodic, continuous, nonnegative, and has zeros of even
order.

We define by zk a trigonometric polynomial of minimum degree k containing all
the zeros of f with their multiplicities. Then we define rlm = pl

qm
as the best rational

approximation of f̂ =
√
f/zk in the uniform norm, i.e.,

‖f̂ − rlm‖∞ = min
r∈R(l,m)

‖f̂ − r‖∞,

where R(l,m) denotes the set of rational functions r, with p ∈ Pl, q ∈ Pm, and r
irreducible, that is, p and q have no zeros in common.

It is known that when f belongs to some special class of functions [16] then the
order of magnitude of the maximum error of an approximation from the space R(l,m)
is better than the corresponding error in the space P(l + m). In general, we hope
that by taking advantage of the flexible nature of rational functions, this set will be a
stronger tool than its competitor, the polynomial one. For example, it is obvious that
polynomials are not suitable for approximating functions having sharp peaks near
the center of their ranges and are slowly varying when |x| increases. Such behavior
can be obtained by continuous functions which are not differentiable at some points.
However, it is easy to overcome this difficulty by using rational functions.

The next theorem establishes the fact that rational approximation of continuous
functions in [−π, π] is always possible and unique.

Theorem 2.1. Let f be in C[−π, π]. Then there exists r∗ ∈ R(l,m) such that

‖f − r∗‖∞ < ‖f − r‖∞
for all r ∈ R(l,m) , r = r∗.

Proof. See [18, pp. 121, 125] for the proof.

3. Construction of the preconditioner. Let f be a 2π-periodic nonnegative
function belonging to C[−π, π] with zeros x1, x2, . . . , xs of multiplicities 2µ1, 2µ2, . . . ,
2µs, respectively, and 2µ1 + 2µ2 + · · ·+ 2µs = ρ. First, we define

zρ =

s∏
i=1

(1− cos(x− xi))µi ,
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which is the trigonometric polynomial of minimum degree ρ having all the zeros of
f . By dividing f by zρ, all its zeros are eliminated and the ratio f

zρ
becomes a real

positive function.
Then, we define the function f̂ =

√
f/zρ and approximate it with the rational

trigonometric function rlm = pl

qm
, where l,m are the degrees of the numerator and the

denominator, respectively. Since pl

qm
is the best rational approximation of

√
f/zρ for

certain l and m, we are led to the conclusion that
p2
l

q2
m

may be a good approximation

of f
zρ
. This means that there exists a small ε > 0 such that

∥∥∥∥ fzρ −
p2
l

q2m

∥∥∥∥
∞
< ε

or, equivalently, that there exists a small δ > 0 such that∥∥∥∥ q2m
zρp2

l

f − 1

∥∥∥∥
∞
< δ.

The last inequality means that the values of
q2
m

zρp2
l

f are clustered in a small region near

the constant number 1. In terms of matrices, this means that taking Tn(
zρp

2
l

q2
m

) as a

preconditioner matrix for the solution of (1.1), the eigenvalues of T−1
n (

zρp
2
l

q2
m

)Tn(f) are

clustered in a small region near 1 [7] and the PCG method will become very fast.
Unfortunately, because this matrix is a full Toeplitz matrix, is hard to construct, and
is costly to invert, it is useless as a preconditioner. Instead, we are led to the idea of

separating the numerator and the denominator of the ratio
zρp

2
l

q2
m

and use as a precon-

ditioner matrix the product of three matrices. More specifically, the preconditioner
we propose for the solution of system (1.1) is

Mn = B−1
nm(q)Bnl̂(p

2zρ)B
−1
nm(q), l̂ = 2l + ρ,(3.1)

where the second index in the matrices represents their halfbandwidth, while the first
one represents their dimension. The notation Bnm(·) will be used instead of Tn(·) for
band Toeplitz matrices to emphasize their bandness. The following statements prove
the basic assumptions a preconditioner must satisfy and also describe the spectrum
of the preconditioned matrix M−1

n Tn.
Theorem 3.1. The matrix Mn is symmetric and positive definite for every n.
Proof. Its symmetry is implied directly from the definition (3.1). On the other

hand, the eigenvalues of Bnl̂(p
2zρ) belong to the interval (min p2

l zρ,max p2
l zρ), where

0 = min p2
l zρ < max p2

l zρ ≤ 2ρ max p2
l . Therefore, Bn(p

2
l zρ) is symmetric and pos-

itive definite. Furthermore, qm has no zeros in [−π, π] because it results from the
rational approximation to a function which is strictly positive in [−π, π]. So, Bnm(q)
is symmetric and invertible. Then, for every x ∈ R

n, x = 0, we have

xTMnx = xTB−1
nm(q)Bnl̂(p

2zρ)B
−1
nm(q)x = yTBnl̂(p

2zρ)y > 0,

where y = B−1
nm(q)x. Hence Mn is symmetric and positive definite.

Theorem 3.1 suggests that the matrixMn can be taken as a preconditioner matrix.
It then remains to study the convergence rate of the PCG method or, equivalently,
how the eigenvalues of the matrix M−1

n Tn are distributed. For this, we give without
proof the following lemma and then state and prove our main result in Theorem 3.2.
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Lemma 3.1. Suppose A,B ∈ R
n×n are symmetric matrices such that

A = B + εccT ,

where c ∈ R
n, cT c = 1. If ε > 0, then

λ1(B) ≤ λ1(A) ≤ λ2(B) ≤ · · · ≤ λn(B) ≤ λn(A),

while if ε ≤ 0, then

λ1(A) ≤ λ1(B) ≤ λ2(A) ≤ · · · ≤ λn(A) ≤ λn(B),

provided that the eigenvalues are labeled in nondecreasing order of magnitude. In
either case

λk(A) = λk(B) + tkε, k = 1, 2, . . . , n,

where tk ≥ 0, k = 1, 2, . . . , n, and
∑n

k=1 tk = 1.
Proof. See Wilkinson [26, pp. 97–98] for the proof.
Theorem 3.2. Let λi(M

−1
n Tn), i = 1(1)n, and denote the eigenvalues of M−1

n Tn
and m the degree of the denominator qm of the rational approximation. Then, at least
n − 4m eigenvalues of the preconditioned matrix lie in (hmin, hmax), at most 2m are

greater than hmax, and at most 2m are in (0, hmin), where h = fq2

p2zρ
.

Proof. Obviously the matrix

M−1
n Tn = Bnm(q)B−1

nl̂
(p2zρ)Bnm(q)Tn(f)

is similar to the matrix

B
− 1

2

nl̂
(p2zρ)Bnm(q)Tn(f)Bnm(q)B(p2zρ)

− 1
2

nl̂
.(3.2)

Then, since Bnm(q) is a band matrix with halfbandwidth m, the matrix Bnm(q)Tn(f)
differs from Tn(qf) only in them first and last rows, and the matrixBnm(q)Tn(f)Bnm(q)
differs from Tn(q

2f) only in the first and lastm rows and columns. So it can be written
as a sum of a Toeplitz matrix and a low rank correction matrix, i.e.,

Bnm(q)Tn(f)Bnm(q) = Tn(q
2f) + ∆,(3.3)

where ∆ is a symmetric “border” matrix with nonzero elements only in the first and
last m rows and columns. So rank(∆) ≤ 4m is independent of n. Then, from (3.2)
and (3.3) we obtain that

E︷ ︸︸ ︷
B

− 1
2

nl̂
(p2zρ)Bnm(q)Tn(f)Bnm(q)B

− 1
2

nl̂
(p2zρ) =

Ẽ︷ ︸︸ ︷
B

− 1
2

nl̂
(p2zρ)Tn(q

2f)B
− 1

2

nl̂
(p2zρ)

+B
− 1

2

nl̂
(p2z)∆B

− 1
2

nl̂
(p2z).(3.4)

Since a matrix product does not have rank larger than that of each of the factors
involved, there exist αi > 0, ci ∈ R

n, i = 1(1)m+, and βi > 0, di ∈ R
n, i = 1(1)m−,

with m+ +m− ≤ 4m, such that (3.4) can be written as

E − Ẽ =

m+∑
i=1

αicic
T
i −

m−∑
i=1

βidid
T
i .
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So applying successively m+ +m− times Lemma 3.1 gives

hmin ≤ λi(E) ≤ hmax, m− < i ≤ n−m+,

and the theorem is proved.
It is clear from the previous analysis and statements that contrary to what hap-

pens with other band Toeplitz preconditioners, the one we propose of the “premulti-
plier” matrix Bnm(q) may make some of the eigenvalues lie outside the approximation
interval [hmin, hmax]. We will prove now that the spectral radius of the preconditioned
matrix is bounded by a constant number independent of n. For this, first, we state
and prove the following lemma.

Lemma 3.2. Let Bn be an n × n symmetric and positive definite band Toeplitz
matrix with halfbandwidth s. Then the k × k principal and trailing submatrices of
B−1

n as well as the k × k submatrices consisting from the first k rows and the last
k columns (right upper corner) or from the last k rows and the first k columns (left
lower corner) of B−1

n are componentwise bounded for every fixed k independent of n.
Proof. For principal and trailing submatrices, this property has been proved in

[10] for k = s. We will prove the validity of this property for k = s+ 1 and the proof
of every fixed k can be completed by induction. From the fundamental relation

s+1∑
l=1

b1l(B
−1
n )lj = δ1j ,

where δ1j is the Kronecker δ, we obtain successively that

(B−1
n )s+1,j =

1

b1,s+1

(
δ1j −

s∑
l=1

b1l(B
−1
n )lj

)
, j = 1, 2, . . . , s.(3.5)

Since all the elements in the right-hand side of (3.5) are bounded, so are the elements
(B−1

n )s+1,j , j = 1, 2, . . . , s. From the symmetry of B−1
n we obtain that the elements

(B−1
n )j,s+1, j = 1, 2, . . . , s, are also bounded. One more application of (3.5) for

j = s + 1 gives us that the element (B−1
n )s+1,s+1 is bounded, and the proof for the

principal submatrices is complete. Since B−1
n is a persymmetric matrix the elements

of the trailing matrix are the same as those of the principal one in reverse order. So
the k × k trailing matrix is also bounded.

It remains to prove the validity of the property for the submatrices in the right
upper corner and in the left lower corner of B−1

n . These matrices are transposes of
each other due to the symmetry of B−1

n . From the positive definiteness of B−1
n we

have that

|(B−1
n )ij | < (B−1

n )ii + (B−1
n )jj

2
, i = 1, . . . , k, j = n− k + 1, . . . , n.

The elements in the right-hand side are the diagonal elements of the k×k principal and
trailing submatrices, respectively, which are bounded, and the proof is complete.

The following theorem proves that the eigenvalues ofM−1T have an upper bound.
Theorem 3.3. Under the assumptions of Theorem 3.2 there exists a constant c,

independent of n, such that ρ
(
M−1

n Tn(f)
) ≤ c for every n.

Proof. We begin the proof by using some relations connecting the spectral radii
and the Rayleigh quotients of symmetric matrices. The fact that all the matrices are
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positive definite is also used.

ρ
(
M−1

n Tn(f)
)
= ρ

(
Bnm(q)B−1

nl̂
(p2zρ)Bnm(q)Tn(f)

)
= ρ

(
B

− 1
2

nl̂
(p2zρ)Bnm(q)Tn(f)Bnm(q)B

− 1
2

nl̂
(p2zρ)

)

= max
x�=0

xTB
− 1

2

nl̂
(p2zρ)Bnm(q)Tn(f)Bnm(q)B

− 1
2

nl̂
(p2zρ)x

xTx

= max
x�=0

(
xTTn(f)x

xTB−1
nm(q)Bnl̂(p

2zρ)B
−1
nm(q)x

· x
TBnl̂(p

2zρ)x

xTBnl̂(p
2zρ)x

)

= max
x�=0

(
xTTn(f)x

xTBnl̂(p
2zρ)x

· xTBnl̂(p
2zρ)x

xTB−1
nm(q)Bnl̂(p

2zρ)B
−1
nm(q)x

)
(3.6)

≤ max
x�=0

xTTn(f)x

xTBnl̂(p
2zρ)x

·max
x�=0

xTBnl̂(p
2zρ)x

xTB−1
nm(q)Bnl̂(p

2zρ)B
−1
nm(q)x

= M1 max
x�=0

xTBnm(q)Bnl̂(p
2zρ)Bnm(q)x

xTBnl̂(p
2zρ)x

= M1 max
x�=0

xT
(
Bnl̂+2m(q2p2zρ) + ∆

)
x

xTBnl̂(p
2zρ)x

≤M1

(
M2 +max

x�=0

xT∆x

xTBnl̂(p
2zρ)x

)

≤M1

(
M2 + ρ

(
B−1

nl̂
(p2zρ)∆

))
.

In (3.6) we have taken

M1 = max
x�=0

xTTn(f)x

xTBnl̂(p
2zρ)x

= ρ
(
B−1

nl̂
(p2zρ)Tn(f)

)

and

M2 = max
x�=0

xTBnl̂+2m(q2p2zρ)x

xTBnl̂(p
2zρ)x

= ρ
(
B−1

nl̂
(p2zρ)Bnl̂+2m(q2p2zρ)

)
,

which are bounded, since the generating functions f
p2zρ

and
q2p2zρ
p2zρ

= q2, respectively,

are bounded functions in [−π, π]. In (3.6), the matrix productBnm(q)Bnl̂(p
2zρ)Bnm(q)

was written as the band Toeplitz matrix Bnl̂+2m(q2p2zρ), generated by the function

q2p2zρ, plus the low rank correction matrix ∆.

It is known [5] that the matrix ∆ is given by

∆ = Bnm(q)H(q)H(p2zρ) +Bnm(q)HR(q)HR(p2zρ)

+H(q)H(qp2zρ) +HR(q)HR(qp2zρ),

where H(q), H(p2zρ), and H(qp2zρ) are Hankel matrices produced by the trigono-
metric polynomials q, p2zρ, and qp2zρ, respectively, while HR denotes the matrix
obtained from H by reversing the order of its rows and columns.
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It is obvious that ∆ is a low rank correction matrix that has nonzero elements
only in the upper left and lower right triangles, as illustrated below:

∆ =




∗ · · · ∗ 0 . . . 0
...

. . . 0
. . . 0

...

∗ 0
. . . 0 0

0
. . . 0

. . . 0 ∗
... 0 0

. . .
...

0 . . . 0 ∗ . . . ∗



.

It is clear that the elements of ∆ are bounded and the size of the triangles depends
only on the bandwidths m and l̂ and are independent of n.

It remains to prove that ρ(B−1

nl̂
(p2zρ)∆) is bounded. For this, we write the ma-

trices in the following block forms:

B−1

nl̂
(p2zρ) =


 B1 ∗ B2

∗ ∗ ∗
BT

2 ∗ BR
1


 , ∆ =


 D

O
DR


 ,

where B1, B2 are k × k matrices if D has k nonzero antidiagonals.
Since the only nonzero columns of the matrix B−1

nl̂
(p2zρ)∆ are its first k and last

k ones, the nonidentically zero eigenvalues of B−1

nl̂
(p2zρ)∆ will be the eigenvalues of

the matrix (
B1D B2D

R

BT
2 D BR

1 D
R

)
.

In view of Lemma 3.2 this matrix is bounded, and so are its eigenvalues, which proves
the present statement.

So, the eigenvalues that are greater than hmax have an upper bound.
To study the behavior of the eigenvalues that lie in the interval (0, hmin) we prove

the following Lemma.
Lemma 3.3. The smallest eigenvalue of the matrix M−1

n Tn(f) has a bound from
below a constant number c1 > 0, independent of n, iff the smallest eigenvalue of the
matrix B−1

nρ (zρ)Bnm(q)Bnρ(zρ)Bnm(q) has lower bound a constant number c2 > 0,
independent of n.

Proof. As in Theorem 3.3 we use the relation connecting the eigenvalues of a
symmetric positive definite matrix with the Rayleigh quotient:

min
i
λi
(
M−1

n Tn(f)
)
= min

i
λi

(
B−1

nl̂
(p2zρ)Bnm(q)Tn(f)Bnm(q)

)

= min
x�=0

(
xTBnm(q)Tn(f)Bnm(q)x

xTBnl̂(p
2zρ)x

· x
TBnm(q)Bnρ(zρ)Bnm(q)x

xTBnm(q)Bnρ(zρ)Bnm(q)x
· x

TBnρ(zρ)x

xTBnρ(zρ)x

)

≥ min
x�=0

xTTn(f)x

xTBnρ(zρ)x
·min
x�=0

xTBnm(q)Bnρ(zρ)Bnm(q)x

xTBnρ(zρ)x
·min
x�=0

xTBnρ(zρ)x

xTBnl̂(p
2zρ)x

≥ min
f

zρ
·min

1

p2
·min
x�=0

xTBnm(q)Bnρ(zρ)Bnm(q)x

xTBnρ(zρ)x
.
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Since the functions f
zρ

and 1
p2 have both lower bounds independent of n, the

spectrum of the preconditioned matrix has such a bound iff the Rayleigh quotient
xTBnm(q)Bnρ(zρ)Bnm(q)x

xTBnρ(zρ)x
does.

The above equivalent problem that the matrix B−1
nρ (zρ)Bnm(q)Bnρ(zρ)Bnm(q) has

a spectrum bounded from below by a positive constant c independent of n remains
in this paper an open question for general values of the bandwidths m and ρ. De-
spite that, strong numerical evidence shows that this holds. To make our conjecture
stronger we present the proof for the special cases where m = 1 and ρ = 1, 2.

Theorem 3.4. The matrix B−1
nρ (zρ)Bnm(q)Bnρ(zρ)Bnm(q) has its smallest eigen-

value λ1 bounded from below by a constant number c > 0 which is independent of n
for m = 1 and ρ = 1, 2

Proof. The case m = ρ = 1 is quite obvious and is based on the fact that all the
tridiagonal symmetric Toeplitz matrices have the same eigenvectors. More specifically,
the matrix Bn1(z1) is the Laplace matrix with its eigenvalues and the corresponding
normalized eigenvectors being given by

λi = z1(θi) = 4 sin2 θi
2
, x(i) =

√
2

n+ 1
(sin θi sin 2θi sin 3θi . . . sinnθi)

T
,

respectively, where θi =
πi

n+1 , i = 1(1)n. The matrix Bn1(q) is a tridiagonal Toeplitz
matrix of the form tridiag(β, α, β). Since Bn1(q) and Bn1(z1) have the same
eigenvectors we can write any arbitrary vector x ∈ R

n as a convex combination
x =

∑n
i=1 cix

(i), ci ∈ R, i = 1(1)n. With these assumptions and using the orthogo-
nal properties of x(i)’s the Rayleigh quotient gives

xTBn1(q)Bn1(z1)Bn1(q)x

xTBn1(z1)x
=

(∑n
i=1 cix

(i)
)T

Bn1(q)Bn1(z1)Bn1(q)
(∑n

i=1 cix
(i)
)

(∑n
i=1 cix

(i)
)T

Bn1(z1)
(∑n

i=1 cix
(i)
)

=

∑n
i=1 c

2
i q

2(θi)4 sin
2 θi

2∑n
i=1 c

2
i 4 sin

2 θi
2

≥ min
i
q2(θi) ≥ min

θ∈[−π,π]
q2(θ).(3.7)

The proof is complete since the function q is strictly positive.

For the case where (m, ρ) = (1, 2) we write the matrix Bn2(z2) as a function of
Bn1(z1) and the corresponding Hankel matrices [5], i.e.,

Bn2(z2) = (Bn1(z1))
2
+
(
H(z1) +HR(z1)

)2
,

where the notations H and HR are the same as in Theorem 3.3. For simplicity we
denote H = H(z1) +HR(z1), so H = diag(−1, 0, 0, . . . , 0, − 1).

By considering the same convex combination of the vector x, the Rayleigh quotient
gives

xTBn1(q)Bn2(z2)Bn1(q)x

xTBn2(z2)x
=
xTBn1(q)

(
B2

n1(z1) +H2
)
Bn1(q)x

xT (B2
n1(z1) +H2)x

(3.8)

=
16
∑n

i=1 c
2
i q

2(θi) sin
4 θi

2 + 2
n+1 (

∑n
i=1 ciq(θi) sin θi)

2
+ 2

n+1 (
∑n

i=1 ciq(θi) sinnθi)
2

16
∑n

i=1 c
2
i sin

4 θi
2 + 2

n+1 (
∑n

i=1 ci sin θi)
2
+ 2

n+1 (
∑n

i=1 ci sinnθi)
2 .

First, we suppose that the first term of the denominator in (3.8) is greater than or
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equal to the second or the third one in order of magnitude. In that case we obtain
that the ratio in (3.8), similar to (3.7), has a lower bound the value minθ∈[−π,π] q

2(θ).
Otherwise, we suppose that the second term is greater than the others in order of
magnitude. Since the numerator is a sum of quadratic terms, the ratio will tend to
zero if all the terms in the numerator decrease with a higher rate. So, we consider the

case where the term 2
n+1 (

∑n
i=1 ciq(θi) sin θi)

2
has an order of magnitude less than that

of 2
n+1 (

∑n
i=1 ci sin θi)

2
. By substituting q(θ) = α+ 2β cos θi = α+ 2β(1− 2 sin2 θi

2 ),
we have

n∑
i=1

ciq(θi) sin θi = (α+ 2β)

n∑
i=1

ci sin θi − 4β

n∑
i=1

ci sin
2 θi
2
· sin θi,

which means that the terms
∑n

i=1 ci sin θi and
∑n

i=1 ci sin
2 θi

2 · sin θi must have the
same orders of magnitude. Applying the Cauchy–Schwarz inequality on the second
sum we obtain that

(
n∑

i=1

ci sin
2 θi
2
· sin θi

)2

≤
n∑

i=1

c2i sin
4 θi
2
·

n∑
i=1

sin2 θi =
n+ 1

2

n∑
i=1

c2i sin
4 θi
2
.

So, the order of magnitude of the term 2
n+1 (

∑n
i=1 ci sin θi)

2
must be less than or equal

to the one of
∑n

i=1 c
2
i sin

4 θi
2 , which is a contradiction. The assumption that the third

term is the greater one, in order of magnitude, gives similarly the same contradiction.
So, the ratio in (3.8) does not tend to zero as n tends to infinity.

We remark that the same idea to split the matrix Bnρ(zρ) into (Bn1(z1))
ρ
plus a

sum of Hankel matrices can be used for the proof of the above property in the case
of ρ > 2. In the case of m > 1, first the matrix Bnm(q) is written as a sum of the
terms Bnj(zj) j = 0(1)m, (Bn0(z0) = In) and the above idea can be applied. In both
cases the analysis becomes more and more complicated. Figures 5.1(b)–(d), 5.2(b),
5.3(b) fully confirm the above properties. Moreover they show that the main interval
eigenvalues appear in pairs and the elements of each pair tend to each other as n tends
to infinity. In view of this observation, the convergence analysis of the PCG method
in [1] assures us that our method will not be seriously affected and the convergence
of it will remain superlinear, which is the optimal cost for this method.

4. Computational analysis and modification of the method. In this sec-
tion we will try to compare, from the computational point of view, our preconditioner
with the most recent band Toeplitz preconditioner proposed in [21]. The latter has in
general the best performance from all the previous ones, when the generating function
f is nonnegative and has zeros of even order.

The main computational cost in every PCG iteration is due to the Toeplitz matrix-
vector product Tn(f)x and to the solution of a system with coefficient matrix the pre-
conditioner itself. The first one is the same for both methods and can be computed
by means of the fast Fourier transform (FFT) in 10(n log 2n) operations (ops) in a
sequential machine, or in O(log 2n) steps in the parallel PRAM model of computa-
tion, when O(n) processors are used. For the inversion of the preconditioners, things
slightly change. If we use band Toeplitz preconditioners, then their halfbandwidth
l̂1 represents the degree l1 of the Chebyshev approximation plus the degree ρ of the
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trigonometric polynomial, which eliminates the zeros of f . The inversion of such type
of matrices can be achieved using the LDLT factorization method in n(l̂21 + 8l̂1 + 1)
ops. We mention that this method is more preferable than the band Cholesky factor-
ization because the latter requires the computation of n square roots, which is quite
expensive when n is large.

In the case of our preconditioner the inversion requires two band matrix vector
products of total cost n(8m + 4) ops, where m is the halfbandwidth and coincides
with the degree of the denominator in the rational approximation. In addition, the
inversion of Bnl̂2

, as in the previous case, can be performed in n(l̂22 + 8l̂2 + 1) ops,

where l̂2 = ρ + 2l2 and l2 represents the degree of the numerator of the rational
approximation. So the total cost per iteration for this step of the algorithm of the
PCG method is about

Cost it = n(l̂22 + 8l̂2 + 8m+ 5).

We must mention here that more sophisticated techniques reduce the cost of approx-
imating the solution of such systems, up to within an O(ε) error, in O(n logm +
m log2m log log ε−1) [4]. In both cases, when n is large, the complexity of the method
is strongly dominated by that of the first step, which requires O(n log 2n) ops since

l̂2,m are independent of n. So the methods are essentially equivalent in complexity
per iteration. Thus the costs of finding B−1

nl̂1
and BnmB

−1

nl̂2
Bnm, where l1 = l2 +m,

are comparable.

In case n is not large enough, taking l2 = l1
2 − 1 and making some calculations,

we can see that the two preconditioning strategies are approximately equivalent even
when m = ρl1.

According to this observation, if we have two candidates of rational approxima-
tions of f with almost the same relative error and degrees (l1,m1), (l2,m2) with
l1 + m1 ≈ l2 + m2, it is preferable, from the computation point of view, to choose
as the generating function for our preconditioner the one which has the larger m and
the smaller l.

Finally, we will focus on the calculation of rational approximation of degree (l,m)
of a positive continuous function f . In the recent literature many different strategies
that produce this kind of approximation [17] can be found. Each of them is most
suitable for certain classes of functions, but the one which is based on the Remez
algorithm seems to be, in general, the most appropriate for a large variety of func-
tions. The starting point of this category of algorithms is to construct a rational
approximation using rational interpolation, and then this rational approximation is
used to generate a better approximation until an alternative set of m + l + 2 points
is reached. This procedure consists of adjusting the choice of the interpolation points
in such a way as to ensure that the relative error decreases. In practice this method
can fail in some cases. Usually, problems occur either because the extreme values of
the relative error occur more than m + l + 2 times, or because the starting rational
interpolation has zeros in the interval in which this approximation is sought. The first
difficulty is usually overcome by seeking a rational approximation of a different degree
or by designing a more robust algorithm. A trick that often works in the latter case
is, instead of seeking again for a rational approximation of a different degree, to start
with an approximation that is valid over a shorter interval and to use it as a starting
point for an approximation on a slightly larger interval. Iterative application of this
procedure may enable us to obtain a final approximation in the desired interval.
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For the convergence rate of the approximation method we cannot give a theo-
retical result, but the facts that its computational cost is independent of n and the
computations are done only once for a given function make us believe that this issue
does not play an important role in the whole procedure.

4.1. Modification of the method. The idea of constructing a preconditioner
from a rational approximation of a function can be used in exactly the same way in case
of rational interpolation at the Chebyshev points. The advantage of this modification
is the simplicity of its calculation. Nevertheless, it is worth noticing that we cannot
ensure that this interpolation would not have zeros in the interval of approximation.
Despite this, whenever the preconditioning gives us poor results, this technique may
give, at least for certain classes of f , results similar to the corresponding ones by the
best Chebyshev approximation.

5. Numerical examples and concluding remarks. In this section, we present
some numerical examples. The aim of these examples is twofold: (i) to show, by
numerical evidence, the correctness of our observations regarding the asymptotical
spectral analysis of the preconditioned matrices, and (ii) to compare the convergence
rate of our preconditioner with that of the band Toeplitz preconditioner proposed
in [21]. We use the latter to compare it with ours because it is the most efficient
technique for preconditioning Toeplitz matrices generating by functions with zeros of
even order. Our test functions are the following:

(i) f1(x) = x4,

(ii) f2(x) =
2x4

1 + 25x2
,

and

(iii) f3(x) =

{
(x− 3)4(x− 1)2, 0 ≤ x ≤ π,
(x+ 3)4(x+ 1)2, − π ≤ x ≤ 0.

An effort was made to choose functions of different behaviors which produce ill-
conditioned matrices Tn. The Toeplitz matrices produced have Euclidean condition
numbers of order O(n4). In our experiments we solve the system Tn(f)x = b, where
b is the vector having all its components equal to 1. As a starting initial guess of

solution the zero vector is used and as a stopping criterion the validity of ‖rk‖2

‖r0‖2
≤ 10−7

is considered, where rk is the residual vector after k iterations. The construction of
matrices and the rational approximations were performed using Mathematica in order
to have more accurate results, while all the other computations were performed using
MATLAB.

In Tables 5.1, 5.2, and 5.3 we report the number of iterations needed until conver-
gence is achieved in each case; B∗l

n denotes the optimal band Toeplitz preconditioner
[21] which is generated by the trigonometric polynomial zρgl, with gl being the best

Chebyshev approximation of f
zρ

out of Pl, B̂l
n is the band Toeplitz preconditioner

where ĝl is the interpolation polynomial at the Chebyshev points, M l,m
n denotes our

main proposed preconditioner obtained by the best rational approximation proce-
dure of degree (l,m), and Rl,m

n denotes the preconditioner that results after applying
rational interpolation of degree (l,m).
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Table 5.1
Number of iterations for f1(x).

n B∗1
n B̂1

n B∗3
n B̂3

n B∗4
n B̂4

n M0,1
n R0,1

n M1,1
n R1,1

n M1,2
n R1,2

n

16 9 8 9 7 7 6 8 7 6 6 5 5
32 10 10 11 8 9 7 10 9 7 7 6 6
64 13 12 11 10 9 8 11 11 9 9 8 8
128 15 15 12 11 10 10 12 13 11 11 10 10
256 16 16 12 13 10 10 13 13 12 12 11 11
512 16 16 13 13 10 11 13 14 13 13 11 12

Table 5.2
Number of iterations for f2(x).

n B∗3
n B∗4

n B∗5
n B∗6

n M1,1
n R2,2

n

16 8 8 7 8 8 6
32 13 13 12 11 11 7
64 19 18 15 13 12 9
128 24 19 17 14 12 11
256 25 21 18 15 13 13
512 27 22 18 16 14 14

Table 5.3
Number of iterations for f3(x).

n B∗3
n B∗5

n B∗7
n M1,2

n R
(1,2)
n

16 9 7 7 9 8
32 17 14 13 18 11
64 34 28 22 21 14
128 65 48 36 21 20
256 111 69 54 23 24
512 152 93 66 23 27

In Figures 5.1(a), 5.2(a), 5.3(a), the spectra of the matrices M−1
n Tn(fi), i =

1, 2, 3, are illustrated, while in Figures 5.1(b)-(d), 5.2(b), 5.3(b) we focus on the
behavior of the pairs of eigenvalues of the matrix lying outside the interval [hmin, hmax]
for different values of n. The boundness and the convergence in pairs is obvious
in all figures. Especially, we stress the case of Figures 5.1 and 5.3, where as we
expected from the theory at most eight eigenvalues would lie outside the interval
[hmin, hmax], but in practice, for the first test function, only three pairs of eigenvalues
lie outside this interval, one of which (the second lower pair) moves very close to the
lower bound hmin = 0.98214, while, for the third test function, only two pairs lie
outside this interval. Finally, we remark that in the case of f3 and for n = 512, the
preconditioning by band Toeplitz B∗3 “clusters” the eigenvalues of the preconditioned
matrix in [0.5, 584.3], B∗5 does so in [0.36, 104.7], while M1,2 collects the main mass
of them in [0.67, 1.65] and R1,2 collects it in [0.95, 14.25].
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Fig. 5.1. Spectra of (M2,2
n )−1Tn(f1) and (B∗5

n )−1Tn(f1) for n = 128 and behavior of the
pairs of eigenvalues that lie outside the interval [hmin, hmax] with hmin = 0.98214.
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Fig. 5.2. Spectra of (M1,1
n )−1Tn(f2) and (B∗3

n )−1Tn(f2) for n = 128 and behavior of the
pairs of eigenvalues that lie outside the interval [hmin, hmax].
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Fig. 5.3. Spectra of (M1,2
n )−1Tn(f3) and (B∗3

n )−1Tn(f3) for n = 256 and behavior of the
pairs of eigenvalues that lie outside the interval [hmin, hmax].
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Abstract. The minimal nonnegative solution G of the matrix equation G = A0 +A1G+A2G2,
where the matrices Ai (i = 0, 1, 2) are nonnegative and A0+A1+A2 is stochastic, plays an important
role in the study of quasi-birth-death processes (QBDs). The Latouche–Ramaswami algorithm is a
highly efficient algorithm for finding the matrix G. The convergence of the algorithm has been shown
to be quadratic for positive recurrent QBDs and for transient QBDs. In this paper, we show that the
convergence of the algorithm is linear with rate 1/2 for null recurrent QBDs under mild assumptions.
This new result explains the experimental observation that the convergence of the algorithm is still
quite fast for nearly null recurrent QBDs.

Key words. matrix equations, minimal nonnegative solution, Markov chains, cyclic reduction,
iterative methods, convergence rate
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1. Introduction. A discrete-time quasi-birth-death process (QBD) is a Markov
chain with state space {(i, j) | i ≥ 0, 1 ≤ j ≤ m}, which has a transition probability
matrix of the form

P =




B0 B1 0 0 · · ·
A0 A1 A2 0 · · ·
0 A0 A1 A2 · · ·
0 0 A0 A1 · · ·
...

...
...

...
. . .


 ,

whereB0, B1, A0, A1, andA2 arem×m nonnegative matrices such that P is stochastic.
In particular, (A0 +A1 +A2)e = e, where e is the column vector with all components
equal to one. The matrix P is also assumed to be irreducible. Thus, A0 �= 0 and
A2 �= 0.

The matrix equation

G = A0 +A1G+A2G
2(1.1)

plays an important role in the study of the QBD (see [12] and [16]). It is known that
(1.1) has at least one solution in the set {G ≥ 0 | Ge ≤ e} (i.e., the set of substochastic
matrices). The desired solution G is the minimal nonnegative solution.

We assume that A = A0+A1+A2 is irreducible. Then, by the Perron–Frobenius
theorem (see [17]), there exists a unique vector α > 0 with αT e = 1 and αTA = αT .
The vector α is called the stationary probability vector of A. By Theorem 7.2.3 in [12],
the QBD is null recurrent if αTA0e = αTA2e; positive recurrent if αTA0e > αTA2e;
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and transient if αTA0e < αTA2e. For our purpose, we may use this criterion as an
alternative definition for the three classes of QBDs.

The minimal nonnegative solution of (1.1) can be found by any of the following
three fixed-point iterations (see [3], [5], [9], [10], [14], [15], [18]):

Gn+1 = A0 +A1Gn +A2G
2
n, G0 = 0,(1.2)

Gn+1 = (I −A1)
−1(A0 +A2G

2
n), G0 = 0,(1.3)

Gn+1 = (I −A1 −A2Gn)
−1A0, G0 = 0.(1.4)

Among the three iterations, iteration (1.4) has the fastest rate of convergence. An
inversion-free version of (1.4) has also been proposed in [1] and analyzed in [1] and [5].
These four iterations are adequate for most situations. However, the convergence of all
four iterations is sublinear when the QBD is null recurrent (see [5]). The convergence
of these methods is also extremely slow if the QBD is nearly null recurrent.

The algorithm proposed by Latouche and Ramaswami [11] is a little more com-
plicated. However, it works very well even for nearly null recurrent QBDs.

The algorithm is as follows.
Algorithm 1.1. Set

H0 = (I −A1)
−1A2;

L0 = (I −A1)
−1A0;

G0 = L0;

T0 = H0.

For k = 0, 1, . . . , compute

Uk = HkLk + LkHk;

Hk+1 = (I − Uk)
−1H2

k ;

Lk+1 = (I − Uk)
−1L2

k;

Gk+1 = Gk + TkLk+1;

Tk+1 = TkHk+1.

It is shown in [11] that the matrices Hk and Lk are well defined and nonnega-
tive and that the sequence {Gk} converges quadratically to the matrix G for positive
recurrent QBDs and for transient QBDs. The algorithm is called a logarithmic reduc-
tion algorithm in [11]. We will call it the LR algorithm (for logarithmic reduction or
for Latouche–Ramaswami). A similar method is proposed in [2] for positive recurrent
QBDs.

Since the LR algorithm has the greatest advantage over the fixed-point iterations
when the QBD is nearly null recurrent, it is important to know the convergence rate
of the LR algorithm when the QBD is null recurrent.

Before we can determine the convergence rate, we will take a closer look into the
LR algorithm and present some preliminary results.

2. Preliminaries. It was mentioned in [11] that G. W. Stewart pointed out that
the LR algorithm is related to the cyclic reduction technique. We will make this point
more transparent and derive two equations relating Hk and Lk.

Let G and F be the minimal nonnegative solution of (1.1) and

F = A2 +A1F +A0F
2,(2.1)
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respectively. We have the following fundamental result (see [12], for example).
Theorem 2.1. If the QBD is positive recurrent, then G is stochastic and F

is substochastic with spectral radius ρ(F ) < 1. If the QBD is transient, then F is
stochastic and G is substochastic with ρ(G) < 1. If the QBD is null recurrent, then
G and F are both stochastic.

It is clear that the matrix G is also the minimal nonnegative solution of G =
L0 +H0G

2. Thus, we have the infinite system


W0 −H0 0
−L0 I −H0

−L0 I
. . .

0
. . .

. . .







I
G
G2

...


 =




K0

0
0
...


(2.2)

for appropriate K0 and W0.
As in [2], we apply the cyclic reduction algorithm to (2.2) and get a reduced

system. Multiplying both sides of the reduced system by a proper block diagonal
matrix, we get an infinite system with the same structure as (2.2), but with G replaced
by G2. After repeated application of the cyclic reduction algorithm and the block
diagonal scaling, we obtain for each n ≥ 0



Wn −Hn 0
−Ln I −Hn

−Ln I
. . .

0
. . .

. . .







I
G2n

G2·2n

...


 =




Kn

0
0
...


 ,(2.3)

where Hn and Ln are as in the LR algorithm.
From (2.3), we have

−Ln +G2n −HnG
2·2n

= 0(2.4)

for each n ≥ 0. Therefore,

G = L0 +H0G
2 = L0 +H0(L1 +H1G

4) = L0 +H0L1 +H0H1(L2 +H2G
8) = · · · .

In general,

G = Gk +

( ∏
0≤i≤k

Hi

)
G2·2k

,(2.5)

where Gk is as in the LR algorithm.
It is clear that the matrix F is also the minimal nonnegative solution of F =

H0 + L0F
2. By repeating the whole process leading to (2.4), we get for each n ≥ 0

−Hn + F 2n − LnF
2·2n

= 0.(2.6)

From (2.6), we can see that Hn ≤ F 2n

for each n ≥ 0. Thus, we have by (2.5)

0 ≤ G−Gk ≤ F 2·2k−1G2·2k

.(2.7)

Therefore, if the QBD is positive recurrent or transient, the quadratic convergence of
{Gk} is an immediate consequence of Theorem 2.1. In this situation, it is also very
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easy to determine the limits of the sequences {Hk} and {Lk}. The following result is
necessary.

Theorem 2.2. Let Q be a stochastic matrix. If Qr has a positive column for
some integer r ≥ 1, then there is a unique vector q ≥ 0 such that qTQ = qT and
qT e = 1 (the vector q is called the stationary probability vector of Q). Moreover, there
are constants K > 0 and β ∈ (0, 1) such that

‖Qn − eqT ‖ ≤ Kβn

for all n ≥ 0. In particular, limn→∞ Qn = eqT .

For a proof of this result, see [6]. See also [7] for the special case when Qr is
positive for some integer r ≥ 1. Obviously, the condition that Qr has a positive
column for some r ≥ 1 is necessary for limn→∞ Qn = eqT .

If the QBD is positive recurrent, then G is stochastic and ρ(F ) < 1. Assuming
that Gp has a positive column for some integer p ≥ 1, we get from (2.4) and (2.6)
that limn→∞ Hn = 0 and limn→∞ Ln = egT , where g is the stationary probability
vector of G. If the QBD is transient, then ρ(G) < 1 and F is stochastic. Assuming
that F p has a positive column for some integer p ≥ 1, we have limn→∞ Ln = 0 and
limn→∞ Hn = efT , where f is the stationary probability vector of F . The limits of
{Hn} and {Ln} were determined in [11] in a different way.

If the QBD is null recurrent, then ρ(G) = 1 and ρ(F ) = 1. In this case, (2.7)
tells us nothing about the convergence rate of the LR algorithm. It is also much more
difficult to determine the limits of the sequences {Hn} and {Ln}. These issues will
be resolved in the next section.

3. Convergence rate of the LR algorithm for the null recurrent case. We
start with an algebraic proof of a basic result about the LR algorithm. A probabilistic
proof was given in [11].

Lemma 3.1. For each k ≥ 0, (Hk + Lk)e = e.

Proof. First, (H0+L0)e = (I−A1)
−1(A0+A2)e = e. Assuming that (Hk+Lk)e =

e (k ≥ 0), we have (Hk+Lk)
2e = e. So, (I−HkLk−LkHk)e = (H2

k+L2
k)e. Therefore,

(Hk+1 + Lk+1)e = (I −HkLk − LkHk)
−1(H2

k + L2
k)e = e. We have thus proved the

result by induction.

In the above proof, we have used the fact that the sequences {Hk} and {Lk} are
well defined (i.e., the matrices I −HkLk − LkHk are nonsingular).

It is noted in [11] that when the QBD is null recurrent, it is not true in general
that one of the two sequences {Hk} and {Lk} converges to 0. Our next result shows
that neither of the two sequences can converge to 0 for null recurrent QBDs.

Lemma 3.2. For the null recurrent QBD, there is a sequence {αk} such that for
all k ≥ 0, αk ≥ 0, αT

k e = 1, αT
k (Hk + Lk) = αT

k , and αT
k Hke = αT

k Lke =
1
2 .

Proof. Recall that α is the stationary probability vector of A0 +A1 +A2. So,

αT (I −A1) = αT (A0 +A2) = αT (I −A1)(H0 + L0).

Let α̂T = αT (I − A1). Since α > 0 and A0 �= 0, α̂T = αT (A0 + A2) ≥ 0 and
c0 = α̂T e > 0. Since the QBD is null recurrent, we have αTA2e = αTA0e and thus
α̂TH0e = α̂TL0e. Let α0 = α̂/c0. It is clear that α0 has all the properties in the
lemma, noting that αT

0 H0e+ αT
0 L0e = αT

0 e = 1.

Assuming that an αi (i ≥ 0), with all the properties in the lemma, has been
found, we are going to find an αi+1 satisfying these properties.
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Since

αT
i = αT

i (Hi + Li) = αT
i (Hi + Li)

2 = αT
i (H

2
i + L2

i +HiLi + LiHi),

we have

αT
i (I −HiLi − LiHi) = αT

i (H
2
i + L2

i ) = αT
i (I −HiLi − LiHi)(Hi+1 + Li+1).

Since αi �= 0 and I−HiLi−LiHi is nonsingular, α
T
i (I−HiLi−LiHi) = αT

i (H
2
i +L2

i ) �=
0. Thus, αT

i (H
2
i + L2

i )e > 0, and we can define

αT
i+1 =

αT
i (H

2
i + L2

i )

αT
i (H

2
i + L2

i )e
=

αT
i (I −HiLi − LiHi)

αT
i (H

2
i + L2

i )e
.

It remains to prove αT
i+1Hi+1e = αT

i+1Li+1e, which is equivalent to αT
i H2

i e = αT
i L2

i e.
Note that

αT
i H2

i e− αT
i L2

i e = αT
i Hi(e− Lie)− αT

i Li(e−Hie)

= −αT
i HiLie+ αT

i LiHie

= −αT
i (I − Li)Lie+ αT

i (I −Hi)Hie

= αT
i L2

i e− αT
i H2

i e.

Thus, αT
i H2

i e = αT
i L2

i e.
Remark 3.3. The result in the above lemma has also been obtained independently

by Ye [19]. In [19] it is assumed that αT
i (H

2
i + L2

i )e �= 0 for each i.
In the first version of this paper, the author used the assumption that (H2

i +L2
i )e >

0 for each i. Without this assumption, the short argument (in the proof of the lemma)
showing αT

i (H
2
i + L2

i )e > 0 for each i was pointed out by two referees.
Our further analysis will rely on Theorem 2.2. In order to apply Theorem 2.2, we

make the following assumption:

det(A0 + zA1 + z2A2 − zI) has no zeros on the unit circle other than z = 1.(3.1)

This assumption may be verified easily when the matrices A0, A1, A2 have special
structures (see [13], for example). From [4] we know that in the null recurrent case,
assumption (3.1) is equivalent to the assumption that λ = 1 is a simple eigenvalue of
G and F and there are no other eigenvalues of G or F on the unit circle. It is easy to
show that the latter assumption is in turn equivalent to the next assumption:

Gp and F q have each a positive column for some p ≥ 1 and some q ≥ 1.(3.2)

Note that assumption (3.2) for G is satisfied if Gk in the LR algorithm has a
positive column for some k ≥ 0, since G ≥ Gk. In particular, assumption (3.2) for G
is satisfied if L0 has a positive column. Similar comments can be made on assumption
(3.2) for F . Since assumptions (3.1) and (3.2) are equivalent, Theorem 2.2 can be
applied to G and F under assumption (3.1). We let f and g be the unique stationary
probability vector of F and G, respectively.

Since (Hk + Lk)e = e for all k ≥ 0, the sequences {Hk} and {Lk} are bounded
and hence have convergent subsequences. Let {Hnk

} and {Lnk
} be convergent with

lim
k→∞

Hnk
= H, lim

k→∞
Lnk

= L.
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Then, by (2.4) and (2.6) and Theorem 2.2,

−L+ egT −HegT = 0, −H + efT − LefT = 0.

Therefore, H = afT with a = e − Le, and L = bgT with b = e − He. Note that
a+ b = 2e− (H + L)e = e.

We have thus proved the following result.
Lemma 3.4. For the null recurrent QBD with assumption (3.1), if (H,L) is a

limit point of {(Hk, Lk)}, then H = afT and L = bgT with a ≥ 0, b ≥ 0, and
a+ b = e.

To prove that the convergence of the LR algorithm is linear with rate 1/2, we will
need to show that

lim
k→∞

Hk =
1

2
efT , lim

k→∞
Lk =

1

2
egT .

Lemma 3.4 is only one small step towards this goal. Many other auxiliary results will
be needed.

Although we are unable to show the convergence of the sequences {Hk} and
{Lk} at the moment, it is fairly easy to show that the sequence {αk} in Lemma 3.2
converges.

Lemma 3.5. For the null recurrent QBD with assumption (3.1),

lim
k→∞

αk =
1

2
(f + g).

Proof. Let α∗ be any limit point of {αk} and limk→∞ αnk
= α∗. We will prove

that α∗ = 1
2 (f + g). We may assume without loss of generality that

lim
k→∞

Hnk
= afT , lim

k→∞
Lnk

= bgT

for some a, b ≥ 0 with a+ b = e. By taking limits in

αT
nk

= αT
nk
(Hnk

+ Lnk
), αT

nk
Hnk

e = αT
nk

Lnk
e,

we get

(α∗)T = (α∗)T (afT + bgT ), (α∗)Ta = (α∗)T b.

Thus, (α∗)Ta = (α∗)T (e− a) = 1− (α∗)Ta. So, (α∗)Ta = (α∗)T b = 1/2 and (α∗)T =
1
2 (f

T + gT ), or α∗ = 1
2 (f + g).

As we have already seen, in the null recurrent case, the two equations (2.4) and
(2.6) are not sufficient to determine the convergence of the sequences {Hn} and {Ln}.
We have to seek additional information from the recursions for the sequences {Hn}
and {Ln}. The next result is one such finding.

Lemma 3.6. For the null recurrent QBD with assumption (3.1), if

lim
k→∞

Hnk
= afT , lim

k→∞
Lnk

= bgT ,

and gTa �= 1, then

lim
k→∞

Hnk+1 = âfT , lim
k→∞

Lnk+1 = b̂gT ,



750 CHUN-HUA GUO

with

â =
1 + gTa

1 + 2gTa
a+

gTa

1 + 2gTa
b, b̂ =

gTa

1 + 2gTa
a+

1 + gTa

1 + 2gTa
b.

Proof. Let (ãfT , b̃gT ) be any limit point of {(Hnk+1, Lnk+1)} and let

lim
k→∞

Hnsk
+1 = ãfT , lim

k→∞
Lnsk

+1 = b̃gT .

Since

(I −Hnsk
Lnsk

− Lnsk
Hnsk

)Hnsk
+1 = (Hnsk

)2,

we get, by letting k →∞,

(I − afT bgT − bgTafT )ãfT = afTafT .

Postmultiplying the above equality by e gives

ã = (fTa+ fT bgT ã)a+ (gTafT ã)b ≡ λa+ µb.

By Lemma 3.2,

αT
nk

Hnk
e = αT

nk
Lnk

e =
1

2
, (αnsk

+1)
THnsk

+1e = (αnsk
+1)

TLnsk
+1e =

1

2
.

By taking limits in the above identities and using Lemma 3.5, we have

(fT + gT )a = (fT + gT )b = (fT + gT )ã = (fT + gT )b̃ = 1.

So, fTa = 1−gTa = gT e−gTa = gT b. Similarly, fT b = gTa, fT ã = gT b̃, fT b̃ = gT ã.
Thus,

λ+ µ = fTa+ fT bgT ã+ gTafT ã = fTa+ fT b(gT ã+ fT ã) = fTa+ fT b = fT e = 1.

Now,

µ = gTafT ã = gTafT (λa+ µb)

= (1− µ)gTafTa+ µgTafT b = (1− µ)gTa(1− gTa) + µ(gTa)2.

Thus,

(1 + 2gTa)(1− gTa)µ = gTa(1− gTa).

Since gTa �= 1, we have µ = gTa/(1 + 2gTa) and λ = 1− µ = (1 + gTa)/(1 + 2gTa).
So,

ã =
1 + gTa

1 + 2gTa
a+

gTa

1 + 2gTa
b,

and

b̃ = e− ã = a+ b− ã =
gTa

1 + 2gTa
a+

1 + gTa

1 + 2gTa
b.
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The proof is completed since the limit point is uniquely determined by a and b.
We can now move a little closer to our goal.
Lemma 3.7. For the null recurrent QBD with assumptions (3.1) and

Each limit point afT of the sequence {Hn} is such that 0 < gTa < 1,(3.3)

the sequence {(Hn, Ln)} has a limit point ( 1
2ef

T , 1
2eg

T ).
Proof. Take any subsequence {(Hnk

, Lnk
)} such that

lim
k→∞

(Hnk
, Lnk

) = (a0f
T , b0g

T ).

By the previous lemma, for each integer r ≥ 1,

lim
k→∞

(Hnk+r, Lnk+r) = (arf
T , brg

T ),

where

ak+1 =
1 + gTak
1 + 2gTak

ak +
gTak

1 + 2gTak
bk,(3.4)

and bk+1 = e− ak+1 for each integer k ≥ 0. Let pk = gTak. We have by (3.4)

pk+1 =
(1 + pk)pk
1 + 2pk

+
pk(1− pk)

1 + 2pk
=

2pk
1 + 2pk

.

Since p0 = gTa0 > 0 by assumption, it is easy to show that limk→∞ pk = 1
2 . By (3.4)

we have

ak+1 =
gTak

1 + 2gTak
e+

1

1 + 2gTak
ak,

which can be rewritten as

ak+1 − 1

2
e =

1

1 + 2gTak

(
ak − 1

2
e

)
.

Since limk→∞ gTak = 1
2 , we have∣∣∣ak+1 − 1

2
e
∣∣∣ ≤ 2

3

∣∣∣ak − 1

2
e
∣∣∣

for k large enough. Thus

lim
r→∞ ar = lim

r→∞ br =
1

2
e.

Therefore, we can find a subsequence {(Hmk
, Lmk

)} such that

lim
k→∞

(Hmk
, Lmk

) =

(
1

2
efT ,

1

2
egT

)
.

This completes the proof.
The next result is quite straightforward.
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Lemma 3.8. Let the relation between (Hk+1, Lk+1) and (Hk, Lk) in the LR algo-
rithm be denoted by

(Hk+1, Lk+1) = T (Hk, Lk).

Then ( 1
2ef

T , 1
2eg

T ) is a fixed point of T .
Proof. It is easy to verify that

(
I − 1

2
efT 1

2
egT − 1

2
egT

1

2
efT

)
1

2
efT =

(
1

2
efT

)2

,

(
I − 1

2
efT 1

2
egT − 1

2
egT

1

2
efT

)
1

2
egT =

(
1

2
egT

)2

.

The result follows since

M ≡ I − 1

2
efT 1

2
egT − 1

2
egT

1

2
efT = I − 1

4
e(fT + gT )

is a nonsingular M -matrix (note that Me = e/2).
Thus, we have shown that the sequence {(Hn, Ln)} defined by (Hk+1, Lk+1) =

T (Hk, Lk) (k ≥ 0) has a limit point (1
2ef

T , 1
2eg

T ) that is a fixed point of T . By a
theorem on general fixed-point iterations (see [8, p. 21], for example), we can conclude
that the whole sequence {(Hn, Ln)} converges to this fixed point if the spectral radius
of the Fréchet derivative of the operator T at the fixed point is less than 1. But,
unfortunately, the spectral radius is not less than 1 in our case. (The spectral radius is
equal to 4 when the matrices A0, A1, A2 are 1×1.) However, the sequence {(Hn, Ln)}
can still converge since (Hn, Ln) may approach (1

2ef
T , 1

2eg
T ) in a special way. A

delicate analysis for the error (Hn − 1
2ef

T , Ln − 1
2eg

T ) is necessary.
For notational convenience, let H = 1

2ef
T and L = 1

2eg
T . It is easy to see that

H2 = LH =
1

2
H, L2 = HL =

1

2
L.

We start with expressing Hk+1 −H in terms of Hk −H and Lk − L:

Hk+1 −H = (I −HkLk − LkHk)
−1H2

k − (I −HL− LH)−1H2

= (I −HkLk − LkHk)
−1(H2

k −H2)

+
(
(I −HkLk − LkHk)

−1 − (I −HL− LH)−1
)
H2

= (I −HkLk − LkHk)
−1(H2

k −H2) + (I −HkLk − LkHk)
−1(

(I −HL− LH)− (I −HkLk − LkHk)
)
(I −HL− LH)−1H2

= (I −HkLk − LkHk)
−1
(
H2

k −H2 + (HkLk −HL+ LkHk − LH)H
)

= (I −HkLk − LkHk)
−1
(
Hk(Hk −H) + (Hk −H)H

+(Hk(Lk − L) + (Hk −H)L+ Lk(Hk −H) + (Lk − L)H)H
)
.

To simplify the expression, observe that

(Hk −H + Lk − L)H =
1

2

(
(Hk + Lk)e− (H + L)e

)
fT = 0.

Thus,

(Lk − L)H = −(Hk −H)H
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and

(
(Hk −H)L+ (Lk − L)H

)
H =

1

2
(Hk −H + Lk − L)H = 0.

Therefore,

Hk+1 −H = (I −HkLk − LkHk)
−1
(
Hk(Hk −H) + (Hk −H)H

−Hk(Hk −H)H + Lk(Hk −H)H
)
.

Similarly, we can get

Lk+1 − L = (I −HkLk − LkHk)
−1
(
Lk(Lk − L) + (Lk − L)L

−Lk(Lk − L)L+Hk(Lk − L)L
)
.

Now, for any ε ∈ (0, 1
4 ), we can find δ > 0 such that whenever ‖Hk −H‖∞ ≤ δ

and ‖Lk − L‖∞ ≤ δ,

Hk+1 −H = (I −HL− LH)−1
(
H(Hk −H) + (Hk −H)H(3.5)

−H(Hk −H)H + L(Hk −H)H
)
+Wk

with ‖Wk‖∞ ≤ ε‖Hk −H‖∞, and

Lk+1 − L = (I −HL− LH)−1
(
L(Lk − L) + (Lk − L)L

−L(Lk − L)L+H(Lk − L)L
)
+ Zk

with ‖Zk‖∞ ≤ ε‖Lk − L‖∞.
To get rid of the inverse in (3.5), we use

(I −HL−LH)−1 =

(
I − 1

2
(H + L)

)−1

= I +
1

2
(H +L)+

1

22
(H +L)2 + · · · .(3.6)

Since

(H + L)
(
H(Hk −H) + (Hk −H)H −H(Hk −H)H + L(Hk −H)H

)
= H(Hk −H) + (H + L)(Hk −H)H −H(Hk −H)H + L(Hk −H)H

= H(Hk −H) + 2L(Hk −H)H

and

(H + L)i
(
H(Hk −H) + 2L(Hk −H)H

)
= H(Hk −H) + 2L(Hk −H)H

for all i ≥ 1, we get by (3.5) and (3.6) that

Hk+1 −H = H(Hk −H) + (Hk −H)H −H(Hk −H)H + L(Hk −H)H

+H(Hk −H) + 2L(Hk −H)H +Wk

= (Hk −H)H + 2H(Hk −H)−H(Hk −H)H + 3L(Hk −H)H +Wk.

Similarly,

Lk+1 − L = (Lk − L)L+ 2L(Lk − L)− L(Lk − L)L+ 3H(Lk − L)L+ Zk.
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For the scalar case, H = L = 1
2 . So, the estimate for Hk+1 −H becomes Hk+1 −

H ≈ 2(Hk−H). If we could replace 3L(Hk−H)H by −3H(Hk−H)H in the estimate,
we would have Hk+1 − H ≈ 1

2 (Hk − H) instead. Thus, we should try to show that
3(H + L)(Hk −H)H is “small” in the general case. Let α∗ = (f + g)/2. We have

3(H + L)(Hk −H)H =
3

2
e(α∗)T (Hk −H)efT =

3

2
e(α∗ − αk)

T (Hk −H)efT ,

since αT
k (Hk −H)e = 1

2 − αT
k (

1
2e) = 0 by Lemma 3.2. Similarly,

3(H + L)(Lk − L)L =
3

2
e(α∗ − αk)

T (Lk − L)egT .

Since limαk = α∗ by Lemma 3.5, we can find integer k1 such that for all k ≥ k1,

3(H + L)(Hk −H)H = Pk, 3(H + L)(Lk − L)L = Qk

with ‖Pk‖∞ ≤ ε‖Hk −H‖∞ and ‖Qk‖∞ ≤ ε‖Lk − L‖∞. Now we have

Hk+1 −H = (Hk −H)H + 2H(Hk −H)− 4H(Hk −H)H + Pk +Wk

=
1

2
(Hk −H)− 1

2
(I − 4H)(Hk −H)(I − 2H) + Pk +Wk(3.7)

and

Lk+1 − L = (Lk − L)L+ 2L(Lk − L)− 4L(Lk − L)L+Qk + Zk

=
1

2
(Lk − L)− 1

2
(I − 4L)(Lk − L)(I − 2L) +Qk + Zk.(3.8)

Next we will estimate the term (Hk − H)(I − 2H) in (3.7) and the term (Lk −
L)(I − 2L) in (3.8). By (2.4) and (2.6), we have

Hk(I −G2·2k

F 2·2k

) = F 2k −G2k

F 2·2k

, Lk(I − F 2·2k

G2·2k

) = G2k − F 2k

G2·2k

.

Now,

(Hk −H)(I − 2H) = Hk(I − efT )

= F 2k −G2k

F 2·2k

+Hk(G
2·2k

F 2·2k − efT )

= F 2k − efT − (G2k − egT )F 2·2k − egT (F 2·2k − efT )

+Hk

(
(G2·2k − egT )F 2·2k

+ egT (F 2·2k − efT )
)
.

Similarly,

(Lk − L)(I − 2L) = G2k − egT − (F 2k − efT )G2·2k − efT (G2·2k − egT )

+Lk

(
(F 2·2k − efT )G2·2k

+ efT (G2·2k − egT )
)
.

By Theorem 2.2, there are constants C1 > 0 and β ∈ (0, 1) such that

‖(Hk −H)(I − 2H)‖∞ ≤ C1β
2k

, ‖(Lk − L)(I − 2L)‖∞ ≤ C1β
2k

for all k ≥ 0. Now, by (3.7) and (3.8), we have

‖Hk+1 −H‖∞ ≤
(
1

2
+ 2ε

)
‖Hk −H‖∞ + C2β

2k

,(3.9)

‖Lk+1 − L‖∞ ≤
(
1

2
+ 2ε

)
‖Lk − L‖∞ + C2β

2k

(3.10)
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for any k ≥ k1 with ‖Hk −H‖∞ < δ and ‖Lk − L‖∞ < δ. Let r = 1
2 + 2ε < 1. Since

(H,L) is a limit point of {(Hk, Lk)} by Lemma 3.7, we can find l ≥ k1 such that

‖Hl −H‖∞ < δ, ‖Ll − L‖∞ < δ, rδ + C2β
2l

< δ, and β2l ≤ r. Now, it is clear that

(3.9) and (3.10) are valid for all k ≥ l and that β2l+j−1 ≤ rj for all j ≥ 0. Thus, we
can obtain for any m ≥ 1 that

‖Hl+m −H‖∞ ≤ rm‖Hl −H‖∞ + C2(r
m−1β2l

+ rm−2β2l+1

+ · · ·+ β2l+m−1

)

≤ rm‖Hl −H‖∞ + C2mrm,

and that

‖Ll+m − L‖∞ ≤ rm‖Ll − L‖∞ + C2mrm.

Therefore, limk→∞ Hk = H and limk→∞ Lk = L. Moreover, since ε > 0 can be
arbitrarily small, we also have

lim sup
k→∞

k
√
‖Hk −H‖∞ ≤ 1

2
, lim sup

k→∞
k
√
‖Lk − L‖ ≤ 1

2
.

In summary, we have proved the following result.
Theorem 3.9. For the null recurrent QBD with assumptions (3.1) and (3.3), we

have

lim
k→∞

Hk =
1

2
efT , lim

k→∞
Lk =

1

2
egT .

It is clear that assumption (3.3) is necessary for the conclusion of the above
theorem. Since the assumption cannot be verified directly, we will give a sufficient
condition that is easier to verify.

Proposition 3.10. Let the components of f and g be fi and gi (i = 1, 2, . . . ,m),
respectively, and let

Sf = {i | 1 ≤ i ≤ m, fi = 0}, Sg = {i | 1 ≤ i ≤ m, gi = 0}.
If assumption (3.1) and the assumption that

Sf ⊂ Sg or Sg ⊂ Sf(3.11)

are satisfied, then assumption (3.3) is also satisfied.
Proof. Let

lim
k→∞

Hnk
= afT , lim

k→∞
Lnk

= bgT .

It is shown in the proof of Lemma 3.6 that

(fT + gT )a = (fT + gT )b = 1, fTa = gT b, fT b = gTa.

If gTa = 1, then gT b = fTa = 0. By assumption (3.11), we would have (fT +gT )a = 0
or (fT + gT )b = 0, which is a contradiction. Similarly, we get a contradiction if
gTa = 0.

Remark 3.11. Assumption (3.11) is certainly satisfied if one of F and G is irre-
ducible (in particular, if one of H0 and L0 is irreducible) since one of Sf and Sg is an
empty set in this case.
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We are now ready to determine the convergence rate of the LR algorithm for the
null recurrent case. Recall that for the sequence {Gk} generated by the LR algorithm,

G−Gk = H0H1 · · ·HkG
2k+1

.(3.12)

Proposition 3.12. For each k ≥ 0, H0H1 · · ·Hk �= 0.

Proof. Equation (8.47) in [12] states that (H0H1 · · ·Hk)ij is the probability of
first passage to the state (2k+1, j) before any of the states (0, ·) starting from (1, i). If
all of these entries were equal to 0, it would be impossible to reach the states (2k+1, ·)
and the transition probability matrix P would not be irreducible.

Remark 3.13. The above proof was provided by a referee. In the first version of
the paper, the author gave the statement in Proposition 3.12 as an assumption.

The next theorem is our main result. It shows that the sequence {Gk} converges
to the minimal nonnegative solution of (1.1) at precisely the rate of 1/2.

Theorem 3.14. For the null recurrent QBD with assumptions (3.1) and (3.3),

lim
k→∞

k
√
‖Gk −G‖∞ =

1

2
.

Proof. Since limk→∞ Hk = 1
2ef

T , we have limk→∞ Hke =
1
2e. Therefore, for any

ε ∈ (0, 1
2 ), we can find an integer k0 such that (1

2−ε)e ≤ Hke ≤ ( 1
2 +ε)e for all k > k0.

Note that, by (3.12),

‖G−Gk‖∞ = ‖(G−Gk)e‖∞ = ‖H0 · · ·Hk0
Hk0+1 · · ·Hke‖∞

for k > k0. Thus,

(
1

2
− ε

)k−k0

‖H0 · · ·Hk0
e‖∞ ≤ ‖G−Gk‖∞ ≤

(
1

2
+ ε

)k−k0

‖H0 · · ·Hk0
e‖∞.

In view of Proposition 3.12, it follows readily that

lim sup
k→∞

k
√
‖Gk −G‖∞ ≤ 1

2
+ ε, lim inf

k→∞
k
√
‖Gk −G‖∞ ≥ 1

2
− ε.

Since ε can be arbitrarily small, we have limk→∞ k
√‖Gk −G‖∞ = 1

2 .

4. Improvement of the approximate solution in the null recurrent case.
By (3.12) and Theorem 3.9, it is easy to get a much better approximation to the matrix
G from the sequence {Gk} generated by the LR algorithm. In fact, we have by (3.12)

G−Gk−2(G−Gk+1) = H0 · · ·Hk(G
2k+1−G2k+2

)+H0 · · ·Hk−1(Hk−2HkHk+1)G
2k+2

.

The first term converges to zero quadratically by Theorem 2.2 since G2k+1 −G2k+2

=

(G2k+1 − egT )− (G2k+2 − egT ). The second term is also much smaller than G−Gk+1

since limk→∞(Hk − 2HkHk+1) = 0 and limk→∞(HkHk+1) =
1
4ef

T by Theorem 3.9.

Therefore, G̃k+1 = 2Gk+1−Gk = Gk+1+(Gk+1−Gk) can be a much better approxi-
mation to G in the null recurrent case. Of course, improvements may also be achieved
for nearly null recurrent QBDs by using the above strategy.
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5. Examples. In this section, we will present a few examples to illustrate the
theoretical results in section 3 and the simple strategy described in section 4 for
the improvement of the approximate solution. For all examples, assumption (3.1) is
checked through the equivalent assumption (3.2).

Example 5.1. Consider (1.1) with

A0 =


 0.6 0.4 0

0.1 0 0.1
0 0 0


 , A1 =


 0 0 0

0.2 0 0.1
0 0 0


 , A2 =


 0 0 0

0.26 0 0.24
0.2 0 0.8


 .

It is easy to verify that the corresponding QBD is null recurrent. We also find that
G1 = L0 +H0L1 is irreducible and has a positive column and that F1 = H0 + L0H1

has a positive column. Since G ≥ G1 and F ≥ F1, assumptions (3.1) and (3.11) are
satisfied. By Proposition 3.10, assumption (3.3) is also satisfied.

For this example, the exact minimal nonnegative solutions of (1.1) and (2.1) can
be found to be

G =
1

2300


 1380 920 0

1320 680 300
1357 828 115


 , F =

1

25


 5 0 20

9 0 16
5 0 20


 .

Accordingly, we have

gT = (1431, 874, 120)/2425, fT = (1, 0, 4)/5.

For the matrices H18 and L18, found by the LR algorithm using double precision, we
have

H18 − 1

2
efT = 10−5


 −0.0916 0 −0.3665

0.0037 0 0.0149
0.0991 0 0.3964


 ,

L18 − 1

2
egT = 10−5


 0.3091 0.1888 0.0259

0.0277 0.0169 0.0023
−0.2537 −0.1549 −0.0213


 .

Note that H18 and L18 are already very close to 1
2ef

T and 1
2eg

T , respectively. We
also find that for the matrices Gk computed by the LR algorithm,

G−G17 = 10−5


 0 0 0

0.474676 0.289914 0.039805
1.091754 0.666802 0.091552




and

G−G18 = 10−5


 0 0 0

0.237339 0.144957 0.019903
0.545879 0.333402 0.045776


 .

Note that G−G18 ≈ 1
2 (G−G17). For G̃18 = 2G18 −G17, we have

G− G̃18 = 10−10


 0 0 0

0.1959 0.1196 0.0164
0.4505 0.2752 0.0378


 .
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So, G̃18 is a much better approximation for G.
For the next example, assumption (3.11) is satisfied even though neither of Sf

and Sg is empty.
Example 5.2. Consider (1.1) with

A0 =

(
0 0.5
0 0

)
, A1 =

(
0 0
1 0

)
, A2 =

(
0 0.5
0 0

)
.

The corresponding QBD is clearly null recurrent. Since

H0 = L0 =

(
0 0.5
0 0.5

)

for this example, assumptions (3.1) and (3.11) are satisfied. It is easy to find that

G = F =

(
0 1
0 1

)
.

So, we actually have Sf = Sg = {1}. For this example, we have Hk = 1
2ef

T and
Lk = 1

2eg
T for all k ≥ 0. We also have for each k ≥ 0

Gk =

(
0 1− 1/2k+1

0 1− 1/2k+1

)
.

So, {Gk} converges to G linearly with rate 1/2 and G̃k = 2Gk − Gk−1 = G for all
k ≥ 1.

We can also find examples for which (3.11) is not satisfied.
Example 5.3. Consider (1.1) with

A0 =

(
0.25 0
0.25 0

)
, A1 =

(
0.25 0.25
0.25 0.25

)
, A2 =

(
0 0.25
0 0.25

)
.

The corresponding QBD is clearly null recurrent. Since

H0 =

(
0 0.5
0 0.5

)
, L0 =

(
0.5 0
0.5 0

)

for this example, assumption (3.1) is satisfied. It is easy to find that

G =

(
1 0
1 0

)
, F =

(
0 1
0 1

)
.

So, we have Sf = {1} and Sg = {2}. Therefore, assumption (3.11) is not satisfied.
However, the conclusions in our main results in section 3 still hold. In fact, we have
Hk = 1

2ef
T and Lk = 1

2eg
T for all k ≥ 0. We also have for each k ≥ 0

Gk =

(
1− 1/2k+1 0
1− 1/2k+1 0

)
.

So, {Gk} converges to G linearly with rate 1/2 and G̃k = 2Gk − Gk−1 = G for all
k ≥ 1.

There are also examples for which assumption (3.1) is not satisfied. The next
example was provided by a referee.
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Example 5.4. Consider (1.1) with

A0 =

(
0 0.5
0.5 0

)
, A1 = 0, A2 =

(
0 0.5
0.5 0

)
.

The corresponding QBD is clearly null recurrent. In this case,

G = F =

(
0 1
1 0

)
.

So, (3.11) is true, but (3.1) is not satisfied. It is easy to find that Hk = Lk = 1
2I for

each k ≥ 1 and that

Gk =

(
0 1− 1/2k+1

1− 1/2k+1 0

)

for each k ≥ 0. Thus, {Gk} converges to G linearly with rate 1/2 and G̃k = 2Gk −
Gk−1 = G for all k ≥ 1.

We do not have any examples of null recurrent QBDs for which the convergence
of the LR algorithm is not linear with rate 1/2.

Acknowledgment. The author is grateful to the three referees for their very
helpful comments.
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MORE ACCURATE BIDIAGONAL REDUCTION FOR COMPUTING
THE SINGULAR VALUE DECOMPOSITION∗
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SIAM J. MATRIX ANAL. APPL. c© 2002 Society for Industrial and Applied Mathematics
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Abstract. Bidiagonal reduction is the preliminary stage for the fastest stable algorithms for
computing the singular value decomposition (SVD) now available. However, the best-known error
bounds on bidiagonal reduction methods on any matrix are of the form

A+ δA = UBV T ,

‖δA‖2 ≤ εMf(m,n)‖A‖2,
where B is bidiagonal, U and V are orthogonal, εM is machine precision, and f(m,n) is a modestly
growing function of the dimensions of A.

A preprocessing technique analyzed by Higham [Linear Algebra Appl., 309 (2000), pp. 153–174]
uses orthogonal factorization with column pivoting to obtain the factorization

A = Q

(
CT

0

)
PT ,

where Q is orthogonal, C is lower triangular, and P is permutation matrix. Bidiagonal reduction is
applied to the resulting matrix C.

To do that reduction, a new Givens-based bidiagonalization algorithm is proposed that produces
a bidiagonal matrix B that satisfies C + δC = U(B + δB)V T where δB is bounded componentwise
and δC satisfies a columnwise bound (based upon the growth of the lower right corner of C) with
U and V orthogonal to nearly working precision. Once we have that reduction, there is a good
menu of algorithms that obtain the singular values of the bidiagonal matrix B to relative accuracy,
thus obtaining an SVD of C that can be much more accurate than that obtained from standard
bidiagonal reduction procedures. The additional operations required over the standard bidiagonal
reduction algorithm of Golub and Kahan [J. Soc. Indust. Appl. Math. Ser. B Numer. Anal., 2 (1965),
pp. 205–224] are those for using Givens rotations instead of Householder transformations to compute
the matrix V , and 2n3/3 flops to compute column norms.

Key words. orthogonal reduction, bidiagonal form, singular values, accuracy

AMS subject classifications. 65F15, 65F35, 15A18

PII. S0895479898343541

1. Introduction. We consider the problem of reducing A ∈ �m×n to bidiagonal
form. Without loss of generality, assume that m ≥ n. We find orthogonal matrices
U ∈ �n×n and V ∈ �m×m such that

UTATV =
( n m− n

B 0
)
,(1.1)

where

B =




γ1 φ2 0 · · ·
0 γ2 φ3 · · ·
· · · · · ·
0 · · · γn−1 φn

0 · · · 0 γn


 .(1.2)
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To denote B in (1.2) we use the shorthand

B = bidiag(γ1, γ2, . . . , γn;φ2, . . . , φn)

or use the MATLAB-like [33] form

B = bidiag(γ(1:n);φ(2:n)).

We will also use MATLAB notation for submatrices. Thus A(i: j, k: �) denotes the
submatrix of A consisting of rows i through j and columns k through �. Likewise,
A(: , k: �) denotes all of columns k through � and A(i: j, : ) denotes all of rows i through
j. In some of the error analysis proofs and discussions, we use (A + B)(i: j, k: �) to
denote that section of A+B.

For a matrix X ∈ �m×n, m ≥ n, let

σi(X)

denote the ith singular value of X and let

σmin(X) = min
‖w‖2=1

‖Xw‖2

denote the smallest singular value ofX. We let J(i, j, θij) be a Givens rotation through
an angle θij applied to columns i and j, that is, a matrix which is the identity except
for the four entries (i, i),(j, i),(i, j), and (j, j) given by ( cn

−sn
sn
cn ), with cn = cos θij

and sn = sin θij .
The error analysis bounds are stated as

error ≤ εMg(n) ∗ factor+O(ε2
M ).

This arise out of simplify expressions of the form

(1 + εM )nfactor− 1 = n ∗ εM ∗ factor+O(ε2
M factor) = n ∗ εM ∗ factor+O(ε2

M ).

Thus they would be properly stated as

error ≤ εMg(n) ∗ factor+O(ε2
M factor),

but we leave out “factor” in O(ε2
M ) to make statements less tedious.

The reduction (1.1) is usually done as a preliminary stage for computing the
singular value decomposition (SVD) of A. There are now several very good algorithms
for computing the SVD of bidiagonal matrices. We know that the “zero-shift” QR
algorithm [14], bisection [3, 20], and the dqds algorithm [21] can compute all of the
singular values of B to relative accuracy. We also know that it is not reasonable to
expect any algorithm to compute all of the singular values of a matrix to relative
accuracy unless that matrix has an acyclic graph [13] or is totally sign compound
[12].

Thus, it is not surprising that no algorithm can be expected to produce the
bidiagonal form of a general matrix to relative accuracy in finite precision arithmetic.

The Jacobi algorithm [28] has a stronger error bound for finding the singular
values of a general matrix than any algorithm that requires bidiagonal reduction [15].
Unfortunately, the Jacobi algorithm is usually slower. For simplicity, assume that
m = n. Bidiagonal reduction followed by the QR algorithm can produce that SVD in
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about 20n3 flops. One Jacobi sweep requires about 7n3 flops. Thus, for Jacobi to be
competitive, it must converge in about three sweeps, and that rarely happens.

We note that efforts to improve the performance of Jacobi have been quite suc-
cessful [17]. However, there have also been significant improvements in speed in
obtaining the singular values and vectors of bidiagonal matrices from the dqds algo-
rithms [21, 19, 18, 35, 36]; thus exact complexity comparisons of Jacobi and methods
using bidiagonal reduction are a bit elusive. Nonetheless, as of the present writing,
algorithms requiring bidiagonal reduction tend to be significantly faster than Jacobi-
based algorithms.

In this paper, we present a bidiagonal reduction method that can be expected to
preserve more of the accuracy in the SVD.

The reduction is computed in two stages. In the first stage, discussed in section 3,
using a Householder factorization method described by Björck [7, pp. 165–169] and
analyzed by Cox and Higham [11], it is possible to reduce A to a lower triangular
matrix C ∈ �n×n. In floating point arithmetic with machine precision εM , for some
permutation matrix P and orthogonal matrix V̄0, the first stage reduction satisfies

A+ δA = V̄0

(
CT

0

)
PT ,(1.3)

where

‖δA(i, : )‖2 ≤ εMρAf(m,n)‖A(i, : )‖2 +O(ε2
M ),(1.4)

i = 1, . . . ,m.

There is also a well-known columnwise error bound given in section 3. Here f(m,n) is
a modestly sized function and ρA is a growth factor given in [11]. A reduction recom-
mended by Demmel and Veselić [15] applied to AT A before using the Jacobi method
produces the same C (in exact arithmetic). The advantage of the row ordering is that
if A is well-conditioned after row scalings, the singular values of A will be preserved
more accurately in C (see, for instance, [26], or an analysis can be constructed from
the discussion in section 2). The discussion below assumes that rank(C) = n, but as
shown in section 3, the case rank(C) < n requires only a postprocessing procedure
from Hanson and Lawson [25], and the rest of the algorithm will proceed in the same
manner.

Most of the attention in this paper will be focused upon C. Our goal in the above
reduction is similar to that in [15], to produce a matrix C that is well-conditioned
under column scalings and then apply an SVD routine that has columnwise backward
error.

Therefore in the second stage, we apply a new bidiagonal reduction algorithm to
C. We show that (see Theorems 6.1 and 6.2) this algorithm produces a bidiagonal
matrix B such that for some δB, δC ∈ �n×n, some modestly sized functions gi(n), i =

1: 3, and matrices U and V , a growth factor ρ̂
(k)
V (specified in (5.10)), we have

C + δC = U(B + δB)V T ,(1.5)

‖UT U − I‖2, ‖V T V − I‖2 ≤ g1(n)εM +O(ε2
M ),(1.6)

|δB| ≤ εMg2(n)|B|+O(ε2
M ), | · | and ≤ entry-wise,(1.7)
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‖δC(: , j)‖2 ≤ g3(n)εM ρ̂
(j−1)
V ‖C(: , j:n)‖F +O(ε2

M ),(1.8)

where

ρ̂
(j−1)
V ≤ ‖C‖F /‖C(: , j:n)‖F

and is usually much smaller. The upper bound on ρ̂
(j−1)
V is just a statement that

standard normwise bounds apply. Moreover, the algorithm can be implemented in
less than 2n3 +O(n2) more flops than the Lawson–Hanson–Chan SVD [30, pp. 107–
120], [9]. In the worst case, the algorithm produces the same error as the standard
algorithm; in practice, it appears to be much better.

Our procedure for bidiagonal reduction of C has three important differences from
the Golub–Kahan Householder-transformation-based procedure [22]:

• Givens transformations are used in the construction of the right orthogonal
matrix V . (Clearly, 2 × 2 Householder transformations could also be used.)
(See section 5.1.)
• The computation of the matrices U and V are interleaved in a different man-

ner to preserve accuracy in the small columns. (See again section 5.1.)
• The rotations are accumulated in a different manner from that normally used.
(See section 5.2.)

In the next section, we give the perturbation theory that justifies (1.5). The ap-
propriate algorithm for producing the factorization (1.3)–(1.4) is discussed in section 3.
A template for bidiagonal reduction procedures and an outline for the development
of our procedure is given in section 4. The material in section 5 provides justification
for the choices made in creating Algorithm 6.1 in section 6 from Algorithm 4.1 in sec-
tion 4. The motivation for using Givens rotations, the different manner in which they
are accumulated, and the way in which the computation of U and V are interleaved
is justified in section 5. That motivation includes the error analysis of one major step
of the algorithm (see Lemma 5.7 and Theorem 5.8 in section 5.2). A full description
of the algorithm is the subject of section 6, followed by the error bounds (1.5)–(1.8),
formally stated as Theorem 6.1 in section 6.2. The tedious proofs of Lemma 5.5 and
Theorem 5.8 from section 5.2 are in the technical report [2].

In section 7, we give some numerical tests. The tests seem to indicate that our
error bounds on bidiagonal reduction of C in (1.3) are pessimistic. We could find no
examples where the singular values obtained by our procedure differ from those of
the Jacobi method by more than those from the Jacobi method are expected to differ
from the exact singular values. The Golub–Kahan Householder-based procedure also
seems to produce very accurate singular values of such matrices very often. However,
the changes made in this paper to the algorithm in [22] were needed in our proofs of
the results in section 6.2. The effect of these changes is demonstrated in an example in
section 5.3. Moreover, we produce a class of examples of lower triangular matrices of
the same form as C for which our procedure is more accurate than the Golub–Kahan
procedure. Our conclusion is given in section 8.

2. Necessary perturbation theory. We now give some perturbation theory
results to motivate obtaining error bounds of the form (1.5)–(1.8).

The following result shows that the nonorthogonality of U and V in (1.5) causes
only a small relative change in the singular values. This lemma is given in [27, problem
18, pp. 423–424].

Lemma 2.1. Let A ∈ �m×n and let B ∈ �n×n. Then for i = 1, 2, . . . , n,

σi(A)σn(B) ≤ σi(AB) ≤ σi(A)σ1(B).
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Standard bounds on eigenvalue perturbation [23, Chapter 8] lead to

1− g1(n)εM +O(ε2
M ) ≤ σ2

n(U) ≤ σ2
1(U) ≤ 1 + g1(n)εM +O(ε2

M ),

1− g1(n)εM +O(ε2
M ) ≤ σ2

n(V ) ≤ σ2
1(V ) ≤ 1 + g1(n)εM +O(ε2

M ),

where g1(n) is the function in (1.6). Thus the singular values of B + δB represent
those of C + δC to relative accuracy.

The effect of the bound in (1.7) is addressed by a result of Demmel and Kahan
[14].

Lemma 2.2. Let B = bidiag(γ(1:n);φ(2:n)) ∈ �n×n, let B̃ ≡ B + δB =
bidiag(γ̃(1:n); φ̃(2:n)) ∈ �n×n, and let ζ ≥ 1. If

1

ζ
≤ γ̃j

γj
,
φ̃i

φi
≤ ζ,

i = 2, . . . , n,
j = 1, 2, . . . , n,

with the convention that 0/0 = 1, then

1

ζ2n−1
≤ σj(B̃)

σj(B)
≤ ζ2n−1, j = 1, 2, . . . , n.

Thus in (1.5)–(1.7), the singular values of B represent those of B̃ to relative
accuracy.

The important effect is that of the error δC which is bounded in (1.5)–(1.8).
To characterize that error, we make the simplifying assumption that C and C+δC

are both nonsingular. A relaxation of the assumption that C + δC is nonsingular is
possible; see Barlow and Slapničar [5].

We define two parameters,

τ = sup
x�=0

‖δCx‖2
‖Cx‖2 ,(2.1)

τ̂ = max

{
τ, sup

x�=0

‖δCx‖2
‖(C + δC)x‖2

}
.(2.2)

Assuming that τ < 1, we have that

τ̂ ≤ τ

1− τ
.

Two simple lemmas illustrate the relative error in the singular values and vectors of
C in terms of τ . This result is proved in Demmel and Veselić [15].

Lemma 2.3. Let C, δC ∈ �n×n be such that both C and C + δC are nonsingular.
Let τ be given by (2.1). Then the singular values of C and C + δC satisfy

|σi(C + δC)− σi(C)|
σi(C)

≤ τ.

We now bound the error in the vectors in terms of τ̂ . This is a generalization of
a bound in Barlow and Demmel [3] and an elaboration of a bound in Demmel and
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Veselić [15]. The analysis is very similar to that used to bound error in subspaces in
ULV decomposition in [6]. This result can be generalized to clusters of singular values
in a well-known manner; see, for instance, [32, 5].

Lemma 2.4. Assume the hypothesis and terminology of Lemma 2.3. Let (σi,yi,wi)
denote the ith singular triplet of C and let (σ̃i, ỹi, w̃i) denote the ith singular triplet
of C + δC for i = 1, . . . , n. Then we have

|w̃T
j wi| ≤ τ̂

2σiσ̃j

|σ2
i − σ̃2

j |
,(2.3)

and

|ỹT
j yi| ≤ τ̂

σ2
i + σ̃2

j

|σ2
i − σ̃2

j |
.(2.4)

Proof. To prove (2.3), we simply use the fact that wi is an eigenvector of CT C
and w̃j is an eigenvector of (C + δC)T (C + δC). Thus

wT
i (C + δC)T (C + δC)w̃j = σ̃2

jw
T
i w̃j ,

which leads to

(σ2
i − σ̃2

j )w
T
i w̃j = −wT

i δCT (C + δC)w̃j −wT
i CT δCw̃j .

The use of the Cauchy–Schwarz inequality and the definition of τ̂ in (2.2) yields

|σ2
i − σ̃2

j ||wT
i w̃j | ≤ ‖δCwi‖2‖(C + δC)w̃j‖2 + ‖Cwi‖2‖δCw̃j‖2.

≤ 2τ̂σiσ̃j .

Thus we have (2.3). A nearly identical derivation from (C + δC) (C + δC)T yields

|σ2
i − σ̃2

j ||yT
i ỹj | ≤ τ̂(σ2

i + σ̃2
j ).

Thus (2.4) holds.
We note that the bound in the error of the right singular vectors is stronger than

that for left singular vectors since

2σiσ̃j ≤ σ2
i + σ̃2

j .

Adding the two bounds together yields Demmel and Veselić’s [15] bound

|w̃T
j wi|+ |ỹT

j yi| ≤ τ̂
σi + σ̃j

|σi − σ̃j | .

The standard error bound on δC is

‖δC‖2 ≤ εMg4(n)‖C‖2 +O(ε2
M )(2.5)

for some modestly growing function g4(n). The advantage of (1.8) over (2.5) is a
smaller value of τ in (2.1), leading to more accurate singular values and vectors.

A bound on τ is given by

τ = sup
x�=0

‖δCx‖2
‖Cx‖2 = sup

y �=0

‖δCC−1y‖2
‖y‖2

= ‖δCC−1‖2.
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If the only bound that we have on δC is (2.5), then

‖δCC−1‖2 ≤ εMg4(n)κ2(C) +O(ε2
M ),(2.6)

where κ2(C) = ‖C‖2‖C−1‖2.
To see the effect of (1.8) we rewrite it as

δC = ECRCDC , ‖EC‖2 ≤ g4(n)εM +O(ε2
M ),(2.7)

where

DC = diag(‖C(: , 1)‖2, . . . , ‖C(: , n)‖2),(2.8)

RC = diag(ρ̂
(0)
V , . . . , ρ̂

(n−1)
V ).(2.9)

We define

ρ̂V = ‖RC‖2 = max
0≤k≤n−1

ρ̂
(k)
V .(2.10)

A bound of the form (2.7) yields

‖δCC−1‖2 ≤ ‖ECRCDCC−1‖2 ≤ εM ρ̂V g4(n)κ2(CD−1
C ) +O(ε2

M ).(2.11)

Van der Sluis [38] showed that DC satisfies

κ2(CD−1
C ) ≤ √nmin{κ2(CD−1) : D diagonal and nonsingular}.(2.12)

Thus the choice of DC in (2.8) is within a factor of
√
nρ̂V of optimizing the second

bound in (2.11) over all nonsingular diagonal scaling matrices.
Noting that the bound in (1.8) implies that in (2.5) the bound in (2.11) cannot

be significantly worse than the one in (2.6). Very often it will be significantly better,
since it states that the scaling of the columns can be ignored.

3. Reduction to triangular form. Before performing bidiagonal reduction
procedure, we assume that A has been reduced to a lower triangular matrix C. We
recommend using a Householder-transformation-based procedure discussed by Björck
[7, pp. 165–169] and analyzed by Cox and Higham [11]. For more about the use of
this procedure in SVD computation, see Higham [26].

The procedure is as follows.
1. Reorder the rows of A so that

‖A(1, : )‖∞ ≥ · · · ≥ ‖A(m, : )‖∞.

2. Using the maximal column pivoting algorithm of Businger and Golub [8],
factor A into

A = V0

(
CT

0

)
PT ,(3.1)

where V0 ∈ �m×m is orthogonal, P is a permutation matrix, and C ∈ �n×n

is lower triangular.
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This particular Householder factorization algorithm has very strong numerical
stability properties. If we let C be the computed lower triangular factor, then Cox
and Higham [11] (based on the analysis of a more complicated pivoting strategy by
Powell and Reid [37]) showed that for some orthogonal matrix V̄0 and some matrix
δA, we have

A+ δA = V̄0

(
CT

0

)
PT ,(3.2)

‖δA(: , j)‖2 ≤ c1(m,n)‖A(: , j)‖2εM , j = 1, 2, . . . , n,(3.3)

and

‖δA(i, : )‖2 ≤ c2(m,n)ρA‖A(i, : )‖2εM +O(ε2
M ), i = 1, . . . ,m,(3.4)

where ρA is a growth factor bounded by
√
n2n−1 and ck(m,n) = O(mn), k = 1, 2. The

column oriented error bound (3.3) holds for standard Householder factorization [39,
pp. 152–162]. The second rowwise error bound (3.4) can be shown only for algorithms
that do some kind of row and column permutations for stability.

Similar results for Givens-based algorithms have been given [1, 4]. Cox and
Higham demonstrate that Householder’s original version of Householder transforma-
tions must be used for these bounds to hold. The bound does not hold if Parlett’s
version [34] of the Householder transformation is used.

If the matrix C in (3.2) has rank n, we use that matrix. If rank(C) = r < n, then
C has the form

C =

( r n− r

r C11 0
n− r C12 0

)
,

and we can use a procedure of Hanson and Lawson [25] to produce an orthogonal
matrix U0 from a product of Householder transformations such that

UT
0 C =

( r n− r

r C̃ 0
n− r 0 0

)
,(3.5)

where C̃ remains lower triangular. Our algorithms will use C̃ in place of C, and thus
we assume that C is square nonsingular matrix.

Since maximal column pivoting assures us that

|C(j, j)| ≥ ‖C(k, j:n)‖2, j = 1, . . . , n− 1,
k = j + 1, . . . , n,

and C is lower triangular, we have that the columns of the matrix C satisfy

‖C(: , j)‖2 ≥ 1√
n− j

‖C(: , j + 1:n)‖F , j = 1, 2, . . . , n.(3.6)

If we are using C̃ in (3.5) in place of C, this bound is satisfied for n, not r = rank(C).
For the rest of this paper, any reduction of A that produces C satisfying the

property (3.6) will be a suitable preprocessing step and will lead to the results given
here.

We now give a class of algorithms for computing the bidiagonal reduction of C.
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4. A template for bidiagonal reduction. The usual bidiagonal reduction
algorithm is that given by Golub and Kahan [22, Theorem 1, pp. 208–210]; see also
Golub and Reinsch [24, pp. 404–405]. It is given below.

Algorithm 4.1 (Golub–Kahan bidiagonal reduction).

1. Construct an orthogonal transformation U1 such that

UT
1 C(: , 1) = γ1e1,

C ← UT
1 C; U ← U1; V ← V1 ≡ I;

2. for k = 2 : n− 1
(a) If C(k − 1, k:n) �= 0, construct an orthogonal transformation Vk such

that

V T
k C(k − 1, k:n)T = φke1,

C(k:n, k:n)← C(k:n, k:n)Vk, V (: , k:n)← V (: , k:n)Vk.

else φk = 0, and Vk = I (implicitly).
(b) Construct an orthogonal transformation Uk such that

UT
k C(k:n, k) = γke1,

C(k:n, k:n)← UT
k C(k:n, k:n), U(: , k:n)← U(: , k:n)Uk.

3.

γn ← C(n, n), φn ← C(n− 1, n).

The bidiagonal reduction of C is given by

C = UBV T ,

where

B = bidiag(γ1, . . . , γn;φ2, . . . , φn).

Golub and Kahan [22] use Householder transformations to describe this algorithm.

Algorithm 4.1 allows a number of options for its implementation. Most important
is how we choose Uk and Vk for each step in the transformation. We will follow the
convention in [22] and choose Uk, k = 1, . . . , n−1, to be Householder transformations.
In section 5.1, we justify choosing Vk, k = 2, . . . , n−1, to be Givens rotations in stan-
dard order and show why the application of Uk and Vk must be interleaved differently
from described above. In section 5.2, we justify an unusual method for applying Vk.
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5. The use and application of Givens rotations in constructing Vk.

5.1. Eliminating columns from the right and element growth. To formu-
late a new algorithm for bidiagonal reduction, we consider the effect of the orthogonal
transformations used to form V in Algorithm 4.1. Let U1, . . . , Un−1 and V1, . . . , Vn−1

be the orthogonal transformations from Algorithm 4.1. Define

Ũk = Û1 · · · Ûk, Ûk = diag(Ik−1, Uk),(5.1)

Ṽk = V̂1 · · · V̂k, V̂k = diag(Ik−1, Vk), k = 1, . . . , n− 1.(5.2)

Define

F (k) = ŨT
k C, k = 1, . . . , n− 1.

By orthogonal equivalence,

‖F (k)ei‖2 = ‖Cei‖2.

If we let

C(k) = F (k)Ṽk = ŨT
k CṼk,(5.3)

then C(k) has the form

C(k) =

( k n− k

k C
(k)
11 C

(k)
12

n− k 0 C
(k)
22

)
,

where

C
(k)
11 = bidiag(γ(1: k);φ(2: k)),

and C
(k)
12 is zero except for the last row. Therefore, Ṽk, in effect, zeros out the block

F
(k)
21 .

The following lemma shows the effect of a large class of orthogonal transformations
from the right.

Lemma 5.1. Let F ∈ �m×n and V ∈ �n×n be partitioned according to

F =

( k n− k

k F11 F12

m− k F21 F22

)
, V =

( k n− k

k V11 V12

n− k V21 V22

)
,(5.4)

where V11 is nonsingular. Let

G =

( k n− k

k G11 G12

m− k 0 G22

)
= FV.(5.5)

Then

F21 = −F22V21V
−1
11 , G22 = F22Ṽ22,(5.6)
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where

Ṽ22 = V22 − V21V
−1
11 V12.(5.7)

Proof. Matching blocks in (5.4) and (5.5) yields

F21V11 + F22V21 = 0, F21V12 + F22V22 = G22.

Using the fact that V11 is nonsingular, block Gaussian elimination yields (5.6).
The following generalization of the result of Lemma 5.1 provides a key portion of

the proof of Theorem 5.4.
Lemma 5.2. Let F ∈ �m×n be partitioned according to

F =

( k j − k n− j

k F11 F12 F13

m− k F21 F22 F23

)
.

Let V = V̄1V̄2, where

V̄1 =




k j − k n− j

k V
(1)
11 V

(1)
12 0

j − k V
(1)
21 V

(1)
22 0

n− j 0 0 In−j


, V̄2 =




k j − k n− j

k V
(2)
11 0 V

(2)
12

j − k 0 Ij−k 0

n− j V
(2)
21 0 V

(2)
22


,

and V has the form in Lemma 5.1, assume V11 = V
(1)
11 V

(2)
11 is nonsingular, and let

Ṽ22 be given by (5.7). Let G = FV be partitioned,

G =

( k j − k n− j

k G11 G12 G13

m− k 0 G22 G23

)
.(5.8)

Then

G23 = F23Ṽ
(2)
22 ,(5.9)

where

Ṽ
(2)
22 = V

(2)
22 − V

(2)
21 [V

(2)
11 ]−1V

(2)
12

and ‖Ṽ (2)
22 ‖2 ≤ ‖Ṽ22‖2.

Proof. We note that

V = V̄1V̄2 =




k j − k n− j

k V
(1)
11 V

(2)
11 V

(1)
12 V

(1)
11 V

(2)
12

j − k V
(1)
21 V

(2)
11 V

(1)
22 V

(1)
21 V

(2)
12

n− j V
(2)
21 0 V

(2)
22


.

If we partition V according to (5.4), then

V11 = V
(1)
11 V

(2)
11 , V12 =

(
V

(1)
12 V

(1)
11 V

(2)
12

)
,
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V21 =

(
V

(1)
21 V

(2)
11

V
(2)
21

)
, V22 =

(
V

(1)
22 V

(1)
21 V

(2)
12

0 V
(2)
22

)
.

First we note that V11 is nonsingular if and only if V
(i)
11 , i = 1, 2, are nonsingular.

Evaluating Ṽ22 according to (5.7) leads to

Ṽ22 =

(
V

(1)
22 − V

(1)
21 [V

(1)
11 ]−1V

(1)
12 0

− V
(2)
21 [V

(2)
11 ]−1[V

(1)
11 ]−1V

(1)
12 V

(2)
22 − V

(2)
21 [V

(2)
11 ]−1V

(2)
12

)
.

Thus ‖Ṽ (2)
22 ‖2 ≤ ‖Ṽ22‖2. Now we have that

F (1) = FV̄1 =

( k j − k n− j

k F
(1)
11 F

(1)
12 F13

m− k F
(1)
21 F

(1)
22 F23

)
,

where the (1,3) and (2,3) blocks of F are unaffected. We then apply Lemma 5.1 to

(
F

(1)
11 F13

F
(1)
21 F23

)(
V

(2)
11 V

(2)
12

V
(2)
21 V

(2)
22

)
=

(
G11 G13

0 G23

)

to obtain (5.9).
The following lemma gives us an alternative method for bounding the growth of

the (2, 3) block.
Lemma 5.3. Assume the hypothesis and terminology of Lemma 5.2. Assume also

that V is orthogonal. Then

‖G23‖2 ≤ ρ
(k)
V ‖F23‖2, ρ

(k)
V ≡ ‖Ṽ22‖2 =

(
1 + ‖V21V

−1
11 ‖22

)1/2
,(5.10)

σmin(Ṽ22) ≥ 1.

Proof. From (5.7), we have

( k n− k

0 Ṽ22

)
=
(
0 V22 − V21V

−1
11 V12

)
= ( −V21V

−1
11 In−k )V.

By orthogonal equivalence

‖Ṽ22‖2 = ‖ ( −V21V
−1
11 In−k

) ‖2 =
(
1 + ‖V21V

−1
11 ‖22

)1/2
.

This equivalence is also true for all of the other singular values of Ṽ22, and thus

σmin(Ṽ22) = σmin[
( −V21V

−1
11 In−k

)T
] ≥ 1.

From (5.9) and the result of Lemma 5.2, we have (5.10).

The value of ρ̂
(k)
V used in (1.8) and again in (2.9) is given by

ρ̂
(k)
V = min{ρ(k)

V , ‖C‖F /‖C(: , k + 1:n)‖F }.(5.11)
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We now assume that the kth right orthogonal transformation V̂k has the form

V̂k = Vk,k+1 · · ·Vk,n, k = 1, . . . , n− 1,(5.12)

where Vk,j = J(k, j, θk,j) is a Givens rotation. The rotation Vk,j sets entry (k − 1, j)
of C (at step k of the algorithm) to zero. We note that we could also assume the
use of 2× 2 Householder transformations without changing any of the results below.
The following is a key result on the growth of the elements of C through the course
of Algorithm 4.1.

Theorem 5.4. Let Algorithm 4.1 be applied to C with matrix Vk given by the
product of Givens rotations in (5.12). For k = 1, . . . , n−1, let Ũk be defined by (5.1),

let Ṽk be defined by (5.2), and let C(k) be defined by (5.3). Let ρ
(k)
V be defined as in

Lemma 5.3 and let ρ̂
(j−1)
V be as defined in (5.11). Then for k = 1, . . . , n − 1, and

j = k + 1, . . . , n, we have

‖C(k)(k + 1:n, j:n)‖F ≤ min{ρ(k)
V , ρ̂

(j−1)
V }‖C(: , j:n)‖F .(5.13)

Proof. Since Ṽk is the product of Givens rotations in the standard order, we
directly apply the results in Lemma 5.2.

Since Ṽk =
∏k

i=1

∏n
�=i+1 Vi,�, for each j > k, taking advantage of rotations that

commute, we can write

Ṽk = V̄1V̄2,

where

V̄1 =

k∏
i=1

j−1∏
�=i+1

Vi,�, V̄2 =

k∏
i=1

n∏
�=j

Vi,�.

Thus, V̄1 and V̄2 have the structure in the hypothesis of Lemma 5.2. Using the
terminology of that lemma, we have

C(k)(k + 1:n, j:n) = F (k)(k + 1:n, j:n)Ṽ
(2)
22(5.14)

and that

‖C(k)(k + 1:n, j:n)‖F ≤ ‖F (k)(k + 1:n, j:n)‖F ‖Ṽ (2)
22 ‖2

≤ ‖C(k + 1:n, j:n)‖F ‖Ṽ (2)
22 ‖2 ≤ ρ

(k)
V ‖C(: , j:n)‖F ,

which is the first half of (5.13). To show that the above bound holds with ρ̂
(j−1)
V ,

assume j > k + 1. We note that

Ṽj−1 = Z1Z2,

where

Z1 =

j−2∏
i=1

j−1∏
�=i+1

Vi,�, Z2 =

j−1∏
i=1

n∏
�=j

Vi,�,

and

Z1 =

( j − 1 n− j + 1

j − 1 Z
(1)
11 0

n− j + 1 0 I

)
, Z2 =

( j − 1 n− j + 1

j − 1 Z
(2)
11 Z

(2)
12

n− j + 1 Z
(2)
21 Z

(2)
22

)
.
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It is easily shown that

ρ
(j−1)
V = ‖Z̃22‖2 = ‖Z̃(2)

22 ‖2.

Thus we need only show that ‖Z̃(2)
22 ‖2 ≥ ‖Ṽ (2)

22 ‖2.
We have that

Z2 = V̄2W,

where

W =

j−1∏
i=k+1

n∏
�=j

Vi,�.

Here W has the structure

W =




k j − k − 1 n− j + 1

k I 0 0
j − k − 1 0 W11 W12

n− j + 1 0 W21 W22


.

Therefore the blocks of Z2 may be written

Z
(2)
11 =

(
V

(2)
11 V

(2)
12 W21

0 W11

)
, Z

(2)
12 ,

Z
(2)
21 =

(
V

(2)
21 V

(2)
22 W21

)
, Z

(2)
22 = V

(2)
22 W22.

Some algebra shows that

Z̃
(2)
22 = Z

(2)
22 − Z

(2)
21 [Z

(2)
11 ]−1Z

(2)
12

= Ṽ
(2)
22 W̃22.

We have that

ρ
(j−1)
V = ‖Z̃(2)

22 ‖2 ≥ ‖Ṽ (2)
22 ‖2σmin(W̃22).

By Lemma 5.3, σmin(W̃22) ≥ 1, so

ρ
(j−1)
V ≥ ‖Ṽ (2)

22 ‖2.
Using (5.14), we get

‖C(k)(k + 1:n, j:n)‖F ≤ ρ
(j−1)
V ‖C(: , j:n)‖F .

Since orthogonal equivalence gives us

‖C(k)(k + 1:n, j:n)‖F ≤ ‖C‖F
we have (5.13).
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As will be shown later in Theorem 6.1, if we can control the growth of the elements
in the lower corner C(k), then we can obtain a columnwise backward error bound on
our implementation of Algorithm 4.1.

Immediately, we make two changes to Algorithm 4.1. The first is the use of Givens
rotations in standard order to compose the transformations Vk, k = 1, . . . , n − 1, as
in (5.12). The second is to note that for the entries of C(k + 1:n, k + 1:n) to never
exceed the bound on C(k)(k + 1:n, k + 1:n) in (5.13), C(k) should be computed by
the recurrence

C(0) = C,(5.15)

M (k) ≡ ÛT
k C(k−1), k = 1, . . . , n− 1,(5.16)

C(k) = M (k)V̂k.(5.17)

Thus, even though Vk is formulated before Uk, it must be applied to C after Uk.
If we use the order of application in Algorithm 4.1, then we would produce

N (k) ≡ C(k−1)Vk,

C(k) = UT
k N (k),

but there is the possibility that

‖N (k)(k + 1:n, j:n)‖F � ‖C(k)(k + 1:n, j:n)‖F(5.18)

for some j > k ≥ 1, and our error analysis depends upon the ability to bound the
growth in these values. In the example in section 5.3, we show that exactly this
phenomenon occurs and that it can affect the accuracy of the small singular values.

The main loop of Algorithm 4.1 is modified as follows. If C(k − 1, k:n) �= 0,
construct Vk such that

V T
k C(k − 1, k:n)T = φke1,

yk = C(k:n, k:n)Vke1.

Find Uk such that

UT
k yk = γke1,(5.19)

C(k:n, k:n)← UT
k C(k:n, k:n),

C(k:n, k:n)← C(k:n, k:n)Vk.

To ensure that C(k)(k:n, k) = γke1 for some γk with appropriate backward error,
we modify the manner in which the orthogonal transformation Vk is applied to C.
Those modifications are discussed in the next section.
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5.2. Application of the Uk and Vk matrices. We now explain how to im-
plement one step of Algorithm 4.1 in the order (5.16)–(5.17) while preserving the
identity

C(k)(k:n, k) = γke1.(5.20)

We assume that |φk| = ‖C(k−1)(k− 1, k:n)‖2 �= 0, otherwise Vk = I, and the steps in
this section are unnecessary.

Let M (k) be as defined in (5.16). We also define

v
(k)
1 = Vke1 ≡ (v

(k)
kk , . . . , v

(k)
nk )

T .(5.21)

Since, by assumption, C(k−1)(k − 1, k:n) �= 0, v
(k)
1 = C(k−1)(k − 1, k:n)T /φk, this

first column will determine the Givens rotations Vk,k+1, . . . , Vk,n. We adopt three
conventions in our discussions in this section:

• To avoid greater notational complexity, we assume that M (k) and C(k) are
the computed values in (5.16)–(5.17) rather than the exact ones. We also use
this assumption throughout section 6.
• The dimensions of the matrix Vk,j will be different in different contexts, but
will always refer to a Givens rotation whose nontrivial portion is applied to
columns k and j of C.
• We ignore the rounding errors in applying the rotations in V̂k to M (k), but
not the errors in forming the rotations. Theorem 5.8, at the end of this
section, shows that assumption can be lifted and still obtain the necessary
error bounds.

The important concern in (5.20) is to maintain

C(k)(k + 1:n, k) = 0,(5.22)

and thus row k of C(k) may be computed according to

C(k)(k, k:n) = M (k)(k, k:n)Vk,k+1 · · ·Vk,n(5.23)

in the standard manner. Our discussion will center upon how to compute rows k + 1
through n of C(k).

In exact arithmetic, the statement (5.20) implies that

M (k)(k:n, k:n)Vke1 = M (k)(k:n, k:n)v
(k)
1 = γke1(5.24)

for some γk. Unfortunately, since Uk and Vk are applied in the opposite order from
which they are defined in (5.15)–(5.17), we do not expect (5.24) to hold in floating
point arithmetic.

We begin the following lemma which is proven in [2]. It shows that a columnwise
perturbation of M (k) satisfies (5.24). That result is a building block for developing
our procedure for computing C(k) from M (k).

Lemma 5.5. Let M (k) ∈ �n×n be the computed result of applying the Householder

transformation Uk to C(k−1) in (5.16). Then for some δM
(k)
0 ∈ �n×n and modestly

growing function g0(n) we have that

(M (k) + δM
(k)
0 )(k:n, k:n)v

(k)
1 = γke1,
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where, for j = k, . . . , n,

‖δM (k)
0 (: , j)‖2 ≤ εMg0(n− k + 1)‖M (k)(k:n, j)‖2 +O(ε2

M )

and

g0(n) = n2 + 14n.(5.25)

The assumption that Uk is a Householder transformation determines the function
g0(n), but any stable implementation of orthogonal transformations such that (5.19)
holds will yield this bound with a different modestly growing function g0(n).

We note that Lemma 5.5 gives us that

M (k)(k:n, k:n)v
(k)
1 = γke1 − δm1, δm1 = δM

(k)
0 (k:n, k:n)v

(k)
1 .(5.26)

When applying Vk to M (k) the computation (5.26) is not actually performed. Instead
we accept γke1 as the correct result for C(k)(k:n, k), thereby enforcing (5.20).

However, (5.26) tells us that the exact relation between M (k) and C(k) is

M (k)(k:n, k:n)− δm1[v
(k)
1 ]T = C(k)(k:n, k:n)V T

k

or

(M (k) + δM
(k)
1 )(k:n, k:n) = C(k)(k:n, k:n)V T

k ,(5.27)

where

δM
(k)
1 (k:n, k:n) = δM

(k)
0 (k:n, k:n)v

(k)
1 [v

(k)
1 ]T .

Thus applying V̂k to M (k) and enforcing (5.20) creates the backward error δM
(k)
1 (not

δM
(k)
0 ). Unfortunately, δM

(k)
1 has only the normwise bound

‖δM (k)
1 ‖F ≤ ‖δM (k)

0 ‖F ≤ εMg0(n− k + 1)‖M (k)‖F +O(ε2
M ).(5.28)

From the analysis of section 2, we need columnwise error bounds; thus (5.28) is not
acceptable.

Instead, we compute with a matrix C(k,k) such that

C(k,k) ≡M (k) + δM
(k)
2 ,(5.29)

C(k,k)(k + 1:n, k:n)v
(k)
1 = 0,(5.30)

and for a modestly growing function g̃0(n),

δM
(k)
2 = δm̃se

T
s ,(5.31)

‖δm̃s‖2 ≤ εM g̃0(n− k + 1)‖M (k)(k + 1:n, s)‖2 +O(ε2
M )(5.32)

for some s ∈ {k, k + 1, . . . , n}. Thus C(k,k)(: , j) = M (k)(: , j) for j �= s, and

C(k,k)(: , s) = M (k)(: , s) + δm̃s.(5.33)
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There is no reason to perturb rows 1, 2, . . . , k, since there we accept the computed
result of (5.16) and (5.17), so δm̃s(1: k) = 0.

We then obtain C(k) from the computation

C(k,j) ≡ C(k,j−1)Vk,j , j = k + 1, . . . , n,(5.34)

C(k) = C(k,n) = C(k,k)Vk = (M (k) + δM
(k)
2 )Vk.

The perturbation δM
(k)
2 introduces only a columnwise backward error but guarantees

(5.20). Below, we show how to obtain a C(k,k) that satisfies (5.30)–(5.32), and thereby
a procedure to obtain C(k−1) from C(k) with an appropriate error bound.

First, we show how to get C(k,k)(k+1:n, s) for any s ∈ {k, . . . , n}. We then show
how to choose s to enforce (5.32). To construct C(k,k), we enforce (5.30). Since

C(k,j) = C(k,k)Vk,k+1 · · ·Vk,j , j = k + 1, . . . , n,

the equation (5.30) is equivalent to the statement

(
C(k,j)(k + 1:n, k) C(k,k)(k + 1:n, j:n)

)
Vk,j+1 · · ·Vk,n(5.35)

=
(
0 C(k)(k + 1:n, j:n)

)
(5.36)

for j = k + 1, . . . , n.
In terms of the components of the Givens rotations, column k of recurrence (5.35)–

(5.36) is written

C(k,j)(k + 1:n, k)

= (cn)k,jC
(k,j−1)(k + 1:n, k) + (sn)k,jC

(k,k)(k + 1:n, j),(5.37)

j = k + 1, . . . , n,

with C(k,n) = C(k) and C(k,n)(k + 1:n, k) = 0.
Writing the recurrence (5.37) in reverse we have

C(k,n)(k + 1:n, k) = C(k)(k + 1:n, k) = 0,(5.38)

C(k,j−1)(k + 1:n, k)

= (C(k,j)(k + 1:n, k)− (sn)k,jC
(k,k)(k + 1:n, j))/(cn)k,j ,(5.39)

j = n, . . . , k + 1.

To obtain the value of C(k,k)(k + 1:n, s) we need both the recurrence (5.37) and the
recurrence (5.38)–(5.39). We consider two separate cases, s = k and s > k.

For s = k, we construct C(k,j)(k + 1:n, k), j = n, . . . , k, using (5.38)–(5.39), thus
constructing C(k,k)(k + 1:n, k).
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For s > k, we construct C(k,j)(k+1:n, k), j = k, . . . , s−1, using (5.37), then con-
struct C(k,j)(k + 1:n, k), j = n, . . . , s, using (5.38)–(5.39). Then compute C(k,k)(k +
1:n, s) from

C(k,k)(k + 1:n, s) = C(k,s−1)(k + 1:n, s)

= (C(k,s)(k + 1:n, k)− (cn)k,sC
(k,s−1)(k + 1:n, k))/(sn)k,s.(5.40)

For both cases, the jth column of C(k) is computed from

C(k)(k + 1:n, j) = (cn)k,jC
(k,k)(k + 1:n, j)− (sn)k,jC

(k,j−1)(k + 1:n, k)(5.41)

when both terms of (5.41) are available.
The value of C(k,k)(k:n, s) may not satisfy (5.32) and (5.33) for every value of

s. Fortunately, as Proposition 5.6 shows, there is always at least one value of s such
that (5.32) and (5.33) are enforced.

Proposition 5.6. Assume the hypothesis and terminology of Lemma 5.5. Let
C(k,k) be defined by (5.29) and satisfy (5.30). If s is chosen so that

‖M (k)(k:n, s)‖2|v(k)
sk | = max

k≤j≤n
‖M (k)(k:n, j)‖2|v(k)

jk |,(5.42)

then δm̃s satisfies (5.32) with g̃0(n) = ng0(n). With this choice, excluding the round-
ing error from applying the Givens rotations, the computed matrix C(k) satisfies

C(k) = (M (k) + δM
(k)
2 )Vk,

where

‖δM (k)
2 (: , j)‖2 ≤

{
g̃0(n− k + 1)εM‖M (k)

2 (: , s)‖2 +O(ε2
M ), j = s,

0, j �= s.
(5.43)

Proof. From Lemma 5.5 and (5.30) we must have

δM
(k)
0 (k + 1:n, k:n)v

(k)
1 = δM

(k)
2 (k + 1:n, k:n)v

(k)
1 ,

thus

n∑
j=k

δM
(k)
0 (k + 1:n, j)v

(k)
jk = δm̃s(k + 1:n)eTs−k+1v

(k)
1 = δm̃s(k + 1:n)v

(k)
sk .

Therefore,

‖δm̄s(k + 1:n)‖2|v(k)
sk | ≤

n∑
j=k

|v(k)
jk |‖δM (k)(k + 1:n, j)‖2(5.44)

≤ εMg0(n− k + 1)

n∑
j=k

|v(k)
jk |‖M (k)(k:n, j)‖2 +O(ε2

M ).(5.45)

If we choose s so that (5.42) holds, then (5.45) becomes

‖δm̄s(k + 1:n)‖2 ≤ εM g̃0(n− k + 1)‖M (k)(k + 1:n, s)‖2 +O(ε2
M ),(5.46)
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which satisfies the second expression in (5.31) with g̃0(n) = ng0(n). Thus δM
(k)
2

satisfies (5.43).
Note that Proposition 5.6 requires the computation of the column norms

‖M (k)(k:n, j)‖2, j = k, . . . , n.(5.47)

These must be recomputed for each k, thus adding 2(n−k)2+O(n) flops at each step
of the bidiagonal reduction algorithm.

Our procedure for applying Vk is summarized as follows.
Algorithm 5.1 (algorithm for applying Vk).
1. Compute the column norms in (5.47), then determine s that satisfies (5.42).
2. Compute C(k)(k, k:n) = M (k)(k, k:n)Vk in the ordinary manner.
3. If s = k, compute all C(k,j)(k+1:n, k) using the backward recurrence (5.38)–

(5.39), thus implicitly replacing M (k)(k + 1:n, k) with C(k,k)(k + 1:n, k).
4. If s �= k, for j = k, . . . , s − 1 compute C(k,j)(k + 1:n, j) using the forward

recurrence (5.37). We then compute C(k,k)(k + 1:n, s) = M (k)(k + 1:n, s) +
δm̃s from (5.40).

5. For either (3) or (4), compute C(k)(k + 1:n, k + 1:n) according to (5.41) as
the appropriate columns are available.

The development above provides most of a proof of the following lemma.
Lemma 5.7. Let C(k),M (k) ∈ �n×n, k = 1, . . . , n − 1, be as defined in (5.16)–

(5.17) and let C(k,j), j = k+1, . . . , n, be as defined in (5.34). Excluding the rounding
error in applying the Givens rotations in Vk to C(k,k), Algorithm 5.1 produces a matrix
C(k) such that the matrix satisfies (5.24) and

C(k)(k:n, k:n) = UT
k [(C(k−1) + δC

(k−1)
1 )(k:n, k:n)]Vk,

‖δC(k−1)
1 (k:n, j)‖2 ≤ εMh(n− k + 1)‖C(k−1)(k:n, j)‖2 +O(ε2

M ),

where h(n) = ng0(n) + 12n and g0(n) is defined in Lemma 5.5.
Proof. An interpretation of the error bounds due to Wilkinson [39, pp. 152–162,

236] on the formation and application of a single Householder transformation gives
us that M (k) and C(k−1) satisfy

(C(k−1) + δC
(k−1)
0 )(k:n, k:n) = UkM

(k)(k:n, k:n),

where

‖δC(k−1)
0 (k:n, j)‖2 ≤ 12(n− k + 1)εM‖C(k−1)(k:n, j)‖2.

Since

C(k)(k:n, k:n) = C(k,k)(k:n, k:n)Vk = (M (k) + δM
(k)
2 )(k:n, k:n)Vk,

we have

C(k)(k:n, k:n) = UT
k [(C(k−1) + δC

(k−1)
1 )(k:n, k:n)]Vk,

where

δC
(k−1)
1 (k:n, k:n) = δM

(k)
0 (k:n, k:n) + UkδM

(k)
2 (k:n, k:n).
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procedure compute pivot(C, n,v, cn, sn, s)

%

% Input arguments -- v -- First column of orthogonal transformation.

% C -- matrix to be transformed

% n -- dimension of C, C is n x n

%

% Output arguments -- cn,sn -- defining values for Givens rotations

% s -- column to be replaced implicitly in

% orthogonal transformations

maxval = |v(1)| ∗ ‖C(: , 1)‖2; s = 1;
for j = 2:n

newval = |v(j)| ∗ ‖C(: , j)‖2;
rotg(v(1), v(j), cn(j − 1), sn(j − 1));
if newval > maxval

maxval = newval;
s = j;

end;
end;
endcompute pivot

Fig. 5.1. The compute pivot procedure.

Thus from Lemma 5.5, Proposition 5.6, and orthogonal equivalence, we conclude that

‖δC(k−1)
1 (k:n, j)‖2 ≤ ‖δC(k−1)

0 (k:n, j)‖2 + ‖δM (k)
2 (k:n, j)‖2

≤ εM [(n− k + 1)g0(n− k + 1) + 12(n− k + 1)]‖C(k−1)(k:n, j)‖2 +O(ε2
M ),

thereby establishing the necessary result
We encapsulate Algorithm 5.1 into two procedures given in a MATLAB-like

pseudolanguage. The first, called compute pivot (see Figure 5.1), computes the rota-
tions and the value s, thus doing step 1 of Algorithm 5.1. The second, called rot back
(see Figure 5.2), implements the above procedure for applying the Givens rotations,
thus doing steps 2–5 of Algorithm 5.1.

Unlike MATLAB, we have procedures, and arguments are called by reference.
Remark 5.1. We also use routines rotg and rot, which correspond to the BLAS

1 routines of the same names that generate and apply Givens rotations [31, 16]. The
call rotg(a, b, cn, sn) inputs a and b to produce cn and sn such that(

cn sn
−sn cn

)(
a
b

)
=

(
ρ
0

)
,

ρ = ±‖(a, b)T ‖2,
cn2 + sn2 = 1

except that rotg(0, 0, cn, sn) produces cn = 0 and sn = 1. For two n-vectors x and y
the call rot(x,y, cn, sn) performs the rotation

x← (cn)x+ (sn)y, y← −(sn)x+ (cn)y.

If the condition in Proposition 5.6 and Lemma 5.7 that excludes the rounding error
in applying Vk is lifted, we still obtain a good backward error on the step (5.16)–(5.17).
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procedure rot back(C, n, cn, sn, s)

%

% Input arguments -- cn,sn -- Vectors defining Givens rotations

% C -- matrix to be transformed

% n -- dimension of C, C is n x n

% s -- column to be modified in

% orthogonal transformations

%

% Transform first row in standard fashion as in step 2.

%

for j = 2:n
rot(C(1, 1), C(1, j), cn(j − 1), sn(j − 1));

end;
if s == 1 % The case s = k

w = 0; % w computes the backward recurrence for column 1.
for j = n:−1: 2

w = (w − sn(j − 1) ∗ C(2:n, j))/cn(j − 1);
C(2:n, j) = cn(j − 1) ∗ C(2:n, j)− sn(j − 1) ∗w;

end;
else % The case s > k

w = 0;
for j = n:−1: s+ 1

w = (w − sn(j − 1) ∗ C(2:n, j))/cn(j − 1);
C(2:n, j) = cn(j − 1) ∗ C(2:n, j)− sn(j − 1) ∗w;

end;
for j = 2: s− 1

rot(C(2:n, 1), C(2:n, j), cn(j − 1), sn(j − 1));
end;
% Construct column s
C(2:n, s) = (w − cn(s− 1) ∗ C(2:n, 1))/sn(s− 1);
% Use new column s
C(2:n, s) = cn(s− 1) ∗ C(2:n, s)− sn(s− 1) ∗ C(2:n, 1);

end;
endrot back

Fig. 5.2. The rot back procedure.

For that, we state the following theorem, which is proved in [2]. Lemma 5.7 is used
in the proof of this theorem.

Theorem 5.8. Suppose that C(k) is computed from C(k−1) as in (5.16)–(5.17)
using Algorithm 5.1 to compute C(k) from M (k). For 1 ≤ k < j ≤ n, let

βk,j = max{‖C(k−1)(k:n, j:n)‖F , ‖C(k)(k + 1:n, j:n)‖F },(5.48)

and f1(n) = n3 + 20n2 + 12n. Then, in floating point arithmetic with machine unit
εM , the computed matrices C(k−1) and C(k) satisfy

C(k) + ek−1

(
δγk−1 δφk

)( eTk−1

eTk

)
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= EkÛ
T
k [C(k−1)(k − 1:n, k:n) + δC(k−1)]Q̂k,(5.49)

where Ûk is orthogonal, the matrices Ek, δC
(k−1)
k , and Q̂k and the scalars δγk−1 and

δφk satisfy

‖δC(k)(: , j:n)‖F ≤ εMf1(n− k + 1)βk,j +O(ε2
M ),

‖Ek − I‖2 ≤ 3(n− k + 1)2εM +O(ε2
M ),

‖Q̂T
k Q̂k − I‖2 ≤ 6(n− k + 1)2εM +O(ε2

M ),

δγ0 = δφ1 = 0,

|δγk−1| ≤ 3(n− k + 1)2εM +O(ε2
M ), |δφk| ≤ (n− k + 1)εM +O(ε2

M ), k ≥ 2.

The diagonal matrix Ek, the slight nonorthogonality of Q̂k, and errors introduced
to γk−1 and φk are the results of the error analysis techniques necessary to get a
columnwise backward error bound on C(k−1). Algorithm 5.1 is critical in ensuring
this error bound.

In the next section, we give a simple example that shows the effect of using
Algorithm 5.1 in the implementation of one step of bidiagonal reduction.

5.3. A 4 × 4 example. The following 4 × 4 example illustrates how this new
Givens-based procedure preserves small singular values better than the Golub–Kahan
Householder-based procedure.

Example 5.1. Let A be the 4× 4 matrix

A =




1 ζ1 ζ1 2ζ1
0 1/

√
3 ζ2 ζ2

0 1/
√
3 2ζ2 ζ2

0 1/
√
3 3ζ2 3ζ2


 ,(5.50)

where ζ1 and ζ2 are small parameters. Using the MATLAB value εM = 2.2204e− 16,
we chose ζ1 = 10εM and ζ2 = εM/1000. That yields a matrix that has two singular
values clustered at 1, and two distinct singular values smaller than εM .

To the digits displayed,

A =




1 2.22045e− 15 2.22045e− 15 4.44089e− 15
0 0.57735 2.22045e− 19 2.22045e− 19
0 0.57735 4.44089e− 19 2.22045e− 19
0 0.57735 6.66134e− 19 6.66134e− 19


 .

The singular values are well-conditioned under column scalings. If we let

∆ = diag(‖A(: , 1)‖2, ‖A(: , 2)‖2, ‖A(: , 3)‖2, ‖A(: , 4)‖2),
then

κ2(A∆−1) = ‖A∆−1‖2‖∆A−1‖2 = 5.1962e+ 04.
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Thus according to the theory in [15], we should expect that the Jacobi method will
compute the singular values of A to at least 11 digit accuracy. The Jacobi method
(coded by Yoon for [6]) obtains the SVD

A = UΣV T ,

where (to the digits displayed)

Σ = diag(1, 1, 4.63692e− 19, 1.22778e− 19),

U =




2.22045e− 15 1 −1.01546e− 51 −4.70505e− 53
0.57735 1.47911e− 33 −0.553113 −0.600611
0.57735 1.97215e− 33 −0.243588 0.779315
0.57735 4.43734e− 33 0.7967 −0.178704


 ,

V =



−4.55449e− 33 1 −4.82373e− 15 1.17624e− 15

1 2.22602e− 51 −9.86268e− 19 −1.72585e− 19
7.69185e− 19 2.22045e− 15 0.646375 0.76302
6.40988e− 19 4.44089e− 15 0.76302 −0.646375


 .

For the bidiagonal reduction procedures below, we did none of the preprocessing
in section 3. The singular values of the bidiagonal matrices were obtained by the
bisection procedure described in [3]; the singular vectors were obtained by using oqd
iterations as in [21] until the matrices decoupled into 2× 2 blocks.

The dramatic difference between the application of our algorithm and the standard
bidiagonal reduction procedure occurs with the application of U2 and V2. Algorithm 4.1
implemented with Householder transformations yields

N (2) =




1 5.438960e− 15 0 0
0 −.2357023 −.2357023 −.4714045
0 −.2357023 −.2357023 −.4714045
0 −.2357023 −.2357023 −.4.714045


 = AV2,

where

‖N (2)(3: 4, 3: 4)‖F = 0.7454.

Note that columns of N (2)(2: 4, 2: 4) are all nearly multiples of one another. Thus
when we compute

C(2) =




1 5.438960e− 15 0 0
0 .4082483 .4082483 .8164966
0 0 −2.775558e− 17 −5.551115e− 17
0 0 −2.775558e− 17 −5.551115e− 17


 = UT

2 N (2),

for which

‖C(2)(3: 4, 3: 4)‖F = 8.7771e− 17,

the lower 2 × 2 corner of C(2) is dominated by the rounding error in this step, and
its two columns are colinear. Notice that ‖N (2)(3: 4, 3: 4)‖F is much larger than
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‖C(2)(3: 4, 3: 4)‖F . This is the concern raised in the text surrounding (5.18) and that
motivated Algorithm 5.1.

The final bidiagonal matrix obtained by this procedure is

B =



−1 5.43896e− 15 0 0
0 0.408248 −0.912871 0
0 0 −8.77708e− 17 −3.48631e− 32
0 0 0 0


 .

It has the singular values

Σ = diag(1, 1, 3.58323e− 17, 0).

The computed singular vector matrices are

U =



−0.596931 −0.802293 1.7791e− 31 0
−0.463204 0.344638 −0.816497 0
−0.463204 0.344638 0.408248 −0.707107
−0.463204 0.344638 0.408248 0.707107


 ,

V =




−0.596931 −0.802293 −4.96507e− 15 −4.83077e− 30
−0.802293 0.596931 −1.11022e− 16 3.33067e− 16

−1.52586e− 15 −1.63233e− 15 0.447214 −0.894427
−3.31895e− 15 −3.06585e− 15 0.894427 0.447214


 .

The invariant subspaces for the double singular value at 1 and for singular values 3
and 4 are correct. However, the individual singular vectors for singular values 3 and
4 are wrong.

Our algorithm computes the same step

M (2) =




1 −2.220446e− 15 −2.220446e− 15 −4.440892e− 15
0 −1 −7.691851e− 18 −6.409876e− 18
0 −1.110223e− 16 8.127397e− 19 −9.384709e− 19
0 −1.110223e− 16 3.033186e− 18 3.502421e− 18


 = UT

2 A,

where

‖M (2)(3: 4, 3: 4)‖F = 4.7967e− 18.

Then the procedure of Algorithm 5.1 produces

C(2) =




1 −5.438960e− 15 0 0
0 −.4082483 .7071068 .5773503
0 0 −1.778109e− 19 −1.625479e− 18
0 0 9.242744e− 18 6.066371e− 18


 = M (2)V2,

which has

‖C(2)(3: 4, 3: 4)‖F = 1.1176e− 17,

and the columns of C(2)(3: 4, 3: 4) are linearly independent. Mathematically,
‖M (2)(3: 4, 2: 4)‖F = ‖C(2)(3: 4, 3: 4)‖F , but, in fact,

‖M (2)(3: 4, 2: 4)‖F = 1.5708e− 16,
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which is more than 10 times as large. The value of s in Algorithm 5.1 is 2 for this
step. The values in M (2)(3: 4, 2) are mostly rounding error from computing M (2).
Step 3 of Algorithm 5.1 recomputes these components of column 2 from columns 3
and 4 so that

C(2,2)(3: 4, 2: 4)C(2)(1, 2: 4)T = 0,

as is expected.
The resulting bidiagonal matrix for our Givens procedure (to the digits displayed)

is

B =



−1 −5.43896e− 15 0 0
0 −0.408248 0.912871 0
0 0 1.10577e− 18 −1.01936e− 19
0 0 0 −1.26113e− 19


 .

The matrix B has the same singular values as those obtained by Jacobi to 15 significant
digits. Thus there can be no important difference in their quality. The corresponding
singular vectors are

U =



−0.633989 −0.773342 2.23672e− 33 −1.44416e− 34
−0.446489 0.366034 0.553113 0.600611
−0.446489 0.366034 0.243588 −0.779315
−0.446489 0.366034 −0.7967 0.178704


 ,

V =




−0.633989 −0.773342 4.82373e− 15 −1.17624e− 15
−0.773342 0.633989 −1.10294e− 16 4.3525e− 17

−1.53653e− 15 −1.61158e− 15 −0.646375 −0.76302
−2.72962e− 15 −3.50472e− 15 −0.76302 0.646375


 .

The first two singular vectors correspond to a cluster at 1; thus they cannot be expected
to be the same, but the subspaces associated with the leading two singular values are
computed correctly. The third and fourth singular vectors are the same as obtained by
Jacobi to 15 digits.

If C(2) above is computed from M (2) using an ordinary implementation of Givens
rotations, we obtain

C(2) =




1 −5.43896e− 15 0 0
0 −0.408248 0.707107 0.57735
0 −4.53681e− 17 7.85621e− 17 6.39977e− 17
0 −4.49149e− 17 7.87191e− 17 6.41258e− 17


 .

Of course, we set C(2)(3: 4, 2) = 0, but that neglects a column of 2-norm 6.3841e− 17
which is of the magnitude of the singular values in lower 2× 2 corner of C.

If we continue the computation this way, the resulting singular values are

Σ = diag(1, 1, 5.85614e− 17, 1.62027e− 22).

Singular values 3 and 4 are wrong. The singular vectors matrices are

U =



−0.615412 −0.788205 0 0
−0.455071 0.355308 0.816496 0.00081583
−0.455071 0.355308 −0.407542 −0.707514
−0.455071 0.355308 −0.408955 0.706699


 ,
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V =




−0.615412 −0.788205 4.96505e− 15 −1.37484e− 17
−0.788205 0.615412 −1.11022e− 16 2.1684e− 19

−1.49775e− 15 −1.64768e− 15 −0.449689 −0.893185
−2.64547e− 15 −3.56866e− 15 −0.893185 0.449689


 .

As in the case of the Householder algorithm, the singular vectors associated with the
clustered singular value at 1 are correct, but the individual singular vectors associated
with singular values 3 and 4 are wrong. This suggests that Algorithm 5.1 makes a
difference in how well the bidiagonal reduction is computed.

We also tried this example with Householder transformations where the transfor-
mation Uk and Vk were performed in reverse order. The results were similar to those
for Givens method implemented without using Algorithm 5.1.

We have now specified everything in Algorithm 4.1, and thus we give our proposed
bidiagonal reduction algorithm in the next section.

6. A Givens-based bidiagonal reduction algorithm and its backward
error.

6.1. Statement of the algorithm. We now present a Givens-based bidiagonal
reduction procedure for an n × n matrix C satisfying (3.6). In section 6.2, we show
that this new algorithm will achieve error bounds of the form (1.5)–(1.8).

Algorithm 6.1 (new procedure for bidiagonal reduction).
1. Let U1 be an orthogonal transformation such that

UT
1 C(: , 1) = γ1e1,

C ← UT
1 C, U ← U1, V ← V1 ≡ I.

2. for k = 2:n− 1
(a) If C(k − 1, k:n) �= 0, let Vk be the product of Givens rotations

Vk = Vk,k+1 · · ·Vk,n, Vk,j = J(k, j, θkj)

that satisfies

V T
k C(k − 1, k:n)T = ±φke1,

else Vk = I (implicitly). Compute

yk = C(k:n, k:n)Vke1, V (: , k:n)← V (: , k:n)Vk.

(b) Find an orthogonal transformation Uk such that

UT
k yk = γke1,

C(k:n, k:n)← UT
k C(k:n, k:n), U(: , k:n)← U(: , k:n)Uk.

(c) If C(k − 1, k:n) �= 0, let v
(k)
1 = C(k − 1, k:n)T /φk and compute

C(k:n, k:n)← C(k:n, k:n)Vk

using the two calls
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compute pivot(C(k:n, k:n), n− k + 1,v
(k)
1 , cn, sn, s);

rot back(C(k:n, k:n), n− k + 1, cn, sn, s);

3.

γn ← C(n, n), φn ← C(n− 1, n)

The bidiagonal reduction of C is given by

C = UBV T ,

where

B = bidiag(γ1, . . . , γn;φ2, . . . , φn).

Table 6.1 summarizes the complexity of the two bidiagonal reduction algorithms.
The extra operations in Algorithm 6.1 over Algorithm 4.1 are the computation of the
column norms hidden in the routine compute pivot, and the use of Givens rotations
instead of Householder transformations.

Table 6.1
Complexity of bidiagonal reduction algorithms.

Compute U ,V ? Algorithm 4.1(H) Algorithm 6.1

Yes 20
3
n3 26

3
n3

No 8
3
n3 4n3

H – with Householder transformations

6.2. Error bounds on Algorithm 6.1. The error bounds for this paper are
stated in two theorems.

Theorem 6.1. Let C ∈ �n×n and let B = bidiag(γ(1:n);φ(2:n)) ∈ �n×n be
the bidiagonal matrix computed by Algorithm 6.1 in floating point arithmetic with
machine precision εM . Let C(k), k = 1, . . . , n− 1, be the contents of C after k passes
thorough the main loop of Algorithm 6.1. Then there exist U, V ∈ �n×n and modestly
growing functions gi(·), i = 1, 2, 3, such that

C + δC = U(B + δB)V T ,(6.1)

where

‖UTU − I‖2, ‖V TV − I‖2 ≤ g1(n)εM +O(ε2
M ),(6.2)

|δB| ≤ g2(n)εM |B|+O(ε2
M ), | · | and ≤ entry-wise,(6.3)

and for j = 1, . . . , n

‖δC(: , j:n)‖F ≤ εMg3(n) max
0≤k<j

‖C(k)(k + 1:n, j:n)‖F(6.4)

≤ εMg3(n)ρ̂
(j−1)
V ‖C(: , j:n)‖F +O(ε2

M ),
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where ρ̂
(j−1)
V is defined by (2.9).

Proof. This proof is an induction argument on Theorem 5.8. Using the notation
from that theorem, we let

Ũk = Û1E
−1
2 Û2 · · · ÛkE

−1
k ,

Ūk = ÛkEkÛk+1Ek+1 · · · Ûn−1En−1,

U = Ũn−1 = Ū1,

Q̃k = Q−T
2 · · ·Q−T

k ,

Q̄k = Qk+1 · · ·Qn−1, Q̄n = I,

V = Q̃n−1 = Q̄−T
1 .

Clearly, by an induction argument on the bounds onQk and Ek from Theorem 5.8,
we have that

‖V T V − I‖2, ‖UT U − I‖2 ≤ 2n3εM +O(ε2
M ),

which establishes (6.2).
An induction argument on the backward error bound in Theorem 5.8 yields

C + δC = U(B + δB)V T ,

where

δC =

n−1∑
k=1

ŨkδC
(k)Q̃T

k−1

and

δB =

n−1∑
k=1

ŪT
k ek−1

(
δγk−1 δφk

)( eTk−1

eTk

)
Q̄k.

Clearly, Ūk and Q̄k have no effect on the terms of the sum constituting δB, so

δB =
n−1∑
k=1

ek−1

(
δγk−1 δφk

)( eTk−1

eTk

)

= bidiag(δγ1, . . . , δγn−1, 0; δφ2, . . . , δφn),

where from Theorem 5.8,

|δγk| ≤ 3(n− k + 2)2εM |γk|+O(ε2
M ), |δφk| ≤ 3(n− k + 1)εM |γk|+O(ε2

M )
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for all appropriate k. We may write (conservatively) that

|δB| ≤ 3(n+ 1)2εM |B|+O(ε2
M ),

thereby establishing (6.3).
To prove (6.4), we note that

‖δC(: , j:n)‖F ≤
n−1∑
k=1

‖ŨkδC
(k)Q̃T

k

(
0

In−j+1

)
‖F +O(ε2

M )

=

n−1∑
k=1

‖δC(k)Q̃T
k

(
0

In−j+1

)
‖F +O(ε2

M ).

The structure of the Givens rotations in the algorithm give us that

Q̃T
k = Q−1

k−1 · · ·Q−1
1

(
0

In−j+1

)
=


k − 1 J1

j − k + 1 0
n− j + 1 J2


 = J.(6.5)

Noting that

δC(1: k − 1, : ) = 0, δC(: , 1: k − 1) = 0,

we have that

‖δC(k)(: , j:n)QT
k−1

(
0

In−j+1

)
‖F = ‖δC(k)(: , j:n)J2‖F ≤ ‖δC(k)(: , j:n)‖F .

Therefore,

‖δC(: , j:n)‖F ≤
n∑

k=1

‖δC(k)(: , j:n)‖F .

Using the bound on ‖δC(k)(: , j:n)‖F and the definition of βk,j from Theorem 5.8, we
have

‖δC(: , j:n)‖F ≤ εM

n−1∑
k=1

f1(n− k + 1)βk,j +O(ε2
M )

≤ εMg3(n) max
1≤k<j≤n

βk,j +O(ε2
M ),

where

g3(n) =
n4

4
+

20n3

3
+ 6n.

From the definition of βk,j we have that

max
1≤k<j

βk,j = max
1≤k<j

‖C(k)(k + 1:n, j:n)‖F ≤ ρ̂
(j−1)
V ‖C(: , j:n)‖F .

That establishes (6.4) and the theorem.
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Theorem 6.1 uses none of the properties of C from section 3, the backward error
bound above applies to Algorithm 6.1 applied to any nonsingular matrix. Equation
(3.6) allows us to obtain a columnwise bound expressed in the next theorem.

Theorem 6.2. Let C ∈ �n×n satisfy (3.6), and let B = bidiag(γ(1:n);φ(2:n)) ∈
�n×n be the bidiagonal matrix computed by Algorithm 6.1 in floating point arithmetic
with machine precision εM . Let C(k), k = 1, . . . , n − 1, be the contents of C after k

passes through the main loop of Algorithm 6.1, and let ρ̂
(k)
V be defined by (5.11). Then

there exist U, V ∈ �n×n satisfying (6.2) and a modestly growing function g4(·) such
that B and C satisfy (6.1), δB is as in Theorem 6.1, and

‖δC(: , j)‖2 ≤ εM ρ̂
(j−1)
V g4(n)‖C(: , j)‖2 +O(ε2

M ),(6.6)

where

ρ̂
(j−1)
V = min{ρ(j−1)

V , ‖C‖F /‖C(: , j:n)‖F }.
Proof. The result follows from our bounds on

‖C(k)(k + 1:n, j:n)‖F .

A combination of Theorem 6.1 and (3.6) leads to

‖δC(: , j)‖2 ≤ ‖δC(: , j:n)‖F
≤ εMg3(n)‖C(k)(k + 1:n, j:n)‖F +O(ε2

M )

≤ εM ρ̂
(j−1)
V g3(n)‖C(: , j:n)‖F +O(ε2

M )

≤ εM ρ̂
(j−1)
V

√
ng3(n)‖C(: , j)‖2 +O(ε2

M )

= εM ρ̂
(j−1)
V g4(n)‖C(: , j)‖2, g4(n) =

√
ng3(n) +O(ε2

M ).

From Theorem 6.2, we have the conditional columnwise error bound necessary to
establish error bounds on the singular values and vectors as discussed in section 2.

7. Numerical tests. We performed three sets of numerical tests on the bidiag-
onal reduction algorithms. Three separate routines were used to find the SVD of the
matrices in the test sets, as follows.

• The Jacobi algorithm. The Jacobi method described in [15]. In Figures 7.1
and 7.2, this is referred to as Jacobi alg.
• The Givens algorithm. The bidiagonalization method of Algorithm 6.1 fol-
lowed by the bisection routine of Demmel and Kahan [14]. In Figures 7.1,
7.2, and 7.3, this is referred to as Givens alg.
• The Householder algorithm. The bidiagonalization method of Algorithm 4.1
using Householder transformations followed by the same bisection routine. In
Figures 7.1, 7.2, and 7.3, this is referred to as Householder alg.

Our first two sets of examples are constructed using the Kahan matrices [29]. Let
Ĉ be the n× n lower triangular matrix

Ĉ = (ĉij), ĉij =

{
αi−1, i = j,
−αi−1β, i > j,

(7.1)

where α2 + β2 = 1 and α, β > 0. If we chose α bounded away from zero or one,
we obtain a matrix that is unaltered by QR factorization with column pivoting, has
slowly decaying diagonals, but has a condition number that grows rapidly with n.
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This matrix has one isolated small singular value [40], σn(Ĉ) in (7.3). The other
singular values σj(Ĉ), k = 1, . . . , n− 1, are close enough to ‖Ĉ‖2 that standard SVD
software will compute them to nearly machine relative accuracy. The smallest singular
value σn(Ĉ) may be recovered from

σn(Ĉ) =
|det(Ĉ)|∏n−1
j=1 σj(Ĉ)

=
|∏n

j=1 ĉjj |∏n−1
j=1 σj(Ĉ)

.(7.2)

Since the formula (7.2) uses only multiplications and divisions, in the absence of
underflow, it will compute σn(Ĉ) to nearly machine relative accuracy.

We used the formula (7.2) to construct both of the first two test sets given next.
For each matrix, we also computed the values

ρV = max
1≤k≤n−1

ρ
(k)
V , ρ̂V = max

1≤k≤n−1
ρ̂
(k)
V ,

totratio = max
1≤k<j≤n

‖C(k)(k + 1:n, j:n)‖F
‖C(: , j:n)‖F .

Of course, we expect that ρV ≥ ρ̂V ≥ totratio. In practice, the gaps separating these
three quantities were very large.

Example 7.1 (test set 1). We let Ĉ in (7.1) be constructed with β = 0.3 and
n = 50. Let w be the right singular vector such that

Ĉw = σn(Ĉ)y, ‖w‖2 = ‖y‖2 = 1,(7.3)

where σn(Ĉ). We then constructed the twenty ( 20) 51× 51 matrices defined by

Cj =

(
Ĉ 0

ζwT ξj

)
, j = 1, . . . , 20,(7.4)

where

ζ = 0.5ĉ50,50, ξj = σ50(Ĉ)/100j−1.

The smallest singular value of Cj is also the smallest singular value of the 2×2 matrix

Dj =

(
σ50(Ĉ) 0

ζ ξj

)
.

Given σ50(Ĉ) to nearly machine relative accuracy, we can find the smallest singular
value of Dj to nearly machine relative accuracy. We used this value as the exact value
of σ51(Cj).

We then computed σ51(Cj) using the all three of the algorithms given above. The
results are represented in Figure 7.1. The values posted are

log10

( |σ̃51(Cj)− σ51(Cj)|
σ51(Cj)

)
,

where σ̃51(Cj) and σ51(Cj) are the computed and “exact” 51st singular values of Cj.
From Figure 7.1, we can see that the Jacobi and Givens algorithms always compute
σ51 to at least 10 digit accuracy in IEEE double precision. There is no significant
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Fig. 7.1. Relative error from Example 7.1.

difference in the accuracy of the Jacobi and Givens algorithms on this test set. The
Householder algorithm often obtains no accurate digits at all.

The values of ρV ,ρ̂V and totratio are given in Table 7.1. In this case, the values
of ρV are gross overestimates of the growth factor totratio which never exceeds 4.

Example 7.2 (test set 2). For the second test set, we computed the lower trian-
gular matrices Cn, n = 50, 60, . . . , 200, from the QR factorization

Ĉn = QCT
n ,

where Ĉn is a Kahan matrix of size n with β = 0.3. Once again this matrix has
exactly one small singular value which we compute using the formula (7.2) applied to
Cn.

The results represented in Figure 7.2 are the values

log10

( |σ̃n(Cn)− σn(Cn)|
σn(Cn)

)
,

where σn(Cn) is the value computed from the formula (7.2) (presumed to be exact)
and σ̃n(Cn) computed by one of the three algorithms.

Similar to the results for Example 7.1, the Jacobi and Givens algorithms compute
σn(Cn) to 11-digit accuracy and, once again, there is no significant difference in their
accuracy. The Householder algorithm fares a bit better than in Example 7.1, but still
obtains no more than 5-digit accuracy.

The values of ρV , ρ̂V , and totratio are given in Table 7.2. In this class of examples
totratio was large for some of the smaller problems—it was at 1.7× 105 for n = 50—
but is much smaller for the larger dimensions. Again both ρV and ρ̂V are gross
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Table 7.1
Growth factors for bordered Kahan matrices.

j ρV ρ̂V totratio
1 1.25434e+009 1.45144e+007 3.86412
2 1.25325e+009 9.7244e+008 3.40234
3 1.25299e+009 8.80033e+006 3.40234
4 1.25299e+009 88066.1 3.40234
5 1.25299e+009 880.661 3.40234
6 1.25299e+009 36.4059 3.40234
7 1.25299e+009 36.4059 3.40234
8 1.25299e+009 36.4059 3.40234
9 1.25299e+009 36.4059 3.40234
10 1.25299e+009 36.4059 3.40234
11 1.25299e+009 36.4059 3.40234
12 1.25299e+009 36.4059 3.40234
13 1.25299e+009 36.4059 3.40234
14 1.25299e+009 36.4059 3.40234
15 1.25299e+009 36.4059 3.40234
16 1.25299e+009 36.4059 3.40234
17 1.25299e+009 36.4059 3.40234
18 1.25299e+009 36.4059 3.40234
19 1.25299e+009 36.4059 3.40234
20 1.25299e+009 36.4059 3.40234
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Fig. 7.2. Relative error from Example 7.2.

overestimates. For all of the matrices Algorithm 6.1 computes the smallest singular
value correctly.

The values of ρ̂V behave somewhat erratically. It is at about 105 or 106 for the
first three matrices and hovers about 104 for the remaining examples. We do not have
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Table 7.2
Growth factors for flipped Kahan matrices.

n ρV ρ̂V totratio
50 840495 279473 171710
60 3.99297e+006 3.99297e+006 89542
70 9.55389e+006 395549 6858.24
80 2.88479e+007 12120.4 507.934
90 5.73345e+008 239.548 25.5923
100 3.13879e+009 404.636 1.39048
110 1.42799e+009 1430.55 1.39033
120 8.87921e+008 2507.13 1.61819
130 5.31115e+008 4181.68 1.61266
140 1.1211e+009 6096.04 1.61983
150 1.06992e+009 11534.8 1.65989
160 1.85538e+009 7503.35 1.58612
170 2.94431e+008 17075.8 1.52791
180 6.5911e+008 20437 1.64403
190 1.03768e+010 33647.4 1.61659
200 8.45255e+008 55320.1 1.55874

a ready explanation for this behavior and it does not seem to affect the accuracy of
the algorithm.

These two test sets clearly demonstrate that significant accuracy may be gained
through the use of Algorithm 6.1. We found no class of examples where the Jacobi
algorithm obtained significantly better accuracy for matrices C of the form (3.1) than
did the Givens algorithm.

Interestingly, there were many examples of badly scaled matrices resulting from
(3.1) with very small singular values where the Householder algorithm computed the
singular values very accurately. The following test set is such a case.

Example 7.3 (test set 3). We used the set

Rk, k = 25, . . . , 90,

where Rk was the Cholesky factor of the Hilbert matrix of dimension k. That is, Rk

was the upper triangular matrix with positive diagonals that satisfied

Hk = RT
k Rk,

where Hk is a k×k matrix whose (i, j) entry is hij = (i+ j−1)−1. The matrix Rk is
computed from formulas given by Choi [10]. We then computed the matrices Ck, k =
25, . . . , 90, for input to the three algorithms using the Cox–Higham [11] procedure in
section 3 applied to RT

k .

We note that for every matrix Cj in this test set the value κ2(CD−1
C ) in (2.12)

is less than 200. From [15], the Jacobi method will compute all of singular values of
each Cj to near machine relative accuracy.

For this test set, we do not present a table of the growth factors ρV , ρ̂V , totratio.
Instead we simply note that for each matrix in this set, ρV < 212, ρ̂V < 13.5, and
totratio < 4. Thus no significant growth occurred in the columns of these matrices.

For the matrices in Example 7.3, there are no fast formulas for computing the
smallest singular value to relative accuracy, thus we use the results of Jacobi algorithm
as exact to test the two bidiagonal reduction algorithms.
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Fig. 7.3. Relative error from Example 7.3.

For each matrix in that set, we calculated the two ratios

max errorG = max
1≤i≤n

|σG
i − σJ

i |
σJ
i

,

max errorH = max
1≤i≤n

|σH
i − σJ

i |
σJ
i

,

where σJ
i , σG

i , and σH
i are the ith singular values as calculated by Jacobi, Givens,

and Householder algorithms, respectively. Thus we were trying to measure how well
the SVDs calculated from the two bidiagonal reduction algorithms agreed with that
from the Jacobi algorithm. It can be quickly seen from Figure 7.3 that there is no
important difference in the accuracy of the three algorithms on this test set. The good
behavior of the Jacobi and Givens algorithms can be explained, but to the author’s
knowledge there is no satisfactory explanation in the literature for the good behavior
of the Householder algorithm.

8. Conclusion. We have constructed a new bidiagonal reduction algorithm (Al-
gorithm 6.1) that allows us to compute the SVD of matrices resulting from (3.1) with
more guaranteed accuracy. The accuracy guarantee is not quite as good as the one for
Jacobi methods, but we give up little of the speed advantage of bidiagonal reduction
methods.

The results given above raise an important unanswered question. The fact that
Algorithm 6.1 is based upon 2 × 2 orthogonal transformations in standard order is
used in the proofs of Theorems 5.4 and 6.1. It is not known whether an algorithm
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based upon Householder transformations (of size greater than 2× 2) or one based on
other Givens orderings could yield similar error bounds.
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Abstract. This paper is concerned with the problem of approximating det(A)1/n for a large
sparse symmetric positive definite matrix A of order n. It is shown that an efficient solution of
this problem is obtained by using a sparse approximate inverse of A. The method is explained and
theoretical properties are discussed. The method is ideal for implementation on a parallel computer.
Numerical experiments are described that illustrate the performance of this new method and provide
a comparison with Monte Carlo–type methods from the literature.

Key words. determinant, sparse approximate inverse, preconditioning
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1. Introduction. Throughout this paper, A denotes a real symmetric positive
definite matrix of order n with eigenvalues

0 < λ1 ≤ λ2 ≤ · · · ≤ λn .

In a number of applications, for example, in lattice quantum chromodynamics [14, 8,

16, 17] certain functions of the determinant of A, such as det(A)
1
2 or ln(det(A)), are of

interest. It is well known (cf. also section 2) that for large n the function A→ det(A)
has poor scaling properties and can be very ill-conditioned for certain matrices A. In
this paper we consider the function

d : A→ det(A)
1
n .(1.1)

A few basic properties of this function are discussed in section 2. In this paper
we present a new method for approximating d(A) for large sparse matrices A. The
method is based on using a matrix which is in a certain sense close to A−1 and for
which the determinant can be computed with low computational costs. One popular
method for approximating A is based on the construction of an incomplete Cholesky
factorization. This incomplete factorization is often used as a preconditioner when
solving linear systems with matrix A. In this paper we use another preconditioning
technique, namely, that of factorized sparse approximate inverses (cf. [1, 7, 10, 12]).
With such a method a lower triangular matrix GE with a prescribed sparsity structure
E can be constructed such that GEAG

T
E is in a certain sense close to the identity.

We then use det(GE)
−2/n =

∏n
i=1(GE)

−2/n
ii as an approximation for d(A). In section

3 we explain the construction of GE and discuss theoretical properties of this sparse
approximate inverse. For example, such a sparse approximate inverse can be shown to
exist for any symmetric positive definite A and has an interesting optimality property
related to d(A). From this optimality property it immediately follows that d(A) ≤
det(GE)

−2/n holds and that the approximation of d(A) by det(GE)
−2/n becomes
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better if we take a larger sparsity pattern E. Besides this optimality property the
method we present has two other interesting properties. The method is ideal for a
parallel implementation and has very low storage requirements.

To make a comparison with other methods for approximating d(A) we describe
two known Monte Carlo–type methods (from [3] and [16]). We present results of
a few numerical experiments. In these experiments the new method and the Monte
Carlo methods are applied to a few model examples of large sparse symmetric positive
definite matrices.

2. Preliminaries. In this section we discuss a few elementary properties of the
function d. We give a comparison between the conditioning of the function d and
of the function A → d(A)n = det(A). We use the notation ‖ · ‖2 for the Euclidean
norm, and κ(A) = λn/λ1 denotes the spectral condition number of A. The trace of
the matrix A is denoted by tr(A).

Lemma 2.1. Let A and A+ δA be symmetric positive definite matrices of order
n. The following inequalities hold:

λ1 ≤ d(A) ≤ λn ,(2.1a)

d(A) ≤ 1

n
tr(A) ,(2.1b)

∣∣∣d(A+ δA)− d(A)
d(A)

∣∣∣ ≤ κ(A)‖δA‖2‖A‖2 .(2.1c)

Proof. The result in (2.1a) follows from

λ1 ≤
(

n∏
i=1

λi

) 1
n

≤ λn .

The result in (2.1b) follows from the inequality between the geometric and arithmetic
mean:

d(A) =

(
n∏
i=1

λi

) 1
n

≤ 1

n

n∑
i=1

λi =
1

n
tr(A) .

Now note that

d(A+ δA)− d(A)
d(A)

=
(
det(I +A−1δA)

) 1
n − 1 =

(
n∏
i=1

(1 + λi(A
−1δA))

) 1
n

− 1 .

From λi(A
−1δA) ≤ ‖A−1‖2‖δA‖2 it follows that

(
n∏
i=1

(1 + λi(A
−1δA))

) 1
n

− 1 ≤
(

n∏
i=1

(1 + ‖A−1‖2‖δA‖2)
) 1

n

− 1 = ‖A−1‖2‖δA‖2 .

Using 1 + λi(A
−1δA) > 0 and λi(A

−1δA) ≥ −‖A−1‖2‖δA‖2 we obtain

(
n∏
i=1

(1 + λi(A
−1δA))

) 1
n

−1 ≥
(

n∏
i=1

max{0, 1−‖A−1‖2‖δA‖2}
) 1

n

−1 ≥ −‖A−1‖2‖δA‖2.
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Thus we have

∣∣∣d(A+ δA)− d(A)
d(A)

∣∣∣ ≤ ‖A−1‖2‖δA‖2 = κ(A)
‖δA‖2
‖A‖2 ,

and the result in (2.1c) is proved.
The result in (2.1c) shows that the function d(A) is well-conditioned for matrices

A which have a not-too-large condition number κ(A).
We now briefly discuss the difference in conditioning between the functions A→

d(A) and A → det(A). For any symmetric positive definite matrix B of order n we
have

d′(A)B := lim
t→0

d(A+ tB)− d(A)
t

=
d(A)

n
tr(A−1B) .

From the Courant–Fischer eigenvalue characterization, we obtain, for all i, λi(A
−1B) ≤

λi(A
−1)‖B‖2. Hence

‖d′(A)‖2 := max
B is SPD

|d′(A)B|
‖B‖2 =

d(A)

n
max

B is SPD

tr(A−1B)

‖B‖2 ≤ d(A)
n

tr(A−1) ,

with equality for B = I. Thus for the condition number of the function d we have

‖A‖2‖d′(A)‖2
d(A)

=
1

n
‖A‖2tr(A−1) ≤ κ(A) .(2.2)

Note that for the diagonal matrix A = diag(Aii) with A11 = 1, Aii = α for i > 1, the
inequality in (2.2) is sharp if 0 < α
 1 and n is large. For this A and with δA = εI,
0 < ε
 α, the bound in (2.1c) is sharp, too.

For d̃(A) = det(A) = d(A)n the condition number is given by

‖A‖2‖d̃′(A)‖2
d̃(A)

=
‖A‖2nd(A)n−1‖d′(A)‖2

d(A)n
= ‖A‖2tr(A−1) ,(2.3)

i.e., n times larger than the condition number in (2.2). The condition numbers for
d and d̃ give an indication of the sensitivity if the perturbation ‖δA‖2 is sufficiently
small. Note that the bound in (2.1c) is valid for arbitrary symmetric positive definite
perturbations δA. The bound shows that even for larger perturbations the function
d(A) is well-conditioned at A if κ(A) is not too large. For the function d̃(A) the
effect of relatively large perturbations can be much worse than for the asymptotic
case (δA→ 0), which is characterized by the condition number in (2.3). Consider, for
example, for 0 < ε < 1

2 a perturbation δA = εA, i.e., ‖δA‖2/‖A‖2 = ε. Then

d̃(A+ δA)− d̃(A)
d̃(A)

= (1 + ε)n − 1 ≥ e 1
2nε − 1 ,

which is very large if, for example, ε = 10−3, n = 105.
The results in this section show that the numerical approximation of the function

d(A) can be considered to be an easier task than the numerical approximation of
A→ det(A).

Remark 2.2. The results on conditioning derived above and the fact that in the
analysis of the sparse approximate inverse the function d(A) plays a natural role (cf.
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section 3) are the main motivation for considering d(A) instead of A → det(A). Of
course, an algorithm for approximating d(A) yields an approximation for det(A) or
ln(det(A)), too. Note that the functions x → xn and x → ln(xn) have condition

numbers n and 1/ ln(x), respectively. Hence, if d̂ is an approximation of d(A) with

relative error |d̂−d(A)|/d(A) ≤ eps, then it follows that |d̂n−det(A)|/det(A) � n eps
and | ln(d̂n)− ln(det(A))|/| ln(det(A))| � eps/| ln(d(A))|.

3. Sparse approximate inverse. In this section we explain and analyze the
construction of a sparse approximate inverse of the matrix A. Let A = LLT be the
Cholesky factorization of A, i.e., L is lower triangular and L−1AL−T = I. Note that

d(A) = d(L)2 =
∏n

i=1 L
2/n
ii . We will construct a sparse lower triangular approximation

G of L−1 and approximate d(A) by d(G)−2 =
∏n

i=1G
−2/n
ii . The construction of a

sparse approximate inverse that we use in this paper was introduced in [10, 11, 12] and
can also be found in [1]. Some of the results derived in this section are also presented
in [1].

3.1. Introduction. We first introduce some notation. Let E ⊂ {(i, j) | 1 ≤
i, j ≤ n} be a given sparsity pattern. By #E we denote the number of elements in
E. Let SE be the set of n × n matrices for which all entries are set to zero if the
corresponding index is not in E:

SE = {M ∈ R
n×n | Mij = 0 if (i, j) /∈ E} .

For 1 ≤ i ≤ n let Ei = E ∩ {(i, j) | 1 ≤ j ≤ n}. If ni := #Ei > 0, we use the
representation

Ei = {(i, j1), (i, j2), . . . , (i, jni)}, 1 ≤ j1 < j2 < · · · < jni ≤ n .(3.1)

For ni > 0 we define the projection

Pi : R
n → R

ni , Pi(x1, x2, . . . , xn)
T = (xj1 , xj2 , . . . , xjni

)T .(3.2)

Note that the matrix

PiAP
T
i : R

ni → R
ni

is symmetric positive definite. To facilitate the analysis below, we first discuss the
construction of a approximate sparse inverse ME ∈ SE in a general framework. For
ME ∈ SE we use the representation

ME =



mT

1

mT
2
...
mT
n


 , mi ∈ R

n .

Note that if ni = 0, then mT
i = (0, 0, . . . , 0).

For given A,B ∈ R
n×n with A symmetric positive definite, we consider the fol-

lowing problem:

determine ME ∈ SE such that (MEA)ij = Bij for all (i, j) ∈ E .(3.3)

In (3.3) we have #E equations to determine #E entries inME . We first give two basic
lemmas which will play an important role in the analysis of the sparse approximate
inverse defined in (3.9) below.
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Lemma 3.1. The problem (3.3) has a unique solution ME ∈ SE. If ni > 0, then
the ith row of ME is given by mT

i with

mi = P
T
i (PiAP

T
i )−1Pibi ,(3.4)

where bTi is the ith row of B.
Proof. The equations in (3.3) can be represented as

(mT
i A)jk = (bTi )jk for all i with ni > 0 and all k = 1, 2, . . . , ni ,

where mT
i is the ith row of ME . Consider an i with ni > 0. Note that ME ∈ SE ,

and hence PT
i Pimi = mi. For the unknown entries in mi we obtain the system of

equations

(APT
i Pimi)jk = (bi)jk , k = 1, 2, . . . , ni ,

which is equivalent to

PiAP
T
i Pimi = Pibi .

The matrix PiAP
T
i is symmetric positive definite and thus mi must satisfy

Pimi = (PiAP
T
i )−1Pibi .

Using PT
i Pimi = mi we obtain the result in (3.4). The construction in this proof

shows that the solution is unique.
Below we use the Frobenius norm, denoted by ‖ · ‖F :

‖B‖2F =

n∑
i,j=1

B2
ij = tr(BBT ) , B ∈ R

n×n.(3.5)

Lemma 3.2. Let A = LLT be the Cholesky factorization of A and let ME ∈ SE
be the unique solution of (3.3). Then ME is the unique minimizer of the functional

M → ‖(B −MA)L−T ‖2F = tr((B −MA)A−1(B −MA)T ), M ∈ SE .(3.6)

Proof. Let ei be the ith basis vector in R
n. Take M ∈ SE . The ith rows of M

and B are denoted by mT
i and bTi , respectively. Now note

tr((B −MA)A−1(B −MA)T ) =
n∑
i=1

eTi (BA
−1BT −MBT −BMT +MAMT )ei

= tr(BA−1BT ) +

n∑
i=1

(−2mT
i bi +m

T
i Ami) .(3.7)

The minimum of the functional (3.6) is obtained if in (3.7) we minimize the functionals

mi → −2mT
i bi +m

T
i Ami , mi ∈ R(PT

i )(3.8)

for all i with ni > 0. If we write mi = P
T
i m̂i , m̂i ∈ R

ni , then for ni > 0 the functional
(3.8) can be rewritten as

m̂i → −2m̂T
i Pibi + m̂

T
i PiAP

T
i m̂i , m̂i ∈ R

ni .

The unique minimum of this functional is obtained for m̂i = (PiAP
T
i )−1Pibi, i.e.,

mi = P
T
i (PiAP

T
i )−1Pibi for all i with ni > 0. Using Lemma 3.1 it follows that ME

is the unique minimizer of the functional (3.6).
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3.2. Sparse approximate inverse for approximating d(A). We now intro-
duce the sparse approximate inverse that will be used as an approximation for L−1.
For this we chose a lower triangular pattern El ⊂ {(i, j) | 1 ≤ j ≤ i ≤ n} and we
assume that (i, i) ∈ El for all i. The sparse approximate inverse is constructed in two
steps:

1. ĜEl ∈ SEl such that (ĜElA)ij = δij for all (i, j) ∈ El ,(3.9a)

2. GEl := (diag(ĜEl))−
1
2 ĜEl .(3.9b)

The construction of GEl in (3.9) was first introduced in [10]. A theoretical background
for this factorized sparse inverse is given in [12]. The approximate inverse ĜEl in (3.9a)
is of the form (3.3) with B = I. From Lemma 3.1 it follows that in (3.9a) there is a
unique solution ĜEl . Note that because El is lower triangular and (i, i) ∈ El we have
ni = #El > 0 for all i and jni

= i in (3.1). Hence it follows from Lemma 3.1 that the
ith row of ĜEl , denoted by gTi , is given by

gi = P
T
i (PiAP

T
i )−1Piei, i = 1, 2, . . . , n,

= PT
i (PiAP

T
i )−1êi, with êi = (0, . . . , 0, 1)T ∈ R

ni .(3.10)

The ith entry of gi, i.e., e
T
i gi, is given by êTi (PiAP

T
i )−1êi, which is strictly positive

because PiAP
T
i is symmetric positive definite. Hence diag(ĜEl) contains only strictly

positive entries and the second step (3.9b) is well-defined. Define ĝi = Pigi. The sparse
approximate inverse ĜEl in (3.9a) can be computed by solving the low-dimensional
symmetric positive definite systems

PiAP
T
i ĝi = êi := (0, . . . , 1)T , i = 1, 2, . . . , n.(3.11)

For the approximation of d(A) we propose to use d(GEl)−2. Due to

d(GEl)−2 = d(ĜEl)−1 =

n∏
i=1

(ĜEl)
− 1

n
ii

we only need the diagonal entries of ĜEl . In the systems PiAP
T
i ĝi = êi we then only

have to compute the last entry of ĝi, i.e., (ĝi)ni . If these systems are solved using
the Cholesky factorization PiAP

T
i =: LiL

T
i (Li lower triangular) we only need the

(ni, ni) entry of Li, since (ĝi)ni = (Li)
−2
nini

and thus

d(GEl)−2 =

n∏
i=1

(Li)
2
n
nini .

This leads to the following algorithm.
Algorithm 3.3. Let A ∈ R

n×n and a lower triangular pattern El be given.
For i = 1, . . . , n do:

1. Construct the matrix Ai := PiAP
T
i ∈ R

ni×ni .
2. Compute the Cholesky factorization Ai = LiL

T
i and set γi := (Li)nini .

End. Compute

n∏
i=1

γ
2
n
i .(3.12)
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3.3. Analysis of the method. We now derive some interesting properties of
the sparse approximate inverse as in (3.9). We start with a minimization property of
ĜEl .

Theorem 3.4. Let A = LLT be the Cholesky factorization of A and D :=
diag(L), L̂ := LD. ĜEl as in (3.9a) is the unique minimizer of the functional

G→ ‖(I −GL̂)D−1‖2F = tr((I −GL̂)D−2(I −GL̂)T ), G ∈ SEl .(3.13)

Proof. The construction of ĜEl in (3.9a) is as in (3.3) with E = El, B = I. Hence
Lemma 3.2 is applicable with B = I. It follows that ĜEl is the unique minimizer of

G→ ‖(I −GA)L−T ‖2F , G ∈ SEl .(3.14)

Decompose L−T as L−T = D−1+R with R strictly upper triangular. We then obtain

‖(I −GA)L−T ‖2F = ‖(I −GLLT )L−T ‖2F = ‖D−1 +R−GL‖2F
= ‖D−1 −GL‖2F + ‖R‖2F = ‖(I −GL̂)D−1‖2F + ‖R‖2F .

Hence the minimizers in (3.14) and (3.13) are the same.
Remark 3.5. From the result in Theorem 3.4 we see that in a scaled Frobenius

norm (scaling with D−1) ĜEl is the optimal approximation of L̂−1 in the set SEl , in
the sense that ĜElL̂ is closest to the identity. A seemingly more natural minimization
problem is

min
G∈S

El

‖I −GL‖F ,(3.15)

i.e., we directly approximate L−1 (instead of L̂−1) and do not use the scaling with
D−1. The minimization problem (3.15) is of the form as in Lemma 3.2 with B = LT ,
E = El. Hence the unique minimizer in (3.15), denoted by G̃El , must satisfy (3.3)
with B = LT :

(G̃ElA)ij = Lji for all (i, j) ∈ El .(3.16)

Because El contains only indices (i, j) with i ≥ j and Lji = 0 for i > j, it follows

that G̃El ∈ SEl must satisfy

(G̃ElA)ij =

{
0 if i �= j,
Lii if i = j

for all (i, j) ∈ El .(3.17)

This is similar to the system of equations in (3.9a), which characterizes ĜEl . However,
in (3.17) one needs the values Lii, which in general are not available. Hence opposite
to the minimization problem related to the functional (3.13) the minimization problem
(3.15) is in general not solvable with acceptable computational costs.

The following lemma will be used in the proof of Theorem 3.8.
Lemma 3.6. Let ĜEl be as in (3.9a). Decompose ĜEl as ĜEl = D̂(I − L̂), with

D̂ diagonal and L̂ strictly lower triangular. Define El
− := El \ {(i, i) | 1 ≤ i ≤ n}.

Then L̂ is the unique minimizer of the functional

L→ tr((I − L)A(I − LT )) , L ∈ SEl
−
,(3.18)
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and also of the functional

L→ det[diag((I − L)A(I − LT ))] , L ∈ SEl
−
.(3.19)

Furthermore, for D̂ we have

D̂ = [diag((I − L̂)A(I − L̂T ))]−1 .(3.20)

Proof. From the construction in (3.9a) it follows that

((I − L̂)A)ij = 0 for all (i, j) ∈ El
− ,

i.e., L̂ ∈ SEl
−
is such that (L̂A)ij = Aij for all (i, j) ∈ SEl

−
. This is of the form (3.3)

with B = A, E = El
−. From Lemma 3.2 we obtain that L̂ is the unique minimizer of

the functional

L→ tr((A− LA)A−1(A− LA)T ) = tr((I − L)A(I − LT )) , L ∈ SEl
−
,

i.e., of the functional (3.18). From the proof of Lemma 3.2, with B = A, it follows
that the minimization problem

min
L∈S

El
−

tr((I − L)A(I − LT ))

decouples into separate minimization problems (cf. (3.8)) for the rows of L:

min
li∈R(PT

i
)
{−2lTi ai + lTi Ali}(3.21)

for all i with ni > 0. Here lTi and aTi are the ith rows of L and A, respectively. The
minimization problem corresponding to (3.19) is

min
L∈S

El
−

n∏
i=1

((I − L)A(I − LT ))ii = min
L∈S

El
−

n∏
i=1

(Aii − 2lTi ai + l
T
i Ali) .

This decouples into the same minimization problems as in (3.21). Hence the func-
tionals in (3.18) and (3.19) have the same minimizer.

Let J = diag((I − L̂)A(I − L̂T )). Using the construction of ĜEl in (3.9a) we
obtain

D̂2
iiJii = (D̂(I − L̂)A(I − L̂T )D̂)ii = (ĜElAĜT

El)ii

=

n∑
k=1

(ĜElA)ik(ĜEl)ik =

n∑
k=1,(i,k)∈El

δik(ĜEl)ik

= (ĜEl)ii = D̂ii .

Hence D̂ii = J
−1
ii holds for all i, i.e., (3.20) holds.

Corollary 3.7. From (3.20) it follows that diag(ĜElAĜEl) = diag(ĜEl) and
thus, using (3.9b), we obtain

diag(GElAGEl) = I(3.22)
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for the approximate inverse GEl .
The following theorem gives a main result in the theory of approximate inverses.

It was first derived in [12]. A proof can be found in [1], too.
Theorem 3.8. Let GEl be the approximate inverse in (3.9). Then GEl is the

unique minimizer of the functional

G→
1
n tr(GAG

T )

det(GAGT )
1
n

, G ∈ SEl .(3.23)

Proof. For G ∈ SEl we use the decomposition G = D(I − L), with D diagonal
and L ∈ SEl

−
. Furthermore, for L ∈ SEl

−
, JL := diag((I − L)A(I − LT )). Now note

1
n tr(GAG

T )

det(GAGT )
1
n

= det(A)−
1
n

1
n tr(D(I − L)A(I − LT )D)

det(G2)
1
n

= det(A)−
1
n

1
n tr(D

2JL)

det(D2)
1
n

= det(A)−
1
n

1
n tr(D

2JL)

det(D2JL)
1
n

det(JL)
1
n ≥ det(A)−

1
n det(JL)

1
n .(3.24)

The inequality in (3.24) follows from the inequality between the arithmetic and geo-
metric mean: 1

n

∑n
i=1 αi ≥ (

∏n
i=1 αi)

1/n for αi ≥ 0.

For ĜEl in (3.9a) we use the decomposition ĜEl = D̂(I−L̂). For the approximate

inverse GEl we then have GEl = (diag(ĜEl))−
1
2 ĜEl = D̂

1
2 (I − L̂). From (3.19) of

Lemma 3.6 it follows that det(JL) ≥ det(JL̂) for all L ∈ SEl
−
. Furthermore, from

(3.20) of Lemma 3.6 we obtain that for GEl = D̂
1
2 (I − L̂) we have (D̂

1
2 )2JL̂ = I and

thus equality in (3.24) for G = GEl . We conclude that GEl is the unique minimizer
of the functional in (3.23).

Remark 3.9. The quantity

K(A) =
1
n tr(A)

det(A)
1
n

can be seen as a nonstandard condition number (cf. [1, 10]). Properties of this quantity
are given in [1, Theorem 13.5]. One elementary property is

1 ≤ K(A) ≤ λn
λ1

= κ(A) .

Corollary 3.10. For the approximate inverse GEl as in (3.9) we have (cf. (3.22))

1 ≤ K(GElAGT
El) =

1

det(GElAGT
El)

1
n

,

i.e.,

d(A) ≤ det(G2
El)

− 1
n =

n∏
i=1

(GEl)
− 2

n
ii =

n∏
i=1

(ĜEl)
− 1

n
ii =

n∏
i=1

γ
2
n
i ,(3.25)

where γi is as in (3.12). Let Ẽl be a lower triangular sparsity pattern that is larger
than El, i.e., El ⊂ Ẽl ⊂ {(i, j) | 1 ≤ j ≤ i ≤ n}. From the optimality result in
Theorem 3.8 it follows that

1 ≤ K(GẼlAG
T
Ẽl) ≤ K(GElAGT

El) .(3.26)
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In the following remark we summarize the main properties of the new method for
approximating d(A) that is formulated in Algorithm 3.3.

Remark 3.11. The method of approximating d(A) by d(GEl)−2 = d(ĜEl)−1 boils
down to choosing a sparsity pattern El and computing the Cholesky decomposition
of the low-dimensional matrices Ai in step 2 of Algorithm 3.3. We note the following
related to this algorithm:

1. The sparse approximate inverse exists for every symmetric positive definite
A. Note that such an existence result does not hold for the incomplete Cholesky
factorization.

2. The construction of the matrices Ai = PiAP
T
i and the computation of the

Cholesky factorization Ai = LiL
T
i can be realized for all i in parallel. Hence the

method has a very high potential for parallelism.
3. If for a given i the number γi = (Li)nini in (3.12) has been computed the

matrices Ai and Li are not needed anymore. Hence the storage requirements for the
method are very low.

4. The sparse approximate inverse has an optimality property related to the
determinant: The functional G → K(GAGT ), G ∈ SEl , is minimal for GEl . From
this the inequality (3.25) and the monotonicity result (3.26) follow.

5. From (3.25) it follows that
∏n

i=1 γ
2
n
i is an upper bound for d(A).

4. Monte Carlo methods for approximating d(A). In this section we de-
scribe two methods for approximating d(A) that are known from the literature. Both
methods are based on the following proposition [9, 3].

Proposition 4.1. Let H be a symmetric matrix of order n with tr(H) �= 0.
Let V be the discrete random variable which takes the values 1 and −1 each with
probability 0.5 and let z be a vector of n independent samples from V . Then zTHz is
an unbiased estimator of tr(H):

E(zTHz) = tr(H)

and

var(zTHz) = 2
∑
i 	=j
h2
ij .

Using the identity

d(A) = det(A)
1
n = exp

(
1

n
tr ln(A)

)

leads to the following Monte Carlo algorithm.
Algorithm 4.2.
For j = 1, 2, . . . ,M

1. Generate zj ∈ R
n with entries which are uniformly distributed in (0, 1).

2. If (zj)i < 0.5, then (zj)i := −1, otherwise (zj)i := 1.
3. Compute an approximation

dj ≈ zTj ln(A)zj .(4.1)

End. Compute

d̂M (A) = exp


 1

n

1

M

M∑
j=1

dj


 .



APPROXIMATION OF DETERMINANTS 809

In the following two subsections we describe methods for computing the approx-
imation dj ≈ zTj ln(A)zj in (4.1).

4.1. Approximation of zT ln(A)z using Chebyshev polynomials. We de-
scribe a method that is presented in [16]. We assume that A is scaled by a factor
0 < 1

b ≤ 1
λn

. Then σ( 1
bA) ⊂ [ε, 1] holds with 0 < ε ≤ λ1

b . For ease of notation this
scaled matrix is denoted by A, too.

Let Tk, k ≥ 0, be the Chebyshev polynomials on [0, 1]:

T−1(x) = 2x− 1, T0(x) = 1, Tk+1(x) = (4x− 2)Tk(x)− Tk−1(x) for k ≥ 1 .

The method is based on the following expansion for lnx:

lnx =

m+1∑
k=0

bkTk

(
1− x
1− ε

)
+ δ lnx for x ∈ [ε, 1],(4.2)

|δ| ≤ 2e−2(m+1)
√
ε .(4.3)

We show that this result holds and derive a simple and cheap algorithm for the
computation of the coefficients bk. The starting point is the identity

1

y

(
1 + ρTm+1

(1− y
1− ε

))
=

m∑
k=0

ckTk

(1− y
1− ε

)
, y ∈ [ε, 1] ,(4.4)

with parameters ρ and ck, 0 ≤ k ≤ m. With z := 1−y
1−ε ∈ [0, 1] this is equivalent to

1 + ρTm+1(z) = (1− (1− ε)z)
m∑
k=0

ckTk(z) .(4.5)

Substituting zTk(z) = 1
4Tk+1(z) +

1
2Tk(z) +

1
4Tk−1(z) in (4.5) and comparing the

coefficients of Tk on both sides of the equality results in a linear system of m + 2
equations for the unknowns c := (c0, . . . , cm)T and ρ. A simple calculation shows
that the solution of this system is given by

c =
4

1− εB
−1e1 ,(4.6)

ρ = −eTm+1B
−1e1 ,(4.7)

with e1 and em+1 the first and (m+ 1)st basis vector in R
m+1, respectively, and

B =




2γ −1
−2 2γ −1 ∅

−1 2γ −1
. . .

. . .
. . .

∅ . . .
. . . −1
−1 2γ



∈ R

(m+1)×(m+1) , γ :=
1 + ε

1− ε .

Hence, the LU -decomposition of B results in an efficient algorithm for computing the
coefficients c and ρ in (4.6), (4.7). Elementary manipulations with difference equations
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yield explicit formulas for B−1e1. For example, for the last component of this vector
one can derive the expression

−ρ = eTm+1B
−1e1 =

−2
λm+1 + λ−(m+1)

, λ := γ +
√
γ2 − 1 .(4.8)

Such explicit expressions are given in [16] and offer an alternative (but probably
somewhat less efficient) approach for computing c and ρ.

From (4.4) and |Tm+1(z)| ≤ 1 it follows that

−|ρ|1
y
≤ 1

y
−

m∑
k=0

ckTk

(1− y
1− ε

)
≤ |ρ|1

y
, y ∈ [ε, 1] .

Integrating between y = x ∈ [ε, 1] and y = 1 we obtain

|ρ| lnx ≤ −(1− ε)
m∑
k=0

ck

∫ 1−x
1−ε

0

Tk(z) dz − lnx ≤ −|ρ| lnx , x ∈ [ε, 1] .(4.9)

Using
∫
T0 = 1

2 (T0 + T1),
∫
T1 = 1

8 (T2 − T0),
∫
Tk = 1

4 (
Tk+1

k+1 − Tk−1

k−1 ), k ≥ 2, a
straightforward computation yields

− (1− ε)
m∑
k=0

ck

∫ 1−x
1−ε

0

Tk(z) dz =

m+1∑
k=0

bkTk

(1− x
1− ε

)
,

with bk = −1− ε
4k

ck−1 , k = m,m+ 1 ,

bk = −1− ε
4k

(ck−1 − ck+1) , 2 ≤ k ≤ m− 1 ,

b1 = −1− ε
4

(2c0 − c2) ,

b0 = −
m+1∑
k=1

(−1)kbk .

(4.10)

Hence, using the values for the coefficients c = (c0, . . . , cm)T from (4.6) the coefficients
bk in (4.2) directly follow from (4.10). The bound on δ in (4.3) is a consequence of
(4.9) and

|ρ| = 2

λm+1 + λ−(m+1)
≤ 2λ−(m+1) ≤ 2e−2(m+1)

√
ε .

Now assume that the coefficients bk have been computed. For zj ∈ R
n it follows that

zTj ln(A)zj ≈
m+1∑
k=0

bkz
T
j Tk

(I −A
1− ε

)
zj =: dj(4.11)

can be used as an approximation in (4.1). The terms zTj Tk
(
I−A
1−ε
)
zj in (4.11) can be

computed using the recursion for Tk. In our applications we have n = dim(A)� m,
and the costs for computing dj in (4.11) are dominated by the costs for the m + 1
matrix-vector multiplications with the matrix A. These matrix-vector computations
are easy to parallelize. Note, however, that the Monte Carlo Algorithm 4.2 and the
computation of the sum in (4.11) are purely sequential processes.
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4.2. Approximation of zT ln(A)z using quadrature. In this subsection we
recall the method from [3] for approximating zT ln(A)z, z ∈ R

n. Let QTΛQ = A be
the eigendecomposition of A with Q orthogonal, Λ = diag(λ1, . . . , λn), λ1 ≤ · · · ≤ λn.
For z ∈ R

n let z̃ = Qz
‖z‖2

. Then we have

zT ln(A)z

‖z‖22
= z̃T ln(Λ)z̃ =

n∑
i=1

lnλi z̃i
2 =

∫ λn

λ1

lnλ dµ(λ) =: J ,(4.12)

where the measure µ(λ) is given by

µ(λ) =




0 if λ < λ1 ,∑i
j=1 z̃

2
j if λi ≤ λ < λi+1, 1 ≤ i ≤ n− 1 ,

1 if λn ≤ λ .
For approximating the integral in (4.12) one can use a Gauss-type quadrature rule.
Several possibilities are treated in [3]. Here we use a Gauss–Radau method:

QN :=

N∑
j=1

ωj ln θj + ντ ln τ ,

where the node τ is prescribed. We will consider τ ≈ λ1 and τ ≈ λn. The weights
ωj , ντ and the nodes θj are unknown and to be determined. It is well known that
the nodes and weights in the Gauss quadrature can be computed using the Lanczos
method (cf. [4]). The Gauss–Radau quadrature is treated in [5]. For f(x) = lnx we
have f (2N+1)(x) > 0 for all x > 0, and from [5] it then follows that if τ ≤ λ1 (τ ≥ λn),
the approximation QN is a lower bound (upper bound) for J . In [3] the following
algorithm for approximating J is proposed. We assume that ν1 ≤ λ1 and ν2 ≥ λn are
given.

Algorithm 4.3.
x0 = z/‖z‖2, x−1 = 0, γ0 = 0;
For k = 1, 2, . . . do:

1. αk = xTk−1Axk−1.
2. rk = Axk−1 − αkxk−1 − γk−1xk−2.
3. γk = ‖rk‖2.
4. Let

Tk =




α1 γ1 ∅
γ1 α2 γ2

. . .
. . .

. . .

. . .
. . . γk−1

∅ γk−1 αk



,

δm = γ2
ke

T
k (Tk − νmI)−1ek, m = 1, 2,

T̂
(m)
k =

(
Tk γkek
γke

T
k φm

)
, φm = νm + δm , m = 1, 2 .

5. Compute the eigenvalues θ
(m)
� and the first elements ω

(m)
� of the normalized

eigenvectors of T̂
(m)
k (m = 1, 2; 1 ≤ : ≤ k + 1).
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6. Q
(m)
k =

∑k+1
�=1 (ω

(m)
� )2 ln θ

(m)
� , m = 1, 2.

7. If
Q

(2)

k
−Q(1)

k

|Q(1)

k
| ≤ eps (user specified tolerance), then Stop.

8. xk = rk/γk.
End. Compute

dz =
1

2
(Q

(1)
k +Q

(2)
k )‖z‖22 .(4.13)

For z = zj as in Algorithm 4.2 the value dj := dzj from (4.13) is taken as
the approximation in (4.1). As for the method in the previous subsection we have an
outer (Monte Carlo) and inner iteration which are purely sequential operations. In our
applications the dimensions of the eigenvalue problems that occur in Algorithm 4.3 are
very small compared to n = dim(A), and the costs for one iteration in this algorithm
are dominated by the matrix-vector multiplication with the matrix A.

Both in the algorithm in this subsection and in the algorithm in subsection 4.1
we need approximations of λ1 and λn. It turns out that the performance of the
algorithms is less sensitive to the accuracy of these approximations. In the numerical
experiments we used a fixed (small) number of Lanczos iterations to compute these
approximations.

5. Numerical experiments. In this section we present some results of numer-
ical experiments with the methods introduced in sections 3 and 4. All experiments
are done using a MATLAB implementation.

Experiment 1 (discrete two-dimensional Laplacian). We consider the standard
5-point discrete Laplacian on a uniform square grid with N mesh points in both
directions, i.e., n = N2. For this symmetric positive definite matrix the eigenvalues
are known:

λνµ = 4(N + 1)2
(
sin2

(
νπ

2(N + 1)

)
+ sin2

(
µπ

2(N + 1)

))
, 1 ≤ ν, µ ≤ N .(5.1)

For the choice of the sparsity pattern El we use a simple approach:

El(k) := {(i, j) | i ≥ j and (Ak)ij �= 0} , k = 1, 2, . . . .(5.2)

We first describe some features of the methods for the case N = 30, k = 2, and after
that we will vary N and k. Let A denote the discrete Laplacian for the case N = 30.
For the matrices Ai = PiAP

T
i ∈ R

ni×ni (i = 1, . . . , n) the dimensions ni are between
1 and 7; the mean of these dimensions is 6.7. Algorithm 3.3 yields an approximation,

d(GEl(2))
−2 = d(ĜEl(2))

−1 =

n∏
i=1

γ
2
n
i = 3.2526 103

for d(A) = 3.1379 103. Hence the relative error is 3.5%. For the computation of the
Cholesky factorizations Ai = LiL

T
i , i = 1, 2, . . . , n, approximately 41 103 flops are

needed (in the MATLAB implementation). If we compare this with the costs of one
matrix-vector multiplication A ∗ x (8760 flops), denoted by MATVEC, it follows that
for computing this approximation of d(A), with error 3.5%, we need arithmetic work
comparable to only 5 MATVEC. In Table 5.1 we give results for the discrete two-
dimensional Laplacian with N = 30 (n = 900), N = 100 (n = 10000) and N = 200
(n = 40000). We use the sparsity patterns El(2) and El(4). In the third column
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Table 5.1
Results for two-dimensional discrete Laplacian with El = El(2).

n d(A) d(GEl(2))
−2 Costs for d(GEl(4))

−2 Costs for

(error) d(GEl(2))
−2 (error) d(GEl(4))

−2

900 3.138 103 3.253 103 5 MV 3.177 103 41 MV
(3.5%) (1.2%)

10000 3.292 104 3.434 104 5 MV 3.347 103 45 MV
(4.1%) (1.6%)

40000 1.300 105 1.359 105 5 MV 1.323 103 46 MV
(4.3%) (1.7 %)
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Fig. 5.1. Algorithm 4.2 combined with the method from section 4.1: n = 10000 (left), n = 40000
(right).

of this table we give the computed approximation of d(A) and the corresponding
relative error. In the fourth column we give the total arithmetic costs for the Cholesky
factorization of the matrices Ai, i = 1, 2, . . . , n. In the columns 5 and 6 we give the
results and corresponding arithmetic costs for the case with larger sparsity pattern
El(4).

Related to these numerical results we note the following. From the third and
fourth column in Table 5.1 we see that using this method we can obtain an approxi-
mation of d(A) with relative error only a few percent and arithmetic costs only a few
MATVEC. Moreover, this efficiency hardly depends on the dimension n. Comparison
of the third and fifth columns in Table 5.1 shows that the approximation significantly
improves if we enlarge the pattern from El(2) to El(4). The corresponding arithmetic
costs increase by a factor of about 9. This is caused by the fact that the mean of
the dimensions of the systems Ai, i = 1, 2, . . . , n, increases from approximately 7 (for
El(2)) to approximately 20 (for El(4)).

We also applied the Monte Carlo Algorithm 4.2, withM = 50, to this problem. If,
for the approximation of zTj ln(A)zj in (4.1), we use the approach based on Chebyshev
polynomials, we obtain the results in Figure 5.1. It turns out that the bound in (4.3)
is very pessimistic and should not be used to determine a value for the parameter
m. In the experiments we used the values m = 3, 4, 7, 10. Note that the arithmetic
costs in the inner Chebyshev iteration (4.11) are comparable to m + 1 MATVEC.
From Figure 5.1 we see that for a relative error of approximately 1.5% it suffices
to take 10–15 Monte Carlo iterations with m = 4. The arithmetic costs are then
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Fig. 5.2. Algorithm 4.2 combined with the method from section 4.2: n = 10000 (left), n = 40000
(right).

roughly 50–75 MATVEC. In Figure 5.2 results are shown if zTj ln(A)zj in (4.1) is
approximated using Algorithm 4.3. We used different tolerances in step 7 in this
algorithm: eps = 0.02, 0.01, 0.005, 0.002. The corresponding total number of matrix-
vector multiplications is 188, 250, 306, 449 (for n = 10000) and 200, 250, 350, 501
(for n = 40000). We observe that for a relative error of approximately 1.5% about
10–15 Monte Carlo iterations with eps = 0.005 are sufficient. The arithmetic costs
are then roughly 60–95 MATVEC.

Note that both Monte Carlo methods (in Figures 5.1 and 5.2) perform similarly.
In both methods we need estimates for the extreme eigenvalues of the matrix A. We
used the known values of these extreme eigenvalues given in (5.1).

Experiment 2 (MATLAB random sparse matrix). The sparsity structure of the
matrices considered in Experiment 1 is very regular. In this experiment we con-
sider matrices with a pattern of nonzero entries that is very irregular. We used the
MATLAB generator (sprand(n, n, 2/n)) to generate a matrix B of order n with ap-
proximately 2n nonzero entries. These are uniformly distributed random entries in
(0, 1). The matrix BTB is then sparse symmetric positive semidefinite. In the generic
case this matrix has many eigenvalues zero. To obtain a positive definite matrix we
generated a random vector d with all entries chosen from a uniform distribution on
the interval (0, 1) (d :=rand(n, 1)). As a test matrix we used A := BTB + diag(d).
We performed numerical experiments similar to those in Experiment 1 above. We
consider only the case with sparsity pattern El = El(2). Results obtained with Algo-
rithm 3.3 are shown in Table 5.2. From these results it is clear that for this random
matrix A the approximation of d(A) based on the sparse approximate inverse is much
better than for the discrete Laplacian in Experiment 1. This is related to the fact
that for the random matrices considered in this example the preconditioned matrix
GElAGEl turns out to be very well-conditioned.

We also apply the same Monte Carlo methods as discussed in Experiment 1 to
these matrices. To allow a fair comparison we first rescaled the matrix A with a
diagonal matrix D such that the absolute row sums of the matrix DAD are all equal
to one. Estimates of the extreme eigenvalues that are needed in these algorithms
are obtained by applying 20 iterations of the Lanczos method (with starting vector
(1, . . . , 1)T ). The performance of these methods is similar for the three cases n =
900, 10000, 40000. In Figure 5.3 we show the results for the case n = 10000.
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Table 5.2
Results for MATLAB random sparse matrices with El = El(2).

n d(A) d(GEl )−2 Costs for
(error) d(GEl )−2

900 0.82453 0.82521 23 MV
(8.2 10−4)

10000 0.80985 0.81053 18 MV
(8.4 10−4)
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Fig. 5.3. Algorithm 4.2 combined with the methods from section 4.1 (left) and from section 4.2
(right).

For the Monte Carlo method using the approach based on Chebyshev polynomials
the result after 20 iterations and m = 7 (cf. Figure 5.3, left) has a relative error
≈ 0.001. For computing this result, approximately 180 MATVEC are needed. If we
use the Gauss–Radau quadrature (cf. Figure 5.3, right) with eps = 0.02, then after
20 Monte Carlo iterations the result also has a relative error ≈ 0.001. The total costs
are about 100 MATVEC. Hence, in this example the method based on the sparse
approximate inverse is more efficient than the Monte Carlo methods.

Experiment 3 (quantum chromodynamics (QCD) type matrix). In this experiment
we consider a complex Hermitian positive definite matrix with a regular sparsity
structure. This matrix is motivated by applications from the QCD field. In QCD
simulations the determinant of the so-called Wilson fermion matrix is of interest.
These matrices and some of their properties are discussed in [14, 13]. The Wilson
fermion matrix A = I − κD describes a nearest neighbor coupling with periodic
boundary conditions on a four-dimensional regular space-time lattice with lattice sites

ΩN = { (x1, x2, x3, x4) | xi = 1, . . . , ni, ni = 2Ni } .
The so-called hopping matrix D has the form

Dx,y =

4∑
µ=1

(
(I − γµ)⊗ Uµ(x)

)
δx,y−eµ +

(
(I + γµ)⊗ UH

µ (x− eµ)
)
δx,y+eµ ,(5.3)

where x, y are lattice sites from ΩN , eµ is the µth basisvector in R
4, and δx,y =

1 (0) if x = y (x �= y). The matrices I ± γµ ∈ C
4×4 are projectors onto two-

dimensional subspaces and the matrices Uµ(x) ∈ C
3×3 are from SU(3) (see [13] for
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Table 5.3
Results for QCD type matrix with El = El(2).

n d(A) d(GEl )−2 Costs for
(error) d(GEl )−2

1024 0.8032 0.8248 22 MV
(2.7%)

4096 0.8037 0.8254 21 MV
(2.7%)
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Fig. 5.4. Algorithm 4.2 combined with the methods from section 4.1 (left) and from section 4.2
(right).

details). Usually, these matrices Uµ(x) are generated randomly. In this model the
matrix D has a block structure with blocks Dx,y ∈ C

12×12, x, y ∈ ΩN . Here we
consider a very simple variant of this model. We take γµ = 0, I = 1, Uµ(x) =
exp(2iπαµ(x)), where αµ(x) is chosen from a uniform distribution on the interval
(0, 1). Hence the couplings Dx,y in (5.3) are complex scalars. Note that the matrix
D is Hermitian. Due to the randomly generated functions αµ(x) the couplings Dx,y

show a strong fluctuation as a function of x and y. In QCD simulations the parameter
κ is taken such that the Wilson fermion matrix A is positive definite and close to
singular. In the experiment here we computed the largest eigenvalue ρD of D (using
the MATLAB function eigs) and set κ := (1.01 ρD)

−1. We performed numerical
experiments as in Experiment 1 with El = El(2) for two cases: (n1, n2, n3, n4) =
(4, 4, 8, 8) and (n1, n2, n3, n4) = (8, 8, 8, 8). The results are presented in Table 5.3.
We also used the Monte Carlo methods. As in Experiment 2 we applied 20 Lanczos
iterations to obtain estimates for the extreme eigenvalues. The results are shown in
Figure 5.4. From this figure we see that after 20 Monte Carlo iterations using the
method from subsection 4.1 with m = 2 the result has a relative error of about 2%.
For computing this result approximately 80 MATVEC are needed. Using the method
from subsection 4.2 with eps = 0.4 the result after 20 Monte Carlo iterations has a
relative error of about 1%. The total costs for computing this result are about 80
MATVEC.

Note that in all three experiments the performance of the methods hardly depends
on the dimension n. In all measurements for the arithmetic costs we did not take
into account the costs of determining the sparsity pattern El(k) and of building the
matrices PiAP

T
i .

We conclude that at least for these few model problems the new method can
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compete, even on a sequential machine, with the two Monte Carlo methods proposed
in the literature. We believe that in a (massively) parallel environment the method
based on the sparse approximate inverse can be expected to be much more efficient
than the Monte Carlo techniques because the former is ideally suited for a parallel
implementation.

Remark 5.1. In this paper we do not discuss the topic of error estimation. For the
Monte Carlo method, error estimation techniques are treated in [3]. Related to the
method based on the sparse approximate inverse (Algorithm 3.3) we briefly discuss
one possible technique for a posteriori error estimation. From (3.25) we have the
a priori error bound

d(A)

d(GEl)−2
≤ 1 .

The exact error is given by

d(A)

d(GEl)−2
= d(GElAGT

El) = d(EEl) ,

where EEl := GElAGT
El is a sparse symmetric positive definite matrix. For ease of

presentation we assume that the pattern El is sufficiently large such that ρ(I−EEl) < 1
holds. In [12] it is proved that if A is an M -matrix or a (block) H-matrix, then this
condition is satisfied for every lower triangular pattern El. For the exact error we
obtain, using a Taylor expansion of ln(I −B) for B ∈ R

n×n with ρ(B) < 1 (see [6]),

d(EEl) = exp

(
1

n
ln(det(EEl))

)
= exp

(
1

n
tr(ln(EEl))

)

= exp

(
1

n
tr(ln(I − (I − EEl)))

)
= exp

(
− 1

n
tr

( ∞∑
k=1

(I − EEl)k

k

))
.(5.4)

Hence, an error estimation can be based on estimates for the partial sums Sm :=∑m
k=1

1
k tr((I−EEl)k). The construction of GEl is such that diag(EEl) = I (cf. (3.22))

and thus tr(EEl) = n and S1 = 0. For S2 we have

S2 =
1

2
tr((I − EEl)2) =

1

2
tr(I − 2EEl + E2

El) = −1

2
n+

1

2
tr(E2

El) .(5.5)

For approximating the trace quantity tr(E2
El) in S2 we can use the following Monte

Carlo algorithm based on Proposition 4.1.

Algorithm 5.2.
For j = 1, 2, . . . ,M

1. Generate zj ∈ R
n with entries which are uniformly distributed in (0, 1).

2. If (zj)i < 0.5, then (zj)i := −1, otherwise (zj)i := 1.
3. yj := EElzj, αj := y

T
j yj.

End.

This then yields

Ŝ2 := −1

2
n+

1

2M

M∑
j=1

αj(5.6)
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as an approximation for S2. The corresponding error estimate is given by

E2 = exp

(
− 1

n
Ŝ2

)
.(5.7)

It turns out that, at least in our experiments, this technique yields satisfactory results.
One clear disadvantage of this approach is that the matrix GEl must be available (and
thus stored). Note that for the computation of the approximation d(GEl)−2 of d(A)
we do not have to store the matrix GEl .
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Abstract. We consider the problem of updating an invariant subspace of a large and structured
Hermitian matrix when the matrix is modified slightly. The problem can be formulated as that of
computing stationary values of a certain function with orthogonality constraints. The constraint is
formulated as the requirement that the solution must be on the Grassmann manifold, and Newton’s
method on the manifold is used. In each Newton iteration a Sylvester equation is to be solved. We
discuss the properties of the Sylvester equation and conclude that for large problems preconditioned
iterative methods can be used. Preconditioning techniques are discussed. Numerical examples from
signal subspace computations are given in which the matrix is Toeplitz and we compute a partial
singular value decomposition corresponding to the largest singular values. Further we solve numer-
ically the problem of computing the smallest eigenvalues and corresponding eigenvectors of a large
sparse matrix that has been slightly modified.

Key words. conjugate gradient method, differential geometry, eigenvalue, eigenvector, Grass-
mann manifold, Newton’s method, preconditioner, signal subspace problem, singular values and
vectors, sparse matrix, Toeplitz matrix

AMS subject classifications. 65F15, 49M15, 53B20

PII. S0895479899354688

1. Introduction. In many applications there are problems which involve com-
puting several partial matrix eigendecompositions successively. This is often called the
subspace tracking problem and arises, for instance, when a system varies with time and
new approximations are requested at regular intervals. Also, when new information
is added and the available quantities need to be adjusted, the partial eigendecompo-
sition has to be updated. In various signal processing applications [8, 9, 10, 41, 38]
the matrix is modified by a rank-one matrix consisting of recently arrived data. A
related problem is to update the singular value decomposition (SVD) when a new row
is appended to the data matrix. In [22, Chapter 8] a method for adaptive eigenvalue
computations was presented that was specifically designed for this case.

Here we are interested in the case when the elements of a Hermitian matrix A(t)
are assumed to vary slowly with time such that A(t) is a continuous function of t.
Since the eigenvalue problem for Hermitian matrices is robust, the eigendecomposi-
tions of the successive matrices will not vary substantially. This situation appears,
for instance, in airborne radar applications [43], in medicine [44], and in electronic
structure computations (nonlinear eigenvalue problems) [16].

In this paper we will describe a general approach for adaptive eigenvalue com-
putations, subspace tracking, that was originally proposed by Edelman, Arias, and
Smith in [15]. The basic idea of the method is to take advantage of the geometry of
the constraint that the eigenvectors in an invariant subspace of a Hermitian matrix
are orthogonal. This can be formulated in the language of differential geometry, and
the algorithm we will use is Newton’s method on the Grassmann manifold. The pur-
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pose of the paper is to investigate the usefulness of the Newton–Grassmann approach
for adaptive eigenvalue computations for two classes of problems:

1. Signal subspace problem: A = THT , where T ∈ C
m×n is a Toeplitz matrix,

and we want to compute a partial SVD of T corresponding to the largest
singular values. Often there is a gap between the d largest singular values
and the rest. Note that the eigenvalues of A are the squares of the singular
values of T . Also note that matrix–vector multiplication by T and TH can
be performed in O((m + n) log(m + n)) operations using the fast Fourier
transform (FFT); see, e.g., [42, 22].

2. Smallest eigenvalues of a large, sparse, positive definite matrix: We have in
mind applications, e.g., from computational physics and structural mechanics,
and as a model problem we consider a matrix close to the discrete Laplace
operator.

The Hermitian matrix A may change arbitrarily over time, but we assume that it
varies slowly enough so that the previous subspace approximation is a good approxi-
mation of the present.

The Newton–Grassmann method is related to several other methods in the lit-
erature, in particular Newton-based approaches [39, 14, 7, 12, 21, 29, 2] and the
Jacobi–Davidson method [35]. In connection with a taxonomy of methods in [15] it is
stated that several existing methods can be thought of as approximations of Newton’s
method on the Grassmann manifold. With this in mind it is of some interest whether
or not the basic method can be used efficiently in actual computations.

In section 2 of this paper we give a short introduction to the maximization prob-
lem on the Grassmann manifold that gives as a solution an orthogonal basis of the
invariant subspace corresponding to the largest eigenvalues. When Newton’s method
is applied to the maximization (or minimization) problem on the manifold, a certain
Sylvester equation results. We discuss some aspects of the numerical solution of this
equation in section 3. When only a small number of eigenvalues and eigenvectors are
to be determined, one of the matrices in the Sylvester equation is of small dimension,
which means that we can easily transform the matrix equation into independent linear
systems. In the case when the eigenvalues of largest modulus are required, e.g., the
signal subspace problem, the systems are demonstrated to be Hermitian positive def-
inite and well-conditioned. Therefore iterative methods, e.g., the conjugate gradient
(CG) method, will converge fast. In other contexts, for instance when a number of the
smallest eigenvalues are to be computed, it may be necessary to precondition the lin-
ear systems. Also in this case the linear systems are Hermitian and positive definite.
We discuss the implementation of preconditioning in section 4. For Toeplitz matrices
a natural choice is to precondition by circulant matrices. For sparse matrices, when
the eigenvalues of smallest modulus are sought, one could try incomplete factoriza-
tions as preconditioners. A few numerical experiments are reported in section 5, and
in an appendix some similarities and differences between the present approach and
the Jacobi–Davidson method are pointed out.

2. Newton’s method on the Grassmann manifold. Let A have the eigenval-
ues (λi)

n
i=1 and assume that they are ordered λ1 ≥ · · · ≥ λn > 0. Let Y ∈ C

n×d, where
d < n. From the Courant–Fischer minimax theorem (see, e.g., [17, Theorem 8.1.2]) it
is seen that the solution of the maximization problem

max
Y HY =I

F (Y ) = max
Y HY =I

1

2
tr(Y HAY )(2.1)



ADAPTIVE EIGENVALUE COMPUTATIONS 821

is the sum of the d largest eigenvalues of A, and any Y consisting of d orthonormal
vectors that span the corresponding invariant subspace will give the optimum. If the
smallest eigenvalues are to be determined, then in (2.1) maximization is to be replaced
by minimization. This is a well-known approach for symmetric eigenvalue problems;
see, e.g., [1].

In [15] algorithms with orthogonality constraints are studied using ideas and tech-
niques from differential geometry. It is shown that standard methods for optimization
in Euclidean space, such as Newton’s method and the CG method, can be general-
ized to manifolds and realized numerically. In particular, (2.1) can be considered as
a maximization problem on the Grassmann manifold, and by using, e.g., Newton’s
method on this manifold, the constraint Y HY = I is implemented automatically. One
important contribution of [15] is that explicit, computable expressions are given for
tangent spaces, geodesics on the Grassmann manifold, etc., as opposed to the practice
of the standard literature in differential geometry, where usually a coordinate-free ap-
proach is used. This makes it possible to identify some existing eigenvalue algorithms
as approximations of Newton’s algorithm on the Grassmann manifold.

We provide here a very brief—and incomplete—review of some basic concepts
from differential geometry that are relevant in our context. For more details, see
[15]. First we need to define the Stiefel manifold Vn,d of “tall, skinny” matrices with
orthonormal columns:

Vn,d = {Y ∈ C
n×d | Y HY = I}.

The Grassmann manifold Gn,d is then obtained by identifying those matrices in Vn,d
whose columns span the same subspace. Thus, a point on the Grassmann manifold is
an equivalence class of n× d matrices with orthonormal columns, where two matrices
are equivalent if they are related by right multiplication of a unitary d × d matrix.
Therefore, Gn,d = Vn,d/Od, where Od is the group of d × d unitary matrices. If
Y ∈ C

n×d is a matrix with orthonormal columns, then [Y ] denotes the corresponding
equivalence class, i.e., the point on the Grassmann manifold.

For Newton’s method on the Grassmann manifold we must compute the gradient
of the function F (Y ) defined on the manifold. It can be shown to be

∇F = FY − Y Y HFY = ΠAY,

where Π = I − Y Y H projects onto the tangent space at [Y ]. Let Y⊥ ∈ C
n×(n−d) be

a matrix such that (Y Y⊥) is unitary. Then Π = Y⊥Y H
⊥ , and R(Y⊥) is the tangent

space TY at [Y ].
In Newton’s method we determine a correction ∆ = −(Hessian)−1∇F , which here

becomes the linear problem

ΠA∆−∆Y HAY = −ΠAY,(2.2)

with the requirement that ∆ is in the tangent space TY at [Y ],

Y H∆ = 0.(2.3)

Now define H = Y HAY . Obviously, H is the matrix from which Ritz approximations
of the eigenvalues are computed [26, Chapter 11], and

R = R(Y ) = ΠAY = (AY − Y H)
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is the residual matrix for the eigenvalue approximation.
The requirement that (2.3) is satisfied is equivalent to Π∆ = ∆, and therefore it

follows that (2.2) is equivalent to the Hermitian Sylvester equation:

ΠAΠ∆−∆H = −R.(2.4)

For Newton’s method in Euclidean space the correction is added to the present
iterate. On the manifold the corresponding operation is to follow a geodesic path in
the direction ∆. This can be written

Y := Y V∆ cos(Σ∆)V H
∆ + U∆ sin(Σ∆)V H

∆ ,(2.5)

where U∆Σ∆V
H
∆ is the compact singular decomposition of ∆ (i.e., U∆ ∈ C

n×d and
Σ∆ ∈ C

d×d).
We can now formulate the algorithm [15].
Algorithm 1. Newton’s method for maximizing F (Y ) on the Grass-

mann manifold.
Given Y such that Y HY = I.
repeat until convergence

1. Compute H := Y HAY and R = R(Y ) := (AY − Y H).
2. Solve ΠAΠ∆−∆H = −R.
3. Compute updated Y using (2.5).

end
We will see later that in some cases it is advantageous to update columns of Y in

a sequential manner.1 Assume, e.g., that ∆ = (0 · · · 0 di 0 · · · 0) for some vector di. It
is easy to show that in this case the update along a geodesic becomes

Y := ( y1 · · · yi−1 cos δ yi + sin δ ui yi+1 · · · yd ) ,(2.6)

where δ = ‖di‖2 (Euclidean norm), and ui is the ith column of U∆.
It is shown in [15] that several algorithms for simultaneously improving a set of

eigenvector approximations can be considered as variations of Newton’s method on
the Grassmann manifold. In particular, a simultaneous Rayleigh quotient iteration
can be defined by letting Z be the solution of the Sylvester equation

AZ − ZH = Y(2.7)

and then putting the correction equal to D = −Y + Z(Y HZ)−1. For d = 1 this is
mathematically equivalent to Newton’s method on the Grassmann manifold, but for
d > 1 the procedures are different in general. (However, D is always in the tangent
space TY .)

The equation (2.4) can also be derived based on eigenvalue perturbation theory
[39] and is used for the refinement of eigenvalue approximations in [33].

3. Solving the Sylvester equation. The major work computationally in Al-
gorithm 1 is solving (2.4). Sylvester equations arise in many areas of applied mathe-
matics, and several efficient methods to solve them have been developed. When the
matrices in the equation are small, direct methods can be used, but if one or both
matrices are large, then iterative methods must be used to compute an approximate
solution. Extensive reference lists of methods for solving the Sylvester equation can
be found in [19, 31].

1In analogy to the Gauss–Seidel method for linear systems.
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Obviously, since we assume that d is small, it is cheap to decouple (2.4) into d
separate linear systems. Let H = GΦGH be the eigendecomposition of H, where
Φ = diag(τ1, τ2, . . . , τd), and G = ( g1 g2 . . . gd ) is unitary. Inserting this in (2.4)
we get

ΠAΠ∆−∆GΦGH = −R.

Postmultiplying by G gives

(ΠAΠ)(∆G)− (∆G)Φ = −RG.

Equating each column separately yields the d equations

(ΠAΠ− τiI)δi = −ri, i = 1, 2, . . . , d,(3.1)

where we have used the notation δi = ∆gi and ri = Rgi. Note that, since ∆ and R are
orthogonal to Y , the same is true for δi and ri. When these systems have been solved,
we obtain the solution ∆ simply by postmultiplying2 the matrix ( δ1 δ2 . . . δd )
by GH .

In the discussions here and in section 4, it is important to keep in mind that the
equations (3.1) are not really defined on the whole space but rather on the tangent
space, TY = R(Y⊥). Using the facts that δHY = 0, implying δ = Πδ, and that
Π2 = Π, we can rewrite (3.1) in the form

Π(A− τiI)Πδi = −ri.(3.2)

Since Π projects onto R(Y⊥), and since the right-hand side is in this space, (3.2) is
seen to be an equation on the tangent space.

The systems (3.1) will be solved using iterative methods for linear systems. By
keeping the equation matrix ΠAΠ − τiI in factored form, the matrix–vector multi-
plication is fast, provided that it is fast for A. Note that the matrix ΠAΠ − τiI is
Hermitian, and if it is also positive definite we can use the CG method to solve these
linear systems. If ΠAΠ − τiI is indefinite, which will be the case when we want to
compute eigenvalues in the middle of the spectrum, then MINRES or GMRES can be
used instead. We refer, e.g., to [27, 18] for comprehensive surveys of iterative methods
for linear systems.

For the signal subspace problem we assume that R(Y ) is close to the space
spanned by the eigenvectors of A corresponding to the d largest eigenvalues. Then, in
ΠAΠ, these eigenvalues are replaced by d zero eigenvalues (exactly), with eigenvectors
equal to the columns of Y . The remaining n−d eigenvalues of ΠAΠ are approximately
equal to

{λd+1, λd+2, . . . , λn},

with eigenvectors that are orthogonal to Y and are approximations of the eigenvectors
of A with the same eigenvalues. Since the quantities τi, i = 1, 2, . . . , d, are Ritz values
of A from the space R(Y ), they will approximate the d largest eigenvalues of A well
if Y is a good approximation. Therefore the matrix (ΠAΠ− τiI) can be expected to
be negative definite. Moreover, if we assume that there is a significant gap between

2However, this is not necessary, since the solution is defined on the Grassmann manifold, where
postmultiplication by a unitary matrix does not matter.
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λd and λd+1, then the Ritz values τi will be large compared to the small eigenvalues
λi, i = d+1, d+2, . . . n, and the eigenvalues of ΠAΠ− τiI will be fairly well clustered
around −τi (cf. Figure 5.2 below).

Statement 3.1. Assume that we want to compute the d largest eigenvalues of
A and that Y is a good approximation of the basis for the corresponding invariant
subspace of A. Let τ be a Ritz value for one of the requested eigenvalues. If the
separation between λd and λd+1 is large enough, then the matrix ΠAΠ−τI is negative
definite on the tangent space TY .

In the beginning of the Newton iterations, when R(Y ) is only a moderately good
approximation to the subspace spanned by the first d eigenvectors of A, it may happen
that τi is smaller than the largest eigenvalue of ΠAΠ. Then the matrix (ΠAΠ− τiI)
will be indefinite and the CG method is not certain to converge. In our experiments we
have used CG for the equations (3.1) and it never failed to converge. This is probably
due to the fact that the requested subspace is only slightly modified between two
successive matrices, which means that we always had a good starting approximation.

Next consider the case when we want to compute the d smallest eigenvalues, and
assume that Y is a good approximation of a basis of the invariant subspace. The
corresponding eigenvalues of ΠAΠ are exactly equal to zero, with eigenvectors equal
to the columns of Y . Therefore, if τ is a good approximation of one of the smallest
eigenvalues of A, then the matrix ΠAΠ− τI will have an eigenvalue of multiplicity d
at −τ , with eigenvectors equal to the columns of Y . If the d smallest eigenvalues of
A are well separated from the rest, and if Y is a good approximation, then we can
expect the n− d remaining eigenvalues of ΠAΠ− τI to be positive. Thus, the matrix
ΠAΠ− τI is indefinite on the whole space but positive definite on the tangent space,
TY = R(Y⊥).

Statement 3.2. Assume that we want to compute the d smallest eigenvalues
of A and that Y is a good approximation of the basis for the corresponding invariant
subspace of A. Let τ be a Ritz value for one of the requested eigenvalues. If the
separation between λn−d+1 and λn−d is large enough, then the matrix ΠAΠ − τI is
positive definite on the tangent space TY .

We conclude this section by pointing out one seemingly significant difference be-
tween the Grassmann manifold and simultaneous Rayleigh quotient approaches. The
equations (2.7) are inherently ill-conditioned, and when direct methods are used, it
is the ill-conditioning that ensures success; see, e.g., [17, pp. 362–364]. It is less clear
how to solve the equations iteratively.3 If the separation between the wanted and
unwanted eigenvalues is large enough (and this is often the case; see Example 2 in
section 5), then (3.2) is well-conditioned, which should make it accessible to iterative
solution.

4. Preconditioning the linear systems. This section is devoted to precondi-
tioning techniques for the system of equations (3.1). For clarity of presentation, we
omit the subscripts here and in the following section. The difficulty with finding a
preconditioner for the matrix ΠAΠ − τI is that even if A possesses some particular
structure (e.g., Toeplitz), which makes a good preconditioner easy to find, the matrix
ΠAΠ does not in general have that structure. The first step toward circumventing
this problem is to rewrite (3.1) into the more convenient form (3.2). By keeping the
three factors in the matrix Π(A− τI)Π separate, the structure of A can be utilized.

3However, it is shown in [32] that in the case d = 1 the Newton–Grassmann method is equivalent
to Rayleigh quotient iteration, and the convergence of iterative methods can be quite fast.
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An equation similar to (3.2) (where Y consists of one single vector only) arises
in the Jacobi–Davidson method as the correction equation for the new update. The
problem of preconditioning this equation has been studied by Sleijpen et al. in [34, 36].
They propose three methods. In this section we will outline the procedure in [36]. It
is straightforward to generalize it to the case when Y consists of d orthogonal columns
(see [36]).

Assume that we have a Hermitian preconditioner P for the matrix A− τI, where
Px = y can be solved easily. In what follows, when we refer to P−1, we actually mean
solving a system Px = y. For a preconditioner to work for (3.2), it must be restricted
to the subspace R(Y⊥). We will therefore use the projected preconditioner

P̃ = ΠPΠ.(4.1)

The preconditioner will be applied from the left and we will solve

P̃−1Π(A− τI)Πδ = −P̃−1r.(4.2)

Here and in the following, when we use the notation P̃−1, we mean the inverse of P̃
restricted to R(Y⊥). As long as P itself is nonsingular, the restricted inverse exists
trivially. At first we assume that P is nonsingular, and then we discuss the case when
P is singular or close-to-singular.

In the experiments in section 5 we will use the CG method and GMRES. Precon-
ditioning for these two methods is discussed in detail in [27, Chapter 9]. Regardless
of which iterative method is used, the only operation in which the projected precon-
ditioner appears is to find the solution w ∈ R(Y⊥) of a linear system

ΠPΠw = z,(4.3)

where z ∈ R(Y⊥). We outline the procedure for how this is done in Algorithm 2. For
more details, see [36]. Note that the vectors generated in the iterative procedures are
always in the tangent space R(Y⊥).

Algorithm 2. Preconditioner solve in R(Y⊥).
Given z ∈ R(Y⊥), N = Y H Ŷ , Ŷ = P−1Y , solve ΠPΠw = z.

1. Solve the linear system P ẑ = z.
2. Compute f = Y H ẑ.
3. Solve Na = −f .
4. Compute w = ẑ + Ŷ a.

Since Y does not change during the iterations for solving the linear system (3.2),
the matrices Ŷ and N have to be computed only once at the beginning of each Newton
step. Note that the matrix N is of dimension d×d and its Cholesky factorization can
be computed cheaply once before the iterations start.

As the Newton iterations proceed, the approximate eigenvalue τ becomes closer
and closer to an exact eigenvalue of the matrix A. This means that the matrix A−τI
turns more and more into a singular matrix. If the preconditioner P approximates
A− τI well, then also P will be close-to-singular. Actually we do not want to exclude
the possibility that P is exactly singular. We will now assume that P is exactly
singular. Of course, for P̃ = ΠPΠ to be nonsingular on R(Y⊥) we must require that

N (P ) ∩R(Y⊥) = {0}.
In step 1 of Algorithm 2, we can use the Moore–Penrose pseudoinverse of P . However,
by doing this, we cannot be certain that the result fulfills the requirement Y Hw = 0.
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Further, it may happen that P does not have full rank on R(Y ), which implies
that Y HP+Y is singular. To circumvent such problems one may proceed as follows.
Rewriting (4.3) using that w, z ∈ R(Y⊥) we obtain

Π(Pw − z) = 0,

implying that Pw − z ∈ R(Y ). Thus we have the equation

Pw = z + Y a.

From the requirement that (z + Y a) ∈ R(P ) or, equivalently, (z + Y a) ⊥ N (P ), we
get

V HY a = −V Hz,

where the columns of V ∈ C
n×r are orthonormal basis vectors which span N (P ).

We can write w = P+(z + Y a) + V c for some vector c, to be determined. Then by
imposing Y Hw = 0 we get the linear system(

Y HP+Y Y HV
V HY 0

)(
a
c

)
= −

(
Y HP+z
V Hz

)
.

If this matrix is nonsingular, then we get a unique solution w. Nonsingularity can be
proved if P+ is positive semidefinite. This can be the case when one computes the
smallest singular values and chooses to work with a preconditioner which approximates
the matrix A instead of A− τI. The case when P+ is indefinite needs more research
to give a better understanding of the problem.

To check whether the preconditioner is close-to-singular might not be a simple
task, since it involves investigating its eigenvalues, which in general are unknown.
However, there are preconditioners where this can be directly verified. One such
situation is when circulant preconditioners are used. We refer to [20] or section 4.1
for discussions of circulant preconditioners for this type of problem. To see if the
matrix N is singular is easy using its SVD. Both P and N can be treated as singular
if the smallest eigenvalue is below a certain tolerance.

In each Newton iteration of Algorithm 1, d linear systems of the form

Π(A− τiI)Πδi = −ri, i = 1, 2, . . . , d,

must be solved. The fact that the matrix A − τiI varies with i complicates matters
if a new preconditioner is required for each system. Assume, for instance, that A is
sparse and that an incomplete LU (ILU) factorization (see [23] or, e.g., [17, p. 535]) is
used as a preconditioner. Then one alternative is to recalculate the ILU factorization
for each τi. However, to decrease the cost for solving these linear systems one can use
the same preconditioner computed for one particular value of τ in all Newton steps;
cf. sections 4.2 and 5.3. This would probably slow down the convergence, requiring
more steps, but each step would be considerably cheaper. Besides the gain in only
having to compute one matrix factorization at each Newton step, we would also need
to compute the matrices Ŷ and N (and its inverse) only once per step.

In the signal subspace problem, when the matrix is A = THT , where T is a
Toeplitz matrix, the situation is considerably simplified. In this case circulant matrices
can be used as preconditioners. Not only can a circulant matrix be easily inverted,
but it is also easy to find a new preconditioner for each matrix A− τiI. This will be
discussed in the next section.
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4.1. Circulant preconditioners for Toeplitz matrices. Circulant matrices
are suitable as preconditioners for two reasons: (a) they are easily inverted, and
(b) they are completely described by the first column and need only n places of
storage. Recall that a circulant matrix C is diagonalized by the discrete Fourier
matrix, C = FHΘF, with Θ = diag(Fc), where c is the first column of C [11, 42,
22]. Hence, the matrix C can easily be inverted by using the FFT, w = C−1z =
FHΘ−1Fz = FH((1./(Fc)).∗ (Fz)), where “./” and “.∗” denote elementwise division
and multiplication, respectively.

Circulant preconditioners for linear systems are discussed in [40, 4, 5]. In our
application we cannot use such a preconditioner directly, since the matrix A − τI =
THT − τI is not Toeplitz in general. In [20] (see also [22]) the matrix T is partitioned

T =



T1

T2
...
Tl


 ,

where each Tj is a square n × n Toeplitz matrix. For all blocks Tj , j = 1, 2, . . . , l,
construct circulant preconditioners Cj . Using these we can approximate THT by

THT =

l∑
j=1

TH
j Tj ≈

l∑
j=1

CH
j Cj = FH


 l∑

j=1

|Θj |2

F = FHΘF =: C,

where Cj = FHΘjF is the eigendecomposition of Cj , j = 1, 2, . . . , l. Here | · | denotes
elementwise absolute value. Since Θ is a diagonal matrix, the matrix C is also a
circulant and can be used as a preconditioner for A = THT . Note that C depends
only on A and can be computed once at the beginning of the Newton iterations
(O(ln log2(n)) operations). It can then be updated for A− τI by simply subtracting
τI from Θ. Also, a (nearly) singular or indefinite preconditioner can easily be detected
by checking Θ− τI.

4.2. Preconditioner based on incomplete Cholesky factorization. In this
subsection we will briefly discuss preconditioning for the problem of computing a few
of the smallest eigenvalues and corresponding eigenvectors of a sparse Hermitian,
positive definite matrix. Incomplete factorizations are standard preconditioners for
solving sparse linear systems. There is a vast literature on this subject; we here
refer only to the presentations in [17, Chapter 10.3.2], [27, Chapter 10.3], and [13,
Chapter 9.3].

From [36] we quote: “For the discrete Poisson operator A it has been shown
that an incomplete decomposition K has almost the same eigenvectors as A for a few
of the smallest eigenvalues. . . . If such a preconditioner is used for values of τ close
to zero, then the ILU-process will yield a preconditioner that is also effective for a
number of nearby small values.” Based on this, we propose to let the matrix P in
(4.1) be an incomplete Cholesky preconditioner of A. Furthermore, we will use the
same preconditioner for all linear equations (3.1).

Obviously, if P is positive definite, then its restriction to the tangent space R(Y⊥)
is also positive definite.

5. Numerical experiments. In this section a few experiments are carried out
to show how the Newton method on the Grassmann manifold can perform when
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computing the largest (signal subspace problems) and the smallest eigenvalues. A
few tests of preconditioners in the inner iterations are done. The results are only
preliminary and more research is needed for a complete understanding of the methods.
However, the experiments still give some hints of the advantages and disadvantages
of each method.

The first two examples were run on a Dec Alpha 2004/166 and the third on a
Sun Ultra 1. We used MATLAB 5.2, in IEEE double precision with unit roundoff u
approximately equal to 2 · 10−16. As starting matrix Y in the Newton iterations for
the succeeding matrices, the approximations from the previous matrix was used. For
the first matrix A(1), the requested eigenvectors were computed with the routine eig

in MATLAB. In the iterative methods for solving the linear systems (3.1) we used the

starting vector ( 0 0 · · · 0 )
T

. The reason for this is that ∆ is a correction to the
matrix Y . When Y is a good approximation we can expect the elements in ∆ to be
small in magnitude, i.e., the vectors δi are close to the zero-vector.

The linear systems (3.1) were solved with the CG method. Recall from the discus-
sion in section 3 that when the subspace corresponding to the d largest eigenvalues is
requested and the separation to the unwanted eigenvalues is large, we can expect good
performance when a fairly good approximation is available from the start. Besides
the ordinary CG method we used a variant designed for multiple linear systems [6].
These will be called NCG and NCG-seed, respectively. In the procedure NCG-Ymod,
we update a column of Y (2.6) as soon as a linear system (3.1) has been solved. (This
affects the projection matrix in the linear systems (3.2) only; the shifts τi are kept
fixed during one whole Newton step.)

Also different preconditioners were tried. In the first two examples we used
GMRES with a circulant preconditioner, which we allowed to be indefinite; cf. sec-
tion 4.1. In Example 5.3 we used CG with an incomplete Cholesky preconditioner.
We refer to these three procedures as NCG, NGM-Circ, and NCG-ICh, respectively.

When the unpreconditioned CG method is used the residual norm ‖−ri−(ΠAΠ−
τi)δ

(j)
i ‖2, where δ

(j)
i is the jth iterate of δi, is available in every iteration and is thus

suitable to use in a convergence check. The same is not true for the case when a left

preconditioner is used. Instead the norm ‖P̃−1(−ri−(ΠAΠ−τi)δ(j)
i )‖2 can be used to

guard the convergence. Thus, the unpreconditioned iterations were terminated when

‖ − ri − (ΠAΠ− τi)δ
(j)
i ‖2 ≤ ε,

and the preconditioned iterations when

‖P̃−1(−ri − (ΠAΠ− τi)δ
(j)
i )‖2 ≤ εprec.

In the experiments the values of these two norms were quite different, so we had to
calibrate the tolerances ε and εpgmres to make the stopping criteria comparable.

When the eigenvectors corresponding to the largest eigenvalues were requested,
the Newton iterations were terminated when the inequalities

‖Ayi − τiyi‖2
|τi| < ε, i = 1, 2, . . . , d,(5.1)

were fulfilled. Since |τi| ≤ ‖A‖2, i = 1, 2, . . . , 5, this stopping criterion ensures that,
for each Ritz pair, the backward error is less than ε [30]. If the smallest eigenvalues are
sought, the norm of the absolute residual ‖Ayi−τiyi‖2 < ε is more appropriate. Note
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that all quantities in the criterion are used in the next Newton step, so essentially
no extra cost is required for the convergence check. In our experiments we used the
tolerance ε = 1 · 10−7.

5.1. Example 1: Rank-ten update in a signal subspace problem. In this
experiment we determined the right singular vectors of a sequence of Toeplitz matrices
T (t), t = 1, 2, . . . , by computing the corresponding Ritz vectors of the Hermitian
matrix A(t) = T (t)HT (t).

We used a model problem [22, section 2.1] to investigate how the Newton method
performs on matrices which differ by rank-ten updates. The signal consists of a sum
of exponentially damped sinusoids,

x̂j =

k∑
l=1

cl exp[(αl + iωl)tj + iφl] + θj , j = 1, 2, . . . ,m + n− 1,(5.2)

where θj is additive Gaussian noise. We used k = 5.
The values of the parameters can be found in Table 5.1, and the noise variance

was set to ν = 1. The signal was sampled for t = 0 : 10−4 : (2n− 1)10−4 for different
values of n, and the samples were put together in a square Toeplitz matrix T . Two
sizes of the matrix were used. The smaller was a 256× 256 matrix and the larger was
of size 512× 512.

Table 5.1
Sinusoid parameters for Example 1.

cl αl ωl/(2π) φl/(π/180)
6.1 -208 -1397 15
9.9 -256 -685 15
6.0 -197 -271 15
2.8 -117 353 15
17.0 -808 478 15

In the experiments we computed the invariant subspace of dimension 5 corre-
sponding to the largest singular values of 15 successive matrices. Each matrix dif-
fered from the previous one by 10 extra top rows. For the Hermitian matrix A(t) this
corresponds to adding a rank-ten matrix to the previous matrix A(t − 1). The first
matrix T (1) consisted of the n−140 bottom rows of T , and the last matrix T (15) was
equal to T . The first 25 singular values of T (1) and T (15), respectively, are shown in
Figure 5.1.

The termination tolerances in the inner iterations were set to ε = 10−4 and
εprec = 10−7.

The results of computing the approximate signal subspaces of dimension 5 are
shown in Table 5.2. Only the last 14 matrices were used in the measurements, since
for the first matrix eig was used. The results in Table 5.2 show the average number of
Newton steps, Toeplitz matrix–vector multiplications, inner iterations per eigenvalue
at each Newton step, and floating point operations, respectively, for these 14 matrices.

In our experiments Toeplitz matrix–vector multiplications were carried out in
O(n log n) operations using FFT (see [42, 22]). Since exactly the same number of
Newton steps were carried out and the same number of multiplications were per-
formed per inner iteration for the first three methods, the difference in the number
of matrix–vector multiplications is due to the difference in the number of inner it-
erations. The results in Table 5.2 show that the preconditioning helps to decrease
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Fig. 5.1. The 25 largest singular values of T (1) ∈ C
116×256 (“+”) and for T (15) ∈ C

256×256

(“∗”) for Example 1 with noise level ν = 1.

Table 5.2
Average results from 15 successive matrices in Example 1 where signal subspaces of dimension

k = d = 5 were approximated. “Toeplitz multiplications” refers to the number of multiplications of
T or TH by a vector, “inner iterations” to the average number of inner iterations per eigenvalue at
each Newton step, and “flops” to real floating point operations.

m× n 256× 256
Method NCG NCG-seed NGM-Ymod NCG-Circ
Newton steps 2 2 2 2
Toeplitz mult. 101 90 98 97
Inner iter. 3.6 3 3.4 3.4
Flops (106) 3.6 3.9 3.0 4.9

m× n 512× 512
Newton steps 2.3 2.3 2 2.3
Toeplitz mult. 161 147 146 138
Inner iter. 5.6 5 5.8 4.6
Flops (106) 10.2 12.6 8.3 13.7

the number of iterations somewhat compared to NCG. However, the extra overhead
still makes NGM-Circ more expensive. We gain some Toeplitz matrix–vector multi-
plications by using the seed method, but again the overhead was noticeable in the
total cost. Finally, when Y was modified during a Newton step, i.e., when the most
recent approximations were used, the number of Newton steps was smaller for the
larger matrices and the flop count was decreased substantially. Also for the smaller
problem, when the number of Newton step was the same, the total cost decreased.

5.2. Example 2: The Cadzow algorithm. In the second example we used
the Cadzow algorithm [3] to extract a signal from noisy data. In our model problem
(5.2) the Toeplitz matrix T is of rank k when no noise is present but has larger rank
when the signal is contaminated by noise. The aim in this procedure is to produce a
Toeplitz matrix with rank equal to k from the noisy data and from this matrix obtain
an approximation to the noise-free signal. This is an optimization problem; to find
a matrix with the Toeplitz and low rank properties as close as possible in Frobenius
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norm to the original matrix T . In Cadzow’s algorithm this optimum is searched for4

by optimizing with respect to one property at the time. More specifically, starting
with the Toeplitz matrix T (1) = T , we look for the closest possible matrix of rank k.
This matrix is given by

S(1) =
k∑

j=1

σ
(1)
j u

(1)
j (v

(1)
j )H ,

where (u
(1)
j , σ

(1)
j , v

(1)
j ), j = 1, 2, . . . , k, are the singular triplets of T (1) corresponding

to the k largest singular values.
The matrix S(1) is in general no longer a Toeplitz matrix. Therefore we want to

find the Toeplitz matrix which is closest to S(1) in Frobenius norm. This matrix is
obtained by computing the mean value of the elements in each diagonal and letting the
corresponding diagonal in the Toeplitz matrix T (2) have this value, i.e., the elements
in T (2) are

x̂
(2)
ij =




1
n−(i−j)

∑n−(i−j)
l=1 s

(1)
l+(i−j),l, i ≥ j,

1
n−(j−i)

∑n−(j−i)
l=1 s

(1)
l,l+(j−i), i < j,

where s
(1)
ij are elements in S(1). Here we have assumed that the matrices are square,

but it is straightforward to generalize this to rectangular matrices.
The Cadzow algorithm continues in this way by alternately computing the closest

rank-k matrix to a Toeplitz matrix and vice versa. Note that there is no simple struc-
ture in the way the successive Toeplitz matrices are updated, and in the beginning
their approximate signal subspaces may be far apart. However, the more the method
converges, the closer the requested subspaces of the matrices will be, and fewer iter-
ations are likely to be needed in the Newton algorithm. Moreover, when the Toeplitz

matrices converge to a rank-k matrix, the gap between the singular values σ
(j)
k and

σ
(j)
k+1 increases. We thus expect that the cost for the singular value problems in the

algorithm decreases the closer to convergence we get.
The Toeplitz matrices used in these experiments were the same as those in Ex-

ample 5.1, i.e., we used matrices of dimension 256 and 512. Two succeeding Toeplitz
matrices were considered to be equal enough, and the Cadzow iteration thus stopped,
when

‖x̂(t)− x̂(t− 1)‖2 ≤ εcad,

where x̂(j) =
(
x̂

(j)
1 x̂

(j)
2 · · · x̂

(j)
2n−1

)T
for j = t − 1, t. The superscript stresses

that the elements are from T (j). The vectors in the criterion consist of the elements
which completely describe the Toeplitz matrices. This is a natural way of computing
the distance between two Toeplitz matrices, since they only have 2n − 1 degrees of
freedom instead of n2. We thus can use a vector norm instead of a matrix norm.
The tolerance in the experiments was set to εcad = 1 · 10−2. The other termination
tolerances were the same as in Example 1.

The results in Table 5.3 are from the experiments with the Cadzow method. The
number of matrices refer to the number of Toeplitz partial SVDs computed, the first

4To our knowledge there is no proof that Cadzow’s algorithm finds a global minimum, or even
that it is convergent.
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Table 5.3
Results for the singular value problems of the matrices in the Cadzow experiment. A rank-5

matrix was requested. We give the total number of Newton steps, etc., for the whole experiment.

m× n 256× 256
Method NCG NCG-seed NGM-Ymod NCG-Circ
Matrices 20 20 20 20
Newton steps 27 27 27 27
Toeplitz mult. 852 836 852 1302
Flops (106) 36 37 30 67
m× n 512× 512
Matrices 21 21 21 21
Newton steps 31 31 31 31
Toeplitz mult. 1068 1000 1046 1220
Flops (106) 86 88 71 141

one excluded. Considering the number of Newton steps, matrix–vector multiplica-
tions, and flops, we display the total number for all the succeeding matrices. These
measurements are for the singular value computations only, since this is what is of
interest to us.

For both test matrices, the experiments with the CG method show the best
performance. To explain this we computed the eigenvalues of ΠTHTΠ− τI, where τ
is the approximation of the smallest eigenvalue in the signal subspace. In Figure 5.2
we show the eigenvalues in the first and last steps of the Cadzow procedure. It is
seen that already in the first step the eigenvalues are well clustered, leading to fast
convergence of the CG method, as discussed in section 3. When the signal subspaces of
two successive matrices are very close, as is the case in the last step, the eigenvalues
are almost coincident, and only one iteration in the CG method is needed. Thus,
preconditioning cannot improve the rate of convergence.

For these kind of problems, the gain in using the seed method or in modifying
the matrix Y during the Newton steps is only done for the first matrices. Therefore
the difference in terms of matrix–vector multiplications is quite small between NCG,
NCG-seed, and NCG-Ymod.

Figure 5.3 shows the number of matrix–vector multiplications and flops required
for each matrix in the experiment with the smaller matrix. We see in the figure that
less work is needed for all methods the more the Cadzow method converges. The
jumps occur when the number of Newton steps is decreased by one. The number of
Newton steps was the same for all methods. For the first matrix three steps were
required to reach convergence, while only one step was needed for the last matrices.

For comparison we computed the singular values only (i.e., no singular vectors) of
a random, complex matrix using the MATLAB function svd. A matrix of dimension
256 required 181 · 106 flops and one of dimension 512 needed 1.44 · 109 flops.

To see that the amount of noise indeed was decreased by these computations we
show in Figure 5.4 the first 25 singular values of the first matrix T (1) = T (“∗”) and
the final matrix T (21) (“+”) for the smaller problem. The gap between σd and σd+1

has clearly grown and the numerical rank is more distinct.

5.3. Example 3: Smallest eigenvalues and incomplete Cholesky precon-
ditioning. We assume that the d smallest eigenvalues and corresponding eigenvectors
of a large sparse matrix A(0) have been computed. We then want to compute the
corresponding eigenvalues and eigenvectors of a slightly modified matrix A(s). Here
we have in mind a situation, where, e.g., in a structural analysis application one
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Fig. 5.2. The eigenvalues of ΠTHTΠ − τI, where τ is the approximation of the smallest
eigenvalue in the signal subspace. The top graph is for the first step of the Cadzow procedure, and
the bottom is for the last. Note that the scale of the horizontal axes is different in the two graphs.
The matrix dimension is 256.
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Fig. 5.3. The work needed for the approximate signal subspace of each matrix in Example 2
to converge. The symbols “∗,” “o,” “+,” and “×” refer to NCG, NCG-seed, NGM-Circ, and NCG-
Ymod, respectively. The matrix dimension is 256. Top figure: the number of matrix–vector multi-
plications Tx. Bottom figure: the number of floating point operations.
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Fig. 5.4. The 25 largest singular values of T (1) = T ∈ C
256×256 (“∗”) and for T (21) (“+”) for

Example 2.

wants to modify the material properties somewhat and recompute the eigenmodes.
For simplicity we take A(0) to be the discrete Laplacian (five-point stencil; see, e.g.,
[27, p. 50]). The matrix A(s) is a symmetry-preserving finite difference discretization
of the self-adjoint, separable elliptic operator

L(s)u = ((1 + sx)ux)x + ((1 + sy)uy)y

on an equidistant grid on the unit square; see, e.g., [24, p. 114]. Thus, for small s the
matrix A(s) is equal to the discrete Laplacian plus a small symmetric perturbation.

In our experiment we chose s = 0.15 and d = 6, and the dimension of the matrices
was 1156. The six smallest eigenvalues of the matrices are given in Table 5.4.

Table 5.4
The six smallest eigenvalues of A(0) and A(0.15) in Example 3.

A(0) 0.0161 0.0402 0.0402 0.0643 0.0801 0.0801
A(0.15) 0.0173 0.0432 0.0432 0.0690 0.0860 0.0860

We used the CG method to solve the linear systems, and as preconditioner an
incomplete Cholesky decomposition [17, p. 535] of A(0.15)− τ(1)I, where τ(1) is the
initial Ritz approximation of the smallest eigenvalue. In the incomplete Cholesky
algorithm (the MATLAB function cholinc) the drop tolerance was chosen equal to
10−1. The same preconditioner was used throughout.

For comparison we also solved the linear equations without preconditioning. We
refer to the different methods as NCG-IC (incomplete Cholesky preconditioning) and
NCG (no preconditioning).

The residual tolerance for terminating the CG iterations for NCG and NCG-IC
was taken equal to 0.5·10−6 and 0.5·10−7 for two Newton steps. This gave comparable
accuracy in the computed eigenvalues for both methods.

In Table 5.5 we give the results from two Newton iterations. Reference approx-
imations of the eigenvalues were computed using the MATLAB function eig that
implements the QR method. The results show that the preconditioner reduces the



ADAPTIVE EIGENVALUE COMPUTATIONS 835

Table 5.5
Results from two Newton steps. “Iterations” denotes the total number of CG iterations in a

Newton step for six eigenvalues. “Acc. flops” is the total number of flops after the first and second
steps. The maximum relative error in the eigenvalues before the first step was 0.2 · 10−2.

First Second
NCG-IC NCG NCG-IC NCG

Iterations 81 229 45 137
Max. rel. err. 0.3 · 10−7 0.3 · 10−7 0.9 · 10−13 0.8 · 10−13

Acc. flops 11 · 106 22 · 106 18 · 106 35 · 106
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Fig. 5.5. Convergence history (residuals) for the CG iterations in Example 3 for the six smallest
eigenvalues in the two Newton iterations (top and bottom). The solid lines are with preconditioning
and the dashed without.

number of iterations and the work significantly. The convergence history is illustrated
in Figure 5.5

In this experiment the Grassmann geodesic update (2.5) led to symmetric errors
(one positive and one negative) around the double eigenvalues. This did not occur
when we replaced (2.5) by the Q factor in the compact QR decomposition of Y + ∆.

As a comparison, we computed the six smallest eigenvalues and corresponding
eigenvectors from scratch, using the MATLAB sparse eigenvalue solver eigs, which
is an implementation of the Arnoldi algorithm [37]. This took 16 · 106 flops, i.e., less
than NCG-IC. However, this test matrix of dimension 1156 is probably too small for
a method based on iterative solution of linear systems to be more efficient than a
method that performs an exact decomposition of the matrix. Note that for very large
problems the fill-in created in such a decomposition may be prohibitively high. We
also remark that in one run eigs failed to detect a double eigenvalue.

6. Final remarks. One attractive feature of the Newton–Grassmann method
for subspace tracking and eigenvalue computations is that it is based on a well-known
principle, namely, Newton’s method. As such it has a solid theoretical underpinning,
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which can be used in the actual numerical implementation of the method. A necessary
and crucial question is whether this general approach can be used efficiently for solving
problems that are of interest in scientific computing. This paper gives a partial
answer to this question, and our tests indicate that the Newton–Grassmann method is
useful for solving certain structured problems in signal processing (subspace tracking).
Concerning eigenvalue computations, more work is needed to ascertain whether this
method is really competitive with existing algorithms.

In our experiments with signal subspace problems the linear equations were so
well-conditioned that preconditioning did not improve the speed of convergence. It
may turn out to be different if the matrices are not so close, and for such cases other
preconditioners may have to be developed.

For the sparse matrix case, preconditioning reduced the work, but more research
is needed to study incomplete factorization preconditioners in this context. There are
different options available concerning the amount of fill-in allowed. One could also
try incomplete LU factorization for A− τI if care is taken to control the conditioning
of the LU factors.

There are related methods, which should be compared to the manifold approach.
We have recently [32] investigated the simultaneous Rayleigh quotient iteration based
on (2.7), using acceleration [25, 28]. A systematic comparison to the Jacobi–Davidson
method should also be performed (see the appendix, where some similarities and
differences are pointed out). In future work it is essential to code the methods in
Fortran or C to obtain timing comparisons.

Appendix. Comparison to the Jacobi–Davidson method. The Newton–
Grassmann is similar in some respects to the Jacobi–Davidson method [35] for com-
puting a set of eigenvalues and eigenvectors [36]. Consider first the case when only
one eigenpair is computed, the largest, say. The Jacobi–Davidson algorithm [35, Al-
gorithm 1] involves a parameter m, which is the maximum dimension of a search space
that is used before a restart is made. If m is chosen equal to 2, then the search space
is V = ( y t ), where y is the previous eigenvector approximation, and t is computed
from the equation

(I − yyH)(A− τI)(I − yyH)t = −(Ay − τy), τ = yHAy.(A.1)

Let (θ, v) be the largest eigenpair of V HAV . Then θ is the new eigenvalue approx-
imation, and the new eigenvector approximation is v1y + v2t. Note that since t is
orthogonal to y and since ‖v‖2 = 1, this is a step along a geodesic curve on the unit
sphere from y in the direction t.

Of course, the equation for determining t in the Jacobi–Davidson method is the
same as the corresponding equation for the correction in the Newton–Grassmann
method. It is now easily seen that in this case the Jacobi–Davidson method is equiva-
lent to a modified Newton–Grassmann method, where, instead of the standard update,
a “line search” is performed along the geodesic curve.5

For a numerical comparison of the methods, we used a test problem from [35,
section 4.1]. The largest eigenvalue of the matrix A of dimension 1000 was computed,
where the diagonal elements were a(i, i) = i, the super- and subdiagonals were equal
to 0.5, as well as the elements a(1000, 1) and a(1, 1000). As starting vector we used
y1 = (0.01, 0.01, . . . , 0.01, 1)T . For both methods the linear systems were solved

5However, it is not a line search in the strict sense, i.e., such that the residual ‖(A− θI)V v‖2 is
minimized; see [26, section 11.4].
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Fig. A.1. Error in eigenvalue approximation as a function of iteration number for the Jacobi–
Davidson method (solid line) and modified Newton–Grassmann (dashed).

exactly using sparse LU factorization. It turned out that the Newton–Grassmann
method converged to an intermediate eigenvalue, while both the Jacobi–Davidson
method (without restart) and the modified Newton–Grassmann method (with “line
search”) converged in seven iterations.6 The approximation errors for the eigenvalue
are illustrated in Figure A.1.

Next consider the case d > 1, i.e., several eigenpairs are wanted. Assume that the
columns of Yl−1 = (y1, . . . , yl−1) are eigenvectors that have already been computed

using the Jacobi–Davidson method. Put Y
(0)
l = (Yl−1 y

(0)
l ), where y

(0)
l is a first

approximation of the eigenvector yl, satisfying y
(0)
l ⊥ Yl−1. Then new approximations

y
(k)
l are computed using a corrector equation,

Π
(k)
l (A− θ

(k)
l I)Π

(k)
l t = −r(k)

l ,(A.2)

where

Π
(k)
l = I − Y

(k)
l (Y

(k)
l )H , r

(k)
l = (I − Yl−1Y

H
l−1)(A− θ

(k)
l I) y

(k)
l ,

and θ
(k)
l is a Ritz approximation from a certain search subspace; for details see

[35, 36]. Obviously, (A.2) has a structure very similar to (2.4). However, in the
Jacobi–Davidson method the eigenvalues and eigenvectors are computed sequentially:
Previously computed eigenvectors are deflated out of the problem. On the other hand,
in the Newton–Grassmann method approximations of the whole set of eigenvectors
are used to form the projection matrix in the correction equation, and corrections
for all eigenvectors are computed from (2.4); thus new approximate eigenvectors are
computed in parallel .

Even if there are differences between the two methods, the computational tech-
niques used in connection with the Jacobi–Davidson method can also be applied to
the Newton–Grassmann method, since the structures of the correction equations (2.4)
and (A.2) are similar.

6We can also note that for this example using a search subspace of dimension larger than 2 in
the Jacobi–Davidson method did not pay off.
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Abstract. In this paper we describe the use of the theory of generalized polar decompositions
[H. Munthe-Kaas, G. R. W. Quispel, and A. Zanna, Found. Comput. Math., 1 (2001), pp. 297–324]
to approximate a matrix exponential. The algorithms presented have the property that, if Z ∈ g, a
Lie algebra of matrices, then the approximation for exp(Z) resides in G, the matrix Lie group of g.
This property is very relevant when solving Lie-group ODEs and is not usually fulfilled by standard
approximations to the matrix exponential.

We propose algorithms based on a splitting of Z into matrices having a very simple structure,
usually one row and one column (or a few rows and a few columns), whose exponential is computed
very cheaply to machine accuracy.

The proposed methods have a complexity of O(κn3), with constant κ small, depending on the
order and the Lie algebra g. The algorithms are recommended in cases where it is of fundamental
importance that the approximation for the exponential resides in G, and when the order of approxi-
mation needed is not too high. We present in detail algorithms up to fourth order.

Key words. matrix exponential, Lie algebra, Lie-group integrator
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1. Introduction. With the recent developments in the theory of Lie-group in-
tegration schemes for ordinary differential equations (ODEs) [10], the problem of
approximating the matrix exponential has lately received renewed attention. Most
Lie-group methods require a number of computations of matrix exponentials from
a Lie algebra g ⊆ R

n×n
to a Lie group G ⊆ GL(n,R) that usually constitutes a

bottleneck in the numerical implementation of the schemes [5].
The matrix exponentials need to be approximated to the order of the underlying

ODE method (hence exact computation is not an issue); however, it is of fundamental
importance that such approximations reside in G. In general, this property is not
fulfilled by many standard approximations to the exponential function [14] unless the
exponential is evaluated exactly.

In some few cases (usually for small dimension) the exponential of a matrix can
be evaluated exactly. This happens, for instance, for 3 × 3 skew-symmetric matri-
ces, whose exponential can be calculated exactly by means of the well-known Euler–
Rodriguez formula

exp(Z) = I +
sinα

α
Z +

1

2

(
sin(α/2)

α/2

)2
Z2,(1.1)

where

Z =


 0 z3 −z2
−z3 0 z1
z2 −z1 0


 , α = (z21 + z

2
2 + z

3
3)
1/2
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[13]. Exact formulas for skew-symmetric matrices and matrices in so(p, q) can be
derived up to dimension eight making use of the Cayley–Hamilton theorem [9] with
significant savings with respect to approximation techniques [1, 12]. However, for
several reasons the algorithms are not practical for larger dimensions. First, they
require high powers of the matrix in question (and each matrix-matrix multiplication
amounts to O(n3) computations). Second, it is well known that the direct use of
the characteristic polynomial, for large-scale matrices, may lead to computational
instabilities.

The problem of approximating the exponential of a matrix from a Lie algebra to
its corresponding Lie group has been recently considered by [4, 3]. In the first paper,
the authors construct the approximation by first splitting the matrix X ∈ g as the
sum of bordered matrices. Strang-type splittings of order 2 are considered, so that one
could apply a Yoshida technique [24], based on a symmetric composition of a basic
scheme whose error locally expands in odd powers of time only, to increase the order.
In the second paper, the authors consider techniques based on canonical coordinates
of the second kind (CCSK) [22]. To follow that approach, it is necessary to choose
a basis of the Lie algebra g. The choice of the basis plays a significant role in the
computational complexity of the algorithms [19], and, by choosing Chevalley bases [2]
which entail a large number of zero structure constants, it is possible to significantly
reduce the cost of the methods.

In this paper we consider the problem of approximating to a given order of accu-
racy

F (t, Z) ≈ exp(tZ) ∈ G, Z ∈ g,(1.2)

so that F (t, Z) ∈ G, where g ⊆ gl(R, n) and G ⊆ GL(R, n). The techniques we
introduce consist of a Lie-algebra splitting of the matrix Z by means of an iterated
generalized polar decomposition induced by an appropriate involutive automorphism
σ : G→ G, as discussed in [16]. We introduce a general technique for approximations
of arbitrary high order and discuss practical algorithms of order 2, 3, and 4. For
large n, these algorithms are very competitive with standard approximations of the
exponential function (for example, diagonal Padé approximants).

The paper is organized as follows. In section 2 we discuss the background theory
of the polar decomposition on Lie groups and its symmetric version. Such polar
decomposition can be used to induce a splitting in the Lie algebra g. As long as this
splitting is practical to compute, together with the exponential of each “split” part,
it leads to splitting methods for the approximation of the exponential of practical
interest.

In section 3 we use the theory developed in section 2 to derive approximations
of the exponential function for some relevant matrix Lie groups as SO(R, n) and
SL(R, n). Methods of order 2, 3, and 4 are discussed in greater detail, together with
their computational complexity. The methods are based on splittings in bordered
matrices, whose exact exponentials are very easy to compute.

Section 4 is devoted to some numerical experiments in which we illustrate the re-
sults derived in this paper; in section 5 we discuss the relation between our approach
and another method for the approximation of the exponential in terms of eigenspace
and Schur decompositions; and finally section 6 is devoted to some concluding re-
marks.

2. Background theory. It is usual in differential geometry to denote Lie-
group elements with lowercase letters and Lie-algebra elements with uppercase letters,
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whether they represent matrices, vectors, or scalars [7]. We adopt this convention
throughout this section.

Let G be a Lie group with Lie algebra g. We restrict our attention to matrix
groups, i.e., to the case when G ⊆ GL(R, n).

It is known that, provided σ : G→ G is an involutive automorphism of G, every
element z ∈ G sufficiently close to the identity can be decomposed in the product

z = xy,(2.1)

where y ∈ Gσ = {w ∈ G : σ(w) = w}, the subgroup of elements of G fixed under σ,
and x ∈ Gσ = {w : σ(w) = w−1} is the subset of antifixed points of σ [11, 16]. The
set Gσ has the structure of a symmetric space [7] and is closed under the product

x1 · x2 = x1x−12 x1,

as can be easily verified by application of σ to the right-hand side of the above relation.
The decomposition (2.1) is called the generalized polar decomposition of z in analogy
with the case of real matrices with the choice of automorphism σ(z) = z−T.

Next set z = exp(tZ) with Z ∈ g. The automorphism σ induces an involutive
automorphism dσ on g in a natural manner,

dσ(Z) =
d

dt

∣∣∣
t=0
σ(exp(tZ)),

and it defines a splitting of the algebra g into the sum of two linear spaces,

g = p⊕ k,(2.2)

where k = {Z ∈ g : dσ(Z) = Z} is a subalgebra of g, while p = {Z ∈ g : dσ(Z) =
−Z} has the structure of a Lie-triple system, a set closed under the double commu-
tator,

A,B,C ∈ p =⇒ [A, [B,C]] ∈ p.

To keep our presentation relevant to the argument matter of this paper, we refer the
reader to [16, 15] and the references therein for a more extensive treatment of such
decompositions. However, it is of fundamental importance to note that the sets k and
p possess the following properties:

[k, k] ⊆ k,

[k, p] ⊆ p,

[p, p] ⊆ k.

(2.3)

We denote by Πp : g → p the canonical projection onto the subspace p and by

Πk : g→ k the projection onto k. Then,

Z = ΠpZ +ΠkZ = P +K,

where

ΠpZ =
1

2
(Z − dσ(Z)), ΠkZ =

1

2
(Z + dσ(Z)).
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Assume that x and y in (2.1) are of the form x = exp(X(t)) and y = exp(Y (t)).
Then X(t) ∈ p, Y (t) ∈ k and they can be expanded in series

X(t) =

∞∑
i=1

Xit
i, Y (t) =

∞∑
i=1

Yit
i,

where the Xi and Yi can be explicitly calculated by means of the following recurrence
relations:

X1 = P,

(i+ 1)Xi+1 = −[Xi,K] +
∑
�≥1
2�≤i

c2�
∑

�1,...,�2�>0
�1+···+�2�=i

[X�1 , [X�2 , . . . , [X�2� , P ]]], i = 1, 2, . . . ,

(2.4)

and

Y1 = K,(2.5)

Y2i = O, i = 0, 1, 2, . . . ,

2(2i+ 1)Y2i+1 = −2
i∑

q=1

∑
k≥1
k≤q

1

(2k + 1)!

∑
k1,...,k2k>0

k1+···+k2k=2q

[Yk1
, . . . , [Yk2k

, Y2(i−q)+1] . . .]

−
i∑

m=1

2(i−m) + 1

(2m)!
ad2mZ Y2(i−m)+1

−
2(i−1)∑
q=0

2(i−1)−q∑
j=0

(−1)2i−q−j−1(j + 1)

(2i− q − j − 1)!
ad2i−j−q−1

Z

∑
k≥1

k≤q+1

1

(k + 1)!

∑
j1,...,jk>0

j1+···+jk=q+1

[Yj1 , . . . , [Yjk , Yj+1] . . .]

−
∑
�≥1
�≤i

1

(2�)!

∑
�1,...,�2�>0

�1+···+�2l=2i

[Y�1 , . . . , [Y�2� , P −K] . . .]

(see [25]). Note that Y (t) expands in odd powers of t only. The first terms in the
expansions of X(t) and Y (t) are

X = Pt− 1
2 [P,K]t2 − 1

6 [K, [P,K]]t3

+
(
1
24 [P, [P, [P,K]]]− 1

24 [K, [K, [P,K]]]
)
t4

+
(
7
360 [K, [P, [P, [P,K]]]]− 1

120 [K, [K, [K, [P,K]]]]− 1
180 [[P,K], [P, [P,K]]]

)
t5

+O(t6) ,
Y = Kt− 1

12 [P, [P,K]]t3 +
(
1
120 [P, [P, [P, [P,K]]]]

+ 1
720 [K, [K, [P, [P,K]]]]− 1

240 [[P,K], [K, [P,K]]]
)
t5 +O(t7) .

(2.6)
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We also consider a symmetric-type generalized polar decomposition,

z = xyx, z = exp(tZ), x = exp(X(t)), y = exp(Y (t)),(2.7)

where, as above, X(t) ∈ p and Y (t) ∈ k. To compute X(t), we apply σ to both sides
of (2.7) to obtain

σ(z) = exp(−X(t)) exp(Y (t)) exp(−X(t)).(2.8)

Isolating the y term in (2.8) and (2.7) and equating the result, we obtain

exp(tZ) = exp(2X(t)) exp(tW ) exp(2X(t)), W = dσ(Z).(2.9)

This leads to a differential equation for X which is very similar to the one obeyed by
Y in (2.5) [25]. Using the recursions in [25] we obtain recursions for X(t) and Y (t).
The first terms are given as

X(t) = 1
2Pt+

1
24 [K, [P,K]]t3 −

(
1

1440 [K, [P, [P, [P,K]]]](2.10)

+ 1
240 [K, [K, [K, [P,K]]]] + 1

360 [[P,K], [P, [P,K]]]
)
t5 + · · · ,

Y (t) = Kt+ 1
24 [P, [P,K]]t3 +

(
1

1920 [P, [P, [P, [P,K]]]](2.11)

− 13
1440 [K, [K, [P, [P,K]]]]− 1

240 [[P,K], [K, [P,K]]]
)
t5 + · · ·

and both X(t) and Y (t) expand in odd powers of t only.

3. Generalized polar decomposition and its symmetric version for the
approximation of the exponential. Assume now that we wish to approximate
exp(tZ) for some Z ∈ g, and that σ1 is an involutive automorphism so that the
exponential of terms in p1 = {X ∈ g : dσ1X = −X} as well as analytic functions of
adP = [P, ·] are easy to compute. Then g = p1 ⊕ k1, and we can approximate

exp(tZ) ≈ exp(X [1](t)) exp(Y [1](t)),(3.1)

where X [1] and Y [1] obey the order conditions (2.4)–(2.6) to suitable order.
Alternatively, we can approximate

exp(tZ) ≈ exp(X [1](t)) exp(Y [1](t)) exp(X [1](t)),(3.2)

where X [1] and Y [1] now obey the order conditions (2.10)–(2.11) to given accuracy.
The same mechanism can be applied to split k1 in p2 ⊕ k2 by means of a suitable

automorphism σ2. The procedure can be iterated and, provided that the exponential
of km is easy to compute, we have an algorithm to approximate exp(tZ) to a given
order of accuracy. In this circumstance, (3.1) will read

exp(tZ) ≈ F (t, Z) = exp(X [1](t)) · · · exp(X [m](t)) exp(Y [m](t)),(3.3)

while the analogue of (3.2) is

exp(tZ) ≈ F (t, Z)
= exp(X [1](t)) · · · exp(X [m](t)) exp(Y [m](t)) exp(X [m](t)) · · · exp(X [1](t)),(3.4)

both corresponding to the algebra splitting

g = p1 ⊕ · · · ⊕ pm ⊕ km.(3.5)
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3.1. On the choice of the automorphisms σi. In what follows, we will
consider automorphisms σ of the form

σ(z) = SzS, z ∈ G,(3.6)

where S is an idempotent matrix, i.e., S2 = I [18]. Clearly,

dσ(Z) = SZS,

and, for simplicity, we will abuse notation by writing σZ in place of dσZ, given that
all our computations take place in the space of matrices.

Since S2 = I, all the eigenvalues of S are either +1 or −1. Thus, powers of
matrices P = Πp(Z) as well as powers of adP are easy to evaluate by means of the
(+1)- and (−1)-eigenspace of S [18].

Note that automorphisms of the type (3.6) are defined a priori, with respect to
a fixed basis chosen independently of the data in Z. In section 5 we shall discuss
automorphisms based on approximate eigenspace decompositions of the matrix Z, a
case in which the splitting depends dynamically on the given matrix.

3.2. Automorphisms that lead to bordered matrix splittings. Let Z ∈
gl(n,R) be an n× n matrix and consider the automorphism

σ1Z = S1ZS1,

where S1 is the idempotent matrix

S1 =




−1 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1


 .

It is easy to verify that

Πp
1
Z =

1

2
(Z − S1ZS1) =




0 z1,2 · · · z1,n
z2,1 0 · · · 0
...

...
. . .

...
zn,1 0 · · · 0


 ,(3.7)

while

Πk1
Z =

1

2
(Z + S1ZS1) =



z1,1 0 · · · 0
0 z2,2 · · · z2,n
...

...
. . .

...
0 zn,2 · · · zn,n


 .(3.8)

In general, assume that, at the jth step, the space kj−1 consists of matrices of the
form

W =




w1,1 O
. . . O

O wj−1,j−1
wj,j · · · wj,n

O
...

. . .
...

wn,j · · · wn,n



.(3.9)
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Then, the obvious choice is

Sj =

(
Ij−1 O

O S̃j

)
, S̃j =




−1 0 · · · 0

0 1 0
...

...
. . .

. . . 0
0 · · · 0 1


 ,(3.10)

where Ij−1 denotes the (j−1)×(j−1) identity matrix and S̃j is an (n−j+1)×(n−j+1)
block, so that the subspace pj consists of matrices of the form

Πp
j
W =

(
Oj−1 O

O P̃j

)
, P̃j =




0 wj,j+1 · · · wj,n

wj+1,j 0 · · · 0
...

...
. . .

...
wn,j 0 · · · 0


 ,(3.11)

where Oj−1 denotes the (j − 1)× (j − 1) zero matrix.
Exponentials of matrices of the form (3.11) are very easy to compute: in effect,

exp

(
Oj−1 O

O P̃j

)
=

(
Ij−1 O

O exp(P̃j)

)
,

where exp(P̃j) can be computed exactly with a formula analogous to the Euler–
Rodriguez formula (1.1): denote aj = [wj+1,j , . . . , wn,j ]

T and bj = [wj,j+1, . . . wj,n]
T.

Then,

exp(P̃j) =




In−j+1 +
sinhαj

αj
P̃j +

1
2

(
sinh(αj/2)

αj/2

)2
P̃ 2j if aTj bj > 0, αj =

√
aTj bj ,

In−j+1 + P̃j +
1
2 P̃

2
j if aTj bj = 0,

In−j+1 +
sinαj

αj
P̃j +

1
2

(
sin(αj/2)

αj/2

)2
P̃ 2j if aTj bj < 0, αj =

√
−aTj bj .

(3.12)

Note that

P̃ 2j =

(
α2j 0T

0 ajb
T
j

)
.

Another alternative for the exact exponential of P̃j is the one proposed in [4]:

exp(P̃j) = In−j+1 + [k, e1]ϕ(D)

[
eT1
lT

]
,(3.13)

where

k =

[
0
aj

]
, l =

[
0
bj

]
, D =

(
0 1

bTj aj 0

)
,

e1 is the vector [1, 0, . . . , 0]T ∈ R
n−j+1

and finally ϕ(z) = (ez − 1)/z. The latter
formula (3.13), as we shall see in what follows, leads to significant savings in the
computation and assembly of the exponentials.
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Moreover, given that

Πkj
W =

(
Dj−1 O

O K̃j

)
, Dj−1 = diag(w1,1, . . . , wj−1,j−1),(3.14)

where

K̃j =

(
wj,j 0T

0 K̄j

)
,

then

[P̃j , K̃j ] =

(
0 bTj K̄j − wj,jb

T
j

wj,jaj − K̄jaj O

)
.(3.15)

Next, if Z ∈ g, to obtain an approximation of the exponential in G by these
automorphisms we shall require that the σi’s, defined by the above matrices Si, map
g into g. Clearly, this is the case for

• so(n,R), since σiZ = SiZSi = AdSiZ is a map from so(n) → so(n), given
that each Si is an orthogonal matrix;

• sl(n,R), since σi leaves the diagonal elements of Z (hence its trace) un-
changed;
• quadratic Lie algebras g = {Z : ZJ+JZT = O, J nonsingular} provided that
J and the Si’s commute. This is, for instance, the case when J is diagonal;
hence our formulas are valid for so(p, q), p+q = n, but not for the symplectic
algebra sp(n,R). In the latter situation, we consider different choices for the
automorphisms σi, discussed at a greater length in [18].

3.3. Splittings of order 2 to 4, their implementation and complexity.
In this section we describe in more detail the algorithms, the implementation, and
the complexity of the splittings induced by the automorphisms described above. Note
that the complexity counts refer to the computation of the splitting alone and depends
on the desired order of approximation, and further work is required for the assembly
of the approximation to the exponential. The total cost of some schemes (splitting
and assembly of the approximated exponential) is therefore presented in section 4.

The cases of a polar-type representation, z = xy, or a symmetric polar-type
representation, z = xyx, are discussed separately.

Algorithm 1 (polar-type splitting, order 2). Based on the iterated generalized
polar decomposition (3.3). Note that the Πp

j
and Πkj

projections need not be stored

in separate matrices but can be stored in places of the rows and columns of the matrix
Z. We truncate the expansions (2.6) to order 2, and hence at each step only the pj-

part needs correction. Taking in mind (3.3), the matrices X [j] are low-rank matrices
with nonzero entries only on the jth row, column j+1 to n, and jth column, row j+1
to n, for j = 1, . . . , n − 2, which are stored in place of the corresponding Z entries.
The matrix Y [n−1] is diagonal and is stored in the diagonal entries of Z.

% Purpose: second-order approximation of the splitting (3.3)
% In: n× n matrix Z
% Out: Z overwritten with the nonzero elements of X [i] and Y [m] as:
% Z(i+ 1 : n, i) = X [i](i+ 1 : n, i), Z(i, i+ 1 : n) = X [i](i, i+ 1 : n),
% diag(Z) = diag(Y [m])
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%
for j = 1 : n− 1

aj := Z(j + 1 : n, j),
bj := Z(j, j + 1 : n)T,

K̄j := Z(j + 1 : n, j + 1 : n),
cj := zj,jaj − K̄jaj ,

dj := −zj,jbj + K̄Tj bj ,
Z(j + 1 : n, j) := aj − 1

2cj ,

Z(j, j + 1 : n) := (bj − 1
2dj)

T

end
The computation of the splitting requires at each step two matrix-vector multiplica-
tions, each amounting to O(2(n− j + 1)2

)
floating point operations (we count both

multiplications and additions), as well as two vector updates, which are O(n− j + 1)
operations. Hence, for large n, the cost of computing the splitting is of the order

• 4
3n
3 for so(p, q), p+ q = n and sl(n),

• 2
3n
3 for so(n), taking into account that bj = −aj .

Note that for both so(p, q) and so(n) the matrix Y [n−1] is the zero matrix.
Algorithm 2 (symmetric polar-type splitting, order 2). Based on the iterated

generalized polar decomposition (3.4). We truncate the expansions (2.10)–(2.11) to
order 2. The storing of the entries is as above.

% Purpose: second-order approximation of the splitting (3.4)
% In: n× n matrix Z
% Out: Z overwritten with the nonzero elements of X [i] and Y [m] as:
% Z(i+ 1 : n, i) = X [i](i+ 1 : n, i), Z(i, i+ 1 : n) = X [i](i, i+ 1 : n),
% diag(Z) = diag(Y [m])
%
% Computation of the splitting
for j = 1 : n− 1

aj := Z(j + 1 : n, j),
bj := Z(j, j + 1 : n)T,

Z(j + 1 : n, j) := 1
2aj ,

Z(j, j + 1 : n) := 1
2b
T
j

end
This splitting costs only

• n(n− 1) for so(p, q), p+ q = n and sl(n),

• n(n−1)
2 for so(n), because of skew-symmetry.

Algorithm 3 (polar-type splitting, order 3). We truncate (2.6)–(2.7) to include
O(t3) terms. Note that the term [K, [P,K]] is of the form (3.15). We need to include
also the term of the form [P, [P,K]]. We observe that

[P̃j , [P̃j , K̃j ]] =

(
2bTj (zj,jI − K̄j)aj 0T

0 −ajb
T
j (zj,jI − K̄j)− (zj,jI − K̄j)ajb

T
j

)
.

(3.16)

% Purpose: third-order approximation of the splitting (3.3)
% In: n× n matrix Z
% Out: Z overwritten with the nonzero elements of X [i] and Y [m] as:
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% Z(i+ 1 : n, i) = X [i](i+ 1 : n, i), Z(i, i+ 1 : n) = X [i](i, i+ 1 : n),
% diag(Z) = diag(Y [m])
%
% Computation of the splitting
for j = 1 : n− 1

aj := Z(j + 1 : n, j),
bj := Z(j, j + 1 : n)T,

K̄j := Z(j + 1 : n, j + 1 : n),
cj := zj,jaj − K̄jaj ,

dj := −zj,jbj + K̄Tj bj ,
Z(j + 1 : n, j) := aj − 1

2cj +
1
6 (zj,jI − K̄i)cj ,

Z(j, j + 1 : n) := (bj − 1
2dj − 1

6 (zj,jI − K̄j)dj)
T,

Z(j + 1 : n, j + 1 : n) := Z(j + 1 : n, j + 1 : n) + 1
12 (−ajd

T
j + cjb

T
j ),

Z(j, j) := Z(j, j)− 1
6b
T
j cj

end

Analyzing the computations involved, we find that the most costly part is constituted
by the matrix-vector products in the computations in cj ,dj , Z(j+1 : n, j), Z(j, j+1 :
n) and vector-vector products in the update of Z(j +1 : n, j +1 : n) and z(j, j). The
computation of cj ,dj , Z(j+1 : n, j), and Z(j, j+1 : n) amounts to 8

3n
3 in the whole

process. For the update of Z(j+1 : n, j+1 : n), we need to compute two vector-vector
products (O((n− j + 1)2

)
each) plus 3(n− j+1)2 operations to update the elements

of the matrix. Thus, the whole cost of updating the matrix Z(j + 1 : n, j + 1 : n) is
5
3n
3. The update of zj,j requires 2(n− j + 1)2 operations per step, which give a 2

3n
3

contribution to the total cost of the splitting.

In summary, the total cost of the splitting is

• 5n3 for so(p, q) and sl(n),
• for so(n), note that dj need not be calculated as well as zj,j = 0. Similarly,

we take into account that bj = −aj and that only half of the elements of
Z(j + 1 : n, j + 1 : n) need to be updated. The total amounts to 212n

3

operations.

It is easy to modify the splitting above to obtain order 4. Note that

[P̃j , [P̃j , [P̃j , K̃j ]]] = bTj aj [P̃j , K̃j ] + 3(bTj (zj,jI − K̄j)aj)S̃jP̃j ,(3.17)

which requires the computation of the scalar bTj aj only, costing 2/3n3 operations in

the whole process. However, all the other powers adi
P̃j
K̃j for i = 4, 5, . . . require no

further computation. The next term, [K̃j , [K̃j , [P̃j , K̃j ]]], can be computed with just
two (one) extra matrix-vector computations for sl(n) (resp., so(n)), which contribute
4
3n
3 (resp., 23n

3) to the cost of the splitting, so that the splitting of order 4 costs a
total of 7n3 operations for sl(n) (resp., 4n3 for so(n)).

Algorithm 4 (symmetric polar-type splitting, order 4). We truncate (2.10)–
(2.11) to include O(t3) terms. Also in this case, the term [K, [P,K]] is of the form
(3.15), while the term [P, [P,K]] is computed according to (3.16).

% Purpose: fourth-order approximation of the splitting (3.4)
% In: n× n matrix Z
% Out: Z overwritten with the nonzero elements of X [i] and Y [m] as:
% Z(i+ 1 : n, i) = X [i](i+ 1 : n, i), Z(i, i+ 1 : n) = X [i](i, i+ 1 : n),
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% diag(Z) = diag(Y [m])
%
for j = 1 : n− 1

aj := Z(j + 1 : n, j),
bj := Z(j, j + 1 : n)T,
K̄j := Z(j + 1 : n, j + 1 : n),

cj := (zj,jI − K̄j)
2aj ,

dj := (zj,jI − K̄Tj )2bj ,
Z(j + 1 : n, j) := 1

2aj − 1
24cj ,

Z(j, j + 1 : n) := (12bj − 1
24dj)

T,

Z(j + 1 : n, j + 1 : n) := Z(j + 1 : n, j + 1 : n)− 1
24 (ajb

T
j (zj,jI − K̄j),

+ (zj,jI − K̄j)ajb
T
j ),

z(j, j) := z(j, j) + 1
12b

T
j (zj,jI − K̄j)aj

end

We need to compute a total of four matrix-vector products, yielding 8
3n
3 operations.

The update of the block Z(j +1 : n, j +1 : n) costs 53n
3 operations, while the update

of z(j, j) costs 23n
3 operations, for a total of

• 5n3 operations for sl(n) and so(p+ q),
• 2 12n

3 operations for so(n).

3.4. On higher-order splittings. The costs of implementing splittings follow-
ing (3.3) or (3.4) depend on the type of commutation involved: commutators of the
form [P,K] and [P1, P2], P, P1, P2 ∈ p,K ∈ k, contribute as an O(n3) term to the total
complexity of the splitting; however, commutators of the form [K1,K2] for K1,K2 ∈ k
can easily contribute an O(n4) to the total complexity of the splittings if the special
structure of the terms involved is not taken into consideration. If carefully imple-
mented, these terms can also be computed with only matrix-vector and vector-vector
products, contributing O(n3) operations to the total cost of the splitting. For ex-

ample, let us consider the term [K̃j , [K̃j , [P̃j , [P̃j , K̃j ]]]], which appears in the O(t5)
contribution in the expansion of the Y part, for both the polar-type and symmetric
polar-type splittings. One has

[K̃j , [K̃j , [P̃j , [P̃j , K̃j ]]]] =

(
0 0T

0 Q̄j

)
,

Q̄j = −
(
(K̄j(K̄jaj))(b

T
j ∆j)

)
−
(
(K̄j(K̄j(∆jaj)))b

T
j

)
(3.18)

+2
(
((K̄jaj)((b

T
j ∆j)K̄j)) + ((K̄j(∆jaj))(b

T
j K̄j))

)
−
(
aj(((b

T
j ∆j)K̄j)K̄j)

)
−
(
(∆jaj)(b

T
j K̄j)K̄j

)
,

where ∆j denotes the matrix zj,jI−K̄j . The parentheses indicate the correct order in
which the operations should be executed to obtain the right complexity (O((n− j + 1)2

)
per step, hence a total of O(n3) for the splitting). Many of the terms are already com-
puted for the lower-order conditions, yet the complexity arises significantly. Therefore
we recommend these splitting-type techniques when a moderate order of approxima-
tion is required.

To construct higher-order approximations with these splitting techniques, one
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could use our symmetric polar-type splittings together with a Yoshida-type symmetric
combination.

3.5. Assembly of the approximation F (t, Z) to the exponential. For
each algorithm that computes the approximation to the exponential, we distinguish
two cases: when the approximation is applied to a vector v, and when instead the
matrix exponential exp(Z) is required. Since the matrices X [j] are never constructed
explicitly and are stored as vectors, computation of the exponentials exp(X [j]) is
also never performed explicitly, but is implemented as in the case of the Householder
reflections [6] when applied to a vector.

First, let us return to (3.13). It is easy to verify that, if we denote by αj =
√
bTj aj ,

then exp(D) has the exact form

exp(D) =
(
1 + 2 sinh2

(αj
2

))
I +

sinhαj
αj

D,

where I is the 2 × 2 identity matrix. Similar remarks hold about the matrix D−1.
Thus, the computation of ϕ(D) = D−1(exp(D) − I) can be done in very few flops

that “do not contribute” to the total cost of the algorithm. Next, if v,k, l, e1 ∈ R
j
,

the assembly of exp(P̃j)v according to (3.13) can be computed in 6j operations. If we
let j vary between 1 and n, the total cost of the multiplications is hence 3n2. This is
precisely the complexity of the assembly of the exponential for polar-type splittings,
which has the form as in (3.3).

Algorithm 5 (polar-type approximation).
% Purpose: Computing the approximant (3.3) applied to a vector v
% In: v: n-vector
% Z: n× n matrix containing the nonzero elements of X [i] and Y [m] as:
% Z(i+ 1 : n, i) = X [i](i+ 1 : n, i), Z(i, i+ 1 : n) = X [i](i, i+ 1 : n),
% diag(Z) = diag(Y [m])
% Out: v := exp(X [1]) · · · exp(X [m]) exp(Y [m])v
%
for k = 1 : n
vk := exp(zk,k)vk

end
for j = n− 1 : −1 : 1

aj := [0;Z(j + 1 : n, j)],
bj := [0;Z(j, j + 1 : n)T],
vold := v(j : n),

αj :=
√

bTj aj , βj =
sinhαj

αj
and γj = 2 sinh2(αj/2),

D :=
(
0
α2

j

1
0

)
,

ϕ(D) := γjD
−1 + βjI,

w := ϕ(D)
[ vold,1

bT

j vold

]
,

vnew := [aj , e1]w = w1aj + w2e1,
v(j : n) := vold + vnew

end
In the case in which the output needs to be applied to an n × n matrix B, we
can apply the above algorithm to each column of B, for a total of 3n3 operations.
This complexity can be reduced to about 2n3 taking into account that the vector
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α = [α1, . . . , αn−1]T can be calculated once and for all, depending only on the splitting
of the matrix Z and not in any manner on the columns of B. Also β = [β1, . . . , βn−1]T

and γ = [γ1, . . . , γn−1]T can be computed once and stored for later use.

Algorithm 6 (symmetric polar-type approximation). The approximation to
the exponential is carried out in a manner very similar to that described above in
Algorithm 5, except that, since (3.4) is based on a Strang-type splitting, the assembly
is also performed in reverse order.

% Purpose: Computing the approximant (3.4) applied to a vector v
% In: v: n-vector
% Z: n× n matrix containing the nonzero elements of X [i] and Y [m] as:
% Z(i+ 1 : n, i) = X [i](i+ 1 : n, i), Z(i, i+ 1 : n) = X [i](i, i+ 1 : n),
% diag(Z) = diag(Y [m])
% Out: v := exp(X [1]) · · · exp(X [m]) exp(Y [m]) exp(X [m]) · · · exp(X [1])v
%
for j = 1 : n− 1
aj := [0;Z(j + 1 : n, j)],
bj := [0;Z(j, j + 1 : n)T],
vold := v(j : n),

αj :=
√

bTj aj , βj =
sinhαj

αj
, γj = 2 sinh2(αj/2),

D :=
(
0
α2

j

1
0

)
,

ϕ(D) := γjD
−1 + βjI,

w := ϕ(D)
[ vold,1

bT

j vold

]
,

vnew := [aj , e1]w = w1aj + w2e1,
v(j : n) := v(j : n) + vnew

end

for k = 1 : n
vk := exp(zk,k)vk

end

for j = n− 1 : −1 : 1
aj := [0;Z(j + 1 : n, j)],
bj := [0;Z(j, j + 1 : n)T],
vold := v(j : n),

D :=
(
0
α2

j

1
0

)
,

ϕ(D) := γjD
−1 + βjI,

w := ϕ(D)
[ vold,1

bT

j vold

]
,

vnew := [aj , e1]w = w1aj + w2e1,
v(j : n) := v(j : n) + vnew

end

The vectors α,β, and γ need to be calculated only once and stored for later use in
the reverse-order multiplication. The cost of the assembly is roughly twice the cost
of the assembly in Algorithm 1; hence it amounts to 5n2 operations. (We save n2

operations omitting the computation of α.)

When the result is applied to a matrix B, again we apply the same algorithm to
each column of B, which yields n3 operations. Also in this case the vector α does
not depend on B and can be computed once and for all, reducing the cost to 4n3
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operations. The same remark holds for the vectors β and γ.

It is important to mention that the matrixD might be singular or close to singular
(for example, when aj and bj are close to be orthogonal); hence the computation of

exp(P̃j) according to (3.13) may lead to instabilities. In this case, it is recommended
to use (3.12) instead of (3.13) or to compute (3.13) by means of singular value decom-
positions. The cost of (3.12) is twice the cost of (3.13) (5n2 for polar-type assemblies
and 9n2 for symmetric assemblies for F (t, Z) applied to a vector).

4. Numerical experiments.

4.1. Nonsymmetric polar-type approximations to the exponential. We
commence comparing the polar-type order-2 splitting of Algorithm 1 combined with
the assembly of the exponential in Algorithm 5 with the (1, 1)-Padé approximant for
matrices in sl(n) and so(n), with corresponding groups SL(n) and SO(n). We choose
diagonal Padé approximants as a benchmark because they are easy to implement, they
are the rational approximant with highest order of approximation at the origin, and
it is well known that they map quadratic Lie algebras into quadratic Lie groups (but
not necessarily other Lie algebras into the corresponding Lie groups). Furthermore,
there exists a well-established error analysis for diagonal Padé approximants, and this
makes them the standard against which other methods are compared. For using the
Padé approximant, we refer to [23].

Table 1 reports the complexity of the method 1+5. A (1, 1)-Padé approximant
costs O(2/3n3) floating point operations when applied to a vector (essentially the

cost of LU-factorizing a linear system) and O(2 23n3) operations when applied to n×n
matrices. (Note that (I −Z/2)−1(I +Z/2) = −I +2(I −Z/2)−1; hence we reduce to
solve a single linear system: 2

3n
3 flops come from the LU factorization and 2n3 from

the n forward and backward solution of triangular systems.)

In Figure 1 we compare the number of floating point operations scaled by n3

for matrices Z up to size 500 as obtained in MATLAB for our polar-type order-2
algorithm (method 1+5) and the (1, 1)-Padé approximant both applied to a matrix.
We consider the cases when Z is in sl(n) and so(n). The costs of computing both
approximations clearly converges to the theoretical estimates (which in the plot are
represented by solid lines) given in Table 1 for large n.

In Figure 2 we compare the accuracy of the two approximations (top plot) for the
exponential of a random 10× 10 traceless matrix hZ, where Z is normalized so that
‖Z‖2 = 1 and h = 1

2 ,
1
4 , . . . ,

1
64 . Both methods show a local truncation error of O(h3),

revealing that the order of approximation to the exact exponential is 2. The bottom
plot shows the error in the determinant as a function of h: the Padé approximant has
an error that behaves like h3, while our method preserves the determinant equal to 1
to machine accuracy.

Table 1
Complexity for a polar-type order-2 approximant.

Algorithm sl(n),so(p, q) so(n)

1+5 Vector Matrix Vector Matrix

Splitting 1 1
3
n3 1 1

3
n3 2

3
n3 2

3
n3

Assembly exp 3n2 2n3 3n2 2n3

Total 1 1
3
n3 3 1

3
n3 2

3
n3 2 2

3
n3
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Fig. 1. Floating point operations (scaled by n3) versus size for the approximation of the expo-

nential of a matrix in sl(n) and in so(n) applied to a matrix with the order-2 polar-type algorithm
(method 1 + 5) and (1, 1)-Padé approximant.

In Table 2 we report the complexity of the method 3+5, which yields an approx-
imation to the exponential of order 3. The numbers in parentheses refer to the cost
of the algorithm with order-4 corrections.

4.2. Symmetric polar-type approximations to the exponential. We com-
mence comparing our method 2+6, yielding an approximation of order 2, with the
(1, 1)-Padé approximant. Table 3 reports the complexity of the method 2+6.

Clearly, in the matrix-vector case, our methods are one order of magnitude
cheaper than the Padé approximant and are definitively to be preferred (see Fig-
ure 3 for matrices in sl(n)). Furthermore, our method maps the approximation in
SL(n), while the Padé approximant does not. When comparing approximations of
the matrix exponential applied to a vector, it is a must to consider Krylov subspace
methods [20]. We compare the method 2+6 with a Krylov subspace method when Z
is a matrix in sl(n), normalized so that ‖Z‖2 = 1 and v ∈ R

n
is a vector of unit norm.

The Krylov subspaces are obtained by Arnoldi iterations, whose computational cost
amounts to about 2mn2+2nm(m− 1) operations, counting both multiplications and
additions. Here m is the dimension of the subspace Km ≡ span{v, Zv, . . . , Zm−1v}.
To obtain the total cost of a Krylov method, we have to add O(m3) computations
arising from the evaluation of the exponential of the Hessenberg matrix obtained with
the Arnoldi iteration, plus 2nm operations arising from the multiplication of the lat-
ter with the orthogonal basis. However, when n is large and m � n, these costs are
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Fig. 2. Error in the approximation (top) and in the determinant (bottom) versus h for the
approximation of the exponential of a traceless 10 × 10 matrix of unit norm with the order-2 polar-
type algorithm (method 1 + 5) and (1, 1)-Padé approximant.
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Table 2
Complexity for a polar-type order-3 approximant. The numbers in parentheses correspond to

the coefficients for an order-4 approximation.

Algorithm sl(n),so(p, q) so(n)

3+5 Vector Matrix Vector Matrix

Splitting 5(7)n3 5(7)n3 2 1
2

(4)n3 2 1
2

(4)n3

Assembly exp 3n2 2n3 3n2 2n3

Total 5(7)n3 7(9)n3 2 1
2

(4)n3 4 1
2

(6)n3

Table 3
Complexity for a symmetric polar-type order-2 approximant.

Algorithm sl(n),so(p, q) so(n)

2+6 Vector Matrix Vector Matrix

Splitting n2 n2 1
2
n2 1

2
n2

Assembly exp 5n2 4n3 5n2 4n3

Total 6n2 4n3 5 1
2
n2 4n3
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Fig. 3. Floating point operations versus size for the approximation of the exponential of a
matrix in sl(n) applied to a vector with the order-2 symmetric polar-type algorithm (method 2 + 6)
and (1, 1)-Padé approximant.

subsumed in that of the Arnoldi iteration, and the leading factor is 2mn2 (2mn3 for
matrices).

The error, computed as ‖F (1, Z)v−exp(Z)v‖2, and the floating point operations
of both approximations for n = 100, 200, 300 are given in Table 4. The Krylov method
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Table 4
Krylov subspace approximations versus the method 2 + 6 for the approximation of exp(Z)v.

Krylov 2+6

Size n Error m Flops Error Flops

100
0.74 1 21041
0.01 2 42887 0.05 66239

4.4e-15 9 219123

200
0.79 1 82041
0.01 2 165477 0.05 242589

7.1e-15 8 690653

300
0.75 1 183041
0.01 2 368077 0.06 528939

7.7e-15 8 1510653

converges very fast: in all three cases 89 iterations are sufficient to obtain almost ma-
chine accuracy, while two iterations yield an error which is of the order of method
2+6, at about two-thirds (0.64, 0.68, 0.69, respectively) the cost. On the other hand,
Krylov methods do not produce an SL(n) approximation to the exponential unless
the computation is performed to machine accuracy, which, in our particular exam-
ple, is 3.30, 2.84, and 2.85—about three times more costly than the 2+6 algorithm.
For the SO(n) case, it should be noted that if Z ∈ so(n), then the approximation
w ≈ exp(Z)v produced by the Krylov method has the feature that ‖w‖2 = ‖v‖2
independently of the number m of iterations: in this case, the Hessenberg matrix
produced by the Arnoldi iterations is tridiagonal and skew-symmetric, hence its ex-
ponential orthogonal. Thus, Krylov methods are the method of choice for actions of
SO(n) on R

n
[17]. One might extrapolate that, if we wish to compute the exponential

exp(Z)Q, where Q ∈ SO(n), one could perform only a few iterations of the Krylov
method to compute wi ≈ exp(Z)qi, for i = 1, 2, . . . , n, the qi’s being columns of
Q. Unfortunately, the approximation [w1, . . . ,wn] ceases to be orthogonal: although
‖wi‖2 = 1, the vectors wi cease to be linearly independent and the final approxi-
mation is not in SO(n). Similar analysis yields for Stiefel manifolds, unless Krylov
methods are implemented to approximate the exponential to machine accuracy.

In passing, we recall that our methods based on a symmetric polar-type de-
composition are time-symmetric. Hence it is possible to compose a basic scheme in
a symmetric manner, following a technique introduced by Yoshida [24], to obtain
higher-order approximations: two orders of accuracy can be obtained at three times
the cost of the basic method. For instance, we can use the method 2+6 as a basic
algorithm to obtain an approximation of order 4. Thus an approximation of order 4
applied to a vector can be obtained in 17n2 operations for sl(n) (two splittings and
three assemblies), compared to O(n3) operations required by the method 4+6.

To conclude our gallery, we compare the method 4+6, an order-4 scheme, whose
complexity is described in Table 5, with a (2, 2)-Padé approximant, which requires
2 23n

3 floating point operations when applied to vectors (2n3 for the assembly and 2
3n
3

for the LU factorization) and 623n
3 for matrices (since we have to resolve for multiple

right-hand sides). The figures obtained by numerical simulations for matrices in sl(n)
and SO(n) clearly agree with the theoretical asymptotic values (plotted as solid lines),
as shown in Figure 4. The costs of both methods are very similar, as is the error
from the exact exponential, although, in the SL(n) case, the 4+6 scheme preserves
the determinant to machine accuracy, while the Padé scheme does not (see Figure 5).
Note that a Krylov method iterated to convergence would cost ≈ 18n3 operations
(assuming that 9 iterations are sufficient to obtain machine accuracy), but it is a
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Table 5
Complexity for a symmetric polar-type order-4 approximant.

Algorithm sl(n),so(p, q) so(n)

4+6 Vector Matrix Vector Matrix

Splitting 5n3 5n3 2 1
2
n3 2 1

2
n3

Assembly exp 5n2 4n3 5n2 4n3

Total 5n3 9n3 2 1
2
n3 6 1

2
n3

10
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9

10

11

12

13

n

Fl
op

s/
n3

method 4+6, sl(n)
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Fig. 4. Floating point operations (scaled by n3) versus size for the approximation of the ex-

ponential of a matrix in sl(n) applied to an n × n matrix with the order-4 symmetric polar-type
algorithm (method 4 + 6) and (2, 2)-Padé approximant.

clear winner when the exponential is applied to a vector, since our method is an
O(n3) scheme even in the vector case.

5. Automorphisms based on approximate eigenspace and Schur decom-
positions. One of the anonymous referees of this paper pointed to possible connec-
tions between our theory and the family of splitting methods proposed by Stickel in
[21]. Although the original formulation of Stickel does not exactly fit into the frame-
work of this paper, we will see that a modification along the lines of this paper leads
to splittings with very interesting properties.

Stickel’s approach is based on a commutative splitting derived from the matrix
sign function χ(Z). The matrix χ(Z) has the same eigenvectors as Z, and its eigen-
values are ±1 or 0 according to whether the corresponding eigenvalues of Z have
negative or positive real part, or are purely imaginary.
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Fig. 5. Error in the approximation (top) and in the determinant (bottom) versus h for the ap-
proximation of the exponential of a traceless 10×10 matrix of unit norm with the order-4 symmetric
polar-type algorithm (method 4 + 6) and (2, 2)-Padé approximant.
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Suppose Z has no purely imaginary eigenvalues.1 Stickel considers the splitting
Z = Z1 + Z2, where Z1 = 1

2 (Z − Zχ(Z)) and Z2 = 1
2 (Z + Zχ(Z)). Since Zχ(Z) =

χ(Z)Z, it is clear that Z1 and Z2 commute, and hence exp(Z) = exp(Z1) exp(Z2)
exactly. The same approach may now be employed recursively on Z1 and Z2. Note
that the map Z �→ Zχ(Z) is an involution, but it is not an involutive automorphism
at the algebra level, since it is not linear. Hence the theory of our paper does not
directly apply to the splitting methods of Stickel.

A major difficulty in the approach described above is the cost of computing the
matrix sign function. It would be of interest to perform similar splittings using approx-
imations S of the sign function. This may lead to a destruction of the commutativity
of Z and S, and it should be useful to correct the result by the technique we study
in this paper.

Given a matrix S such that S2 = I, the map Z �→ ZS is not an involutive
algebra automorphism. (It is an involution and a linear map; however, in general
it is not true that [Z1, Z2]S = [Z1S,Z2S].) On the other hand, one can consider
the map Z �→ SZS, where S is some approximation of χ(Z) such that S2 = I,
and hence a splitting as we have studied in this paper. Thus, Z = P + K, where
P = 1

2 (Z − SZS) and K = 1
2 (Z + SZS). We can compute exp(Z) from either of

the expansions (3.1) and (3.2), where X and Y are given in (2.4)–(2.6). Note that
XS = −SX and Y S = SY , and that if S is exactly the sign of Z, then X = 0. If S is
an approximation to χ(Z), then X and Y are close to commuting, and the expansions
converge fast. The exponential of X reduces essentially to a matrix problem of size
p = rank(S − I), while the exponential of Y reduces to a problem of size n− p.

How can we produce a suitable approximation S ≈ χ(Z)? Let ξi and ηj denote
right and left eigenvectors of Z, Zξi = λiξi and η

T
j Z = λjη

T
j , normalized such that

ηTj ξi = δi,j . Then the matrix sign function can be written as

χ(Z) = 2
∑

Re (λi)>0

ξiη
T
i − I.

Given p approximate eigenvectors ξ̃i and η̃i, we can use

S = 2

p∑
i=1

ξ̃iη̃
T
i − I.

Note that if we know p eigenvectors exactly, we may use deflation techniques to reduce
the size of the problem. Instead, if the eigenvectors are not exactly known, we may
use commutators to produce a problem that still can be deflated.

For numerical reasons, a similar approach based on Schur decompositions may
be even more attractive. From approximate knowledge of the first p Schur vectors
q̃1, . . . , q̃p one can employ splittings based on the involutive matrix

S = 2

p∑
i=1

q̃iq̃
T
i − I.

The numerical performance of these methods is presently unknown and will have
to be addressed in future research.

1Stickel introduces shifts Z − αI in the general case, but to keep the exposition simple we avoid
the discussion of shifts.
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6. Conclusions. In this paper we have introduced numerical algorithms for ap-
proximating the matrix exponential. The methods discussed possess the feature that
if Z ∈ g, then the output is in G, the Lie group of g, a property that is fundamental
to the integration of ODEs by means of Lie-group methods.

The proposed methods have a complexity of O(κn3), where n denotes the size
of the matrix whose exponential we wish to approximate. Typically, for moderate
order (up to order 4), the constant κ is less than 10, whereas the exact computation
of a matrix exponential in MATLAB (which employs the scaling and squaring with a
Padé approximant) generally costs between 20n3 and 30n3.

We compare methods of the same order of accuracy applied to a vector v ∈ R
n

and to a matrix B ∈ G:
• For the case F (t, Z)v ≈ exp(tZ)v, where v is a vector. Symmetric polar-
type methods are slightly cheaper than their nonsymmetric variant. For the
SO(n) case, the complexity of symmetric methods is very comparable to that
of diagonal Padé approximants of the same order.
The complexity of the method 2+6 is O(n2), while for the rest of our meth-

ods it is O(n3). Krylov subspace methods do, however, have the complexity

O(n2) if the number of iterations is independent of n. Thus, if it is impor-
tant to stay on the group, we recommend Krylov methods with iteration to
machine accuracy for this kind of problem. If convergence of Krylov methods
is slow, our methods might be good alternatives. See [8] for accurate bounds
on the number m of iterations of Krylov methods.
• For the case F (t, Z)B ≈ exp(tZ)B, with B an n× n matrix. Nonsymmetric
polar-type methods are marginally cheaper than their symmetric counterpart;
however, the latter should be preferred when the underlying ODE scheme is
time-symmetric. The proposed methods have a complexity very comparable
to that of diagonal Padé approximants of the same order (asymptotically they
require slightly less operations in the SO(n) case); in addition they map sl(n)
to SL(n), a property that is shared by neither Padé approximants nor Krylov
iterations not carried to convergence.
For these classes of problems our proposed methods seem to be very com-

petitive.
It should also be noted that significant advantages arise when Z is a banded matrix.
For instance, the cost of method 2+6 scales as O(nr) for F (t, Z) applied to a vector
and O(n2r) for F (t, Z) applied to a matrix when Z has bandwidth 2r+1. The savings
are less striking for higher-order methods since commutation usually causes fill-in in
the splitting.

As mentioned earlier in the paper, [3] recently proposed similar splitting methods
that also produce an output in G when Z ∈ g. With respect to their schemes,
ours display a slight computational gain: for the SO(n) case, Celledoni and Iserles
propose an order-4 scheme whose complexity is 11 12n

3, while our order-4 schemes
(method 3+5 with order-4 corrections and method 4+6) cost 6n3, 6 12n

3 operations—
very comparable to the diagonal Padé approximant of the same order.

However, the novelty of our approach lies in the fact that it is based on a rather
general theory that can include very different splitting methods already existent in
literature (for instance, the method 2+6 is nothing else than a Strang-type splitting),
obtaining in an elegant and neat way the otherwise complicated order conditions.
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Abstract. Recently the problem of determining the best, in the least-squares sense, rank-1
approximation to a higher-order tensor was studied and an iterative method that extends the well-
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1. Introduction. A tensor of order N is an N -way array, i.e., its entries are
accessed via N indices.1 For example, a scalar is a tensor of order 0, a vector is a
tensor of order 1, and a matrix is a second-order tensor. Tensors find applications
in such diverse fields as physics, signal processing, data analysis, chemometrics, and
psychology [4].

The notion of rank can also be defined for tensors of order higher than 2. The way
this is done is via an extension of the well-known expansion of a matrix in a sum of
rank-1 terms. Thus, the rank, R, of an Nth-order tensor T is the minimum number
of rank-1 tensors that sum up to T . A rank-1 tensor of order N is given by the gen-
eralized outer product of N vectors, u(i), i = 1, 2, . . . , N , i.e., its (i1, i2, . . . , iN ) entry

is Ti1,i2,...,iN = u
(1)
i1
u

(2)
i2
· · ·u(N)

iN
. Despite the similarity in their definitions, the ranks

of lower- (N ≤ 2) and higher-order tensors exhibit important differences. For exam-
ple, the rank of a higher-order tensor is not necessarily upper bounded by the tensor
dimensions [9]. Furthermore, there is not a unique way of extending to higher orders
the singular value decomposition (SVD) and its connection with least-squares low
rank approximation. A multilinear generalization of the matrix SVD, called higher-
order singular value decomposition (HOSVD), was recently proposed and studied [9]
and may be understood as an extension of the so-called Tucker3 model for 3-way
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arrays (see, e.g., [18]). Despite the many similarities of this decomposition with the
second-order SVD (e.g., orthogonality between the vectors u at different terms), its
truncation does not provide the best (in the least-squares (LS) sense) low rank ap-
proximation to the tensor. Nevertheless, it has been used to initialize a higher-order
equivalent of the power method, recently proposed [8, 10] for determining the best
rank-1 approximation of Nth-order tensors.

Though an important problem per se, the LS reduced rank tensor approximation
plays a central role in the context of blind source separation (BSS) based on higher-
order statistics (HOS) [5]. The problem there is to separate and recover statistically
independent random processes, x1, . . . , xK , with the aid of observations of their linear
mixture of the form y = Hx + n, where the M ×K mixing matrix H , the source
vector x = [x1, . . . , xK ]T , and the disturbance vector n are assumed unknown (and
real, for simplicity). The noise vector is also commonly assumed to be Gaussian and
independent of x. A common method for recovering one of the sources is to project
the observation vector y onto an M × 1 vector u, chosen so that the normalized

kurtosis of the source estimate z = uTy , given by cum4(z)
(cum2(z))2

, is absolutely maximized.

It has been shown [8] that this maximization problem is equivalent to that of best
approximating the fourth-order cumulant tensor of y by another of rank 1. Hence
the higher-order power method (HOPM) of [8, 10] can be employed. However, it
should be noticed that the above tensor is supersymmetric, i.e., its entries remain
unchanged under any permutation of their indices [4]. Such a rich symmetry would
be expected to permit a simplified version of the HOPM to be applicable to this kind
of tensor. Unfortunately such a symmetric HOPM (S-HOPM) is not convergent for
general supersymmetric tensors as claimed in [10] and demonstrated via an example in
this paper. Yet, in many cases of practical interest, namely, when the function g(u) =∑

i1,i2,...,iN
Ti1,i2,...,iNui1ui2 · · ·uiN is convex (or concave), this symmetric version of

the HOPM can be shown to converge to a (local) maximum of the restriction of |g|
to the unit sphere. The gain from using this symmetric version comes mainly from
the consequent reduction in computational complexity. Though more iterations are
usually required for the S-HOPM to converge, the fact that they are N times cheaper
than in the general HOPM more than compensates for that, resulting in significant
computational complexity savings. The requirements for convexity (concavity) of the
function g are always met in the BSS context when the source kurtoses are all of the
same sign. For example in communications these kurtoses are negative and g turns
out to be concave.2

The aim of this paper is to present the S-HOPM and prove that it converges
for supersymmetric tensors whose induced polynomial forms enjoy the property of
convexity or concavity. A novel scheme for initializing the S-HOPM for fourth-order
tensors is also proposed, which has been observed to almost always outperform the
HOSVD-based scheme of [10]. Moreover, it allows for an a priori quantification of its
proximity to the globally optimal solution.

The rest of this paper is organized as follows. Section 2 introduces definitions
of basic quantities and tensor operations. The problem is stated in section 3, where
the equivalence of the rank-1 approximation problem with that of maximizing an
associated functional and the characterization of the stationary points are recalled
from [10, 16] for the symmetric case. The HOPM in both its general and symmetric

2In fact, the convergence of the S-HOPM for the BSS problem (where it coincides with the well-
known superexponential algorithm [26, 14, 16]) has been shown for the case of mixed sign kurtoses
as well, when there are at least as many sensors as sources (M ≥ K) [24].
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versions is given in section 4, and the S-HOPM is shown to converge under convex-
ity/concavity assumptions. Some important properties that the supersymmetry of a
tensor implies for its square matrix version are proved in section 5. These properties,
to be used in the subsequent analysis, are important in their own right since they
hold for any supersymmetric tensor, regardless of whether the associated function
is convex/concave or not. Section 6 develops the new initialization method and de-
rives bounds on its performance. The problem of computing a rank-R approximation
(R > 1) is briefly discussed in section 7. Section 8 concludes the paper.

1.1. Notation. Vectors will be denoted by bold lowercase letters (e.g., u) while
bold uppercase letters (e.g., T ) will denote tensors of second order (i.e., matrices).
Higher-order tensors will be denoted by bold, calligraphic, uppercase letters (e.g.,
T ). The symbol I designates the identity matrix, where the dimensions will be
understood from the context. The superscript T will be employed for transposition.
The (i, j, k, . . . , l) element of a tensor T is denoted by Ti,j,k,...,l. All indices are
assumed to start from one. The symbol ⊗ will be used to denote the (right) Kronecker
product. If A is an m× n matrix, vec(A) will signify the mn× 1 vector that is built
from the columns of A stacked one below another. The inverse operator that builds
a matrix from a vector is called unvec. Finally, for the sake of simplicity, only real
tensors will be considered. The extension of the results to tensors with Hermitian
symmetry [9] is straightforward.

2. Basic definitions. This section contains some definitions that will be useful
in what follows. Since they have been presented in detail in earlier works [9, 10, 16],
they are only briefly recalled here.

Definition 1 (supersymmetric tensor). A tensor is called supersymmetric if its
entries are invariant under any permutation of their indices.

The notions of scalar product and norm are easily extended to higher orders, as
follows.

Definition 2 (tensor scalar product). The scalar product of two tensors S and
T , of the same order, N , and same dimensions, is given by

〈S,T 〉 =
∑

i1,i2,...,iN

Si1,i2,...,iNTi1,i2,...,iN .

Definition 3 (Frobenius norm). The Frobenius norm of a tensor T of order N
is defined as

‖T ‖ =
√
〈T ,T 〉 =


 ∑

i1,i2,...,iN

T 2
i1,i2,...,iN




1/2

.

Definition 4 (matrix unfoldings). The n-mode matrix unfolding, T (n), of an
M1 ×M2 × · · · ×MN tensor T of order N with entries Ti1,i2,...,iN is defined as the
Mn × M1M2 · · ·Mn−1Mn+1 · · ·MN matrix whose columns are the Mn-dimensional
vectors obtained from T by varying the index in and keeping the other indices fixed.3

It is readily verified that, for a supersymmetric tensor, T , all n-mode matrix
unfoldings are equal, that is, T (1) = T (2) = · · · = T (N). A square matrix version for
supersymmetric tensors will also be used, as follows.

3The order of appearance of the n-mode vectors in T (n) is irrelevant in our context.
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Definition 5 (square matrix unfolding). The square matrix unfolding, T , of an
M ×M × · · · ×M supersymmetric tensor T of even order N = 2L is given by

Tm,n = Ti1,i2,...,iL,j1,j2,...,jL ,(2.1)

where

m = ML−1(i1 − 1) + · · ·+M(iL−1 − 1) + iL, 1 ≤ i1, . . . , iL ≤M,(2.2)

n = ML−1(j1 − 1) + · · ·+M(jL−1 − 1) + jL, 1 ≤ j1, . . . , jL ≤M.(2.3)

The outer product can be generalized to higher-orders, as follows.
Definition 6 (Tucker product). The Tucker product of N matrices {U (n)}Nn=1,

each of dimension Mn × L, yields an N th-order tensor T of dimensions M1 ×M2 ×
· · · ×MN as

Ti1,i2,...,iN =

L∑
l=1

U
(1)
i1,l

U
(2)
i2,l
· · ·U (N)

iN ,l

and is denoted by

T = U (1) �U (2) � · · · �U (N).

A weighted outer product will be defined as follows.4

Definition 7 (weighted Tucker product). The weighted Tucker product (or S-

product), with core an L1 × L2 × · · · × LN tensor S, of N matrices {U (n)}Nn=1 of
dimensions Mn × Ln yields an N th-order M1 ×M2 × · · · ×MN tensor as

Ti1,i2,...,iN =

L1∑
l1=1

L2∑
l2=1

· · ·
LN∑

lN=1

Sl1,l2,...,lNU (1)
i1,l1

U
(2)
i2,l2
· · ·U (N)

iN ,lN

and is denoted by

T = U (1) S
� U (2) S

� · · · S� U (N).

It can easily be seen that the standard Tucker product is a weighted I-product,
where I is the identity tensor (Ii1,i2,...,iN = δ(i1, i2, . . . , iN )). The Tucker product

with all U (n) being vectors results in a rank-1 tensor, as follows.
Definition 8 (tensor rank). The rank, R, of an M1 ×M2 × · · · ×MN tensor T

is the minimal number of terms in a finite decomposition of T of the form

T =
R∑

r=1

u(1)
r � u(2)

r � · · · � u(N)
r ,

where u
(i)
r are Mi-dimensional column vectors.

A way of extending the SVD from matrices to higher-order tensors is given in the
following (see [9]).

Theorem 1 (HOSVD). Any M1 ×M2 × · · · ×MN tensor T can be expressed as

T = U (1) S
� U (2) S

� · · · S� U (N),

4This product is denoted in [9, 10] as S ×1 U (1) ×2 U (2) ×3 · · · ×N U (N), whereas it takes the

form S • U (1) • · · · • U (N) in [4].
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where
• U (n), n = 1, 2, . . . , N, are orthogonal Mn ×Mn matrices, and
• the core tensor S is of the same size as T , and its subtensors Sin=α, obtained

by fixing the kth index to α, have the properties of
– all-orthogonality: two subtensors Sin=α and Sin=β are orthogonal for

any possible values of n and α �= β, in the sense that

〈Sin=α,Sin=β〉 = 0;

– ordering: for all n,

‖Sin=1‖ ≥ ‖Sin=2‖ ≥ · · · ≥ ‖Sin=Mn
‖.

The matrix U (n) is computed as the matrix of the left singular vectors of the n-

mode unfolding of T , T (n) [9]. The core tensor is then determined as S = (U (1))T
T
�

(U (2))T
T
� · · · T

� (U (N))T . In the supersymmetric case, all U (n) are equal and, of
course, the core tensor is supersymmetric as well. The above multilinear SVD then
reduces to the so-called higher-order eigenvalue decomposition (HOEVD) [9]. We will

sometimes use the notation U
S
�N to denote a symmetric S-product.

3. Problem statement. The best LS rank-1 tensor approximation problem is
stated below along with its close connection to the maximization of the associated
polynomial form on the unit sphere. This property is the higher-order equivalent of an
analogous property holding for matrices [11] and is going to play a central role in the
subsequent developments. Proofs can be found (for the more general, nonsymmetric
case) in [7, 10, 16].

Theorem 2 (tensor rank-1 approximation). Given an N th-order supersymmetric
M ×M × · · · ×M tensor T , consider the problem of determining a scalar λ and a
vector u ∈ R

M such that the rank-1 tensor T̂ = λu�N minimizes the function

f(T̂ ) = ‖T − T̂ ‖2(3.1)

subject to u having unit norm. Then the unit-norm vector u corresponds to a (local)
minimum of (3.1) if and only if it yields a (local) maximum of |g(u)|, with

g(u) =
∑

i1,i2,...,iN

Ti1,i2,...,iNui1ui2 · · ·uiN = 〈T ,u�N 〉.(3.2)

The corresponding value of λ is λ = g(u).
To make the connection with similar results in the second-order case clearer, let

us define the functional

h(u) =
〈T ,u�N 〉2
〈u,u〉N ,(3.3)

whose maximization corresponds to maximizing g(u) for ‖u‖ = 1. The above can
be viewed as an Nth-order Rayleigh quotient squared. Recall that the corresponding
maximization problem for matrices is solved by the dominant eigenpair (λ,u), where
λ is the eigenvalue with the largest absolute value [28, 11]. The stationary points of

the corresponding functional uTT u
uTu are the solutions to

T u =
uTT u

uTu
u.(3.4)
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The analogous result for the Nth-order case is as follows [7, 10, 16].
Theorem 3 (characterization of stationary points). The unit-norm vector u is

a stationary point of the functional h of (3.3) if and only if

∑
i2,...,iN

Ti1,i2,...,iNui2ui3 · · ·uiN = λui1 for all i1(3.5)

or, equivalently,

I
T
� (uT )

T
� (uT )

T
� · · · T� (uT )︸ ︷︷ ︸

N−1 times

= λu,(3.6)

with λ = 〈T ,u�N 〉.
4. The HOPM.

4.1. General case. An iterative use of (3.4) leads to the well-known power
method for determining the dominant eigenpair of a matrix T [28, 11]. A tensorial
equivalent is suggested by (3.6) and will be analyzed in the next subsection. Let
us first have a look at the HOPM as given in [8, 10] for a general, not necessarily
supersymmetric, M1 ×M2 × · · · ×MN tensor T .

Algorithm 1. Higher-order power method (HOPM).

Initialization: u
(n)
0 = a unit-norm Mn − vector, 1 ≤ n ≤ N

Iteration: for k = 1, 2, . . .

ũ
(1)
k = I

T
� (u

(2)
k−1)

T T
� · · · T� (u

(N)
k−1)

T ,

λ
(1)
k = ‖ũ(1)

k ‖,

u
(1)
k =

ũ
(1)
k

λ
(1)
k

,

u
(2)
k = (u

(1)
k )T

T
� I

T
� (u

(3)
k−1)

T T
� · · · T� (u

(N)
k−1)

T ,

λ
(2)
k = ‖ũ(2)

k ‖,

u
(2)
k =

ũ
(2)
k

λ
(2)
k

,

...

ũ
(n)
k = (u

(1)
k )T

T
� · · · T� (u

(n−1)
k )T

T
� I

T
� (u

(n+1)
k−1 )T

T
� · · · T� (u

(N)
k−1)

T ,

λ
(n)
k = ‖ũ(n)

k ‖,

u
(n)
k =

ũ
(n)
k

λ
(n)
k

,

...

ũ
(N)
k = (u

(1)
k )T

T
� · · · T� (u

(N−1)
k )T

T
� I ,

λ
(N)
k = ‖ũ(N)

k ‖,

u
(N)
k =

ũ
(N)
k

λ
(N)
k



BEST RANK-1 APPROXIMATION OF SUPERSYMMETRIC TENSORS 869

end

Output: T̂ = λu(1) T
� u(2) T

� · · · T� u(N).

The T -product ũ
(n)
k = (u

(1)
k )T

T
� · · · T� (u

(n−1)
k )T

T
� I

T
� (u

(n+1)
k−1 )T

T
� · · · T� (u

(N)
k−1)

T

can be implemented as5

ũ
(n)
k = T (1)(u

(1)
k ⊗ · · · ⊗ u

(n−1)
k ⊗ u

(n+1)
k−1 ⊗ · · · ⊗ u

(N)
k−1).

N such products have to be computed per iteration.
The above algorithm can be shown to always converge to a (local) maximum of

(3.3), with the corresponding value of h given by λ2. The convergence proof [22] relies

on the fact that u(1) T
� · · · T� u(N) is a multilinear function of u(n)’s, that is, it is linear

with respect to each of them.
An initial estimate of u(n), 1 ≤ n ≤ N , which has been observed in [8, 10] to very

often lie in the basin of attraction of a globally optimal solution, is given by setting u
(n)
0

equal to the dominant left singular vector of the n-mode matrix unfolding, T (n). This

is the first column of the matrix U (n) in the HOSVD of T . This initialization method
is inspired from what holds in the matrix case, where the best rank-1 approximant
is provided by the dominant singular triple [11]. As shown in [10], however, this
property does not hold anymore for higher-order arrays, and only some bounds can
be derived on the approximation error. The similarities, though, of HOSVD with its
second-order counterpart suggest its use to compute an initial estimate for HOPM.

4.2. Symmetric case. As pointed out in [8, 10], for a supersymmetric T , the

convergence of Algorithm 1 is to a supersymmetric estimator T̂ , with all u(n)’s being
equal to each other. However, the intermediate results are not necessarily symmetric.
It is shown in [10] that, with T being a supersymmetric 2 × 2 × · · · × 2 tensor, the
stationary points of the HOPM (solutions to (3.6)) can be determined as the roots of
an appropriate Nth-order polynomial. For larger supersymmetric tensors the above
algorithm is also proposed, as a constrained version suggested by (3.6) is deemed
unreliable since it is not guaranteed to monotonically increase |g|. The algorithm
suggested by (3.6) is as follows.

Algorithm 2. Symmetric higher-order power method (S-HOPM).

Initialization: u0 = a unit-norm M − vector

Iteration: for k = 1, 2, . . .

ũk = I
T
� (uT

k−1)
T
�(N−1),

uk =
ũk

‖ũk‖
end

Output: T̂ = g(u)u
T
�N

The expression ũk = I
T
� (uT

k−1)
T
�(N−1) can as before be rewritten as

ũk = T (1) (uk−1 ⊗ · · · ⊗ uk−1)︸ ︷︷ ︸
N−1 times

.

5Recall that all matrices T (n), n = 1, . . . , N , are equal for a supersymmetric T .
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Fig. 4.1. Results of the HOPM and S-HOPM for the supersymmetric tensor given in Example 1.

For the special case of N = 4, which is the most common one in the BSS problem,
the above can also take the following alternative form, in terms of the square matrix
unfolding:

ũk = unvec(T (uk−1 ⊗ uk−1))uk−1.

Note that only one such product needs to be computed per iteration, as compared
to N for the general HOPM. Thus, if this constrained version is applicable, an N -fold
reduction in computational complexity results. However, the form to be optimized is
now nonlinear with respect to the sought for vector, u, thus rendering the convergence
proof for Algorithm 1 not applicable. In fact, as the following example demonstrates,
the S-HOPM does not converge for all supersymmetric tensors T .

Example 1. Consider a supersymmetric 3× 3× 3× 3 tensor with entries

T1111 = 0.2883, T1112 = −0.0031, T1113 = 0.1973, T1122 = −0.2485, T1123 = −0.2939,
T1133 = 0.3847, T1222 = 0.2972, T1223 = 0.1862, T1233 = 0.0919, T1333 = −0.3619,
T2222 = 0.1241, T2223 = −0.3420, T2233 = 0.2127, T2333 = 0.2727, T3333 = −0.3054.

The results from the application of the general HOPM and its symmetric version,
S-HOPM, are depicted in Figure 4.1. The curve for the general HOPM depicts the

values of 〈T ,u
(1)
k �u

(2)
k �u

(3)
k �u

(4)
k 〉. g(uk) is plotted for the S-HOPM. Both algorithms

are initialized via HOSVD. It is seen that the S-HOPM iterations do not converge.
We will show, however, that Algorithm 2 is convergent if N = 2L is even and g(·)

is a convex (or concave) function of u. Let us recall the meaning of this property [25].
Definition 9 (convex (concave) function). Let g be a function whose values are

real or ±∞ and whose domain is a convex subset S of R
M . Then g is said to be
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convex on S if its epigraph,

epig
�
= {(u, ν)|u ∈ S, ν ∈ R, ν ≥ g(u)},

is a convex subset of R
M+1. A concave function on S is a function whose negative is

convex.
From the definition of g, and using the square matrix unfolding of T , it is readily

verified that g(u) can be written as a polynomial matrix form:

g(u) = (u ⊗ u ⊗ · · · ⊗ u)T︸ ︷︷ ︸
L times

T (u ⊗ u ⊗ · · · ⊗ u)︸ ︷︷ ︸
L times

.

A necessary and sufficient condition for a twice continuously differentiable function
g(u) to be convex (concave) on an open convex subset C of R

M is that its Hessian
(i.e., second derivative) matrix be positive (negative) semidefinite on C [25]. Hence,
g above is convex (concave) on R

M if and only if the matrix

(I ⊗ u ⊗ u ⊗ · · · ⊗ u︸ ︷︷ ︸
L−1 times

)TT (I ⊗ u ⊗ u ⊗ · · · ⊗ u︸ ︷︷ ︸
L−1 times

)(4.1)

is positive (negative) semidefinite for all u ∈ R
M . This implies that g(u) has to be

nonnegative (nonpositive) for all u.
The above condition on the matrix (4.1) will be satisfied if T is positive (negative)

semidefinite.6 For example, this holds for the fourth-order cumulant tensor of the
output of a linear mixing system, y = Hx + n, whose sources have kurtoses of the
same sign. In that case, T is given by [16]

T = H
S
� H

S
� H

S
� H(4.2)

with S denoting the (diagonal) tensor of the fourth-order cumulants of x. The cor-
responding matrix T is given by

T = (H �H )diag(cum4(xi))(H �H )T ,(4.3)

where � is the Khatri–Rao (columnwise Kronecker) product [27].
Notice that even if g is convex (concave), this does not hold for the quotient

g(u)

‖u‖N

since the unit sphere

Σ
�
= {u ∈ R

M |‖u‖ = 1}
is not a convex set.

Example 2. Consider the supersymmetric 3 × 3 × 3 × 3 tensor T that contains
the fourth-order cumulants of the mixture observations for the 3× 7 mixing matrix

H =


 −0.3912 0.1427 0.3087 0.2511 −0.5408 0.3692 0.4894
−0.6743 −0.3816 −0.5317 −0.1942 −0.2120 −0.0770 −0.1687
0.4947 −0.0364 −0.3621 0.2594 −0.6336 0.1911 −0.3430




6For second-order tensors (matrices) this is also a necessary condition.
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Fig. 4.2. The function g(u) for the tensor of Example 2, restricted to the unit sphere.

and source fourth-order cumulants

(cum4(xi))
7
i=1 = (−0.3753,−0.3087,−0.7600,−0.0227,−0.4633,−0.0143,−0.5470).

The resulting function g is concave and nonpositive. Its restriction to the unit sphere
is shown in Figure 4.2. To allow a three-variate function to be plotted, we have pa-

rameterized the unit-norm vector u as u =
[
cos(θ) sin(θ) cos(φ) sin(θ) sin(φ)

]T
where the angles θ, φ were normalized to the interval

(−π
2 ,

π
2

]
, i.e., the cosines were

constrained to be nonnegative. This can be done since the value assumed by g(u) is
invariant to sign changes. It is clearly seen that this is no longer concave.

Theorem 4 (convergence of S-HOPM). For any supersymmetric N th-order M×
M × · · · ×M tensor T such that N is even and the associated function g is convex
(concave) on R

M , Algorithm 2 converges to a local maximum (minimum) of the re-
striction of g to the unit sphere, Σ, for any initialization, except for saddle points and
crest lines leading to such saddle points.

Proof. Consider first the case that g is convex. This assumption implies that the
set epig is a convex subset of R

M+1, and hence a tangent hyperplane at any point
(v , g(v)) is in fact a supporting hyperplane of epig. This fact is expressed by the
so-called (sub)gradient inequality [25]

g(v2)− g(v1) ≥ 〈v2 − v1,∇g(v1)〉
holding for any vectors v1,v2 ∈ R

M (regardless of how distant they may be). To
apply this to the problem at hand, set v2 = uk and v1 = uk−1 to obtain

g(uk)− g(uk−1) ≥ 〈uk,∇g(uk−1)〉 − 〈uk−1,∇g(uk−1)〉.(4.4)

What we want to show is that if we are not at a stationary point, g is increasing
monotonically. It suffices then to show that the right-hand side of (4.4) is positive if
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uk �= uk−1. Note that, for any unit-norm vector u, the Cauchy–Schwarz inequality
yields

〈u,∇g(uk−1)〉 ≤ ‖∇g(uk−1)‖,(4.5)

where the equality holds if and only if u = ∇g(uk−1)
‖∇g(uk−1)‖ . But this is precisely the

formula that gives uk in Algorithm 2. Hence

〈uk,∇g(uk−1)〉 − 〈uk−1,∇g(uk−1)〉 > 0,

which, in view of (4.4), implies that g(uk) is increasing with k. The convergence
follows from the fact that the restriction of |g| to Σ is bounded from above, namely,

∣∣∣∣ g(u)‖u‖N
∣∣∣∣ =

∣∣∣∣ (u ⊗ u ⊗ · · · ⊗ u)TT (u ⊗ u ⊗ · · · ⊗ u)

(u ⊗ · · · ⊗ u)T (u ⊗ · · · ⊗ u)

∣∣∣∣ ≤ |λ1|,(4.6)

with λ1 denoting the eigenvalue of T with largest modulus.
The case of g being concave can be treated as above, by replacing g with −g. The

only point that we need to comment on is that the quantity 〈u,∇g(uk−1)〉 in (4.5)

now has to take its minimum value, which occurs when u = − ∇g(uk−1)
‖∇g(uk−1)‖ . However,

the minus sign is not necessary as it does not affect the value of g(uk) (recall that N
is even).

A distinction is made in [7] between the HOPM, as derived from the Lagrangian
equations for the corresponding constrained minimization problem, and a gradient
descent procedure. However, it can be shown, following similar arguments to those
employed in [19] for the case of a norm function g(·), that the S-HOPM is in fact a
gradient recursion using a strategic choice for the step-size parameter.

5. Properties of the matrix T . In this section we will state and prove some
properties that the supersymmetry of a tensor implies for its square matrix unfold-
ing. The so-called vec-permutation matrix [13] plays a central role to the subsequent
analysis.

Definition 10 (vec-permutation matrix). The vec-permutation matrix, Im,n, is
defined as the mn×mn permutation matrix that satisfies the equality

Im,nvec(A) = vec(AT )(5.1)

for all m× n matrices A.
An explicit way of defining Im,n is given below as a theorem [13].
Theorem 5 (explicit characterization of Im,n). The (i, j) entry of Im,n is equal

to unity if k = l′ and l = k′ with

i = (k − 1)n+ l, 1 ≤ k ≤ m, 1 ≤ l ≤ n,

j = (k′ − 1)m+ l′, 1 ≤ k′ ≤ n, 1 ≤ l′ ≤ m,

and is zero otherwise.
Theorem 6 (properties of T (general even order)). The square matrix unfolding,

T , of an M ×M × · · · ×M supersymmetric tensor T of order N = 2L satisfies the
following properties:

(i) T T = T .
(ii) IML−1,MT = T .
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Proof. Recall the definition of T from (2.1)–(2.3). The symmetry of T follows
easily from the fact that Ti1,i2,...,iL,j1,j2,...,jL = Tj1,j2,...,jL,i1,i2,...,iL .

Call T ′ the matrix IML−1,MT and consider any of its entries, say T ′
p,q. Write its

indices as

p = ML−1(k − 1) + l, 1 ≤ k ≤M, 1 ≤ l ≤ML−1,

q = ML−1(q1 − 1) + · · ·+M(qL−1 − 1) + qL, 1 ≤ qi ≤M, 1 ≤ i ≤ L.

Then, it is readily seen that Theorem 5 implies

T ′
p,q = TM(l−1)+k,q.

Writing further l in the form

l = ML−2(l1 − 1) + · · ·+M(lL−2 − 1) + lL−1, 1 ≤ li ≤M,

and using the supersymmetry of T , the above yields

T ′
p,q = TML−1(l1−1)+···+M(lL−1−1)+k,q

= Tl1,l2,...,lL−1,k,q1,q2,...,qL

= Tk,l1,l2,...,lL−1,q1,q2,...,qL

= TML−1(k−1)+ML−2(l1−1)+···+lL−1,q

= TML−1(k−1)+l,q

= Tp,q.

This proves (ii).
Being symmetric, T admits an eigenvalue decomposition withML real eigenvalues

and orthonormal eigenvectors [28],

T =

ML∑
i=1

λiξiξ
T
i ,(5.2)

where

ξTi ξj = δ(i, j) for all i, j

and the eigenvalues are numbered such that

|λ1| ≥ |λ2| ≥ · · · ≥ |λML |.
Let us now confine our attention to fourth-order supersymmetric tensors (L = 2). We
shall denote the corresponding permutation matrix IM,M by P . It is easy to see that
P is symmetric. Let us also define the M ×M matrices Ξi as the matrix versions of
the corresponding eigenvectors of T , i.e.,

Ξi = unvec(ξi).

For this special, yet important case, some more information on T , involving its eigen-
structure, can be revealed [23].

Theorem 7 (properties of T (N = 4)). The square matrix unfolding of any
fourth-order supersymmetric tensor, T , satisfies the following properties:
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(i) P T = T P = P TP = T .

(ii) It admits M(M+1)
2 eigenvectors ξ with positive symmetry, i.e., P ξ = +ξ,

and M(M−1)
2 eigenvectors with negative symmetry, i.e., P ξ = −ξ. The

corresponding matrices Ξ are symmetric (Ξ = ΞT ) and skew-symmetric
(ΞT = −Ξ), respectively.

(iii) All eigenvectors of T having negative symmetry must correspond to a zero
eigenvalue.

(iv) rank(T ) ≤ M(M+1)
2 .

Proof.
(i) The proof of (i) follows easily from the symmetry of T ,P and property (ii) of

Theorem 6.
(ii) We will first prove that all eigenvectors ξ of T enjoy one of the above sym-

metries. Take the ith eigenpair

T ξi = λiξi.

Premultiplying the above equation by P and taking into account the equality P T =
T P yields

T · P ξi = λi · P ξi,(5.3)

which shows that P ξi is also an eigenvector of T for the eigenvalue λi. If λi is simple,
then the corresponding eigenvector is unique up to a sign factor, and hence P ξi = ±ξi.
In the case of a multiple eigenvalue, one can always choose an eigenvector from its
invariant space that has the desired symmetry. For example, a possible choice could
be the normalized version of ξ′i = P ξi± ξi. This eigenvector is seen to be orthogonal
to the rest.

It follows from the definition of P (cf. (5.1)) that the symmetries P ξi = ±ξi
satisfied by the eigenvectors of T are equivalent to ΞT

i = ±Ξi, respectively.

Introduce now the following two subspaces of R
M2

:

S+ = {x ∈ R
M2 |P x = +x},

S− = {x ∈ R
M2 |P x = −x}.

These subspaces are orthogonal to each other since if x ∈ S+ and y ∈ S−, then the
orthogonality of P [13] implies

xTy = −xTP TP y = −xTy ;

hence xTy = 0. It also follows that

dimS+ =
M(M + 1)

2
,

dimS− =
M(M − 1)

2
,

since, as shown above, parameterizing S+ (resp., S−) is equivalent to parameterizing
the set of symmetric (resp., skew-symmetric) M × M matrices. Since dimS+ +
dimS− = M2, we can write the orthogonal decomposition as

R
M2

= S+ ⊕ S−.
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The result then follows from the fact that the eigenvectors of T belong to either S+

or S− and form an orthonormal basis of R
M2

.7

(iii) Using the property T P = T in (5.3) yields T ξi = λiP ξi. If ξi is such that
P ξi = −ξi, then it follows that λiξi = −λiξi, and λi = 0.

(iv) The proof of (iv) follows directly from (ii) and (iii).

Corollary 1 (dominant eigenvector of T (N = 4)). The dominant eigenvector,
ξ1, of the square matrix unfolding of a nonzero supersymmetric fourth-order tensor
satisfies P ξ1 = +ξ1. Equivalently, its M ×M matrix version, Ξ1, is symmetric.

Proof. The proof follows from Theorem 7(iii) since λ1 �= 0.

6. New initialization. We derive here an alternative initialization scheme for
the S-HOPM for fourth-order tensors that is observed to be more effective than that
based on the HOSVD in approaching the globally optimum point. The starting point
is the inequality (4.6) that becomes an equality if and only if u ⊗ u coincides with
a dominant eigenvector, ±ξ1. That is, the global maximum of h(u) (cf. (3.3)) would
be attained if ξ1 could be written as a “Kronecker square,” something which is in
general not true.

Nonetheless, this remark suggests a way of computing an initial estimate for u,
namely, setting it equal to the best, in the LS sense, “Kronecker square root” of ξ1:

u = arg min
ς∈R,‖s‖=1

‖ξ1 − ςs ⊗ s‖.

Equivalently,

u = arg min
ς∈R,‖s‖=1

‖Ξ1 − ςssT ‖.

Since Ξ1 is symmetric (see Corollary 1), the latter problem is solved by setting u
equal to the unit-norm eigenvector of Ξ1 that corresponds to its absolutely largest
eigenvalue, say ς1 [11]. Note that ς21 ≤ ‖Ξ1‖2 = ‖ξ1‖2 = 1.

The proposed initialization method thus involves two symmetric matrix rank-1
approximation problems:

New Initialization

1. ξ1= dominant eigenvector of T .
2. u0= dominant eigenvector of unvec(ξ1).

Using (5.2), g(u0) can be written as

g(u0) = 〈u0 ⊗ u0,T (u0 ⊗ u0)〉

=

M2∑
i=1

λi((u0 ⊗ u0)
T ξi)

2

=

M(M+1)/2∑
i=1

λi(u
T
0 Ξiu0)

2,

7This also proves that the vec-permutation matrix P
�
= IM,M has eigenvalues ±1 with multi-

plicities M(M±1)
2

, respectively, a property stated in [13].
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where use was made of the well-known identity vec(ABC ) = (CT ⊗A)vec(B) [13]

and the fact that λi = 0 for i > M(M+1)
2 . Choosing u0 as above yields

g(u0) = λ1ς
2
1 +

M(M+1)/2∑
i=2

λi(u
T
0 Ξiu0)

2.

If T is sign (semi)definite (g is then convex/concave), the latter relation implies

|g(u0)| ≥ |λ1|ς2.(6.1)

This, in conjunction with (4.6), provides us with lower and upper bounds on the initial
value of h, as follows.

Theorem 8 (bounds on initial value). The value assumed by h with the suggested
initialization, when applied to a supersymmetric tensor T with sign (semi)definite
square matrix unfolding, T , is bounded as

λ2
1ς

4
1 ≤ h(u0) ≤ λ2

1,

where λ1 and ς1 are the absolutely largest eigenvalues of the matrices T and Ξ1, respec-
tively. This initial value approaches the global maximum as the vector ξ1 approaches
Kronecker decomposability (i.e., as |ς1| approaches one).

Example 2 (continued). Consider the 3 × 3 × 3 × 3 tensor given before. The
corresponding matrix T is found to have the following singular values:

(|λi|)9i=1 = (0.2841, 0.2617, 0.2305, 0.0353, 0.0020, 0.0001, 0, 0, 0),

agreeing with Theorem 7(iii).8 We ran the S-HOPM for this tensor, using both
the HOSVD-based and the new initialization methods. The results are shown in
Figure 6.1. In both cases the iterations converge to a global minimum. Nevertheless,
the new initialization scheme is seen to lie much closer to the globally optimal solution
than the HOSVD-based scheme. In fact, for this example successive iterations are
nearly superfluous. Extensive simulations have shown this to be the typical case for
tensors with an associated functional that is convex/concave.

The superior performance of the new method can also be seen in Figure 6.2
where the position of the two initial estimates in the parameter space, as well as the
trajectories followed in each case, are shown.

The lower and upper bounds given in Theorem 8 are 0.0444 and 0.0807, respec-
tively, and are seen to be satisfied by the initial value assumed by h in the new
initialization scheme, namely, h(u0) = 0.0758. Note that the initial value suggested
by the HOSVD-based scheme, namely, 0.0183, does not meet the lower bound.

We have found, however, some examples where one of the initialization methods
leads to a local extremum. These cases are rare and, moreover, in all of them h
assumes at the suboptimal point a value quite close to the optimal one.

Example 3. Let the tensor T be given by (4.2) with

H =


 −0.1413 −0.8318 −0.0769 −0.1434 0.4681 0.2054 0.0210

0.3194 0.0328 0.6555 0.1696 0.0224 0.6580 0.0716
0.4123 −0.4371 0.1749 −0.3828 −0.6389 −0.2315 −0.0065




8Note that there are 6 nonzero eigenvalues, whereas there are 7 sources. The number of nonzero

eigenvalues of T can reveal the number of (kurtic) sources only in the case that K ≤ M(M+1)
2

.
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Fig. 6.1. Results of the S-HOPM for both the HOSVD-based and new initializations.
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Fig. 6.2. Visualization of the S-HOPM algorithm for both initialization methods (Example 2).
The HOSVD-based initial estimate is denoted by a small circle and the trajectory followed by +’s.
The initial estimate provided by the proposed method is denoted by a small square and the subsequent
estimates by ×’s.
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Fig. 6.3. Results of S-HOPM for an initial estimate based on HOSVD and the new method.
In the former case, the algorithm is trapped to a local minimum.

and the source cumulants

(cum4(xi))
7
i=1 = (−0.1204,−0.4336,−0.0961,−0.8479,−0.7684,−0.8408,−0.9204).

As shown in Figure 6.3, the S-HOPM, initialized with the aid of the HOSVD, is
trapped to a local minimum.

The bounds of Theorem 8 are 0.0537 and 0.1272 and the new initialization method
yields an initial value of 0.1004 for h. Again, the initial value provided by the HOSVD-
based method, namely, 0.0438, does not satisfy the lower bound.

Example 4. The converse is seen to happen for the tensor built as in (4.2) with

H =


 −0.5100 0.3056 0.2035 0.1959 0.4809 0.3216 0.4816

0.4881 −0.4607 0.5045 −0.2727 0.2863 0.2995 0.2211
−0.0529 −0.4287 −0.2190 0.5228 −0.3968 0.5673 0.1133




and

(cum4(xi))
7
i=1 = (−0.4173,−0.3469,−0.2225,−0.2766,−0.5792,−0.4679,−0.7488).

Figure 6.4 shows that the new initialization method leads to a local minimum this
time. Nevertheless, as we can see in Figure 6.5 there is no significant difference in
the values of h at the local and global minima. Figure 6.6 shows the evolution of
the algorithm on the parameter space for the two initializations. In this example, the
bounds of Theorem 8, 0.0092 and 0.0387, are met by the initial values for h provided
by both the new initialization method and the HOSVD-based one, namely, 0.0181
and 0.0174, respectively.
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Fig. 6.4. Results of S-HOPM for both the HOSVD-based and the new initialization methods.
The latter leads to a local minimum.

Fig. 6.5. The function g for the tensor of Example 4. Notice the local minimum, corresponding
to a value of the function quite close to its global minimum one.
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Fig. 6.6. Visualization of the initial estimates and the trajectories followed by the S-HOPM in
Example 4, for both initialization methods. Symbols are as in Figure 6.2.

7. On the best rank-R approximation. It is known that by successively
subtracting the LS rank-1 approximation from a given matrix R times results in its
LS rank-R approximation [11]. One could wonder whether this fact still holds for
higher-order tensors, as pointed out in [3]. Unfortunately, as the following (typical)
example demonstrates, this is not the case.

Example 5. Take the tensor T described in Example 2, normalized to unit norm,
and determine its best rank-1 approximant, T̂ . Then do the same for the tensor
T −T̂ , and so on. As shown in Figure 7.1, the norm of the residue indeed decreases to
practically zero; however, this is done in about 200 iterations, while T has rank 7. It is
also of interest to note that the rank of T remains equal to 6 all the way through.

The same iterative process, but with every new rank-1 term being constrained
to be orthogonal to the previous ones, was recently studied in [17]. Depending on
the definition of the orthogonality adopted, this fails or is not certain to provide a
valid rank-R approximation scheme. The above process would work in the case of a
tensor with rank less than or equal to its dimension, M . This is the case in the BSS
context when the mixing matrix is “tall,” i.e., M ≥ K. In fact, in such a case, all

rank(T ) rank-1 terms can be jointly determined by minimizing the norm ‖T −H
S
�N‖

subject to the constraint that S is diagonal and H has full column rank (usually
assumed to have orthonormal columns). Works coping with this problem include
[15, 21]. An algebraic approach via joint diagonalization of the matrices Ξi as defined
above is proposed in [2]. Note that step 2 of our initialization method is part of the
diagonalization of Ξ1. Nonetheless, it is the problem of the recovery of a single source
(rank-1 approximation) that our method addresses. Moreover, it is applicable to BSS
problems with “fat” mixing matrices (M < K) as well (see Example 2).
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Fig. 7.1. Norm of the residue remaining when successively subtracting rank-1 terms from the
tensor of Example 5. The spike near iteration 200 may be due to numerical artifacts.

For the latter more challenging problem, [1] develops an algebraic method for
determining H , based on the assumption of linear independence of the projectors on
the spaces spanned by its columns. This can be seen to be equivalent to the matrix
H �H , which occurs in (4.3), having full column rank.

Both algebraic- and optimization-based approaches for expanding a supersym-
metric tensor in a sum of rank(T ) rank-1 terms have been developed in [6] based
on its representation in terms of an homogeneous polynomial. The problem then be-
comes one of expressing the polynomial as a sum of powers of linear forms. Workable
algorithms derived this way appear limited to small-sized tensors [3].

Finally, the HOPM can be viewed as a special case of the alternating least
squares (ALS) iterative approach common in problems of multilinear model fitting
(PARAFAC or CANDECOMP [18, 7, 27]) to multidimensional data. The ALS
method can be used with no change to compute a rank-R approximation to a
supersymmetric tensor as well, although this way the rich symmetry in the problem
is not exploited.

8. Conclusions. The problem of computing the best, in the LS sense, rank-1
approximation to a given Nth-order supersymmetric tensor has been studied in this
paper. A symmetric version of the higher-order power method, which was thought to
be unreliable, has been shown to be convergent for tensors whose associated polyno-
mial form is convex or concave. A new method for initializing the iterations has been
developed for the fourth-order case and observed in extensive simulations to provide
an estimate that lies closer to the globally optimal solution than that yielded by the
HOSVD. Moreover, the proximity to the optimal solution is a priori quantifiable. It
happens, though rarely, that the initial estimate provided by either the HOSVD-based
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scheme or the one proposed here be in the basin of attraction of a locally optimal so-
lution. However, this is not a serious problem since in all such cases encountered,
the quality of approximation corresponding to the local optimum is observed to be
quite close to the best attainable. As a byproduct of our study of the rank-1 ap-
proximation problem, some properties satisfied by the square matrix unfolding of any
supersymmetric tensor have also been derived.

The applicability of the symmetric higher-order power method is accompanied by
a significant reduction to the computational complexity of its general version. The
convexity/concavity assumptions required to prove its convergence are plausible in
many signal processing applications, such as in blind separation of multiuser commu-
nications channels, where all source signals have kurtoses of the same sign.

It is not an easy task to extend the results obtained here to the more general
problem of computing the best rank-R approximation to a supersymmetric tensor,
when R > 1. Simply imposing the symmetry constraint on the ALS method of fitting
PARAFAC models to general tensors, in the same way that HOPM gave rise to the
S-HOPM, does not always result in a convergent procedure.
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Abstract. We show that the only real symmetric matrices whose spectrum is invariant modulo
sign changes after either row or column reversal are the centrosymmetric matrices; moreover, we
prove that the class of real symmetric centrosymmetric matrices can be completely characterized
by this property. We also show that the only real symmetric matrices whose spectrum changes by
multiplication by i after either row or column reversal are the skew-centrosymmetric matrices; here,
too, we show that the class of real symmetric skew-centrosymmetric matrices can be completely
characterized by this property of their eigenvalues. We prove both of these spectral characterizations
as special cases of results for what we’ve called generalized centrosymmetric K-matrices and gener-
alized skew-centrosymmetric K-matrices. Some results illustrating the application of the generalized
centrosymmetric spectral characterization to other classes of real symmetric matrices are also given.

Key words. centrosymmetric matrices, skew-centrosymmetric matrices, eigenvalues

AMS subject classifications. 15A18, 15A57

PII. S0895479801386730

1. Introduction. A centrosymmetric matrix A of order n is a square matrix
whose elements ai,j satisfy the property

ai,j = an−i+1,n−j+1 for 1 ≤ i, j ≤ n.

A is called skew-centrosymmetric if its elements ai,j satisfy the property

ai,j = −an−i+1,n−j+1 for 1 ≤ i, j ≤ n.

Although they make a brief appearance in [1], centrosymmetric matrices received their
first serious treatment in the 1962 work of Collar [4]. Collar’s paper also introduces
the notion of skew-centrosymmetric matrices (he uses the term centroskew).

The symmetric Toeplitz matrices form an important subclass of the class of sym-
metric centrosymmetric (sometimes called doubly symmetric) matrices. An n × n
matrix T is said to be Toeplitz if there exist numbers r−n+1, . . . , r0, . . . , rn−1 such
that ti,j = rj−i for 1 ≤ i, j ≤ n. As such, Toeplitz matrices are sometimes described
as being “constant along the diagonals.” Toeplitz matrices occur naturally in digital
signal processing applications as well as other areas [7]. Centrosymmetric matrices
appear in their own right, for example, in the numerical solution of certain differential
equations [2], in the study of some Markov processes [8], and in various physics and
engineering problems [6].

In this paper, we establish spectral characterizations for both real symmetric cen-
trosymmetric and real symmetric skew-centrosymmetric matrices as special cases of
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results for what we have called generalized centrosymmetric K-matrices and general-
ized skew-centrosymmetric K-matrices (defined below).1 To emphasize the elemen-
tary nature of the techniques involved, all results used regarding centrosymmetric and
skew-centrosymmetric matrices are developed within this paper.

2. Notation and terminology. Let J represent the exchange matrix of order n
defined by Ji,j = δi,n−j+1 for 1 ≤ i, j ≤ n, where δi,j is the Kronecker delta (i.e., J is
a matrix with ones on the cross-diagonal and zeros elsewhere). Left-multiplication by
J against a matrix A reverses the row order of A. Right-multiplication by J against
A reverses the column order of A. The properties of centrosymmetry and skew-
centrosymmetry for a matrix can be written succinctly as AJ = JA (equivalently,
A = JAJ) and AJ = −JA (equivalently, A = −JAJ), respectively.

We use K to denote an involutory (i.e., K2 = I) matrix. The exchange matrix
J belongs to the set of involutory matrices. We shall refer to matrices A satisfying
AK = KA as generalized centrosymmetric K-matrices,2 and matrices A satisfying
AK = −KA as generalized skew-centrosymmetric K-matrices.

Following the terminology used in Andrew [2], when x = Jx we say that the
vector x is symmetric. When x = −Jx, we say that the vector x is skew-symmetric.
We extend this terminology to the situation where J is replaced by an involutory
matrix K by saying that when x = Kx the vector x is K-symmetric and that when
x = −Kx the vector x is K-skew-symmetric.

Let R and S be multisets (i.e., elements can appear more than once in the collec-
tion). We write R = ±S if the elements of R are the same as those of S up to sign.
We write R = iS if R = {is | s ∈ S}, where i = √−1.

Let Λ(A) denote the spectrum (eigenvalues) of A, {λi (A)}1≤i≤n. Our primary
focus will be on the multisets Λ(A), ±Λ(A), and iΛ(A).

In what follows, ‖x‖ =
√
xTx will denote the Euclidean vector norm of a vector

x.

3. Generalized centrosymmetric matrices. Although our focus is primarily
on real symmetric matrices, we relax that restriction in the following proposition
about generalized centrosymmetric K-matrices.

Proposition 3.1. Suppose A ∈ Fn×n and K ∈ Fn×n, where F is a field of
characteristic not equal to 2 and K is an involutory matrix. If AK = KA, then
Λ(A) = ±Λ(KA).

Note: The same theorems and proofs hold mutatis mutandis when Λ (KA) is
replaced with Λ (AK) in this proposition and all subsequent results of this article.

Proof. Except for the trivial cases K = ±I, the matrix K has minimal polynomial
m(x) = x2 − 1. Since the zeros of m(x) have multiplicity one, there exists a matrix
X ∈ Fn×n such that conjugation of K by X yields the block diagonal form

K ′ ≡ X−1KX =

(
I 0
0 −I

)
,

where I represents a block identity matrix, and the sum of the dimensions of the I
and −I blocks is n (see [5], for example).

1A. Andrew obtained an eigenspace characterization for Hermitian centrosymmetric matrices in
[2].

2A. Andrew also investigated this generalization in [2].
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Conjugation of A by the same matrix X yields a matrix

A′ ≡ X−1AX =

(
A′

11 A′
12

A′
21 A′

22

)
,

where we assume the same partitioning as that for K ′. A simple calculation shows
that AK = KA if and only if A′K ′ = K ′A′ if and only if A′

12 and A′
21 are both zero

matrices. Consequently,

A′ =
(
A′

11 0
0 A′

22

)
and K ′A′ =

(
A′

11 0
0 −A′

22

)
.

Since A is similar to A′ and KA is similar to K ′A′, the result is proved.
Remark 3.2. When K = J , we can explicitly construct the eigenvector matrix

X as follows. Denote the jth column of X by xj . For j ≤
⌊
n
2

⌋
, let the vector xj have

components of 0 everywhere except for a 1 in components j and n−j+1. For j >
⌈
n
2

⌉
,

let the vector xj have components of 0 everywhere except for a 1 in component j and
a −1 in component n−j+1. If n is odd, we let x�n

2  have components of 0 everywhere

except for a 1 in component
⌈
n
2

⌉
. Note that the first

⌈
n
2

⌉
eigenvectors are symmetric,

while the remaining
⌊
n
2

⌋
are skew-symmetric.

A centrosymmetric example. Consider the matrices

A1 =




3 −2 −1 0 1
−2 1 −3 1 0
−1 −3 5 −3 −1
0 1 −3 1 −2
1 0 −1 −2 3


 and JA1 =




1 0 −1 −2 3
0 1 −3 1 −2
−1 −3 5 −3 −1
−2 1 −3 1 0
3 −2 −1 0 1


 .

A1 is centrosymmetric and, consequently, so is JA1.

Λ (A1) =
{
−2, 1−√5, 1 +

√
5, 5, 8

}

and

Λ (JA1) =
{
−1−√5, −2, −1 +√5, 5, 8

}
.

A generalized centrosymmetric example. Let

A2 =


 8 2 −5

2 −4 1
−5 1 2


 and K =




2
3

−1
3

−2
3−1

3
2
3

−2
3−2

3
−2
3

−1
3


 .

Since A2K = KA2 and K2 = I, we say that A2 is a generalized centrosymmetric
K-matrix.

Λ (A2) = Λ(KA2) =
{
3− 3

√
7, 0, 3 + 3

√
7
}
.

Before proving the converse of the real symmetric case of Proposition 3.1, we
establish a useful lemma.

Lemma 3.3. Let A ∈ R
n×n be symmetric and nonzero, let K ∈ R

n×n be a
symmetric involutory matrix, and assume that the largest eigenvalue λ̃(A) of A in
magnitude equals the largest eigenvalue λ̃(KA) of KA in magnitude up to sign (i.e.,
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|λ̃(A)| ≡ maxi {|λi(A)|} and |λ̃(KA)| ≡ maxi {|λi(KA)|} satisfy λ̃(A) = ±λ̃(KA)).
Then there is a nontrivial K-invariant subspace of the eigenspace of A correspond-
ing to λ̃(A). This subspace is also a subspace of the eigenspaces of KA and AK
corresponding to their eigenvalues of largest magnitude.

Proof. Let x be a unit eigenvector of KA corresponding to λ, where |λ| = λ̃(KA).
Then λ = xTKAx, and transposing this equation gives λ = xTAKx. By the Cauchy–
Schwarz inequality, we have that

|λ| = ∣∣xTAKx∣∣ ≤ ‖AKx‖ .
Since |λ| is extremal for A, ‖AKx‖ ≤ |λ| and therefore ‖AKx‖ = |λ|.

Because the Cauchy–Schwarz inequality |xT (AKx)| ≤ ‖AKx‖ · ‖x‖ yields an
equality only when vectors x and AKx have the same direction up to sign, we may
write

AKx = ±λx.(1)

Multiplying the equation KAx = λx by K gives

Ax = λKx.(2)

Using (1) and (2), we obtain A2Kx = ±λAx = ±λ2Kx. Since the eigenvalues of A2

are all nonnegative, we can rewrite (1) as AKx = λx.
If x = ±Kx, we’re clearly done. Assume this is not the case, so that x±Kx �= �0.

Adding and subtracting AKx = λx against Ax = λKx gives the equations

A(x+Kx) = λ(x+Kx),(3)

A(x−Kx) = −λ(x−Kx).(4)

Observe that the A eigenvector (x + Kx) is K-symmetric, while the A eigenvector
(A−Kx) is K-skew-symmetric (i.e., K invariance). Also, we have that the eigenvalue-
eigenvector pair (λ, x+Kx) of matrix A is simultaneously an eigenpair of the matrix
KA (multiply (3) by K) and AK (factor out a K from (3)). Finally, we note that
the eigenpair (−λ, x−Kx) of matrix A corresponds to an eigenpair (λ, x−Kx) of
the matrix KA (multiply (4) above by K) and AK (factor out a K from (4) above).
This completes the proof.

Remark 3.4. In addition to establishing the lemma, we’ve also demonstrated
that the K-invariant subspace above has a basis consisting of only K-symmetric and
K-skew-symmetric vectors.

Proposition 3.5. Let A ∈ R
n×n be symmetric, and suppose Λ(A) = ±Λ(KA),

where K ∈ R
n×n is a symmetric involutory matrix. Then AK = KA.

Proof. Since the proposition holds trivially when A is the zero matrix, we may
assume that A is nonzero in the following argument. Hence, A will have at least
one nonzero eigenvalue and Lemma 3.3 will apply. Since A is symmetric, we are also
guaranteed a full set of n independent eigenvectors.

Let S0 be the nontrivialK invariant subspace of the eigenspace of A corresponding
to the eigenvalue λ̃ ≡ λ̃(A) as defined in the statement of Lemma 3.3. Then for any
w0 ∈ S0, we set w̃0 ≡ Kw0 ∈ S0. If w1 ∈ S⊥

0 , then

wT
0 Kw1 = (Kw̃0)

T
Kw1 = w̃T

0 w1 = 0.



GENERALIZED CENTROSYMMETRIC AND CENTROSKEW MATRICES 889

Therefore, S⊥
0 is also invariant under K. Since A is symmetric and maps S0 to itself,

wT
0 Aw1 = (Aw0)

T
w1 = 0.

This shows that A also maps S⊥
0 to itself. Therefore, so will KA.

If x = Kx is an eigenvector of A corresponding to the eigenvalue λ̃, then

(KA−AK)x = (KAx−AKx) = (λ̃Kx−Ax) = (λ̃x− λ̃x) = ⇀

0 .

Similarly, we can show that (KA − AK)x = �0 when x = −Kx. Making use of
Remark 3.4, we conclude that (KA−AK)w = �0 for any w ∈ S0.

Since R
n = S0 ⊕ S⊥

0 , if S⊥
0 is trivial, we’re done. Otherwise, we apply the

above argument to A restricted to S⊥
0 . That is, let S⊥

0 = S1 ⊕ S⊥
1 , where S1 is

the nontrivial K invariant subspace of the eigenspace corresponding to the largest
eigenvalue in magnitude for A restricted to S⊥

0 . Then, just as before, we can show
that (KA−AK)w = �0 for any w ∈ S1. Continuing in this manner, we establish that
KA−AK maps each of the (say m total) nontrivial invariant subspaces Sj associated

with A’s nonzero eigenvalues to �0.
From above, we know that the eigenspace Sm = S⊥

m−1 corresponding to A’s 0

eigenvalues is K invariant (Sm = {�0} if A is nonsingular). Therefore KA and AK
will both be zero when restricted to Sm. Since KA−AK maps R

n = ⊕m
j=0 Sj to zero,

we conclude that KA = AK.
Remark 3.6. In the course of proving Proposition 3.5, we have shown that the

eigenspace of A corresponding to its nonzero eigenvalues has a basis consisting of K-
symmetric and K-skew-symmetric eigenvectors. This is also true for the eigenspace
corresponding to the eigenvalue 0.

Proof. As noted above, if Ax = �0, then �0 = ±KAx = ±AKx. If x = ±Kx,
we’re done, so assume x �= ±Kx. As in the proof of Lemma 3.3, we finish by noting
that A(x ± Kx) = �0 and that x + Kx is K-symmetric and x − Kx is K-skew-
symmetric.

Combining the real symmetric case of Proposition 3.1 with Proposition 3.5, we
arrive at the following characterization of real symmetric generalized centrosymmetric
matrices.

Theorem 3.7. Suppose A ∈ R
n×n and K ∈ R

n×n are symmetric, and K2 = I.
Then AK = KA if and only if Λ(A) = ±Λ(KA).

Corollary 3.8. Let J ∈ R
n×n be the exchange matrix. A symmetric matrix

A ∈ R
n×n is centrosymmetric if and only if Λ(A) = ±Λ(JA).

Proof. Let K = J in the statement of Theorem 3.7.
It is convenient at this stage to quantify the number of eigenvalues of A which

differ (by sign) from those of KA, where A ∈ R
n×n is symmetric generalized K-

centrosymmetric. We begin by making the following observations.
Lemma 3.9. Suppose K ∈ R

n×n is a symmetric involutory matrix, and A ∈ R
n×n

is a symmetric generalized centrosymmetric K-matrix. Assume that we have expressed
A’s eigenvector basis in terms of K-symmetric and K-skew-symmetric eigenvectors
(Remark 3.6 guarantees that this can be done), and assume that

(I) for any {λi, λj} ∈ Λ(A), |λi| = |λj | implies λi = λj .

Then the nonzero eigenvalues of A which differ by a sign from the eigenvalues of KA
are precisely those corresponding to A’s K-skew-symmetric eigenvectors.
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Proof. If Ax = λx, then KAx = λKx. If x is K-symmetric, then KAx = λx. If x
is K-skew-symmetric, we have that KAx = −λx. Condition (I) precludes −λ ∈ Λ(A)
for λ �= 0.

Remark 3.10. Examples of matrices satisfying condition (I) include the positive
definite and semidefinite matrices.

Lemma 3.11. Let K ∈ R
n×n be a symmetric involutory matrix and let A ∈

R
n×n be symmetric generalized K-centrosymmetric. Assume that K’s eigenvalue 1

has multiplicity n1 and that K’s eigenvalue −1 has multiplicity n2, where n1+n2 = n.
If V is a basis for the eigenspace of A consisting entirely of K-symmetric and K-skew-
symmetric eigenvectors, then V must contain precisely n1 K-symmetric eigenvectors
and n2 K-skew-symmetric eigenvectors.

Proof. The lemma is clearly true for K = ±I, so assume this is not the case.

Let x be a K-symmetric eigenvector of A, and let X be the eigenvector matrix of
K used in the proof of Proposition 3.1. Then we may express the K-symmetry of x
as

KXy = Xy,(5)

where y = X−1x. Since X−1KX = ( I0
0
−I ), we may rewrite (5) as

(
I 0
0 −I

)
y = y.(6)

Equation (6) holds only if the last n2 components of y are zero. Therefore, V
cannot consist of more than n1 K-symmetric eigenvectors without violating linear
independence. Similarly, we can show that V cannot consist of more than n2 K-skew-
symmetric eigenvectors. Since n = n1 + n2, the basis V must consist of precisely n1

K-symmetric eigenvectors and n2 K-skew-symmetric eigenvectors.

Remark 3.12. Lemma 3.11’s quantification of the breakdown of V into K-sym-
metric eigenvectors and K-skew-symmetric eigenvectors generalizes a result in [3].
For real symmetric centrosymmetric matrices, Cantoni and Butler showed that V is
composed of

⌈
n
2

⌉
symmetric eigenvectors and

⌊
n
2

⌋
skew-symmetric eigenvectors. This

result follows from Lemma 3.11 applied to K = J , together with observations made
in Remark 3.2.

Proposition 3.13. Let K ∈ R
n×n be a symmetric involutory matrix and let

A ∈ R
n×n be symmetric generalized K-centrosymmetric. Assume that K’s eigenvalue

−1 has multiplicity n2. If we let d(X,Y ) equal the number of eigenvalues of X which
differ from those of Y , then d(A,KA) ≤ n2. If we further stipulate condition (I)
above, we also have the lower bound max {n2 −m, 0} ≤ d(A,KA), where m is the
multiplicity of A’s zero eigenvalue.

Proof. The proposition clearly holds for K = ±I, so assume this is not the case.

The proof of Lemma 3.9 shows that the eigenpairs of A associated with the K-
symmetric eigenvectors are also eigenpairs of KA. From Lemma 3.11, A has n2

K-skew-symmetric eigenvectors and so it follows that d(A,KA) ≤ n2. Under the
additional constraint of condition (I), Lemma 3.9 shows that the maximum amount
by which d(A,KA) can differ from n2 is equal to the multiplicity of A’s zero eigen-
value.

Remark 3.14. The lower bound in Proposition 3.13 is sharp. For example, the
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spectrum of the rank 2 centrosymmetric matrix

A =




2 1 1 2
1 1 1 1
1 1 1 1
2 1 1 2




satisfies condition (I), Λ(A) = Λ(JA), and n2 − m =
⌊
n
2

⌋ − m = 0. Here, the
nonzero eigenvalues correspond to symmetric eigenvectors while the zero eigenvalues
correspond to skew-symmetric eigenvectors. Of course, when condition (I) holds and
the matrix A is nonsingular, the upper and lower bounds in Proposition 3.13 coincide.

We next prove a result that holds for any real symmetric matrix satisfying con-
dition (I).

Proposition 3.15. Suppose A ∈ R
n×n and K ∈ R

n×n are symmetric, with
K2 = I. Assume further that if {λi, λj} ∈ Λ(A) that |λi| = |λj | implies λi = λj.
Then Λ(A) = Λ(KA) if and only if A = KA.

Proof. The ⇐ direction is obvious.
⇒ From Proposition 3.5, Λ(A) = Λ(KA) implies that A is a generalized cen-

trosymmetric K-matrix. Therefore, Remark 3.6 shows that we can construct a basis
for the eigenspace of A consisting entirely of K-symmetric and K-skew-symmetric
eigenvectors. Assume we have done so.

If x is any K-symmetric eigenvector of A, then Ax = λx if and only if KAx =
λx. From Lemma 3.9, we know that all of the K-skew-symmetric eigenvectors of A
correspond to an eigenvalue of 0 (a sign change would arise for any nonzero eigenvalue
corresponding to a K-skew-symmetric eigenvector), so Ay = KAy = �0 for any K-
skew-symmetric eigenvector y.

Since A and KA agree on a basis (e.g., the eigenvectors of A), they must in fact
represent the same operator.

Remark 3.16. In the case where K = J , Proposition 3.15 states that if one row
reverses any real symmetric matrix satisfying condition (I), then the spectrum of the
resulting matrix will always differ from that of the original matrix unless the original
matrix is unchanged from the row reversal.

Remark 3.17. The reader may wish to confirm (if he or she has not already done
so) that A2 = KA2 in the generalized centrosymmetric example given earlier.

Using the same type of argument as in the proof of Proposition 3.15, we can also
show the following.

Proposition 3.18. Suppose A ∈ R
n×n and K ∈ R

n×n are symmetric, with
K2 = I. Assume further that if {λi, λj} ∈ Λ(A) that |λi| = |λj | implies λi = λj.
Then Λ(A) = Λ(−KA) if and only if A = −KA.

4. Generalized skew-centrosymmetric matrices. The following result is the
generalized skew-centrosymmetric analogue of Proposition 3.1.

Proposition 4.1. Suppose A ∈ Fn×n and K ∈ Fn×n, where F is a field of
characteristic not equal to 2 and K is an involutory matrix. If AK = −KA, then
Λ(A) = iΛ(KA).

Proof. If K = ±I, then A must be the zero matrix and the result clearly holds.
Assume K �= ±I and let X ∈ Fn×n be the same matrix used to diagonalize the

matrix K in the proof of Proposition 3.1:

K ′ = X−1KX =

(
I 0
0 −I

)
.
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Notationally, let the I block be n1 × n1 and let the −I block be n2 × n2 where
n1 + n2 = n. Proceeding as we did in Proposition 3.1, we can show that conjugation
of A by X yields a matrix of the form

A′ ≡ X−1AX =

(
0 A′

12

A′
21 0

)

and that

K ′A′ =
(

0 A′
12

−A′
21 0

)
,

where we have the same block partitioning for these matrices as for K ′.
Consider the case where n1 ≥ n2. Using elementary row operations on the ma-

trices A′ − λI and KA′ − λI, we can construct the block upper triangular matrices

( −λI A′
12

0 1
λA

′
21A

′
12 − λI

)
(7)

and ( −λI A′
12

0 − 1
λA

′
21A

′
12 − λI

)
.

Taking determinants, we obtain the characteristic polynomials for A′ − λI and
KA′ − λI as

(−1)n1λn1−n2 det
(
A′

21A
′
12 − λ2I

)
(8)

and

(−1)n1λn1−n2 det
(
A′

21A
′
12 + λ

2I
)
,(9)

respectively. From (8) and (9), the similarity of A to A′, and the similarity of KA to
K ′A′, we conclude that λ ∈ Λ(A) if and only if iλ ∈ Λ(KA).

When n1 < n2, one can apply elementary row operations to the matrices A′−λI
and KA′ − λI to obtain block lower triangular matrices analogous to those in (7).
Taking determinants, one obtains the characteristic polynomials

(−1)n2λn2−n1 det
(
A′

12A
′
21 − λ2I

)
for A′ − λI and

(−1)n2λn2−n1 det
(
A′

12A
′
21 + λ

2I
)

for K ′A′ − λI. Again, we conclude that λ ∈ Λ(A) if and only if iλ ∈ Λ(KA).
A skew-centrosymmetric example. Consider the matrices

A3 =




2 −1 1 −1 0
−1 1 1 0 1
1 1 0 −1 −1
−1 0 −1 −1 1
0 1 −1 1 −2
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and

JA3 =




0 1 −1 1 −2
−1 0 −1 −1 1
1 1 0 −1 −1
−1 1 1 0 1
2 −1 1 −1 0


 .

A3 is skew-centrosymmetric and, consequently, so is JA3.

Λ (A3) =
{
−
√
10,−

√
3, 0,
√
3,
√
10
}

and

Λ (JA3) =
{
−
√
10i,−

√
3i, 0,

√
3i,
√
10i
}
.

A generalized skew-centrosymmetric example. Let

A4 =


 −3

√
2 −√2 2

−√2 √
2 −2

2 −2 2
√
2




and

K =




1
2

−1
2

√
2

2
−1
2

1
2

√
2

2√
2

2

√
2

2 0


 .

Since A4K = −KA4 andK2 = I, we say that A4 is a generalized skew-centrosym-
metric K-matrix.

Λ (A4) =
{
−2
√
6, 0, 2

√
6
}

and

Λ (KA4) =
{
−2
√
6i, 0, 2

√
6i
}

We end this article by establishing the real symmetric converse to Proposition 4.1.
Proposition 4.2. Suppose A ∈ R

n×n and K ∈ R
n×n are symmetric, with

K2 = I. If Λ(A) = iΛ(KA), then AK = −KA.
Proof. We can assume that A is nonzero, as the proposition clearly holds when

A is the zero matrix.
Since A is real symmetric and Λ(A) = iΛ(KA), the eigenvalues of KA must be

imaginary. As noted earlier, symmetry of A guarantees a full set of n independent
eigenvectors. Let x be an eigenvector of the matrix KA corresponding to the eigen-
value iλ, where λ ∈ R has the largest magnitude of KA’s eigenvalues. We shall write
x as u + iv and x̄ = u − iv, where u and v are real n-vectors so that u = x+x̄

2 and
v = x−x̄

2i .
Since KAx = iλx, we have that KAx̄ = −iλx̄. Therefore KA(x+ x̄) = iλ(x− x̄)

or, equivalently,

Au = −λKv.(10)
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Using the symmetry of A, we obtain

uTAKv = (Au)TKv = (−λKv)TKv = −λ ‖v‖2 .(11)

Similarly, the equation KA(x− x̄) = iλ(x+ x̄) yields
Av = λKu,(12)

and so

vTAKu = (Av)TKu = (λKu)TKu = λ ‖u‖2 .(13)

If ‖u‖ < ‖v‖, then (11) implies that ‖AKv‖ > |λ| · ‖v‖, which is impossible due to the
extremality of λ. A similar argument applied to (13) demonstrates that ‖u‖ > ‖v‖ is
impossible. Hence, ‖u‖ = ‖v‖.

Applying the Cauchy–Schwarz inequality to (11), we have that

‖u‖ · ‖AKv‖ ≥ ∥∥uTAKv∥∥ = |λ| · ‖v‖2 .
We may freely take ‖u‖ = ‖v‖ = 1 and therefore write ‖AKv‖ ≥ |λ|. Again, because
of the extremality of λ, this must in fact be an equality. Therefore, we have shown
that

‖u‖ · ‖AKv‖ = ∣∣uT (AKv)
∣∣ .

Since Cauchy–Schwarz implies equality only if the vectors in question have the
same direction up to sign, we have

AKv = ±λu.(14)

The same argument applied to (13) shows that

AKu = ±λv.(15)

Multiplication of A against (14) and (15) and then using (10) and (12) gives A2Kv =
∓λ2Kv and A2Ku = ±λ2Ku. As A2 has only nonnegative eigenvalues, we can
dispense with the sign ambiguities in (14) and (15):

AKv = −λu,(16)

AKu = λv.(17)

Utilizing the relations (10), (12), (16), and (17), we obtain

A(Ku+ v) = λ(Ku+ v),

A(Ku− v) = −λ(Ku− v),

A(Kv + u) = −λ(Kv + u),

A(Kv − u) = λ(Kv − u).
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So, starting with two eigenvectors of KA (x = u+ iv and x̄ = u− iv) corresponding
to ±iλ, we have obtained four (not necessarily independent) eigenvectors of A corre-
sponding to ±λ. More manipulation with (16) and (17) will show that x and x̄ also
generate two additional eigenvectors of KA corresponding to ±iλ:

KA(Kv + iKu) = iλ(Kv + iKu),

KA(Ku+ iKv) = −iλ(Ku+ iKv).

Note that the real span of the eigenvectors of A obtained from x and x̄ is the
same as the real span of the eigenvectors of KA also obtained from x and x̄, namely,
the vector space

T0 ≡ spanR {u, v,Ku,Kv} .

Let y1 ∈ spanR {u+ v, u− v} and y2 ∈ spanR {Ku+Kv,Ku−Kv}. Then using
(10), (12), (16), and (17), it is easy to see that (KA+AK)y1 = �0 and (KA+AK)y2 =
�0. In other words, KA+AK maps the space T0 to zero.

T0 is clearly K invariant. Using the same method as in the proof of Proposi-
tion 3.5, we can show that T⊥

0 is also K invariant. Therefore, we can apply the same
argument as above to the space T⊥

0 and continue doing so (as needed) to show that
KA + AK maps each of the (say m total) eigenspaces corresponding to A’s nonzero
eigenvalues to zero. The last of these repeated arguments shows that the eigenspace
Tm = T⊥

m−1 corresponding to A’s 0 eigenvalues (if any) is K invariant, so KA and
AK will both be zero when restricted to Tm. Therefore KA+ AK maps each of the
invariant subspaces Tj associated with A’s eigenvalues to zero. Since R

n = ⊕m
j=0 Tj ,

we conclude that KA = −AK.
Together, Proposition 4.1 and Proposition 4.2 yield the following characterization

of real symmetric generalized skew-centrosymmetric matrices.
Theorem 4.3. Suppose A ∈ R

n×n and K ∈ R
n×n are symmetric, with K2 = I.

Then AK = −KA if and only if Λ(A) = iΛ(KA).
Corollary 4.4. Let J ∈ R

n×n be the exchange matrix. A symmetric matrix
A ∈ R

n×n is skew-centrosymmetric if and only if Λ(A) = iΛ(JA).
Proof. Let K = J in the statement of Theorem 4.3.
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1. Introduction. Let M(n,F) be the algebra of n × n matrices over a field F,
where F is either the field of real or complex numbers (R or C, respectively). An
inverse problem for matrices (IPFM) is the existence of a matrix A of a certain class
belonging to a given variety A ⊂ M(n,F) of dimension m. Most of the IPFMs are
given by l polynomial conditions

p(A) = α, α ∈ F
l.(1.1)

(p : M(n,F) → F
l is a polynomial map.) The most common IPFM are the inverse

eigenvalue problems (IEPs). As an example of IPFM (IEP) recall the result of Fara-
hat and Ledermann [FL]: For a matrix A ∈ M(n,C) whose top left-hand corner is
nonderogatory, every characteristic polynomial can be achieved through the choice of
entries in the last row and column. Note that we have 2n− 1 parameters from which
to choose to satisfy n polynomial conditions. If l = m and p|A is dominant (the
m polynomial conditions are algebraically independent over A), then IPFM (IEP)
is called tight IPFM (IEP) and is denoted by TIPFM (TIEP). The most well known
TIEP is determination of a real symmetric tridiagonal matrix from two spectra, which
was first solved by Krein [GK, Appendix II] and rediscovered by many other authors.
This problem, as well as the TIEP discussed in [Fr3], can be solved in a constructive
way by reducing the problem to a similar problem in M(n− 1,R).

Assume first that F = C. Let A be a complex irreducible affine variety of complex
dimension at least l. If p|A is a dominant map, then (1.1) is solvable for all α ∈ C

l\W
for some subvariety W ⊂ C

l. (IPFM is generically solvable.) The dominance of
polynomial maps related to the IEP is studied in [HRW] and [RW]. To show that
(1.1) is solvable for every α ∈ C

l (W = ∅) requires stronger tools, e.g., the intersection
theory from the algebraic geometry [Fr2] or the degree theory [Fr1].

Assume now that F = R. Then the theory of dominant maps does not apply.
That is, even though p|A is dominant there may be an open (semialgebraic set) of
α ∈ R

l for which (1.1) is not solvable; see, e.g., [Fr2]. In the known nonconstructive
solution to the TIEP for real symmetric Toeplitz matrices, one uses the degree theory
[Lan] (see also [Fr4]).
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In this paper we solve a TIPFM over R which deals with normal complex-valued
matrices with prescribed upper triangular entries. Let Nn ⊂ M(n,C) be the real
variety of normal matrices. It is known that Nn is an irreducible variety of real
dimension n2 + n [Ik2]. The purpose of this paper is twofold. First, we describe in
more detail the structure of Nn, the manifold of its regular (smooth) points N r

n , and
its covering space induced by the spectral decomposition of a normal matrix. Second,
using the degree theory, we show that any upper triangular A ∈ M(n,C) can be
completed to a normal matrix X ∈M(n,C). That is, for any

(
n+1

2

)
complex numbers

aij , i = 1, . . . , n, j = i, . . . , n, there exists X = (xij)
n
1 ∈ Nn such that xij = aij for

i = 1, . . . , n, j = i, . . . , n. The cases n = 2, 3 were settled by Ikramov [Ik1]. The
completion problem was raised by Elsner.

2. Remarks on the variety of normal matrices. Let Un be the group of n×n
unitary matrices. As Un is a connected Lie group it follows that Un is parallelizable
and hence orientable. The symmetric group Sn acts on Un by permuting the columns
of U ∈ Un.

Lemma 2.1. The action of Sn on Un preserves the orientation of Un.
Proof. We identify the tangent space of Un with the Lie algebra of skew Hermitian

matrices:

An := {A = (aij)
n
1 ∈M(n,C) : A∗ = −A}.

Fix a frame (basis) in An which is given by the unit vectors in the positive direction
of the imaginary parts of the diagonal elements of A and the real and imaginary parts

of the entries aij , 1 ≤ i < j ≤ n. We view this frame as R
n × C

n(n−1)
2 . Orient this

frame by giving the standard orientations on R
n and C

n(n−1)
2 . The n2 vectors fields

of Un at U are given by transporting the frame of An, at the identity In, by the left
multiplication by U . Let Πn ⊂ Un be the subgroup of permutation matrices. We
identify Sn with Πn. Then Πn acts on Un by the right multiplication:

U �→ UP, P ∈ Πn, U ∈ Un.(2.1)

Observe next that

eAP = PeP
TAP , P ∈ Πn, A ∈ An.

Thus the transformation (2.1) preserves the orientation iff the transformation

A �→ PTAP, P ∈ Πn, A ∈ An,(2.2)

preserves the orientation of An. As any element of Sn is a product of transpositions,
it is enough to show that (2.2) preserves the orientation for any transposition P .
Assume for simplicity that P corresponds to the transposition which transposes 1

and 2. Then the map (2.2) acts separately on R
n and C

n(n−1)
2 . On R

n it transposes

a11 and a22. Hence it reverses the orientation on R
n. On C

n(n−1)
2 the map (2.2) is a

composition of the map a12 �→ −a12 and the permutations a1j ↔ a2j , j = 3, . . . , n,

for n > 2. Clearly, the above permutations preserve the orientation of C
n(n−1)

2 . The

map a12 �→ −a12 reverses the orientation of C
n(n−1)

2 . Hence the action of the above
transposition preserves the orientation of Un. The same arguments apply to any
transposition P .
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Recall that Un is a smooth compact real algebraic variety

Un = {X +
√−1Y : XXT + Y Y T = In, −XY T + Y XT = 0, X, Y ∈M(n,R)}.

Sn acts freely on Un. Hence Un/Πn can be realized as a smooth compact real algebraic
variety.

Corollary 2.2. Un/Πn is orientable.
Let Fn be the space of full flags in C

n:

V1 ⊂ V2 ⊂ · · · ⊂ Vn = C
n.(2.3)

Let UDn < Un be the subgroup of diagonal unitary matrices. Then Fn is isomorphic to
the homogeneous space Un/UDn. Indeed, to each coset UUDn associate the following
flag: Vk is the subspace spanned by the first k columns of U for k = 1, . . . , n. Clearly,
this flag is independent of the representative U ′ ∈ UUDn. Vice versa, assume that C

n

is an inner product space with 〈x, y〉 = y∗x. Then a flag (2.3) defines an orthonormal
basis of column vectors v1, . . . , vn ∈ C

n such that Vk = span (v1, . . . , vk) for k =
1, . . . , n. Let U = (v1, . . . , vn). Then U defines a unique coset UUDn. As PUDn =
UDnP for any P ∈ Πn it follows that Sn acts on Un/UDn:

UUDn �→ UPUDn, P ∈ Πn.

Equivalently Sn acts on Fn by permuting the orthonormal basis v1, . . . , vn correspond-
ing to the flag (2.3):

{v1, . . . , vn} �→ {vσ(1), . . . , vσ(n)}, σ ∈ Sn.
The following lemma is probably well known and we present its proof for completeness.

Lemma 2.3. Fn is a fiber bundle with the basis P
n−1 and the fiber Fn−1. Hence

Fn is an orientable manifold of dimension n(n−1). The action of Sn on Fn does not
preserve the orientation of Fn.

Proof. The choice of v1 in the orthonormal basis {v1, . . . , vn} is equivalent to
the choice of a one-dimensional subspace in C

n spanned by v1. The space of one-
dimensional subspaces is P

n−1. Fix one-dimensional subspace V1 ⊂ C
n. Let V ⊥

1 be
the orthogonal complement of V1 in C

n. Then the choices of all possible orthonormal
bases in V ⊥

1 is Fn−1. Hence Fn is a fiber bundle over P
n−1 with the fiber Fn−1. (F1

is a space consisting of one point.) We prove the rest of the lemma by induction. Let
n = 2. Then F2 is identified with the Riemann sphere P. Hence F2 is orientable of
(real) dimension 2 . Let V1 ⊂ C

2 be a one-dimensional subspace which is not spanned
either by e1 = (1, 0)T or by e2 = (0, 1)T . Then

V1 = span ((1, z)T ), V ⊥
1 = span

((
1,−1

z

)T
)
, z ∈ C\{0}.

The action of the permutation P ∈ Π2 is equivalent to the map V1 �→ V T
1 . For V1 of

the above form this action is given by the map z �→ − 1
z . Clearly this map reverses

the orientation of P.
Assume by induction that Fn is orientable of dimension n(n− 1) and the action

of Sn does not preserve the orientation of Fn. Consider Fn+1, which is a fiber bundle
over P

n with the fiber Fn. Clearly

dim Fn+1 = dim P
n + dim Fn = 2n+ n(n− 1) = (n+ 1)n.
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As P
n and Fn are orientable it follows directly that Fn+1 is orientable. Fix V2 ⊂

V3 ⊂ · · · ⊂ Vn+1 = C
n+1. Without loss of generality we identify V2 with C

2. Consider
all possible choices of a one-dimensional subspace V1 ⊂ V2. Let P ∈ Πn+1 be the
transposition which transposes 1 and 2. Then the above arguments show that the
action of P reverses the orientation of Fn+1.

Recall that

Nn := {A ∈M(n,C) : AA∗ = A∗A}.
By writing A = X +

√−1Y, X, Y ∈M(n,R) we obtain that

Nn = {A = X +
√−1Y : XXT + Y Y T = XTX + Y TY,

−XY T + Y XT = XTY − Y TX, X, Y ∈M(n,R)}.
(2.4)

Let D(n,C) be the set of complex diagonal matrices. Let

D
r(n,C) = {D = diag (d1, . . . , dn) ∈ D(n,C), di �= dj for i �= j}.

Recall that any normal A has the form UDU∗, where D ∈ D(n,C) and U ∈ Un. As
UDU∗ = D for any U ∈ UDn it follows that

Nn = {A : A = UDU∗, D ∈ D(n,C), U ∈ Un/UDn}.(2.5)

Some of the following results are stated explicitly in [Ik2].
Lemma 2.4. The set Nn is an irreducible real homogeneous algebraic variety of

dimension n(n + 1). The set of smooth points N r
n of Nn corresponds to all normal

matrices with pairwise distinct eigenvalues. N r
n is connected. The natural projection

p : D(n,C) × Un/UDn → Nn is a branched covering. The symmetric group Sn acts
on D(n,C) × Un/UDn by the permutation of the diagonal on the first factor and by
column permutation on the second factor (simultaneously). This action commutes
with p. Furthermore, for any A ∈ N r

n p−1(A) is an Sn-orbit consisting of exactly n!
elements.

Proof. Clearly p−1(A) is a finite set iff A has n distinct eigenvalues. Hence
N r

n = p(Dr(n,C)× Un/UDn). Furthermore

p : D
r(n,C)× Un/UDn → N r

n(2.6)

is a covering map. Observe that D(n,C)\Dr(n,C) is a complex algebraic subvariety.
Hence D

r(n,C) and D
r(n,C)×Un/UDn are connected sets. Hence N r

n is a connected
manifold. ThereforeNn is an irreducible variety. Let A ∈ N r

n . Then p
−1(A) is an orbit

of Sn. The dimension of Nn is equal to the dimension of N r
n . As D

r(n,C)×Un/UDn

is a finite cover of N r
n ,

dim N r
n = dim D

r(n,C)+dim Un/UDn = 2n+dim Fn = 2n+n(n−1) = n(n+1).

Recall Ikramov’s result [Ik1] that N r
n ∩M(n,R) is not connected for n ≥ 2. One

can deduce this result by showing that there is no path in N r
n ∩M(n,R) connecting

any symmetric matrix with any skew symmetric matrix.
Lemma 2.5. N r

n is not orientable for n ≥ 2.
Proof. The action of Sn preserves the orientation of D

r(n,C). Lemma 2.3 claims
that the action of Sn on Un/UDn does not preserve the orientation of Un/UDn. Use
Lemma 2.4 to deduce that N r

n is not orientable.



900 SHMUEL FRIEDLAND

In what follows we need to consider compact models of Nn. The first way is to

consider the real projective variety PNn ⊂ PR
2n2−1, by identifying a line through

the origin L ⊂ Nn with a point λ ∈ PNn. That is, PNn is defined by the equations
(2.4), where X = (xij)

n
1 , Y = (yij)

n
1 are viewed as the homogeneous coordinates in

the projective space PR
2n2−1. The second way is by considering the variety of normal

matrices with the Frobenius norm equal to 1:

Nn,2 := {A ∈ Nn : trace (AA∗) = 1}.

Note that Nn,2 is a double cover of PNn obtained by identifying the points A and
−A. Lemma 2.4 implies that the varieties Nn,2, PNn have singular points. It is of
interest to find a CW decomposition of these varieties, and in particular the homology
groups of Nn,2 and PNn. A useful observation that can help solve these problems is

p−1(Nn,2) = S2n−1 × Un/UDn.

Here we identified the variety of all n×n complex diagonal matrices of Frobenius norm
1 with the (2n− 1)-dimensional sphere S2n−1. Hence Nn,2 and PNn are irreducible
varieties, and the quasi-variety of its smooth points are connected nonorientable man-
ifolds.

3. Main result.
Theorem 3.1. Let aij , i = 1, . . . , n, j = i, . . . , n, be any set of n(n+1)

2 complex
numbers. Then there exists a normal matrix X = (xij)

n
1 ∈ Nn such that xij = aij , i =

1, . . . , n, j = i, . . . , n.

Proof. Let τ : Nn → C
n(n+1)

2 be the projection

τ((xij)
n
1 ) = (x11, . . . , x1n, x22, . . . , x2n, . . . , xnn).

We claim that

τ−1(τ(D)) = D for all D ∈ D(n,C).(3.1)

Suppose that

τ(X) = τ(D), X = (xij)
n
1 , D = diag (d1, . . . , dn).

Then X is a lower triangular matrix with xii = di, i = 1, . . . , n. Hence d1, . . . , dn are
the eigenvalues of X. Since X is a lower triangular normal matrix it follows that

n∑
i=1

|di|2 = trace (XX∗) =
∑

1≤j≤i≤n

|xij |2.

Hence X = D. In particular τ−1(0) = 0.
Let τ̂ : Nn,2 → Sn(n+1)−1 be given by

τ̂(X) =
τ(X)

||τ(X)||2 , X ∈ Nn,2.

Here by ||x||2 we denote the l2 norm of a vector x ∈ C
m. Since Nn is real homogeneous

variety our theorem is equivalent to the statement that τ̂ is onto map. To show that
τ̂ is onto, we apply the degree theory. The standard mod 2 degree theory considers
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a continuous map τ̃ : Ñn,2 → Sn(n+1)−1, where Ñn,2 is a smooth manifold. Recall
that Nn,2 is a real variety given by (2.4) and the equation trace (XXT + Y Y T ) = 1.
Hironaka’s resolution of singularities [GH] implies that it is possible to blow up the
singularities of Nn,2 to obtain a compact smooth algebraic variety Ñn,2. That is, there

is a projection π : Ñn,2 → Nn,2 with the following properties. Let N r
n,2 := Nn,2 ∩N r

n

be the quasi-variety of smooth points of Nn,2. Then

π : π−1(N r
n,2)→ N r

n,2

is a diffeomorphism. Furthermore, Ñn,2\π−1(N r
n,2) is a strict subvariety of Ñ r

n,2. Set

τ̃ = τ̂ ◦ π : Ñ r
n,2 → Sn(n+1)−1.

Let D ∈ D
r(n,C) and assume that D has the Frobenius norm 1. Then τ(D) ∈

Sn(n+1)−1. Equation (3.1) yields that τ̂−1(τ(D)) = D. Since D ∈ N r
n,2 it follows

that π−1(D) consists of one point. We claim that τ̂ |N r
n,2 is an immersion at any

D = diag (d1, . . . , dn) ∈ D
r(n,C) ∩N r

n,2.
Indeed, let A ∈ Nn be a normal matrix close to D. Then A has eigenvalues

d1 + z1, . . . , dn + zn such that di + zi �= dj + zj for i �= j. Hence A ∈ N r
n . Let

Z := diag (z1, . . . , zn). Then A = U(D+Z)U∗, U ∈ Un. Recall that U = e−V , V ∗ =
−V ∈M(n,C). Let V = (vij)

n
1 . Hence the tangent space of N r

n at D is given by the
matrices of the form

A = D + Z +DV − V D = diag (d1 + z1, . . . , dn + zn) + (vij(di − dj))
n
i,j=1,

v11 = · · · = vnn = 0, vji = −vij for j > i.(3.2)

Here the n(n+1) real coordinates of the tangent space are the real and the imaginary
parts of z1, . . . , zn and vij for j > i. Hence the tangent space of N r

n,2 at D is given
by the matrices of the form (3.2) with an additional condition

n∑
i=1

Re zidi = 0.

Therefore τ̂ |N r
n,2 is an immersion at D. This implies that the local degree of τ̂ |N r

n,2

is ±1. Hence the mod 2 degree of τ̃ is 1 [Mil]. In particular τ̃ is onto. Hence τ̂ is
onto.
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Abstract. Sparse linear systems Kx = b are considered, where K is a specially structured sym-
metric indefinite matrix. These systems arise frequently, e.g., from mixed finite element discretiza-
tions of PDE problems. The LDLT factorization of K with diagonal D and unit lower triangular L
is known to exist for natural ordering of K, but the resulting triangular factors can be rather dense.
On the other hand, for a given permutation matrix P , the LDLT factorization of PTKP may not
exist.

In this paper a new way to obtain a fill-in minimizing permutation based on initial fill-in minimiz-
ing ordering is introduced. For an important subclass of matrices arising from mixed and hybrid finite
element discretizations, the existence of the LDLT factorization of the permuted matrix is proved.
Experimental results on practical problems indicate that the amount of computational savings can
be substantial when compared with the approach based on Schur complement.

Key words. systems of sparse linear algebraic equations, symmetric indefinite systems, direct
methods, LDLT decomposition, supernodal solvers

AMS subject classifications. 65F10, 65F35, 65F50, 65Y05

PII. S0895479897321088

1. Introduction. We consider the solution of symmetric linear systems of the
form

Kx = b,(1.1)

where the coefficient matrix K ∈ R
(n+m)×(n+m), n ≥ m, has the following block form:

K =

(
H AT

A 0

)
,(1.2)

where matrices H ∈ R
n×n and A ∈ R

m×n are large and sparse and H is symmetric
and positive definite. Clearly, K is indefinite. We always assume in this paper that
K is irreducible (being a technical assumption only) and also nonsingular, i.e., AT

has full column rank. Later in this paper, such matrices will be called saddle-point
matrices.

If a sparse symmetric matrix K is factorized into LDLT , it is likely that fill-in
occurs, i.e., the number of nonzero entries in the factors is usually greater than the
number of nonzeros in K. It is typically cheaper to factorize a permuted matrix
K̄ = PKPT into L̄T D̄L̄ where P is chosen to reduce fill-in. The matrix K is not
strongly factorizable in general. That is, not all the permutation matrices P provide
LDLT -factorizable matrices K̄.

In recent years, a lot of work has been done on the stable decomposition of sparse
symmetric general indefinite matrices and the efficient application of the decomposi-
tion to some practical problems (see [7], [8], [12], [23], [9]). The methods have been
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based almost exclusively on the Bunch–Parlett factorization. In many situations, how-
ever, it is possible to make use of additional properties enjoyed by the saddle-point
matrices. For example, we may use the fact that the left upper block H in (1.2) is
positive definite. In this case the LDLT decomposition of (1.2) can be computed by
exploiting all the enhancements of supernodal Cholesky solvers. This approach seems
to be a viable alternative to other approaches (see, e.g., [24], [22]). Let us mention
that the LDLT factorization applied to matrices with the same block structure aris-
ing in optimization was used in [24]. The approach is based on the notion of tiers,
using the block structure of the system, rather than on structural properties of the
symmetric Gaussian elimination. Zero diagonal elements are deferred until the end of
the block phase by some static ordering. Therefore, this strategy is a variant of the
block Schur complement approach.

The approach proposed in this paper is based on the LDLT decomposition of
the permuted matrix K. The reordering is done in two steps. First, we construct
an initial fill-in minimizing permutation of the whole matrix. Second, we strive to
modify the permutation in order to obtain a P such that PTKP is factorizable.
The process strongly relies on the structural properties of the symmetric Gaussian
elimination. For an important subclass of matrices from mixed-hybrid finite element
discretizations of the potential fluid flow problem we prove factorizability of permuted
matrices. Though we are not able to prove formally the same result for more general
systems with saddle-point matrices, we believe that the presented tools can be often
successfully used even in these cases. Experimental results that compare the new
strategy with the straightforward approach (using fill-in minimizing permutation for
the first n rows and columns and then for the Schur complement) show the superiority
of our strategy.

The outline of this paper is as follows. In section 2 we present an example showing
the importance of mixing variables from both blocks of (1.2) in the fill-in reducing or-
dering ofK. We will establish some factorizability conditions on saddle-point matrices
in section 3. We also describe the class of F-matrices which arise in mixed and hybrid
finite element applications. For this class we propose an algorithm which determines
a permutation matrix P in such a way that the factorizability of PTKP is guaran-
teed. Experimental results in section 4 demonstrate the effectiveness of the adopted
approach. We assume that the reader is familiar with the basic graph-theoretic ter-
minology used in sparse decompositions (see [6], [10], [18], [1]).

2. Permutations and fill-in for saddle-point matrices. The common ap-
proach in many applications with saddle-point matrices is to reduce the matrix to
the Schur complement and then to make use of its definiteness. (Schur complement
S = −AH−1AT of the matrix (1.2) is negative definite.) Unfortunately, S can become
rather dense.

Consider the example in Figure 1. A structure of matrix K is depicted on the
left. Let the block H be determined by its first 6 rows and columns. The Schur
complement S is completely dense. On the right we have a structure where the
7th row and column were moved just after the 1st row and column, respectively.
Then the principal submatrix of the permuted matrix determined by the last 10 rows
and columns has the same pattern of nonzeros as K. Consequently, repeating this
row and column exchange recursively we get a matrix with small fill-in in its LDLT

decomposition.

In this case, the recursive formation of the permutation resembles the choice of
tile pivots in the ANALYZE phase of the MA47 code (see [8]).
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∗ ∗

∗ ∗
∗

∗
∗
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∗ ∗ ∗
∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗ ∗

∗
∗

∗




Fig. 1. Matrix K providing a dense Schur complement and a sketch of the construction of its
permutation inducing less fill-in in the LDLT decomposition.

3. LDLT -factorizability of saddle-point matrices. If the right lower block
of the matrix K is negative definite, then any symmetric permutation of K provides
a factorizable matrix (see [24], [25]). However, small diagonal elements often restrict
the set of theoretically feasible permutations to some subset in practical applications.
Here we consider the problem of permutations from a different point of view. Given
a saddle-point matrix K, we ask for the permutation matrices P such that PTKP is
factorizable. Such permutations (orderings) will be called feasible.

First, we introduce some notation. A given sparse symmetric matrix Q can be
structurally represented by its associated undirected graph G(Q) = (V (Q), E(Q)),
where nodes in V (Q) correspond to rows and columns of Q and edges in E(Q) cor-
respond to offdiagonal nonzero entries in Q. This graph is usually used to find the
initial node ordering. (In our experiments in section 4, we have used the multiple
minimum degree (MMD) algorithm; see [11].)

Consider the partition of the vertices V (Q) ofG(Q): V (Q) = R(Q)∪C(Q), R(Q)∩
C(Q) = ∅. The submatrix Q(R(Q), C(Q)) of Q can be represented by its associated
bipartite graph B(R(Q), C(Q)) where the two sets of nodes correspond to R(Q) and
C(Q), respectively, and edges correspond to nonzero elements in Q in rows from
R(Q) and columns from C(Q). This graph will be used to describe the structure
of the offdiagonal block of the matrix (1.2). Let G(K) = (V (K), E(K)) be the
associated undirected graph of the saddle-point matrix (1.2). Denote by R ⊂ V (K)
the set of nodes {1, . . . , n} corresponding to the first n rows of K and C ⊂ V (K)
the set of nodes {n+ 1, . . . , n+m} corresponding to the last m columns of K. This
notation for the initial partition of vertices will be used throughout the paper. In
our strategy, starting from K we transform it by a sequence of permutations. In
general, the intermediate permuted matrices will be denoted by K̄. If it is necessary
to distinguish between the input and output matrices in some algorithm we will denote
the output matrix in the new ordering by ¯̄K. Let T = T (K̄) denote an elimination tree
of K̄, i.e., the graph with n nodes {1, . . . , n} and with the arcs (j, parent(j)) where
parent(j) = min{i > j|lij �= 0}. Note that that the elimination tree is well defined
for any symmetric definite or indefinite matrix based on its structure completed by
possibly missing diagonal entries. We use T [i] to denote a subtree of T rooted in
i. (We shall use T [i] to denote both the subtree itself and the set of nodes in this
subtree.) A simple necessary condition for a matrix to be factorizable can be described
using the notion of an elimination tree.

Proposition 3.1. Matrix K̄ is factorizable only if the leaves of the elimination
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tree T (K̄) belong to R.

Proof. If some leaf i of T (K̄) is not from R, then aii = 0 and K̄ is not factoriz-
able.

Before we proceed further, we will show how to transform an input matrix K̄ (K
after some initial ordering) which may have some leaves of T (K̄) in C to the permuted

matrix ¯̄K satisfying the necessary condition from Proposition 3.1. The fact that the
nodes of C form an independent set of G(K̄) implies the following result.

Lemma 3.1. If k ∈ C is a leaf of the elimination tree T (K̄), then parent(k) �∈ C.
Therefore, if a node j has in T (K̄) one or more leaves from C, then j is from R.

Denote the leaves of j that belong to C by k1, . . . , kω. It is well known that there
exists a reordering of K̄ (corresponding to a different topological numbering of T (K̄))
that provides the same fill-in in the factors as K̄ and that orders the nodes k1, . . . , kω
consecutively after all the other subtrees rooted in the children of j (see [18]). We
assume that our initial ordering satisfies this property. Moreover, we assume that it
is a postordering of the elimination tree, i.e., all the subtrees of T (K̄)) have their
elements numbered consecutively. This fact will be used later. Denote by Ta the
subgraph of the tree T [j] given by T [j]\{k1, . . . , kω, j}. We need to reorder the set
of nodes {j, k1, . . . , kω} so that K̄ satisfies the necessary condition from Proposition
3.1. Namely, the elimination of the leaves {k1, . . . , kω, j} has to be delayed after the
elimination of j and the new mutual order of the former leaves should be determined.
The impact of delayed elimination on the size of fill-in was studied by Liu in [17]. In our
special case of node delays we specify the ordering sequence of {j, k1, . . . , kω} directly.
First j must be chosen. Then we take the nodes ki, i = 1, . . . , ω, sequentially using
locally the minimum degree strategy. In this way, we get the sequence (j, k̃1, . . . , k̃ω).
The situation is depicted in Figure 2. A “double-edge” is used to indicate a chain of
nodes numbered consecutively in the tree.

✇

✇ ✇ ✇

✇
✇
✇

Ta

j

k1
. . . kω

Ta

j

k̃ω

k̃1

Fig. 2. Elimination trees before and after local reordering of leaves.

After reordering all the sets of leaves from C in this way, we get from K̄ the
permuted matrix ¯̄K satisfying the necessary condition in Proposition 3.1. In order
to implement the procedure for finding a new reordering efficiently we must be able
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to efficiently find the nodes having one or more leaves. The following result may be
used.

Lemma 3.2. Let the vertices of the elimination tree T of K̄ be postordered. Let
the size(i), i = 1, . . . , n+m, be defined as follows:

size(i) =

{ |T [i]| if i is not a leaf of T ,
0 otherwise.

Let first(i) = min T [i] ∩ {1, . . . , n +m}. Then if the number of leaves of i in T is
denoted by no of leaves(i) we have

no of leaves(i) = i− first(i)−
∑

parent(cj)=i

size(cj).

�
� � ���

� � � �
� �

� �
� �

29

15 14

1617

1819

20212423

25 22 26 27 28

Fig. 3. An example of a part of a postordered elimination tree.

The lemma is a simple consequence of the basic properties of postorderings (see [1],
[15]). An example is given in Figure 3, which shows a part of a postordered elimination
tree. The number of leaves of root 29 of the tree from Figure 3 can be computed as
no of leaves(29) = 29−first(29)− (size(T [22])+size(T [25])) = 29−14− (3+9) = 3.

Lemma 3.2 suggests an efficient way to implement the whole modification of K̄
to get ¯̄K. First, we obtain a postordered elimination tree by standard algorithms (see
[15]). Then we reorder it so that the leaves in each node are ordered consecutively after
all the other subtrees rooted in children of the node. In fact, a similar transformation
that reorders children sets in the elimination tree is a component of any up-to-date
sparse symmetric Cholesky solver. Then, traversing the postordered elimination tree,
we determine the modified permutation such that the output matrix ¯̄K satisfies the
condition of Proposition 3.1.
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Pseudocode of the algorithm Leaves Reordering is provided below. The output
of the algorithm is the new ordering sequence newperm (with respect to K̄) which

provides a ¯̄K satisfying the necessary condition from Proposition 3.1. Note that
vector size keeps also the partial sums used in Lemma 3.2 for computations of num-
ber of leaves.

Algorithm 3.1. Leaves Reordering.
input: The postordered elimination tree of an input matrix K̄. The leaves in each
node are ordered consecutively after all the larger subtrees rooted in children of the
node.
output: New ordering sequence newperm such that the resulting matrix ¯̄K ordered
according to the newperm satisfies the necessary condition from Proposition 3.1.

for j=1 to m+n
first(j)=j; size(j)=0;

end for
for j=1 to m+ n

no of leaves=j-size(j)-first(j);
if j does not have leaves from C then

put j to newperm;
else

reorder j and its leaves which belong to C;
put j, k̃1, . . . , k̃ω to newperm;

end if
first(parent(j))= min(first(parent(j)),j);
size(j)=size(j)+no of leaves(j)+1;
size(parent(j))=size(parent(j))+size(j);

end for

Another condition for the factorizability of K̄ that can be efficiently tested is
given in Proposition 3.2.

Proposition 3.2. Matrix K̄ is factorizable only if each of its leading principal
submatrices have the number of indices from R greater or equal to the number of
indices from C.

In order to permute K̄ into ¯̄K such that the latter matrix satisfies the necessary
condition of Proposition 3.2 we traverse the elimination tree using its postordering.
The nodes are either put into the new ordering sequence or delayed. We delay putting
of the current node i ∈ C into the new ordering sequence whenever the current number
of the indices from C in the sequence is equal to the current number of the indices
from R. A delayed node is stored in a stack and tested for inclusion into the new
ordering sequence after its father has been processed. The postordering guarantees
efficient stack search in the same way as for multifrontal implementation of Cholesky
decomposition (see [7]). Clearly, the elimination tree traversal after which ¯̄K satisfies
the necessary conditions from both Propositions 3.1 and 3.2 can be implemented in
one routine. Nevertheless, fulfilling both these conditions still does not guarantee
that our matrix is factorizable. A condition that is both necessary and sufficient is
given in Proposition 3.3. First, some additional notation. Denote for i = 1, . . . , n+m
a sequence of leading principal submatrices of K̄ by K̄(i). Let their corresponding
associated unsymmetric graphs be denoted by Ḡ(i) = (V̄ (i), Ē(i)). Furthermore, let
R̄(i) = V̄ (i) ∩R, C̄(i) = V̄ (i) ∩ C.

Proposition 3.3. Matrix K̄ is factorizable if and only if all its submatrices
K̄(R̄(i), C̄(i)), i = 1, . . . , n+m, have full column rank.

Whether these conditions are satisfied depends (in general) on the numerical val-
ues of the offdiagonal block of K. In the following, we will concentrate on the matrices
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arising in an important application of mixed-hybrid finite element discretizations of
the problem of fluid flow in porous media (see, e.g., [5]), where we can guarantee the
matrix factorizability.

Definition 3.1. Let K be a saddle-point matrix (1.2). Using the notation intro-
duced above we say that K is an F-matrix if the submatrix K(R,C) contains at most
two elements per row. Moreover, if there are two nonzeros in a row of K(R,C), then
their sum is zero.

Mixed-hybrid finite element formulation of some important problems like fluid
flow in porous media is of great interest in many fields including, e.g., oil recovery and
groundwater pollution modeling. Effective numerical simulations of these phenomena
often require accurate renderings of the fluid velocities. For this reason, such type of
formulations was extensively studied during the past years. F-matrices are often the
result of the discretizations of fluid flow domains. The offdiagonal structure (expressed
by K(R,C)) is determined by the fact that the hybridization technique introduces
into the matrix a simple topological information through the Lagrangian multipliers.
For more details about the relation of the matrix structure and problem formulation
we refer, e.g., to [5], [20], [19].

Depth-first or breadth-first search is a standard technique of systematically ex-
ploring nodes in a graph (see [1], [18]). The search starts from a node, called the root,
which is marked as visited. Then the unvisited nodes are recursively searched using
edges from marked to new (unmarked) nodes. Each time we visit a new node v by an
edge from a marked node u, we mark it as visited and the arc (u, v) is added to the
tree edges. Visited nodes and induced oriented arcs form a search tree. The length
(number of arcs) of the longest path in the search tree S from the root to a leaf is
called its depth and is denoted by depth(S). Nodes of S having the same distance
*, 0 ≤ * ≤ depth(S) from the root form so-called *th level set. Note that while the
arcs of the search tree are not determined in a unique way, level sets form the same
partition of the graph nodes for all the search trees rooted in a given node.

Let Ĉ ⊆ C, R̂ ⊆ R. Let Adj denote the adjacency operator in the bipartite graph
B(R̂, Ĉ). Let c ∈ Ĉ. Let K(R̂, Ĉ) = (Bij)i∈R̂,j∈Ĉ . Define Adj−1(c) = ∅, Adj0(c) =
{c}. Furthermore, for an integer α, 1 ≤ α, define Adjα(c) = Adj(Adjα−1(c)). The
following lemma describes some properties of the search tree in the bipartite subgraph
associated with an F-matrix.

Lemma 3.3. Let K̄ be an F-matrix. Let R1 ⊆ R, C1 ⊆ C. Let S be a search tree
of B(R1, C1) rooted in c ∈ C1, and let Adj be the adjacency operator in B(R1, C1).
Let α, 0 ≤ α ≤ depth(S) be zero or an even integer, and assume that there are no
paths of odd lengths from c to a leaf in S shorter than α+ 1. Then we have


 ∑

k∈Adjα(c)

B∗k




r

{ �= 0 if r ∈ Adjα+1(c)\Adjα−1(c),
= 0 otherwise.

In other words, (
∑

k∈Adjα(c)B∗k) has nonzeros only in the rows corresponding to

vertices of the (α+ 1)st level set of the search tree S.

Proof. For α = 0 the assertion is clearly true. Assume that we have an even α,
2 ≤ α ≤ depth(S). From the definition of adjacency set we have (

∑
k∈Adjα(c)B∗k)r =

0 for r �∈ Adjα+1(c). If r ∈ Adjα+1(c) ∩ Adjα−1(c), then, since each row of K
contains at most two nonzeros, there exist uniquely determined indices k′ and k′′

and an even integer β, 2 ≤ β ≤ α such that (k′, r) and (r, k′′) are arcs of S and
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k′ ∈ Adjβ−2(c), k′′ ∈ Adjβ(c). The zero sum condition on the F-matrix then implies
(
∑

k∈Adjα(c)B∗k)r = 0.
The following theorem gives a necessary and sufficient condition for factorizability

of the F-matrix. Moreover, this condition can be tested cheaply.
Theorem 3.1. Let K̄ be an F-matrix. Let R1 ⊆ R, C1 ∪ {c} ⊆ C, c �∈ C1,

Adj(c) �= ∅. Let S be a search tree of B(R1, C1 ∪ {c}) rooted in c, and let Adj be the
adjacency operator in B(R1, C1 ∪ {c}). Assume that rank(K̄(R1, C1)) = |C1|. Then

rank(K̄(R1, C1 ∪ {c})) < |C1 ∪ {c}|

if and only if there are no paths of odd length from the root to a leaf in S.
Proof. Suppose that rank(K̄(R1, C1∪{c})) < |C1∪{c}|. Using the assumption on

rank(K̄(R1, C1)), it follows that there exist a Γ = {γ1, . . . , γ|Γ|} ⊆ C1 and coefficients
cγ1 , . . . , cγ|Γ| such that

B∗c +
|Γ|∑
j=1

cγjB∗γj = 0.(3.1)

Matrix and search tree properties then imply that in order to satisfy (3.1), all nodes
of S should be involved in this linear combination and all the coefficients cγj are 1.
Therefore, (3.1) transforms into

∑
δ∈S B∗δ = 0.

Assume now that there is a path of odd length from the root to a leaf in S.
Let α be the length of one of such shortest paths. Denote by d its terminal node
being the leaf node of S. Then we have d ∈ Adjα(c). Using Lemma 3.3 we get
that (

∑
k∈Adjα−1(c)B∗k)d �= 0. From the search tree properties it follows then that

(
∑

δ∈S B∗δ)d �= 0, and we obtain a contradiction.
On the other hand, if there are no paths of odd length from the root to leaves in S,

then
∑

k∈Adjdepth(S)(c)B∗k = 0 for even depth(S) ≥ 2. Consequently, rank(K̄(R1, C1∪
{c})) < |C1 ∪ {c}|, which completes the proof.

Note that the technical assumption Adj(c) �= ∅ used in Theorem 3.1 is very
natural, as the following result shows.

Lemma 3.4. Take sequentially nodes of the postordered elimination tree T (K̄).
Let R1 ∪ C1 for R1 ⊆ R,C1 ⊆ C be the first |R1 ∪ C1| nodes and c ∈ C be the
(|R1 ∪ C1|+ 1)st node. If c is not a leaf of T (K̄), then AdjB(R1,C1∪{c})(c) �= 0.

The proof of Lemma 3.4 follows directly from Theorem 2.4 in [15]. Therefore, if
our K̄ satisfies the necessary conditions of Propositions 3.1 and 3.2, then the condition
Adj(c) �= ∅ is also satisfied using the sequential construction of R1 and C1.

Theorem 3.1 implies how to test the rank of a F-matrix that is extended by
adding a new column c and (symmetrically) a new row. The algorithm uses the graph
of the offdiagonal block determined by current sets R1, C1 and by the column c ∈ C1.
This test is used within the procedure for modification of the current permutation
of a F-matrix K̄. Namely, the nodes of a postordered elimination tree of the matrix
K̄ are traversed. The condition of Theorem 3.1 is used to test a new column c from
C. The actual test strategy is based on the breadth-first search. In each such search
we either find the above mentioned path of odd length or the whole search tree of an
even length. In the former case we put c into the new ordering sequence. In the latter
case we put c on the stack as the infeasible one. Then the feasible delayed columns
are tested for inclusion into the new ordering sequence in the same way. Subsequent
testing of a delayed column for inclusion into the new ordering sequence is performed
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after its parent is processed. At this time we change its status to feasible. At the end
of the procedure we get the factorizable matrix ¯̄K.

The following two algorithms describe our strategy. The algorithm Search checks
whether the condition of Theorem 3.1 is satisfied for a given node c. The algorithm
Test Rank then describes the whole procedure. In order to test the linear dependency
of columns in the Search algorithm we use the bipartite graph B( ¯̄R, ¯̄C) formed from
the reordered columns and rows which are temporarily stored in the new ordering
sequence newperm. The columns which are temporarily delayed are kept in a heap.

Algorithm 3.2. Search( ¯̄R, ¯̄C,p,i).

input: The bipartite graph B( ¯̄R, ¯̄C) constructed using the first p nodes in the new
ordering newperm; node i.
output: Logical value found denoting whether the path of odd length from i to a leaf
of the search tree S rooted in i was found.

Construct the breadth-first search tree of B( ¯̄R, ¯̄C) rooted in i;
if the above mentioned path was found then

found=true;
else

found=false;
end if

Algorithm 3.3. Test Rank.
input: The input F-matrix K̄ and its postordered elimination tree.
output: The new permutation sequence newperm (related to K̄) and ¯̄K (permuted

K̄) such that all the submatrices ¯̄K( ¯̄R
(i)
, ¯̄C

(i)
) of ¯̄K have full column rank.

heap=∅;
p = 0;
¯̄R = ∅
¯̄C = ∅
for j=1,n+m

do while heap �= ∅
choose k from heap having minimal after(k) among all nodes in heap;
if after(k) > j then

break;
end if;

Search( ¯̄R, ¯̄C,p,k);
if (.not.found) then

after(k)=parent(k);
else

remove k from heap;
put k to newperm;
¯̄C = ¯̄C ∪ {k};
p = p+ 1;

end if;
end do;
if j ∈ R then

put j to newperm;
¯̄R = ¯̄R ∪ {j};
p = p+ 1;

else
Search( ¯̄R, ¯̄C,p,j);
if (.not.found) then

after(j)=parent(j);
put j to heap;
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else
put j to newperm;
¯̄C = ¯̄C ∪ {j};
p = p+ 1;

end if;
end if;

end for.

Note that the simple structure of the offdiagonal block suggests efficient breadth-
first searches. We need to construct the search tree in the bipartite graph of the
current offdiagonal block for each column from C and from the heap. The basic
implementational trick is to reuse the constructed search tree if the new search tree
can be obtained by extending the current one. We observed in our experiments that
the search was finished rather early in most cases. This can be attributed to the fact
that MMD reordering tends to construct wide elimination trees for problems arising
from discretization of topologically regular meshes. Nevertheless, it may happen that
some of the search trees have many levels.

The procedure Test Rank can be used even for more general matrices. However,
in this case we do not have guaranteed the factorizability of the output matrix and,
in addition, the search can be more time consuming.

Consider the example matrix from Figure 1. MMD reordering of the matrix
provides the elimination tree depicted in Figure 4 on the left. Here we used the
reordering provided by the Matlab function symmmd. The matrix in Figure 4 on
the right is then reordered by the output permutation coming from the algorithm
Leaves Reordering that was applied to the postordered elimination tree. We can see
that the processing of a lot of leaves was delayed. Nevertheless, the overall fill-in is
clearly modest. The algorithm Test Rank then does not change the obtained order.
This was a typical behavior in our experiments where the Test Rank algorithm delays
pivots only occasionally.

�
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�
� ��

� ❤ ❤ ❤ ❤
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7 11
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Fig. 4. The elimination tree for the matrix from Figure 1 reordered by MMD (left) and the
final reordered matrix after application of Leaves Reordering algorithm (right). Circles which are
not filled correspond to nodes from C.
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Table 1
Size of the factor L in the LDLT decomposition using two different ordering strategies.

Matrix n+m n nnz Schur LDLT

S3P 477 270 1539 3151 2957
LI5 868 480 2208 5098 4686
LI6 3707 2100 9575 40269 34498
M3P 3744 2160 12312 46504 44002

DORT2 12992 7515 42935 296818 231312
DORT 22967 13360 76199 641828 551215

4. Implementation and experimental results. In this section, we present
results of our experiments with the new ordering strategy on several F-matrices arising
in mixed-hybrid finite element discretizations of three-dimensional potential fluid flow
problems (see [20]). Note that in practical calculations the matrix patterns for flow
field computations are often used repeatedly, e.g., in the chemical transport outer
loops. We are interested in the amount of fill-in in the factors because this crucially
determines the time of numerical decomposition. The amount of fill-in was compared
with that of a solver based on the Schur complement approach. In this case the MMD
algorithm was applied to the principal leading submatrix H and then to the Schur
complement system. This ordering strategy (ordering in stages) can be interpreted
as using MMD ordering with the constraint that nodes from R are ordered first (see
[16], [2]).

In our experiments we computed right-hand sides corresponding to a solution of
all ones. We did not face any significant numerical instability in the computation.
This seems to correspond to the results in [13]; cf. [22]. Namely, the stability of the
computation is determined by a ratio of the maximal singular value of the offdiagonal
block and of the maximal eigenvalue of the inverse of the diagonal block H of the
F-matrix. In our case, the ratio can be reasonably bounded using discretization
parameter h of the problem. For details we refer to [19].

Our numerical procedure for solving the linear algebraic systems with saddle-point
matrices consists of three stages:

• MMD ordering, elimination tree, and postordering construction;
• modification of permutations so that the permuted matrix satisfies conditions
from Propositions 3.1 and 3.2 and Theorem 3.1;
• left-looking supernodal LDLT solver (see [21]).

Table 1 compares the size of L factors of the final matrix ¯̄K for both approaches.
Test matrices come from the mixed-hybrid finite element discretizations of three-
dimensional potential fluid flow problem based on Raviart–Thomas elements of the
lowest order. Namely, the velocity is approximated by vector functions linear on
every element and piezometric potential is approximated by elementwise constant
functions. The matrix dimension and the dimension of its left upper block are n+m
and n, respectively; nnz denotes number of nonzeros in the symmetric part of the
original matrix. The column marked “Schur” contains factor size (number of the
nonzeros) in the Schur complement approach. The column labeled “LDLT ” contains
factor size required by LDLT decomposition using the new strategy proposed in the
paper.

It is clear that the new ordering provided better results. This is in agreement with
general opinion that the ordering that is more general than the one used in the Schur
complement approach may also provide less fill-in (see, e.g., [25]). An interesting
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question is how much the original MMD ordering had to be modified for matrices in
these experiments. It is natural that MMD tends to choose the leaves from C since
these nodes have degrees at most two. In our test cases more than 80% of the leaves
were taken from C and had to be delayed. This behavior can be observed in Figure 4
as well. The delay induced an increase in fill around 30%. Delay of nodes based on
Theorem 3.1 was rather rare with only a few cases for each matrix. Note that there
were no delays of nodes based on Theorem 3.1 in the two smallest matrices.

5. Conclusions. This paper presents a new ordering strategy for the class of
symmetric saddle-point matrices. The approach is theoretically justified for an im-
portant subclass of matrices arising in mixed and hybrid formulations of the finite
element method. The fill-in size obtained during the LDLT decomposition of the
matrices is compared with that obtained in the straightforward Schur complement
strategy using efficient fill-in minimizing ordering. Our ordering is shown to be supe-
rior.

In spite of lack of more general theoretical results we would like to consider the
techniques mentioned here as ordering routines that help to solve saddle-point systems
in various applications. Namely, if we change the initial fill-in minimizing permutation
so that K̄ satisfies Propositions 3.1 and 3.2, the most important sources of instabili-
ties of the decomposition will be removed. This can be combined with other practical
rules, e.g., as a pivot modification (see [26]) in both direct solvers and precondi-
tioner computations. We will study use of the algorithms as preprocessing schemes
in the Bunch–Parlett sparse supernodal left-looking or right-looking (MA47) linear
solvers for saddle-point matrices. Recently, an interesting class of preconditioners
constructed from spanning trees of matrix graphs or their extensions and based on
work of P. Vaidya was introduced (see [3], [4]). Construction of the preconditioners
needs to test linear independence of sets of structurally simple vectors having thus
connecting links to our work.
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Abstract. The question of whether all words in two real positive definite letters have only
positive eigenvalues is addressed and settled (negatively). This question was raised some time ago
in connection with a long-standing problem in theoretical physics. A large class of words that do
guarantee positive eigenvalues is identified, and considerable evidence is given for the conjecture that
no other words do. In the process, a fundamental question about solvability of symmetric word
equations is encountered.
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Introduction. A word is a juxtaposed sequence of letters chosen (with repetition
allowed) from a given alphabet. We shall be concerned here with an alphabet of two
letters, {A,B}, so that a sample word would be AABABBBAAB ; thus, hereafter
“word” means one over a two-letter alphabet. The length of a word is the total
number of letters present (including repetitions); the sample word has length 10. We
shall be interested in the combinatorial structure of words as abstract objects, but,
often, we will interpret a word as the matrix resulting from the substitution of two
independent positive definite matrices for A and B. The eigenvalues and trace of the
resulting matrix will be our primary interest.

The initial motivation comes from a chain of three questions raised by Lieb [L],
stemming from issues in quantum physics [BMV]. In addition Pierce raised Question 3
below from an independent source [P]. The three questions are the following:

Question 1. Does the polynomial p(t), defined by p(t) = Tr[(A+Bt)m], have all
positive coefficients whenever A and B are positive definite matrices?

Since the coefficient of tk in p(t) is the trace of the sum of all words in A and B
with length m and k B’s, the following, which could help answer Question 1, has also
been asked [L].

Question 2. Is the trace of a given word positive for all positive definite A and
B?

Since a matrix with positive eigenvalues necessarily has positive trace, a yet more
precise question has also been raised [L], [P].

Question 3. Are all the eigenvalues of a given word positive for all positive definite
A and B?

In addition, these particular questions and a number of natural issues they raise
seem central to matrix analysis. Since we became interested in them (thanks to Lieb
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and Pierce), we have learned that a number of different investigators (including us)
have tested them empirically by trying many different words and calculating the eigen-
values for many (tens of thousands) different randomly generated pairs of matrices of
different sizes. To our knowledge, no one turned up a counterexample via such sim-
ulation, rendering Question 3 all the more interesting. Indeed, this apparent rarity
of counterexamples surely means that something interesting is going on, and we have
found that this area suggests many intriguing questions, a few, but not all, of which
we discuss here.

We call a word symmetric if it reads the same right to left as left to right; e.g.,
ABBABBA is symmetric, but ABABBA is not (in other contexts, the name “palin-
dromic” is also used). To simplify exposition, we shall often use exponents in the
representation of a word; e.g., the symmetric word above might have been written
AB2AB2A. We are principally concerned here with real symmetric positive definite
matrices, though in many cases the complex Hermitian case is the same. We shall
try to explicitly draw a distinction only when it is important. We intend to exploit
differences in the complex Hermitian case in further work. Certain symmetries of a
word do not change the eigenvalues, and, since eigenvalues are our interest, we shall
freely use such symmetries and, often, only view two words as distinct if they are not
equivalent via the following transformations:

(i) Reversal. Writing the letters of the words in reverse order. This corresponds
to transposition of the matrix product and thus does not change eigenvalues.

(ii) Cyclic permutation. Movement of the first letter of the word to the end of
the word. This can be realized as a similarity of the word via the first letter and,
thus, also does not change eigenvalues.

(iii) Interchange of A and B. This may change the eigenvalues of a particular
word, but, as A and B are both positive definite, it does not change the possible
eigenvalues.

Note that a symmetric word is one that is identical to its own reversal. There
are, for example, 20 words of length 6 with 3 A’s, but only 3 that are distinct up to
the above symmetries: ABABAB, A3B3, and ABA2B2.

Tangentially, we note that there is an algorithm for generating the equivalence
class, relative to the above symmetries, of a word of length L or determining the
number of distinct equivalence classes among N such words. Given a word W , another
word V lies in its equivalence class if and only if V is the result of k cyclic permutations
(0 ≤ k ≤ L), composed with (possibly) a reversal, composed with (possibly) an
interchange, applied to W . This gives an algorithm of order O(NL).

Since a symmetric word may inductively be seen to be congruent [HJ, p. 223] to
either the center letter (if the length is odd) or to I (if the length is even), we have
by Sylvester’s law of inertia the following.

Lemma 1. A symmetric word in two positive definite letters is positive definite
and, thus, has positive eigenvalues.

It follows that any symmetric word gives an affirmative answer to Question 3.
It has long been known [HJ] that a product of two positive definite matrices (e.g.,

the word AB) has positive eigenvalues and is diagonalizable. We call a diagonaliz-
able matrix with positive eigenvalues quasi-positive and record here a slightly more
complete observation.

Lemma 2. The n-by-n matrix Q is quasi-positive if and only if Q = AB, in which
A and B are positive definite. Moreover if Q = SDS−1, with D a positive diagonal
matrix, then all factorizations AB of Q into positive definite matrices A and B are
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given by

A = SES∗ and B = S−1∗E−1DS−1,

in which E is a positive definite matrix that commutes with D.
Proof. If Q = AB, with A and B positive definite matrices, then Q is similar to

A−1/2ABA1/2 = A1/2BA1/2, which is congruent to B and, therefore, positive definite.
Thus, Q has positive eigenvalues and is diagonalizable, as is so for a positive definite
matrix.

If Q is quasi-positive, Q = SDS−1, with D positive diagonal, then Q = AB, with
A = SES∗ and B = S−1∗E−1DS−1 (E is a positive definite matrix commuting with
D), both positive definite. Suppose that Q = AB is some other factorization into
positive definite matrices. So B = A−1Q is Hermitian. Then, A−1Q = Q∗A−1 or
AQ∗ = QA or AS−1∗DS∗ = SDS−1A, so that S−1AS−1∗D = DS−1AS−1∗. Thus,
S−1AS−1∗ commutes with D; call E = S−1AS−1∗, and then A = SES∗. It follows
that E is Hermitian and positive definite, as A is. Now, B = A−1Q = S−1∗E−1DS−1,
which is positive definite since E−1D is (because they commute).

We now know that the nonsymmetric word AB also positively answers Question 3,
but much more follows from Lemmas 1 and 2. We call a word nearly symmetric if
it is either symmetric or the product (juxtaposition) of two symmetric words. It is
an interesting exercise that the nearly symmetric words are unchanged by the three
symmetries (i), (ii), and (iii). There is also a simple algorithm to check for near
symmetry: left to right, parse a given word after each initial symmetric portion and
check the remainder for symmetry (counting the empty word as symmetric). We then
have the following.

Theorem 3. Every nearly symmetric word in two positive definite letters has
only positive eigenvalues.

Proof. The proof follows from Lemmas 1 and 2.
Are all words nearly symmetric? No, but all sufficiently short words are.
Theorem 4. A word in which one of the letters appears at most twice is nearly

symmetric.
Proof. Without loss of generality, we examine the situation in which B appears

at most twice. If a word contains only the letter A, the result is trivial. If the letter B
appears only once, then the word will be of the form ApBAq(p, q ≥ 0). If p ≥ q, then
we have ApBAq = Ap−q(AqBAq), and if p ≤ q, we have ApBAq = (ApBAp)Aq−p. In
both cases, the word is nearly symmetric. In the case of two B’s, the word can be
written as ApBAqBAt(p, q, t ≥ 0), and so our word is one of the nearly symmetric
words, (ApBAqBAp)At−p or Ap−t(AtBAqBAt).

In order to not be nearly symmetric then, a word must have length at least 6 and
3 each of A and B. Among the 3 such equivalence classes of words of length 6, one
is actually not nearly symmetric, ABA2B2, and this shows that Theorem 4 is best
possible. This is the first interesting word relative to Question 3, and we have the
following corollary.

Corollary 5. Every nearly symmetric word, and thus every word of length < 6
has only positive eigenvalues.

An interesting question one can ask is how many nearly symmetric words there
are of a given length L. More importantly, what does the fraction of nearly symmetric
words to the total number of words approach as L goes to infinity? The result can be
found in [K], and it states that the number of nearly symmetric words of length L is
O(L·2(3/4)L). This gives us that the density of such words approaches 0, and therefore,
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as L goes to infinity, there is a pool of potential negative answers to Questions 2 and
3 that ever increases in relative frequency.

The situation is much simpler for 2-by-2 matrices, and we note (as does Pierce
[P] and Spitkovsky [S]) the following.

Fact 6. Both eigenvalues of any word in two 2-by-2 positive definite matrices
are positive.

Proof. We will actually show something stronger. Let W be any finite product
of real positive powers of A and B, in which A and B are 2-by-2 positive definite
(complex) Hermitian matrices. (Here, we take principal powers, so that W is uniquely
defined.) We first preprocess the word as follows. Make one letter diagonal via uniform
unitary similarity, and then make the other letter entrywise nonnegative via a diagonal
unitary similarity. This does not change the first letter. Now, the word is nonnegative
(as it is clear from the spectral theorem that a positive power of a nonnegative 2-by-2
positive definite matrix is nonnegative). If it is diagonal, there is nothing more to
do (the diagonal entries are positive). If not, apply the Perron–Frobenius theorem
(which says a positive matrix must have a positive eigenvalue [HJ, p. 503]) and the
fact that the determinant is positive to show that the other eigenvalue is positive as
well.

Corollary 7. The polynomial p(t), defined by p(t) = Tr[(A + Bt)m], has all
positive coefficients whenever A and B are 2-by-2 positive definite matrices.

This all suggests that careful consideration of the word ABA2B2, or, equivalently,
(BA)(BA)(AB), for 3-by-3 positive definite A and B is warranted. This is equivalent,
by Lemma 2, to the study of the expression C2CT for quasi-positive C. Since any real
matrix with real eigenvalues may be upper triangularized by orthogonal similarity, it
suffices to consider

C =


a x z
0 b y
0 0 c




with a, b, c > 0. If a, b, and c are distinct, C is diagonalizable and thus quasi-positive.
Using MAPLE, and with the assistance of Shaun Fallat, it was found that x, y, z and
such a, b, c may be found so that Tr(C2CT) < 0. Consistent with prior empirical
experience, choice of such x, y, z and a, b, c is delicate and falls in a very narrow range.
Resulting A and B (see Lemma 2) that exhibit a negative answer to Question 2 (and,
thus, 3) are, for example,

A1 =


 1 20 210
20 402 4240
210 4240 44903


 and B1 =


36501 −3820 190
−3820 401 −20
190 −20 1


 .

The extreme and reverse diagonal progressions are typical of such examples. If the
diagonal of one is “flattened” by orthogonal similarity, the progression on the diagonal
of the other becomes more extreme.

We remark at this point that words giving a negative answer to Question 2 in
the 3-by-3 case imply negative answers in the n-by-n case for n > 3. This allows us
to restrict our attention to the 3-by-3 positive definite matrices. Simply direct sum a
3-by-3 example (giving a negative trace) with a sufficiently small positive multiple of
the identity to get a larger example.

The idea of our first construction and some fortunate characteristics of the con-
structed pair allow the identification of several infinite classes of words giving negative
answers to Questions 2 and 3. We indicate some of these next.
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1. Any positive integer power of a word that does not guarantee positive eigen-
values also does not guarantee positive eigenvalues. For instance, this shows that
BABAABBABAAB can have a nonpositive eigenvalue. This is Theorem 8 below.

2. Suppose a word can be written in terms of another word T as T k(T ∗)j for
k �= j. Furthermore, suppose T = S1S2 is a product of two symmetric words S1 and
S2. Then if the simultaneous word equations

S1(A,B) = C,

S2(A,B) = D

may be solved for positive definite A and B given positive definite C and D, then
the original word can have negative trace. The first nontrivial application of this
technique is the first counterexample, (BA)2AB, in which S1 = B, S2 = A, k = 2,
and j = 1. This result is Theorem 9 below.

3. Infinite classes involving single-letter length extension: this is a nice application
of sign analysis. Our first result is the following.

(a) The word, ABA2B2+k with k a nonnegative integer can have negative trace.
Proof. A direct computation with A1 and B1 from above gives us that

(BABAAB)B =


−164679899 17226460 −856450

62354360 −6523192 324340
−5877450 614880 −30573




has sign pattern 
− + −
+ − +
− + −


 .

Next, notice that B1 has the sign pattern
+ − +
− + −
+ − +




and that 
− + −
+ − +
− + −




+ − +
− + −
+ − +




is 
− + −
+ − +
− + −




unambiguously.
Hence, multiplying the product BABAABB by B on the right any number of

times will preserve the negativity of the trace. Therefore, BABAABB · Bk gives a
negative answer to Question 2 for all integers k ≥ 0.

Proofs using the same technique give us many infinite classes of counterexamples,
some of which we list below:
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(b) ABABAABk, k ≥ 2.
(c) ABBABAABk, k ≥ 2.
(d) ABAABBAABk, k ≥ 2.
4. Recall the two matrices A1 and B1 giving (BA)(BA)(AB) a negative trace.

These matrices can also be used to prove that the words ABApBq, ABBABApBq,
and ABABApBq can have a negative trace for all integers p, q ≥ 2. Notice that (a),
(b), and (c) above are corollaries to this result. This is Theorem 10 below.

We now present proofs of the three theorems mentioned above.
Theorem 8. Let W be any word for which there are positive definite A and

B such that W (A,B) has an eigenvalue that is not positive. Then, for any positive
integer k, there are positive definite letters such thatW k has a nonpositive eigenvalue.

Proof. Let A, B be positive definite matrices that giveW a nonpositive eigenvalue,
and let λ be such an eigenvalue. If k ∈ {1, 2, 3, . . .}, then an eigenvalue of W (A,B)k

is λk. If λk is nonpositive, we are done, so the problem lies in the possibility that
λk > 0. It will be necessary, therefore, in this case to create a new pair of positive
definite matrices A′ and B′ that give W (A′, B′)k a nonpositive eigenvalue.

We first offer a description of our approach before presenting the details that
follow. The idea is to parameterize a pair of positive definite matrices in terms of a
real variable t, 0 ≤ t ≤ 1, and then examine the eigenvalues of the word W k evaluated
at those matrices. Using the continuity of eigenvalues on matrix entries, we then show
that W (A(t), B(t))k cannot have positive eigenvalues for all 0 ≤ t ≤ 1.

Let λA be the largest eigenvalue of A, and let λB be the largest eigenvalue of B.
Define the following parameterization:

A(t) = t · (λAI −A) +A and B(t) = t · (λBI −B) +B for 0 ≤ t ≤ 1.

We first note that A(t) and B(t) are positive definite for all such t since (λAI − A)
and (λBI −B) are positive semidefinite by a simple eigenanalysis. Next, notice that
A(1) = λAI and B(1) = λBI, giving W (A(1), B(1)) positive eigenvalues. Addition-
ally, A(0) = A and B(0) = B, which shows that W (A(0), B(0)) has a nonpositive
eigenvalue, by assumption. Since the eigenvalues of a matrix depend continuously on
its entries [HJ, p. 539], the eigenvalues of W (A(t), B(t)) also depend continuously on
t.

For t ∈ [0, 1], the spectrum of W (A(t), B(t)) cannot contain 0 because each prod-
uct, W (A(t), B(t)), has positive determinant. Now, let

Γ = {t ∈ [0, 1] |W (A(t), B(t)) has a positive spectrum}.
Clearly, this set is not empty as 1 ∈ Γ, and it is not the entire interval as 0 �∈ Γ.
A straightforward continuity argument also shows that Γ is closed. Let tM be the
greatest lower bound of Γ, and notice that from above, tM �= 0 and tM ∈ Γ. As
a result, the eigenvalues of W (A(tM ), B(tM )) are all positive. By continuity again,
we can choose t < tM such that the eigenvalues of W (A(t), B(t)) are as close to the
eigenvalues of W (A(tM ), B(tM )) as we wish.

We are now ready to prove the theorem. Let k be a positive integer. By conti-
nuity, choose t < tM such that there is an eigenvalue, λ, of W (A(t), B(t)) with an
argument θ satisfying −π/k < θ < π/k (see Figure 1). This guarantees that λk can-
not be real. Our new pair A(t), B(t) now proves the word W k can have nonpositive
eigenvalues.

Theorem 9. If j and k are positive integers such that j �= k, then there is a real,
quasi-positive matrix T such that T k(T ∗)j has negative trace.
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t = 0

t = 1

Fig. 1. Tracking an eigenvalue of W (A(t), B(t)).

Proof. We first note that we can assume k > j, since if k < j, we examine
[T k(T ∗)j ]∗. We also assume without loss of generality that T has 1 for an eigenvalue
and it is the smallest eigenvalue of T .

Using Schur triangularization, we suppose

T =


1 x z
0 a y
0 0 b


 ,

with x, y, z ∈ 
 and b > a > 1.
Since it is necessary to compute powers of T , we note that

T k =


1 Xk Zk

0 ak Yk

0 0 bk


 =


1 Xk−1 Zk−1

0 ak−1 Yk−1

0 0 bk−1




1 x z
0 a y
0 0 b


 ,

in which Xk(Yk; Zk) is the 1,2 (2,3; 1,3) entry of T k, k > 0.
The above expression allows us to find formulae for the entries of T k by way of

the following obvious recurrences:

Xk = x+ aXk−1; Yk = yak−1 + bYk−1; Zk = z + yXk−1 + bZk−1.

An easy induction gives us that

Xk = x
ak − 1

a− 1
; Yk = y

ak − bk

a− b
;

Zk = xy
1

a− 1
·
(
ak − bk

a− b
− bk−1 − bk−1 − 1

b− 1

)
+ z

bk − 1

b− 1
= xyCk + zDk,

in which Ck = 1
a−1 · (a

k−bk

a−b − bk−1 − bk−1−1
b−1 ), Dk = bk−1

b−1 depend only on a, b, and k.
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Thus, the trace of T k(T ∗)j can be computed explicitly in terms of x, y, z, a, b, k, j.
It is

Tr[T k(T ∗)j ] = Tr




1 Xk Zk

0 ak Yk

0 0 bk




 1 0 0
Xj aj 0
Zj Yj bj






= (1 +XkXj + ZkZj) + (ak+j + YkYj) + bk+j

= 1 + ak+j + bk+j + x2 a
k − 1

a− 1
· a

j − 1

a− 1
+ y2 a

k − bk

a− b
· a

j − bj

a− b

+x2y2CkCj + xyz(CkDj + CjDk) + z2DkDj .

Fix a, b > 1 and set y = x. Now, view Tr[T k(T ∗)j ] as a quadratic polynomial in z.
For this polynomial to take on negative values, it is necessary and sufficient for its
discriminant to be positive. This discriminant is a quartic polynomial in x; therefore,
if we can show that its leading coefficient is always positive, this will demonstrate that
for large enough values of x, the discriminant will also be positive. The coefficient of
x4 in this discriminant is

(CkDj + CjDk)
2 − 4DkDj(CkCj)

= C2
kD

2
j + 2CkCjDkDj + C2

jD
2
k − 4CkCjDkDj = (CkDj − CjDk)

2.

When k = j, the expression above is 0, so it is necessary to prove that whenever
k �= j, CkDj �= CjDk. Examining CkDj − CjDk, this is equivalent to proving that

ajbk+1 − ak + bk + akb− bk+1 + akbj − akbj+1 − ajbk − bj + aj − ajb+ bj+1

is never zero unless k = j. Factoring out (b− 1), we need only prove that

f(a, b) = ajbk + ak − bk − akbj + bj − aj

is never zero unless k = j. Examine the following polynomial in x:

g(x) = f(a, x) = xk(aj − 1) + xj(1− ak) + ak − aj .

It is easy to see that g(1) = 0 and g(a) = 0. From Descartes’s rule of signs, it is clear
(since a > 1) that g has either 0 or 2 positive real roots. Since a and 1 are two such
roots, g has no more positive ones. Hence, g(b) �= 0 for b �= 1, a.

This concludes the proof that T k(T ∗)j will have negative trace for some quasi-
positive matrix T . Note that a description of all 3-by-3 quasi-positive T that give
T k(T ∗)j a negative trace is implicit in the proof.

Our first corollary to this theorem is that the word (BA)2AB gives a negative
answer to Question 2; but moreover, we also now have a description of all 3-by-3
positive definite A and B that give (BA)2AB a negative trace. Theorem 9 describes
all 3-by-3 quasi-positive matrices T that give T 2T ∗ a negative trace, and hence all
positive definite matrices A and B are given by T = BA from Lemma 2.

We now prove the following.
Theorem 10. For integers p, q ≥ 2 and the word W = ABApBq, there exist

positive definite matrices A and B such that W (A,B) has a negative trace.
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Proof. We first record a few preliminaries.
Let F (p, q) = Tr[ABApBq] = Tr[BABqAp] be the desired trace of the word W .

Now, suppose A = U∗DU and B = V ∗EV are fixed positive definite matrices with
U, V (real) orthogonal, and let D = diag(a, b, c), E = diag(r, s, t), a, b, c, r, s, t > 0.
Then we can write

F (p, q) = Tr[UBABqU∗Dp] = Tr[V ABApV ∗Eq].

From these two expressions, it is clear that

F (p, q) = g1(q)a
p + g2(q)b

p + g3(q)c
p,(1)

F (p, q) = h1(p)r
q + h2(p)s

q + h3(p)t
q,(2)

where gi(q), hi(p) are linear functions in rq, sq, tq and ap, bp, cp, respectively. Equa-
tions (1) and (2) can be viewed as a generalization of the well-known expression for
computing Fibonacci numbers. In fact, these equations imply the recurrence relations

F (p, q) = (a+ b+ c)F (p− 1, q)− (ab+ bc+ ac)F (p− 2, q) + (abc)F (p− 3, q),(3)

F (p, q) = (r + s+ t)F (p, q − 1)− (rs+ rt+ st)F (p, q − 2) + (rst)F (p, q − 3).(4)

We are now ready to prove the result. It turns out that A1 and B1 (as described
above) will prove the claim

A1 =


 1 20 210
20 402 4240
210 4240 44903


 , B1 =


36501 −3820 190
−3820 401 −20
190 −20 1


 .

The values of (a+ b+ c), (ab+ bc+ ac), (abc), (r+ s+ t), (rs+ st+ rt), and (rst) are
obtained from the characteristic polynomials of A and B. These polynomials are easy
to compute as PA(t) = t3−45306t2+74211t−6 and PB(t) = t3−36903t2+44903t−1.
Therefore, (3) and (4) become

F (p, q) = 45306 · F (p− 1, q)− 74211 · F (p− 2, q) + 6 · F (p− 3, q),(5)

F (p, q) = 36903 · F (p, q − 1)− 44903 · F (p, q − 2) + F (p, q − 3).(6)

To prove the theorem, we must show that F (p, q) < 0 for all p, q ≥ 2. First notice
that for the base cases of 2 ≤ p, q ≤ 4, we have that F (p, q) are given by the following
table:

q = 2 q = 3 q = 4

p = 2 −3164 −171233664 −6318893781764
p = 3 −219049002 −10537988104302 −388873536893369802
p = 4 −9923997300324 −477421308542380824 −17617832833924812095724

To prove the result using the recurrences above, we will invoke induction and prove
something stronger. Namely, we claim that for all p, q ≥ 2, F (p, q) < 0 and also the
following inequalities hold:

F (p, q) < 10 · F (p− 1, q) for p > 2,

F (p, q) < 10 · F (p, q − 1) for q > 2.
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Suppose the result is true for all 2 ≤ p, q < N (from the table above, we can also
suppose N ≥ 5); then we want to show it true for 2 ≤ p, q ≤ N . For 2 ≤ p, q < N ,
examine F (N, q), F (p,N), and F (N,N). From (5) and (6), we have

F (N, q) = 45306 · F (N − 1, q)− 74211 · F (N − 2, q) + 6 · F (N − 3, q)

< 45306 · F (N − 1, q)− 7421.1 · F (N − 1), q)

= 37884.9 · F (N − 1, q) < 10 · F (N − 1, q),

(7)

F (p,N) = 36903 · F (p,N − 1)− 44903 · F (p,N − 2) + F (p,N − 3)

< 36903 · F (p,N − 1)− 4490.3 · F (p,N − 1)

= 32412.7 · F (p,N − 1) < 10 · F (p,N − 1).

(8)

But to complete the induction, we must also show that F (N,N) < 10 · F (N − 1, N)
and F (N,N) < 10 ·F (N,N −1). Substituting (6) into the right-hand side of (5) with
p = N , q = N , we have

F (N,N) = 1671927318 · F (N − 1, N − 1)− 2034375318 · F (N − 1, N − 2)

+ 45306 · F (N − 1, N − 3)

− 2738608533 · F (N − 2, N − 1) + 3332296533 · F (N − 2, N − 2)

− 74211 · F (N − 2, N − 3)

+ 221418 · F (N − 3, N − 1)− 269418 · F (N − 3, N − 2)

+ 6 · F (N − 3, N − 3)

< 1671927318 · F (N − 1, N − 1)− 203437531.8 · F (N − 1, N − 1)

− 273860853.3 · F (N − 1, N − 1)− 74.211 · F (N − 1, N − 1)

− 269.418 · F (N − 1, N − 1)

= 1194628589.271 · F (N − 1, N − 1).

(9)

But from (8) with p = N − 1, we have

36903 · F (N − 1, N − 1) = F (N − 1, N) + 44903 · F (N − 1, N − 2)− F (N − 1, N − 3)

< F (N − 1, N)− (1/100) · F (N − 1, N − 1).

Therefore, 36903.01 ·F (N − 1, N − 1) < F (N − 1, N), which gives us easily (from (9))
that

F (N,N) < 1194628589.271 · F (N − 1, N − 1) < 10 · F (N − 1, N).

To arrive at F (N,N) < 10 ·F (N,N −1), we perform the same examination, this time
with (7):

F (N,N −1) = 45306 ·F (N −1, N −1)−74211 ·F (N −2, N −1)+6 ·F (N −3, N −1),

giving us the inequality 45306.06 · F (N − 1, N − 1) < F (N,N − 1).
So again, from (9), we see that F (N,N) < 10 · F (N,N − 1). This completes the

induction and shows that for all p, q ≥ 2, F (p, q) < 0. The proof also bounds the
growth from below, but the factor of 10 is obviously not the best possible.

At this point, we should remark that the proof for Theorem 10 above could be
generalized to a certain extent. Namely, suppose W is a word that can be written as
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W1A
pW2B

q for some words W1,W2 in A and B. Then, A1 and B1 give this word
negative trace for all integers p, q ≥ 2 provided that for the base cases of 2 ≤ p, q ≤ 4,

F (p, q) < 0; F (p, q) < 10 · F (p− 1, q); and F (p, q) < 10 · F (p, q − 1).

As an example, a calculation gives us that for the word W = ABABApBq the first 9
values of F (p, q) are given by1

q = 2 q = 3 q = 4

p = 2 −32302 −1319655482 −48697748014592
p = 3 −1748875224 −70292975950848 −2.59394099689082e+018
p = 4 −79232137801728 −3.18459541653658e+018 −1.17517468821039e+023

The word W = ABBABApBq also satisfies the base case conditions as the F (p, q)
are

q = 2 q = 3 q = 4

p = 2 −222790424 −10720038844524 −3.95591587257758e+017
p = 3 −10103386100406 −4.86025787321779e+017 −1.79353558546523e+022
p = 4 −4.57727477164142e+017 −2.20190887755731e+022 −8.12549875102683e+026

It should now be clear that we conjecture the following.
Conjecture 4. A word has positive trace for every pair of positive definite letters

if and only if the word is nearly symmetric.
Using the results and ideas we have discussed, it is possible to verify this conjecture

for words of lengths less than 11. Before listing these results, we remark on how to
find specific A and B for which a word has negative trace. One difficulty is how to
view the set of positive definite matrices A and B. We explain a helpful parametric
approach for the sample word BAABBAAA and the generalization will be clear.
Notice that we do not yet know that this word can have a negative trace using any
of the methods thus far.

First set Q = AB, and recall that all solutions A, B to such an equation are
given by Lemma 2 as Q = SDS−1, A = SES∗, B = S−1∗E−1DS−1, in which D is
a positive diagonal matrix, and E is a positive definite matrix commuting with D.
For simplicity, we seek a positive diagonal E. Using these substitutions and some
simplification, our original word has the same eigenvalues as the following expression:
DPDP−1DPEPE, in which P = S∗S.

Next, fix a positive definite matrix P and view the positive diagonal matrices
D and E parametrically, hoping now to minimize the trace of the product above.
These minimizations are easier to perform because now we have a simple parametric
description of positive definite pairs. Notice that it is not necessary to find A and
B to show that they exist and give the word a negative trace. However, it is useful
to have explicit examples, as they may be later used to show that other (not nearly
symmetric) words admit negative trace. After finding D, E, and P , we recover these
letters from the equations S∗S = P , A = SES∗, B = S−1∗E−1DS−1. An example

1While values are integers, they are shown only to the first 15 significant digits.
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Table 1
All words that are not nearly symmetric of length < 11 admit negative trace.

AABABB Original solution A1, B1 using C2CT

AAABABB Theorem 10

AAAABABB Theorem 10

AAABAABB Using A2, B2

AAABABBB Theorem 10

AABABABB Equivalent to (AB)3BA

AAAAABABB Theorem 10

AAAABAABB Equivalent to (A2B)2BA2

AAAABABBB Theorem 10

AAABAABAB Using A3, B3 produced by the technique above

AAABAABBB Using A2, B2

AAABABABB Theorem 10

AABAABABB Theorem 10

AAAAAABABB Theorem 10

AAAAABAABB Using A2, B2

AAAAABABBB Theorem 10

AAAABAAABB Using A4, B4 produced by the technique above

AAAABAABAB Using A3, B3

AAAABAABBB Using A2, B2

AAAABABABB Theorem 10

AAAABABBBB Theorem 10

AAAABBABBB Using A2, B2 (interchanging A and B)

AAABAABABB Theorem 10

AAABAABBAB Using A1, B1

AAABABAABB Using A2, B2

AAABABABBB Using A2, B2

AAABABBABB Theorem 10

AAABBAABBB Using A5, B5 produced by the technique above

AABABABABB Equivalent to (AB)4BA

AABABABBAB Equivalent to (AB)3(BA)2

AABABBAABB (d)

solution found using this technique for the word BAABBAAA is given by

A2 =


4351/479 4856/399 18421/62
4856/399 16073/64 3784/21
18421/62 3784/21 89917/9


 ,

B2 =


 2461/149 −297/641 −757/1569
−297/641 179/6146 50/3767
−757/1569 50/3767 269/19081


 .

It is easily verified that the trace of the word BAABBAAA is a negative rational
number given approximately by Tr(BAABBAAA) ≈ −143370.8471.

In Table 1 we list all the equivalence classes of words that are not nearly symmetric
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and are of length less than 11. Next to each word, we describe the method of finding
the A and B that proves they can have a negative trace.
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particular David Yopp and Tom Laffey.
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Abstract. This paper presents a small-bulge multishift variation of the multishift QR algorithm
that avoids the phenomenon of shift blurring, which retards convergence and limits the number of
simultaneous shifts. It replaces the large diagonal bulge in the multishift QR sweep with a chain of
many small bulges. The small-bulge multishift QR sweep admits nearly any number of simultaneous
shifts—even hundreds—without adverse effects on the convergence rate. With enough simultaneous
shifts, the small-bulge multishift QR algorithm takes advantage of the level 3 BLAS, which is a
special advantage for computers with advanced architectures.
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1. Introduction. This paper presents a small-bulge multishift variation of the
multishift QR algorithm [4] that avoids the phenomenon of shift blurring, which re-
tards convergence and limits the number of simultaneous shifts that can be used effec-
tively. The small-bulge multishift QR algorithm replaces the large diagonal bulge in
the multishiftQR sweep with a chain of many small bulges. The small-bulge multishift
QR sweep admits nearly any number of simultaneous shifts—even hundreds—without
adverse effects on the convergence rate. It takes advantage of the level 3 BLAS by
organizing nearly all the arithmetic work into matrix-matrix multiplies. This is par-
ticularly efficient on most modern computers and especially efficient on computers
with advanced architectures.

The QR algorithm is the most prominent member of a large and growing family
of bulge-chasing algorithms [11, 14, 15, 17, 28, 30, 51, 39, 40, 44, 57, 59]. It is
remarkable that after thirty-five years, the original QR algorithm [25, 26, 35] with
few modifications is still the method of choice for calculating all eigenvalues and
(optionally) eigenvectors of small, nonsymmetric matrices. Despite being a dense
matrix method, it is arguably still the method of choice for computing all eigenvalues
of moderately large, nonsymmetric matrices, i.e., at this writing, matrices of order
greater than 1,000. Its excellent rounding error properties and convergence behavior
are both theoretically and empirically satisfactory [9, 16, 19, 32, 41, 42, 52, 62, 63, 64]
despite surprising convergence failures [8, 10, 19, 56, 58].
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It has proven difficult to implement the QR algorithm in a way that takes
full advantage of the potentially high execution rate of computers with advanced
architectures—particularly hierarchical memory architectures. This is so much the
case that some high-performance algorithms work around the slow but reliable QR
algorithm by using faster but less reliable methods to tear or split off smaller sub-
matrices on which to apply the QR algorithm [2, 5, 6, 7, 23, 33]. An exception is
the successful high-performance pipelined Householder QZ algorithm in [18]. Al-
though this paper is not directly concerned with distributed memory computation,
it is worth noting that there are distributed memory implementations of the QR
algorithm [31, 45, 48, 50].

Readers of this paper need to be familiar with the double implicit shift QR al-
gorithm [25, 26, 35]. See, for example, any of the textbooks [20, 27, 47, 53, 62].
Familiarity with the multishift QR algorithm [4] as implemented in LAPACK ver-
sion 2 [1] is helpful. We will refer to the iterative step from bulge-introduction to
bulge-disappearance as a QR sweep.

1.1. Notation and the BLAS.

1.1.1. The BLAS. The basic linear algebra subprograms (BLAS) are a set of
frequently required elementary matrix and vector operations introduced first in [38, 37]
and later extensively developed [21, 22]. The level 3 BLAS are a small set of matrix-
matrix operations like matrix-matrix multiply [22]. The level 2 BLAS are a set of
matrix-vector operations like matrix-vector multiplication. The level 1 BLAS are a set
of vector-vector operations like dot-products and scaled vector addition (x← ax+y).
Because they are relatively simple, have regular patterns of memory access, and have a
high ratio of arithmetic work to data, the level 3 BLAS can be organized to make near
optimal use of hierarchical cache memory [20, section 2.6], execution pipelining, and
parallelism. It is only a small exaggeration to say that executing level 3 BLAS is what
modern computers do best. Many manufacturers supply hand-tuned, extraordinarily
efficient implementations of the BLAS. Automatically tuned versions of the BLAS
[61] also perform well. It is the ability to exploit matrix-matrix multiplies that makes
spectral splitting methods attractive competitors to the QR algorithm [2, 5, 6, 7].

The small-bulge multishift QR algorithm which we propose attains much of its
efficiency through the level 3 BLAS.

1.1.2. Notation. Throughout this paper we use the following notation and def-
initions.

1. We will use the “colon notation” to denote submatrices: Hi:j,k:l is the subma-
trix of matrix H in rows i–j and columns k–l inclusively. The notation H:,k:l indicates
the submatrix in columns k–l inclusively (and all rows). The notation Hi:j,: indicates
the submatrix in rows i–j inclusively (and all columns).

2. A quasi-triangular matrix is a real, block triangular matrix with 1-by-1 and
2-by-2 blocks along the diagonal.

3. A matrix H ∈ Rn×n is in Hessenberg form if hij = 0 whenever i > j+1. The
matrix H is said to be unreduced if, in addition, the subdiagonal entries are nonzero,
i.e., hij �= 0 whenever i = j + 1.

4. Following [27, p. 19], we define a “flop” as a single floating point operation,
i.e., either a floating point addition or a floating point multiplication together with
its associated subscripting. The Fortran statement

C(I, J) = C(I, J) + A(I, K) ∗ B(K, J)
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involves two flops.
In some of the examples in section 3, we report an automatic hardware count of

the number of floating point instructions executed. Note that a trinary multiply-add
instruction counts as just one executed instruction in the hardware count even though
it executes two flops. Thus, depending on the compiler and optimization level, the
above Fortran statement could be executed using either one floating point instruc-
tion or two floating point instructions (perhaps along with some integer subscripting
calculations) even though it involves two flops.

2. A small-bulge multishift QR algorithm. If there are many simultaneous
shifts, then most of the work in a QR sweep may be organized into matrix-vector and
matrix-matrix multiplies that take advantage of the higher level BLAS [4]. However,
to date, the performance of the large-bulge multishift QR has been disappointing
[24, 55, 56, 58]. Accurate shifts are essential to accelerate the convergence of the QR
algorithm. In the large-bulge multishift QR algorithm rounding errors “blur” the
shifts and retard convergence [56, 58]. The ill effects of shift blurring grow rapidly
with the size of the diagonal bulge, effectively limiting the large-bulge multishift QR
algorithm to roughly 10 simultaneous shifts—too few to take full advantage of level 3
BLAS. See Figure 1.

Watkins explains much of the mechanics of shift blurring with the next theorem
[56, 58].

Theorem 2.1 (see [58]). Consider a Hessenberg-with-a-bulge matrix that occurs
during a multishift QR sweep using m pairs of simultaneous shifts. Let B̃ be the
2(m+ 1)-by-2(m+ 1) principal submatrix containing the bulge. Obtain B from B̃ by
dropping the first row and the last column. Let N be a (2m+ 1)-by-(2m+ 1) Jordan
block with eigenvalue zero. The shifts are the 2m finite eigenvalues of the bulge pencil

B − λN.(2.1)

The theorem shows that the shift information is transferred through the matrix by
the bulge pencils (2.1). Watkins observes empirically that the eigenvalues of B − λN
tend be ill-conditioned and that the ill-conditioning grows rapidly with the size of
the bulge. The observation suggests that in order to avoid shift blurring, the bulges
must be confined to very small order. This is borne out by many successful small
bulge versions of the QR algorithm including the one described in this paper. See,
for example, [17, 24, 31, 29, 34, 36, 54, 55].

In order to apply complex conjugate shifts in real arithmetic, one must allow
bulges big enough to transmit at least two shifts. The smallest such bulges occupy
full 4-by-4 principal submatrices. We sometimes refer to 4-by-4 bulges as “double
implicit shift bulges” because they are used in the double implicit shift QR algorithm
[25, 26], [27, Algorithm 7.5.1]. This paper uses double implicit shift bulges exclusively.

The QR algorithm needs to use many simultaneous shifts in order to generate
substantial level 3 BLAS operations, but, in order to avoid shift blurring, it is re-
stricted to small bulges. Small bulges transmit only a few simultaneous shifts. One
way to resolve these superficially contradictory demands is to use a chain of m tightly
packed two-shift bulges as illustrated in Figure 2. This configuration allows many
simultaneous shifts while keeping each pair “well focused” inside a small bulge.

The processes of chasing the chain of bulges along the diagonal is illustrated in
Figure 3. Near the diagonal, “3-by-3” Householder reflections are needed to chase the
bulges one at a time along the diagonal. The reflections are applied individually in
the light shaded region near the diagonal in a sequence of level 1 BLAS operations.
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Fig. 1. Effect of varying numbers of simultaneous shifts on the large-bulge multishift QR
algorithm as implemented in DHSEQR, from LAPACK version 2 and on our experimental implemen-
tation of the small-bulge multishift QR, TTQR. The two programs calculated the Schur decompositions
(including both the orthogonal and quasi-triangular factors) of 1,000-by-1,000, 2,000-by-2,000 and
3,000-by-3,000 pseudorandom Hessenberg matrices. (The pseudorandom test matrices, computa-
tional environment, and other details are described in section 3.) The first row plots number of
simultaneous shifts versus cpu-minutes. The second row plots number of simultaneous shifts versus
a hardware count of floating point instructions executed. (A trinary multiply-add instruction counts
as one instruction but executes two flops.) The first, second, and third columns report data from
matrices of order n = 1,000, n = 2,000 and n = 3,000, respectively.

Periodically, a group of reflections are accumulated into a thickly banded orthogonal
matrix. The orthogonal matrix is then used to update the dark shaded region in
Figure 3 using matrix-matrix multiplication or other level 3 BLAS operations.

We refer to this as a “two-tone” QR sweep. The level 1 BLAS operations form
one tone; the level 3 operations form the other.

Using the implicit Q theorem [27, Theorem 7.4.3], it is easy to show that a two-
tone small-bulge multishift QR sweep with m pairs of simultaneous shifts, (sj , tj) ∈
C×C, j = 1, 2, 3, . . . , m, is equivalent to m Francis double implicit shift QR sweeps,
i.e., a two-tone QR sweep overwrites H by QTHQ where

∏m
j=1(H − sj)(H − tj) =

QR is a QR (orthogonal-triangular) factorization. An examination of the detailed
description below shows that, in exact arithmetic, the two-tone QR sweep generates
the same bulges and the same sequence of similarity transformations by “3-by-3”
Householder reflections as m double implicit QR sweeps using the same shifts.

Modified QR algorithms that chase more than one bulge at a time have been
proposed several times [17, 24, 31, 29, 34, 36, 54, 55]. In particular, Henry, Watkins,
and Dongarra [31] recently developed a distributed memory parallel QR algorithm
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Fig. 2. A chain of m = 3 tightly packed double implicit shift bulges in rows r = 5 through
s = r + 3m = 14.

that chases many small bulges independently. Lang [36] recently described symmetric
QL and QR algorithms that use rotations to simultaneously chase many small bulges.
His algorithms also achieve some parallelism and good cache reuse by accumulating
the rotations in groups. The algorithm proposed in the next section uses Householder
reflections and applies to nonsymmetric matrices.

2.1. Detailed description. This section describes the two-tone small-bulge
multishift QR sweep. Let H ∈ Rn×n be an unreduced Hessenberg matrix and let
(sj , tj) ∈ C ×C, j = 1, 2, 3, . . . , m, be a set of m pairs of shifts. To avoid complex
arithmetic, we require each pair to be closed under complex conjugation, i.e., either
s̄j = tj or (sj , tj) ∈ R×R.

There are three phases in a two-tone QR algorithm. In the first phase, a tightly
packed chain of 4-by-4, double implicit shift bulges is introduced into the upper left-
hand corner of a Hessenberg matrix. In the second phase, the chain of bulges is chased
down the diagonal from the upper left-hand corner to the lower right-hand corner by
a sequence of reflections. In the final phase, the matrix is returned to Hessenberg
form by chasing the chain off the bottom row.

2.1.1. Phase 2: The central computation. The bulk of the work is in the
second phase. Suppose that H ∈ Rn×n is an upper Hessenberg matrix with a packet
of m double implicit shift bulges in rows r through s = r+3m. See Figure 3. Using a
process called “bulge chasing” that has been known at least since the double implicit
shift algorithm [35, 25, 26, 27] was introduced in 1961, one may use a sequence of
similarity transformations by “3-by-3” Householder reflections to chase the chain of
bulges down k rows, one bulge at a time, starting with the lowest bulge. If Ũ ∈ Rn×n
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Fig. 3. Chasing a packet of m 4-by-4 double implicit shift bulges from rows r through s = r+3m
down to rows r + k through s + k.

is the product of this sequence of Householder reflections, then Ũ has the form

Ũ =



r 3m+ k − 1 n− (s+ k) + 1

r I 0 0
3m+ k − 1 0 U 0
n− (s+ k) + 1 0 0 I


,(2.2)

where U = Ũr+1:s+k−1,r+1:s+k−1 is itself an orthogonal matrix. For notational conve-

nience, define Û ∈ R(3m+k+1)×(3m+k+1) by

Û =



1 3m+ k − 1 1

1 1 0 0
3m+ k − 1 0 U 0
1 0 0 1


,

i.e., the r = 1, n = s+ k case of (2.2).
In terms of U and Û , the multibulge chase mentioned above consists of two

parts. The first part is a similarity transformation on the the lightly shaded region in
Figure 3, i.e.,

Hr:s+k,r:s+k ← ÛTHr:s+k,r:s+kÛ .(2.3)

The second part is the matrix multiplication of the dark, horizontal slab by ÛT from
the left, i.e.,

Hr:s+k,s+k+1:n ← ÛTHr:s+k,s+k+1:n,(2.4)
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Fig. 4. Left: introducing m bulges into row 1 through row s = 1+3m. Right: chasing m bulges
off the bottom from row r = n− (1 + 3m) through row n.

and the multiplication of the dark, vertical slab by Û from the right, i.e.,

H1:r−1,r:s+k ← H1:r−1,r:s+kÛ .(2.5)

The similarity transformation (2.3) has the effect of moving the packet of bulges
from rows r through s down to rows r+k through s+k. Using a sequence of “3-by-3”
reflections, this small similarity transformation does not take advantage of the level 3
BLAS, but if m� n and k � n, then the work of updating the lightly shaded region
in Figure 3 is small compared to the work of updating the two dark slabs. Updating
the dark horizontal and vertical slabs in Figure 3 is a matrix multiplication by the
orthogonal matrix U in (2.2). In order to make this into a level 3 BLAS matrix-
matrix multiplication, it is necessary to form explicitly the orthogonal submatrix U
from the “3-by-3” reflections used to chase the bulges. Accumulating U does not take
advantage of the level 3 BLAS either, but this is also a small amount of arithmetic
work compared to updating the dark slabs. Using a sequence of reflections to update
the lightly shaded region in Figure 3 but using matrix-matrix multiplication to update
the dark bands results in a high ratio of level 3 BLAS work to level 1 BLAS work [13].

2.1.2. Phases 1 and 3: Getting started and finishing up. The two-tone
structure of the algorithm is slightly simpler during the initial bulge-introduction
phase and during the final chasing-bulges-off-the-bottom phase than during most of
the computation. See Figure 4. A modified version of the Francis double implicit shift
algorithm may be used to introduce the m bulges into the upper left-hand corner of
the Hessenberg matrix. One at a time, bulges are introduced and chased down to
their proper position in the chain. This is equivalent to doing 3m(m− 1)/2 similarity
transformations by “3-by-3” reflections on H1:3m+1,1:3m+1, the lightly shaded region
on the left of Figure 4. The matrix U has zero structure similar to the (1, 1) block of
Figure 5.

Chasing the packet of m bulges off the bottom at the end of the QR sweep
is similar. It is equivalent to doing a similarity transformation by a sequence of
Householder reflections followed by a orthogonal matrix multiplication on the dark
vertical slab on the right of Figure 4. This operation also requires roughly the same
number of flops as does the operation of introducing a packet of m bulges.
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Fig. 5. The zero structure of the orthogonal submatrix U in (2.2) in the special case m = 8,
k = 22.

2.1.3. Level 3 BLAS and exploiting the zero structure of U. The or-
thogonal matrix U has more structure than a generic, dense orthogonal matrix. The
amount of arithmetic work needed to update the dark slabs can, theoretically, be
substantially reduced by taking advantage of the zero structure of U . The example in
Figure 5 is 38% zeros. However, this adds some complexity to the computation which
offsets the reduced flop count. Depending on the computing environment, taking ad-
vantage of some or all of the zeros may add more work than it saves. Nevertheless, it
is likely to be worth taking advantage of at least some of the zeros either by treating
U as a thick band matrix or as a 2-by-2 block matrix.

As illustrated in Figure 5, U has a thick band structure with lower bandwidth
kl = 2min(m, k) and upper bandwidth ku = k + 1. The band is fairly dense, so,
theoretically, the thick, banded matrix-matrix multiply is a level 3 operation. How-
ever, except for triangular matrix multiplication, banded matrix-matrix multiplication
software is usually implemented as a level 2 (matrix-vector) operation.

In order to take advantage of both band structure and the current set of level 3
BLAS, matrix multiplication by U may be broken up into two dense-by-dense matrix
multiplications and two triangular-by-dense matrix multiplications. If 3m− 2 ≥ k ≥
m + 2, then one way to do this is to partition U into a 2-by-2 block matrix with
two nearly dense, rectangular diagonal blocks and two triangular off-diagonal blocks.
See Figure 5. In addition, at least one of the triangular blocks has a thick band of
zeros along the diagonal, so the work of multiplying by this triangular matrix can be
further reduced.

For a fixed choice of the number of simultaneous shifts 2m, k ≈ 3m approximately
minimizes the number of flops in an n-by-n two-tone multibulge QR sweep regardless
of the logical zero structure of U . See Table 1. With k ≈ 3m, the algorithm uses
between 1.6 and 2.4 times as many flops as m double implicit shift sweeps, depending



MULTISHIFT QR ALGORITHM 937

Table 1
The ratio of the number of flops performed by two-tone small-bulge multishift QR sweep with

m pairs of shifts chased k rows at a time to 10mn2 the number of flops needed for m double implicit
shift QR sweeps. It is assumed that m is small relative to the order of the Hessenberg matrix n.

flops × 10mn2

Logical U Ratio for Approximately Ratio for
structure k = 3m optimal k optimal k
Banded 1.57 k = 2.8m 1.57
2-by-2 block 1.63 k ≈ 2.54m 1.62
Dense 2.40 k = 3m 2.40

Table 2
Flops used by an n-by-n two-tone multibulge QR sweep chasing m bulges, k rows at a time,

assuming k � n and m � n. (These estimates do not include the work for accumulating the
orthogonal matrix of Schur vectors Q. Accumulating Q approximately doubles the flop count.)

Logical U structure Flops + O(m2n)

2-by-2 block k = 3m− 2

(
49m2−39m+12

3m−2

)
n2

m > k or
k = pm
(3 + p)m even

(
(2p2+6p+13)m2−pm+2

pm

)
n2

3m− 2 ≥ k ≥ m + 1
k = pm
(3 + p)m odd

(
(2p2+6p+13)m2+(p−4)m+3

pm

)
n2

Dense k = 3m

(
2(6m−1)2

3m

)
n2

k = pm

(
2((p+3)m−1)2

pm

)
n2

on how much of the zero structure of U is exploited. The version of the large-bulge
multishift QR algorithm which most closely resembles the two-tone small-bulge multi-
shift QR algorithm aggregates groups of p transformations in order to take advantage
of the level 3 BLAS. A 2m shift sweep of the aggregated large-bulge multishift QR
algorithm needs roughly 1.5 + p/(8m) times as many flops as m double implicit shift
sweeps [4]. (The version of the large-bulge multishift QR algorithm implemented in
DHSEQR from LAPACK version 2.0 [1] does not aggregate groups of transformations
and takes advantage of only the level 1 and 2 BLAS. It needs roughly the same num-
ber of flops to chase a single 2m shift bulge as m double implicit shift sweeps [4,
section 6].) Detailed algorithms and mathematical flop counts are given in [13] and
are summarized here in Tables 2 and 1. In section 3, numerical examples demon-
strate that the avoidance of shift blurring by using small bulges and the ability to use
level 3 BLAS by using many simultaneous shifts per QR sweep more than overcome
the greater flop counts per sweep displayed in Tables 2 and 1.

2.2. Deflation and choice of shifts. It is inexpensive to monitor the sub-
diagonal entries during the course of a two-tone QR sweep and take advantage of a
small-subdiagonal deflation should one occur. Note that this includes taking advan-
tage of any small subdiagonal entries that may appear between the bulges during a
two-tone QR sweep. In [55], this is called “vigilant deflation.”

Ordinarily, the bulges above a vigilant deflation collapse as they encounter the
newly created subdiagonal zero. This may block those shifts so that, for the current
QR sweep, the benefit of using many simultaneous shifts may be lost. However, the
bulges can be reintroduced in the row in which the new zero subdiagonal appears



938 KAREN BRAMAN, RALPH BYERS, AND ROY MATHIAS

using the same methods as are used to introduce bulges at the upper left-hand corner
[27, p. 377], [62, p. 530]. In this way, the shift information passes through a zero
subdiagonal and the two-tone QR sweep continues with all its shifts.

It is well known that a good choice of shifts in the QR algorithm leads to rapid
convergence. Shifts selected to be the eigenvalues of a trailing principal submatrix give
local quadratic convergence [62, 60]. In the symmetric case, convergence is cubic [64].
Deferred shifts retard convergence [49]. Following the choice of LAPACK version 2
subroutine DHSEQR, our experimental computer programs select the shifts to be the
eigenvalues of a trailing principal submatrix.

3. Numerical examples. We compared the execution time of the large- and
small-bulge QR algorithm on ad hoc and pseudorandom Hessenberg matrices of order
n = 1,000 to n = 10,000 and on nonrandom matrices of similar order taken from a
variety of applications in science and engineering [3]. (The two algorithms delivered
roughly the same accuracy as measured by the relative residual ‖AQ̃ − Q̃T̃‖F /‖A‖
and the departure from orthogonality ‖Q̃T Q̃ − I‖F /

√
n, where A = Q̃T̃ Q̃T is the

computed real Schur decomposition of A with computed orthogonal factor Q̃ and
computed quasi-triangular factor T̃ .)

We call our experimental Fortran implementation of the two-tone small-bulge
multishift QR algorithm TTQR. When using m pairs of simultaneous shifts, each TTQR

sweep chases each tightly packed chain of m small bulges k = 3m− 2 rows at a time.
The implementation exploits the logical 2-by-2 block structure of U including the thick
band of zeros along the diagonal of the (1,2) block in Figure 5. Except where noted
otherwise, TTQR uses 150 simultaneous shifts, but no particular significance should be
attached to this choice. TTQR uses LAPACK subroutine DHSEQR [1], the conventional
large-bulge QR algorithm, to reduce diagonal subblocks of order no greater than 1.5
times the number of simultaneous shifts. Following EISPACK [46] and LAPACK [1], a
Hessenberg subdiagonal entry hi+1,i is set to zero when |hi+1,i| ≤ ε (|hii|+ |hi+1,i+1|)
with ε equal to the unit round. (A new deflation procedure which greatly reduces the
arithmetic work and execution time that TTQR needs is reported in [12, 13].)

For comparison, we used the implementation of the large-bulge multishift QR
algorithm in subroutine DHSEQR from LAPACK version 2 [1], which is widely recog-
nized to be an excellent implementation. DHSEQR uses the double implicit shift QR
algorithm to reduce subblocks of size MAXB-by-MAXB or smaller. In the examples re-
ported here, MAXB is chosen to be the greater of 50 and the number of simultaneous
shifts. Except where noted otherwise, DHSEQR uses only six simultaneous shifts which
Figure 1 shows is approximately optimal.

The examples reported here were run on an Origin2000 computer equipped with
400MHz IP27 R12000 processors and 16 gigabytes of memory. Each processor has
32 kilobytes of level 1 instruction cache, 32 kilobytes of level 1 data cache, and 8
megabytes of level 2 combined instruction and data cache. For serial execution, the
experimental Fortran implementation of the small bulge multishift QR algorithm
was compiled with version 7.30 of the MIPSpro Fortran 77 compiler with options
-64 -TARG:platform=ip27 -Ofast=ip27 -LNO. For comparison purposes the same
options were used to compile DHSEQR from LAPACK version 2. (We observe that this
compilation of DHSEQR is usually slightly faster than the compilation distributed in
the SGI/Cray Scientific Library version 1.2.0.0.) For parallel execution the -mp and
-pfa options were added. The programs called optimized BLAS subroutines from
the SGI/Cray Scientific Library version 1.2.0.0. In our computational environment,
we observed that the measured serial “cpu time” of any particular program with
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its particular data might vary by at most a few percent. We were fortunate to get
exclusive use of several processors for the purpose of timing parallel benchmark runs.

Except where otherwise mentioned, n-by-n matrices were stored in n-by-n arrays.
We ran the experimental program on both pseudorandomly generated and non-

random non-Hermitian matrices of order n = 1,000 to n = 10,000. We selected the
entries on the diagonal and upper triangle of pseudorandomly generated Hessenberg
matrices to be normally distributed pseudorandom numbers with mean zero and vari-
ance 1. We set the subdiagonal entry hj+1,j =

√
χ2
n−j , where χ

2
n−j is selected from

a Chi-squared distribution with n − j degrees of freedom. Hessenberg matrices with
the same distribution of random entries can also be generated by applying the reduc-
tion to Hessenberg form algorithm [27, Algorithm 7.4.2] to full n-by-n matrices with
pseudorandom entries selected from the normal distribution with mean zero variance
one.

Our source of nonrandom matrices was the Non-Hermitian Eigenvalue Problems
(NEP) collection [3]. This is a collection of eigenvalue problems from a variety of
applications in science and engineering. We selected 21 real eigenvalue problems of
order 1,000-by-1,000 to 8,192-by-8,192.

In some of the examples reported below, we report an automatic hardware count
of the number of floating point instructions executed. Note that a trinary multiply-
add instruction counts as just one executed instruction in the hardware count even
though it executes two flops.

We also report the floating point execution rate in millions of floating point in-
structions per second, or “mega-flops” for short. For comparison purposes, we mea-
sured the floating point execution rate of the level 3 BLAS full matrix-matrix multiply
subroutine DGEMM and the triangular matrix-matrix multiply subroutine DTRMM from
the SGI/Cray Scientific Library version 1.2.0.0 applied to matrix-matrix products sim-
ilar to updating the dark bands in Figure 3. In serial execution, in the Origin2000 com-
putational environment described above, DGEMM computes the product of the transpose
of a 200-by-200 matrix times a 200-by-10,000 slab embedded a 10,000-by-10,000 array
at roughly 330 mega-flops. It computes the product of a 10,000-by-200 slab times
a 200-by-200 matrix at roughly 325 mega-flops. DTRMM computes the product of the
transpose of a triangular 200-by-200 matrix times a 200-by-10,000 slab at roughly 305
mega-flops if it is an upper triangular matrix and at roughly 260 mega-flops if it is a
lower triangular matrix. DTRMM computes the product of a 10,000-by-200 slab times
a 200-by-200 triangular matrix at roughly 275 mega-flops if it is an upper triangular
matrix and at roughly 255 mega-flops if it is a lower triangular matrix.

Example 1. Figure 1 displays the serial execution time of DHSEQR and TTQR

using various numbers of simultaneous shifts to calculate the Schur decomposition of
the pseudorandom Hessenberg matrices described above. Both the quasi-triangular
and orthogonal Schur factors were computed. The figure demonstrates that the con-
vergence rate of TTQR does not suffer from shift blurring even with hundreds of simul-
taneous shifts. The figure also displays the total number of floating point instructions
executed by DHSEQR and TTQR to calculate the Schur decompositions of pseudorandom
Hessenberg matrices. It also demonstrates that the number of floating point opera-
tions needed by TTQR changes little as the number of simultaneous shifts varies in a
range that is small compared to n, the order of the Hessenberg matrix. The number
of simultaneous shifts used by TTQR may be chosen to fit the cache size and other ma-
chine dependent parameters with little effect on the total amount of arithmetic work.
However, in this example, TTQR executes between 1.5 and 2 times as many floating
point instructions as DHSEQR with 6 simultaneous shifts. A partial explanation for
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Fig. 6. Floating point execution rate of DHSEQR, the large-bulge multishift QR algorithm, and
TTQR, the small-bulge multishift QR algorithm, using varying numbers of simultaneous shifts to
calculate the Schur decompositions of the pseudorandom Hessenberg matrices described in section 3.

this is that TTQR executes more floating point instructions per shift than DHSEQR. See
Table 1. However, in other examples TTQR executes fewer floating point instructions
than DHSEQR. See Figures 7 and 10.

Figure 6 displays the floating point execution rates achieved on the Origin2000
computer described above. It demonstrates that TTQR attains substantially higher
rates of execution of floating point instructions when using many simultaneous shifts.

On the Origin2000 computer described above, we observe that, on pseudoran-
dom Hessenberg matrices of order roughly n > 500, TTQR with forty simultaneous
shifts calculates the Schur decomposition of pseudorandom Hessenberg faster than
DHSEQR with six simultaneous shifts. (For matrices of order n = 100, TTQR with 40
simultaneous shifts uses 170% of the execution time of DHSEQR with six simultaneous
shifts.)

Example 2. Figure 7 shows the execution time, floating point execution rate,
and number of floating instructions executed to calculate the Schur decompositions
of ad hoc Hessenberg matrices of the form of

S6 =




6 5 4 3 2 1
0.001 1 0 0 0 0

0.001 2 0 0 0
0.001 3 0 0

0.001 4 0
0.001 5



.(3.1)
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Fig. 7. Execution time, floating point execution rate, and hardware count of floating point
instructions executed to calculate the Schur decomposition (including both orthogonal and quasi-
triangular factors) of Hessenberg matrices of the form of (3.1).

The eigenvalues of trailing principal submatrices of Sn are extraordinarily close ap-
proximations to eigenvalues of the whole matrix Sn [13, 12], so, at least initially, the
shifts used by both DHSEQR and TTQR are exceptionally good. Both DHSEQR and TTQR

calculate the Schur decompositions of Sn faster than the Schur decomposition of a
pseudorandom Hessenberg matrix of the same size. See Figure 8. However, TTQR
finishes substantially sooner, maintains a higher floating point execution rate, and
executes fewer floating point instructions.

Example 3. Figure 8 compares the serial execution time and floating point
instruction execution rate of TTQR and DHSEQR applied to pseudorandom Hessenberg
matrices of order n = 1,000 to n = 10,000. In this example, TTQR consistently
executes more floating point instructions than DHSEQR but overcomes this handicap
by maintaining a high floating point execution rate. Note that in other examples TTQR
executes fewer floating point instructions than DHSEQR. See Figures 7 and 10.

The advantage of TTQR over DHSEQR remains qualitatively similar even if only
eigenvalues are computed or if only one of the orthogonal or quasi-triangular Schur
factors is computed.

Example 4. Figure 9 displays the serial execution times of DHSEQR and TTQR

applied to 20 real non-Hermitian eigenvalue problems from the NEP collection [3].
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Fig. 8. Serial execution times, floating point execution rates, and hardware counts of float-
ing point instructions of DHSEQR, the large-bulge multishift QR algorithm, and TTQR, the small-bulge
multishift QR algorithm. The two subroutines calculated Schur decompositions (including both the
orthogonal and quasi-triangular factors) of pseudorandom Hessenberg matrices as described in sec-
tion 3.

To avoid cache conflicts, each n-by-n matrix was stored in an (n + 7)-by-(n + 7)
array. Each matrix is identified by an acronym from [3]. The alphabetic part indi-
cates the application from which the matrix comes. The numerical part gives the
order of the matrix. Summaries of the applications, descriptions of the matrices, and
references can be found in [3]. DHSEQR uses six simultaneous shifts which Figure 1
shows is approximately optimal. TTQR uses 60 simultaneous shifts on 1,000-by-1,000 to
1,999-by-1,999 matrices, 116 simultaneous shifts on 2,000-by-2,000 to 2,499-by-2,499
matrices, 150 simultaneous shifts on 2,500-by-2,500 to 3,999-by-3,999 matrices, and
180 simultaneous shifts on 4,000-by-4,000 or larger matrices.

Notice that the superiority of TTQR is usually greater for matrices of larger order.
We also mention that DW8192 is not reported in Figure 9 only because the

execution times are out of scale with the other reported times. DHSEQR calculated
the Schur decomposition of the Hessenberg matrix derived from DW8192 in 544 cpu
minutes. TTQR calculated the Schur decomposition in 301 cpu minutes.

Figure 10 displays hardware counts of the number of floating point instructions
executed by DHSEQR and TTQR. Note that neither TTQR nor DHSEQR consistently exe-
cutes more floating point instructions.
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Fig. 9. Serial execution times of DHSEQR, the large-bulge multishift QR algorithm, and TTQR,
the small-bulge multishift QR algorithm, applied to 20 non-Hermitian eigenvalue problems from [3].
The acronyms indicate the corresponding matrix from [3]. DHSEQR uses six simultaneous shifts which
Figure 1 shows is approximately optimal. TTQR uses 60 simultaneous shifts on 1,000-by-1,000 to
1,999-by-1,999 matrices, 116 simultaneous shifts on 2,000-by-2,000 to 2,499-by-2,499 matrices, 150
simultaneous shifts on 2,500-by-2,500 to 3,999-by-3,999 matrices, and 180 simultaneous shifts on
4,000-by-4,000 or larger matrices. (The execution time of the reduction to Hessenberg form is not
included in the above graphs.)

Example 5. Our experimental implementation of the small-bulge QR algorithm
is not designed for parallel computation. However, TTQR makes heavy use of the
level 3 BLAS—particularly matrix-matrix multiply. Hence, it is not surprising to
observe modest but not insignificant speedups when the experimental version of TTQR
is compiled for parallel execution and linked with parallel versions of the BLAS.

Figure 11 shows wall clock execution time, parallel speedup, and parallel efficiency
of TTQR calculating the Schur decomposition (including both the quasi-triangular and
orthogonal factors) of pseudorandom Hessenberg matrices on the Origin2000 computer
described above. To avoid cache conflicts, some n-by-n matrices were stored in (n+
1)-by-(n+1) arrays. (Parallel speedup is the ratio T1/Tp, where T1 is the 1 processor
wall clock execution time and Tp is the p-processor wall clock execution time. Parallel
efficiency is T1/(pTp).)

A major serial bottle neck can be attributed to computations in the lightly shaded
region of Figure 3. There is potential for some small grain parallel execution even in
this region, but there is not enough parallel work to overcome the overhead associated
with synchronizing the processors. A planned production version of TTQR is expected
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Fig. 10. Hardware count of floating point instructions executed by DHSEQR, the large-bulge
multishift QR algorithm, and TTQR, the small-bulge multishift QR algorithm, when applied to 20
non-Hermitian eigenvalue problems from [3]. The acronyms indicate the corresponding matrix
from [3]. DHSEQR uses six simultaneous shifts which Figure 1 shows is approximately optimal.
TTQR uses 60 simultaneous shifts on 1,000-by-1,000 to 1,999-by-1,999 matrices, 116 simultaneous
shifts on 2,000-by-2,000 to 2,499-by-2,499 matrices, 150 simultaneous shifts on 2,500-by-2,500 to
3,999-by-3,999 matrices, and 180 simultaneous shifts on 4,000-by-4,000 or larger matrices. (Float-
ing point instructions executed during the reduction to Hessenberg form are not included.)

to exhibit better parallel speedup by overlapping computation in the lightly shaded
region with computations in the dark bands.

4. Conclusions. The small-bulge two-tone multishift QR algorithm avoids shift
blurring so completely that it admits a nearly unlimited number of simultaneous
shifts—even hundreds—without adverse effects on the convergence rate. With enough
simultaneous shifts, level 3 BLAS operations dominate, allowing both high serial
floating point execution rates and at least modest parallel speedup.

The possibility of using hundreds of simultaneous shifts makes the choice of how
many to use more complicated than for the conventional large-bulge multishift QR
algorithm. We observe empirically that the amount of arithmetic work is insensitive
to this choice as long as the number of shifts is small compared to the order of the
matrix. Hence, the number of shifts may be chosen to fit the cache size and other
characteristics of a particular computational environment without compromising the
amount of arithmetic work.
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Fig. 11. Parallel execution time, speedup, and efficiency of TTQR, the small-bulge multishift QR
algorithm, on pseudorandom Hessenberg matrices. The pseudorandom test matrices, computational
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Abstract. Aggressive early deflation is a QR algorithm deflation strategy that takes advantage
of matrix perturbations outside of the subdiagonal entries of the Hessenberg QR iterate. It identifies
and deflates converged eigenvalues long before the classic small-subdiagonal strategy would. The new
deflation strategy enhances the performance of conventional large-bulge multishift QR algorithms,
but it is particularly effective in combination with the small-bulge multishift QR algorithm. The
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1. Introduction. An underappreciated consideration in the QR algorithm is
the problem of detecting deflation. In conventional Hessenberg QR algorithms con-
vergence is recognized when one of the Hessenberg subdiagonal entries becomes small
enough to be safely set to zero. The eigenvalue problem then decouples into two
smaller problems. This is the earliest deflation strategy used with the QR algorithm
[24, 25, 45], and it has changed little since the early 1960s.

The small-subdiagonal convergence criterion sometimes does not recognize and
deflate converged eigenvalues. Consider, for example, the 6-by-6 Hessenberg matrix

S6 =




6 5 4 3 2 1
0.001 1 0 0 0 0

0.001 2 0 0 0
0.001 3 0 0

0.001 4 0
0.001 5



.(1.1)

By ordinary standards, the subdiagonal entries of S6 are not particularly small and
certainly not negligible. If shifts are taken to be the eigenvalues of a trailing principal
submatrix, then a multishift QR algorithm would use 5, 4, 3, etc., as the shifts
for the next QR sweep. Table 1 lists the distances between S6 and a matrix with
eigenvalues equal to these likely choices of shifts. (The distances were estimated by
the method described in this paper.) In particular, there is a perturbation E ∈ R6×6,
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Table 1
Estimates of the distances between S6 in (1.1) and a matrix with eigenvalues equal to eigenvalues

of a trailing principal submatrix.

A matrix with . . . is within this spectral
these eigenvalues. . . norm distance of S6.

1 2, 3, 4, and 5 1× 10−3

2, 3, 4, and 5 1× 10−6

3, 4, and 5 5× 10−10

4 and 5 2× 10−13

5 4× 10−17

‖E‖2 ≈ 4 × 10−17 for which 5 is an eigenvalue of H + E. In typical finite precision
computation, the unit roundoff is roughly 2 × 10−16. In that context, arguably, the
shift 5 is a converged eigenvalue that should be detected and deflated before the next
QR sweep. Possibly, both 4 and 5 can be accepted as eigenvalues and be deflated.
If the unit roundoff were, say, 1 × 10−7, then 5, 4, 3, and possibly even 2 might be
acceptable eigenvalues.

The undetected but essentially converged shift 5 would ordinarily be used as
a shift in the QR algorithm and after a QR sweep or two the corresponding sub-
diagonal will become small enough to set to zero. The extra sweep or two represents
unnecessary arithmetic work, but it is benign. It does not introduce numerical in-
stability. However, the converged eigenvalues do occupy shifts that could be used
to start work on other, unconverged eigenvalues. In the multishift QR setting, the
small-subdiagonal convergence criterion usually remains unsatisfied until all or nearly
all of the simultaneous shifts have converged to eigenvalues to full precision. (The QR
algorithm tends to deflate submatrices of roughly the same order as the number of
shifts.) However, it is typical for some of the shifts to converge before others. In our
experience with the two-tone small-bulge QR algorithm [10] and small-subdiagonal
deflation, it is commonly the case that, up to rounding error, half or more of the shifts
are converged eigenvalues! Unable to recognize and deflate the converged eigenvalues,
the algorithm must reuse them in the next sweep. It cannot work on new, unconverged
eigenvalues until a small subdiagonal appears when all or nearly all the current shifts
have converged. Much of the potential performance of the multishift QR algorithm
may be lost.

Readers of this paper need to be familiar with the double implicit shift QR al-
gorithm [24, 25, 32]. (See, for example, any of the textbooks [15, 29, 38, 41, 45].)
Familiarity with the large-bulge multishift QR algorithm [3] as implemented in LA-
PACK [1] and/or the small-bulge multishift QR algorithm [10] is helpful.

1.1. Notation. Throughout this paper we use the following notation and defi-
nitions.

1. We will use the “colon notation” to denote submatrices: Hi:j,k:l is the subma-
trix of matrix H in rows i–j and columns k–l inclusively. The notation H:,k:l indicates
the submatrix in columns k–l inclusively (and all rows). The notation Hi:j,: indicates
the submatrix in rows i–j inclusively (and all columns).

2. The notation σk = σk(M) denotes the kth largest magnitude singular value
of the matrix M . The singular value of smallest magnitude will also be written as
σmin = σmin(M).

3. The spectral norm is denoted ‖M‖2 = σ1(M). The Frobenius norm is
‖M‖F =

√
trace(MTM).
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4. The jth column of the identity matrix is denoted ej . The matrix formed
from the first k columns of I, [e1, e2, e3, . . . , ek], is Ek. The subspace Ek ⊂ Cn is the
subspace spanned by the first k columns of I, i.e., Ek = span(e1, e2, e3, . . . , ek). The
orthogonal complement of Ek is span(ek+1, ek+2, ek+3, . . . , en) and is denoted E⊥k .

5. A 1-unitary matrix is a unitary matrix Q ∈ Cn×n for which Qe1 = e1 and
eT1Q = eT1 , i.e., the first row and column of Q is the first row and column of I. A
real 1-unitary matrix is called 1-orthogonal. Householder reduction to Hessenberg
form [29, Algorithm 7.4.2] produces a 1-unitary matrix in the form of a product of
Householder reflections.

6. A quasi-triangular matrix is a real, block triangular matrix with 1-by-1 and
2-by-2 blocks along the diagonal.

7. The orthogonal projection of a vector x ∈ Rn onto a subspace Q ⊂ Cn is
denoted by ProjQ(x). If the subspace Q is spanned by the columns of a matrix Q,
we will abbreviate ProjRange(Q)(x) by ProjQ(x).

8. A matrix H ∈ Rn×n is in Hessenberg form if hij = 0 whenever i > j+1. The
matrix H is said to be unreduced if, in addition, the subdiagonal entries are nonzero,
i.e., hij �= 0 whenever i = j + 1.

9. Following [29, p. 19], we define a “flop” as a single floating point operation,
i.e., either a floating point addition or a floating point multiplication together with
its associated subscripting. The Fortran statement

C(I, J) = C(I, J) + A(I, K) ∗ B(K, J)
involves two flops.

In some of the examples in section 3, we report an automatic hardware count of
the number of floating point instructions executed. Note that a trinary multiply-add
instruction counts as just one executed instruction in the hardware count even though
it executes two flops. Thus, depending on the compiler and optimization level, the
above Fortran statement could be executed using either one floating point instruc-
tion or two floating point instructions (perhaps along with some integer subscripting
calculations) even though it involves two flops.

10. The (i, j)th minor of a matrix M ∈ Rn×n is represented by M(i|j). (The
(i, j)th minor is the determinant of the matrix obtained by deleting the ith row and
jth column.)

11. The classical adjoint matrix or adjugate of a matrix M ∈ Rn×n is written
adj(M). Its (i, j)th entry is the (j, i)th cofactor, (−1)i+jM(i|j).

2. Aggressive early deflation. In broad outline, the aggressive early defla-
tion procedure derived and analyzed below works as follows. Partition an unreduced
Hessenberg matrix H as

H =



n− k − 1 1 k

n− k − 1 H11 H12 H13

1 H21 H22 H23

k 0 H32 H33


,(2.1)

where k is an integer 1 ≤ k < n. Let H33 = V TV H be a Schur decomposition of H33.
Consider the similarity transformation to a Hessenberg-plus-spike form

 I 0 0
0 1 0
0 0 V



H 
 H11 H12 H13

H21 H22 H23

0 H32 H33




 I 0 0

0 1 0
0 0 V


 =


 H11 H12 H13V
H21 H22 H23V
0 s T


 .

(2.2)
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We explain below in section 2.8 that it is often the case that the last several compo-
nents of s are tiny even when no subdiagonal entry of H is particularly small. The
right-hand column in Table 1 is the spike s obtained from (1.1) with k = 5.

If the trailing m components of s are set to zero, then (2.2) takes the form




n− k − 1 1 k −m m

n− k − 1 H11 H12 H̃13 H̃14

1 H21 H22 H̃23 H̃24

k −m 0 s̃ T11 T12

m 0 0 0 T22


.

The eigenvalues of T22 are deflated! Ordinarily, many more QR sweeps would be
needed to reduce the subdiagonals of H to the point that these eigenvalues deflate.

If k  n, then the work needed to compute the Schur decomposition, form s, and
return to Hessenberg form is small compared to the work of the QR sweeps that are
saved. Approximately 4nk2 +31k3 flops are needed for this. See [10, Appendix B] for
a more detailed description of the algorithm and a derivation of the flop count. Of
these, if k is big enough, 4nk2 will be level 3 BLAS operations.

Incidentally, the eigenvalues of T11 make good shifts for the next multishift QR
sweep.

2.1. Reducing perturbations. Let H ∈ Cn×n be an unreduced Hessenberg
matrix, let P ∈ Cn×n be a perturbation matrix, and let Q ∈ Cn×n be a 1-unitary
matrix such that Ĥ ≡ QH(H+P )Q is Hessenberg. We call P a reducing perturbation
if Ĥ is a reduced Hessenberg matrix. If P is a reducing perturbation of negligible
magnitude, then the problem of finding the eigenvalues of H splits into the smaller
problems of finding the eigenvalues of the two or more diagonal blocks of the block
triangular matrix Ĥ = QH(H + P )Q. At least in principle, aggressive early deflation
consists of finding a reducing perturbation P of negligible magnitude, if possible, and
using it to deflate the eigenvalue problem into two or more smaller problems.

Reducing perturbations are easily characterized in terms of the zero structure of
a left eigenvector.

Lemma 2.1. A matrix P ∈ Cn×n is a reducing perturbation for a matrix H ∈
Cn×n if and only if H + P has a left eigenvector v ∈ Cn with zero first component
(i.e., v1 = 0).

Proof. Let Q ∈ Cn×n be a 1-unitary matrix such that QH(H + P )Q = Ĥ is
Hessenberg.

Suppose that P is a reducing perturbation, and, consequently, Ĥ is a reduced
Hessenberg matrix. In particular, Ĥ is block triangular, so Ĥ has a left eigenvector v̂
with v̂1 = 0. It follows that v = QH v̂ is a left eigenvector of H and v1 = v̂1 = 0.

Conversely, suppose that (H + P ) has a left eigenvector v with corresponding
eigenvalue λ ∈ C and v1 = 0. So, v̂ = QHv is a left eigenvector of Ĥ and v̂1 = 0. Let
k be the smallest index for which v̂k �= 0. The Hessenberg structure of Ĥ implies that
the (k − 1)st component of λv̂ = v̂HĤ is 0 = λ¯̂vk−1 = ¯̂vkĥk,k−1. Hence, hk,k−1 = 0

and Ĥ is a reduced Hessenberg matrix.
Of course, in the context of aggressive deflation, it is not sufficient to find a small

norm reducing perturbation. Returning a dense n-by-n matrix H + P to Hessenberg
form and accumulating the orthogonal similarity transformations would cost roughly
7n3 +O(n2) flops [29, Algorithm 7.4.2]—more arithmetic work than needed by many
QR sweeps. A useful reducing perturbation P needs to have enough zero structure
so that relatively little work is needed to return H + P to Hessenberg form.
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If the reducing perturbation P is restricted to be Hessenberg, then no extra work
is needed, because H +P is already Hessenberg. It is easy to show that a Hessenberg
reducing perturbation of minimal Frobenius norm is zero except for some subdiagonal
entry. Thus, restricting P to be Hessenberg leads to the small-subdiagonal deflation
strategy.

A more aggressive deflation strategy must consider reducing perturbations that
are not necessarily Hessenberg. Consider searching for a deflating perturbation P ∈
Cn×n which may be nonzero only its last k rows and k+1 columns. With this choice,
H + P is Hessenberg in its initial n − k − 1 columns. If k  n, then returning to
Hessenberg form would need an acceptably small amount of arithmetic.

The next lemma identifies deflating perturbations of this form that have minimal
norm.

Lemma 2.2. Let H ∈ Cn×n be an unreduced Hessenberg matrix partitioned as in
(2.1). Let µ∗ ∈ C be a minimizer of f(µ) = σk([H32, H33 − µI]) with corresponding
left singular vector u∗ ∈ Ck and right singular vector v∗ ∈ Ck+1. If P ∈ Cn×n is
given by

P =



n− k − 1 1 k

n− k − 1 0 0 0
1 0 0 0
k 0 P32 P33


,(2.3)

where [P32, P33] = −f(µ∗)u∗vH∗ ∈ Ck×(k+1), then ‖P‖2 = f(µ∗) = σk([H32, H33 −
µ∗I]), and P is a reducing perturbation of minimal spectral and Frobenius norm with
the zero structure of (2.3).

Proof. By construction,

[0, 0, uH∗ ]


 H11 H12 H13

H21 H22 H23

0 H32 + P32 H33 + P33


 = µ∗[0, 0, uH∗ ].

Hence, µ∗ is an eigenvalue of H33 + P33 and H + P with left eigenvectors u∗ and
[0, 0, uH∗ ], respectively. Hence, by Lemma 2.1, P is a reducing perturbation.

Suppose that u ∈ Cn is a left eigenvector of H + P with eigenvalue µ ∈ C and
that u1 = 0. Because the first n−k−1 columns of H+P are in unreduced Hessenberg
form, u must have zeros in its first n − k components. The trailing k components
form a left null vector of [H32, H33 − µI] + [P32, P33]. It is an application of the
singular value decomposition that [P32, P33] is the perturbation of smallest spectral
and Frobenius norm for which rank([H32, H33 − µI] + [P32, P33]) < k. Hence, P is a
perturbation of smallest spectral and Frobenius norm for which H + P admits a left
eigenvector whose first n− k components are zeros.

If ‖P‖2 is tiny enough to be neglected, then µ∗ is essentially an eigenvalue of H
with left eigenvector [0, 0, uH∗ ].

The problem of minimizing f(µ) = σk([H32, H33 − µI]) has been extensively
studied in the form of the controllability radius problem. A pair of matrices (A,B)
is said to be controllable if for all λ ∈ C the matrix [B, A − λI] has full row rank
[30]. Controllability is a sort of nonsingularity or well-definedness property required in
many contexts in control theory [33, 34]. It is also a factor in the numerical condition
of computational control problems [11, 16, 14, 34]. The minimum value of f(µ) is
ν(H33, H32), the Frobenius norm distance and spectral norm distance from the pair
(H33, H32) to the nearest uncontrollable pair [21, 34, 35].
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A remarkably eclectic collection of mathematical tools and techniques have been
used to attack the problem of calculating or estimating the controllability radius. See,
for example, [6, 8, 7, 12, 13, 16, 21, 22, 23, 26, 27, 44]. By Lemma 2.2, all of them
are potentially applicable to shift selection and deflation.

A dissatisfying aspect of Lemma 2.2 is that the optimal deflating perturba-
tion P usually deflates only a single eigenvalue. Possibly, a perturbation of slightly
larger magnitude would deflate several eigenvalues. Another dissatisfying aspect of
Lemma 2.2 is that even when H is a real matrix, the perturbation matrix P may be
complex. The extra work and storage required by complex arithmetic makes its use
unattractive, but the staircase form and eigenvalue clustering methods for approxi-
mating the controllability radius [5, 16, 18, 17, 31, 35] can be easily and naturally
adapted to find a “small norm” real deflating perturbation and so avoid complex
arithmetic.

A simple heuristic way to use Lemma 2.2 is to approximate the minimizing µ∗
by one of the eigenvalues of H33. The corresponding left eigenvector u∗ serves as an
approximate left singular vector, and e1, the first column of the (k + 1)-by-(k + 1)
identity, serves as an approximate right singular vector. This leads to a reducing
perturbation of the form

P =



n− k − 1 1 k

n− k − 1 0 0 0
1 0 0 0
k 0 P3 0


.(2.4)

We call perturbation matrices with this sparsity pattern k-spike perturbations.

2.2. k-spike reducing perturbations. Spike reducing perturbations can be
naturally adapted to avoid complex arithmetic when H is real and to deflate several
eigenvalues at a time.

We will say that a k-spike reducing perturbation P ∈ Cn×n (2.4) deflates m
eigenvalues and their corresponding left-invariant subspace from a matrix H ∈ Cn×n

if there is a 1-unitary matrix Q for which Ĥ = QH(H +P )Q is a reduced Hessenberg

matrix with ĥn−m+1,n−m = 0. (If several subdiagonal entries of Ĥ are zero, then
there are several different values of m for which a perturbation P may be said to
deflate m eigenvalues.) The matrix Ĥ takes the form

Ĥ = QH(H + P )Q =

[n−m m

n−m T̂11 T̂12

m 0 T̂22

]
,

where T̂11 and T̂22 are Hessenberg. The last m columns of Q span an m-dimensional
left-invariant subspace of H + P corresponding to the eigenvalues of T̂22. The 1-
unitary matrix Q is not unique, but if T̂11 is unreduced Hessenberg, then the implicit
Q theorem [29, Theorem 7.4.3] implies that the first n−m columns of Q are unique up
to column scaling by numbers of modulus 1. There is enough freedom in the choice of
the remainingm columns of Q to make T̂22 triangular. (IfH and Q are restricted to be
real, then there is only enough freedom to make T̂22 be quasi-triangular.) In this case
m eigenvalues are displayed along the diagonal of T̂22. If P is of negligible magnitude,
then P deflates the m eigenvalues of T̂22 and the left-invariant subspace spanned by
the last m columns of Q. The smaller problem of calculating the remaining n −m
eigenvalues of T̂11 remains.
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The following lemma and theorem characterize multieigenvalue deflating k-spike
reducing perturbations in terms of the zero structure of the left-invariant subspaces
they deflate. In the statement of the lemma, recall that Ek is the space spanned by
the first k columns of I.

Lemma 2.3. A matrix P ∈ Cn×n is a reducing perturbation for H ∈ Cn×n that
deflates at least m eigenvalues if and only if H +P has a left-invariant subspace Q of
dimension m or greater for which Q ⊂ E⊥1 .

Proof. Let Q ∈ Cn×n be a 1-unitary matrix such that QH(H + P )Q = Ĥ is
Hessenberg.

Suppose that P is a reducing perturbation that deflates m̂ ≥ m eigenvalues. The
reduced Hessenberg matrix Ĥ is block triangular with an m̂-by-m̂ (2, 2) block. It
follows that the last m̂ columns of Q span an m̂-dimensional left-invariant subspace,
V of H + P . The 1-unitary structure of Q implies that the first entry in each of the
last m̂ columns of Q is zero. Hence, V ⊂ E⊥1 .

Conversely, if (H+P ) has a left-invariant subspace V ⊂ E⊥1 of dimension m̂ ≥ m,
then V̂ = QHV is an m̂-dimensional left-invariant subspace of Ĥ. It follows from the
1-unitary structure of Q that V̂ ⊂ E⊥1 . Let k be the largest integer for which V̂ ⊂ E⊥k .

The first k entries of all members of V̂ are zero, but there is a vector v̂ ∈ V̂ for which
v̂k+1 �= 0. Note that k ≤ n − m̂ ≤ n − m, because V̂ has dimension m̂ ≥ m. The
matrix Ĥ is a Hessenberg matrix for which v̂HĤ ⊂ V̂. In particular, the kth entry
of v̂HĤ is zero, i.e., v̂k+1ĥk+1,k = 0. Hence, ĥk+1,k = 0 and P deflates at least m
eigenvalues.

The next theorem characterizes k-spike reducing perturbations that deflate several
eigenvalues.

Theorem 2.4. Let H ∈ Cn×n be an unreduced Hessenberg matrix partitioned as
in (2.1), and let P be a k-spike perturbation as in (2.4). The k-spike perturbation P
deflates at least m ≤ k eigenvalues if and only if for somem-dimensional left-invariant
subspace Ṽ of H33, ProjṼ(P3) = −ProjṼ(H32).

The k-spike reducing perturbation of minimal Frobenius norm corresponds to the
choice P3 = −ProjṼ(H32) for some m-dimensional left-invariant subspace Ṽ of H33.

Proof. Suppose that the columns of Ṽ ∈ Ck×m form an orthonormal basis of anm-
dimensional left-invariant subspace Ṽ of H33. Let Λ ∈ Cm×m satisfy Ṽ HH33 = ΛṼ H .
Define V ∈ Cn×m by

V H =
[n− k − 1 1 k

m 0 0 Ṽ H
]
.(2.5)

If ProjṼ(P3) = −ProjṼ(H32), then Ṽ HP3 = −Ṽ HH32 and, by direct calculation,
V H(H + P ) = ΛV H . Hence, V ≡ Range(V ) is an m-dimensional left-invariant sub-
space of H + P . It follows from (2.5) that V ⊂ E⊥1 . Hence, by Lemma 2.3, P is
a deflating perturbation that deflates at least m eigenvalues and the left-invariant
subspace V.

Conversely, let P be a k-spike perturbation that deflates m̂ eigenvalues, with
m ≤ m̂ ≤ k. Let Q be a 1-unitary matrix chosen so that Ĥ = QH(H + P )Q
is Hessenberg. The first k columns of H + P are unreduced Hessenberg, because
the first k columns of H are. Without loss of generality, we may choose Q so that
ĥn−m+1,n−m = 0. The implicit Q theorem [29, Theorem 7.4.3] implies that Q takes
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the form

Q =




n− k − 1 1 k

n− k − 1 D1 0 0
1 0 D2 0
k −m 0 0 V̂
m 0 0 Ṽ


,

where D1 and D2 are diagonal and unitary. With this choice, the last m columns of
Q span an m-dimensional left-invariant subspace H +P . In the notation of (2.1) and
(2.4), there exists a matrix Λ ∈ Cm×m for which

[
0 0 Ṽ

]H

 H11 H12 H13

H21 H22 H23

0 H32 + P3 H33


 = Λ

[
0 0 Ṽ

]H
.

In particular, Ṽ H(H32 + P3) = 0 and Ṽ HH33 = ΛṼ H . So, V = Range(Ṽ ) ⊂ Ck×k is
an m-dimensional left-invariant subspace of H33 and ProjṼ(P3) = −ProjṼ(H32).

An elementary application of linear least squares shows that for any subspace
V ⊂ Ck, P3 = −ProjṼ(H32) is the minimum Frobenius norm solution to ProjṼ(P3) =
−ProjṼ(H32).

2.3. Implementing aggressive early deflation. Theorem 2.4 shows how to
calculate (hopefully) small norm k-spike perturbations P that deflate several eigen-
values:

1. Select a “deflation window” consisting of the trailing k-by-k principal sub-
matrix H33.

2. Select an m-dimensional left-invariant subspace V ⊂ Ck of H33 such that
‖ProjV(H32)‖2 is “small.”

3. Compute P3 = −ProjV(H32). (The spike perturbation P is given by (2.4).)
If ‖P‖F = ‖P3‖2 is negligible, then, in principle, it may be used to deflate m

eigenvalues by returning H +P to Hessenberg form with a 1-unitary similarity trans-
formation Ĥ = QH(H + P )Q.

There are several practical considerations. First, the calculation must be orga-
nized so that the computed version of Ĥ = QH(H+P )Q is indeed reduced Hessenberg
despite rounding errors. Second, some flexible but effective heuristic must be used to
select the invariant subspace. (Including the trivial space {0}, there are typically 2k

invariant subspaces of H33. Computing bases of all of them is impractical.) Finally,
if H is real, it would be best to restrict all calculations to real arithmetic.

The following procedure takes these practical considerations into account. Let
H ∈ Rn×n be a real, unreduced Hessenberg matrix. Make an a priori choice of
the deflation window size k. (The success of aggressive early deflation is relatively
insensitive to the deflation window size. However, it is best to choose k to be larger
than the number of simultaneous shifts in the multishift QR algorithm.) Partition H
as in (2.1). Using the QR algorithm (what else?), compute a real Schur decomposition
of H33, V

TH33V = T , where V ∈ Rk×k is orthogonal and T ∈ Rk×k is quasi-
triangular. (This might be implemented as a recursive subroutine.) The eigenvalues
of H33 are arranged along the diagonal of T as the 1-by-1 and 2-by-2 diagonal blocks.
For each integer m < k, for which tk−m+1,k−m = 0, Vm = Range(Vk−m+1:k,:) is an m-
dimensional left-invariant subspace of H33. If s = V

TH32 ∈ Rk, then ‖sk−m+1:k‖2 =
‖ − ProjVm

(H32)‖F . By Theorem 2.4, ‖sk−m+1:k‖2 is the magnitude of the minimal
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norm k-spike perturbation that deflates the trailingm eigenvalues of T . If ‖sk−m+1:k‖2
is so tiny that it may be safely set to zero, then we may use the corresponding k-spike
perturbation to deflate m eigenvalues. These m eigenvalues are deflatable.

For each possible ordering of the eigenvalues of T (keeping complex conjugate
pairs adjacent), there is a real Schur decomposition which achieves that ordering along
the diagonal of T . Software for efficiently updating one real Schur decomposition to
another by unitary similarity transformation is widely available. (See, for example, [4,
39] or [1, DTREXC].) By reordering the eigenvalues along the diagonal of T , a deflation
procedure may augment the set of deflatable eigenvalues. Suppose, for example, that
the trailing m eigenvalues along the diagonal of T are deflatable, but λ = tk−m,k−m

is a simple eigenvalue that cannot be classified as deflatable because |sk−m| is not
“small enough.” Use a unitary similarity transformation to rotate λ up to t11 while
leaving the m eigenvalues already classified as deflatable in their original positions.
The new value tk−m,k−m (or, in case of a complex conjugate pair, the 2-by-2 block
Tk−m−1:k−m,k−m−1:k−m) now may be deflatable. In this way, each eigenvalue may
be examined and classified as deflatable or nondeflatable. The deflatable eigenvalues
collect in the trailing diagonal entries of T .

Having calculated a suitable, reordered, real Schur decomposition H33 = V TV T

and s = V TH32, and having classified the trailing m eigenvalues as deflatable as
described above, compute the similarity transformation


 I 0 0

0 1 0
0 0 V



T 
 H11 H12 H13

H21 H22 H23

0 H32 H33




 I 0 0

0 1 0
0 0 V


 =


 H11 H12 H13V
H21 H22 H23V
0 s T




(2.6)
by multiplying H13 and H23 from the right by V . The trailing m entries of s are
tiny—small enough to be set to zero. Set the trailing m entries of s to zero to obtain
a perturbed vector [s̃T , 0]T ≡ [sT1:k−m, 0]. The matrix

H̃ =




n− k − 1 1 k −m m

n− k − 1 H11 H12 H̃13 H̃14

1 H21 H22 H̃23 H̃24

k −m 0 s̃ T11 T12

m 0 0 0 T22




is block triangular with m-by-m quasi-triangular, trailing principal submatrix T22.
The m eigenvalues of T22 are eigenvalues of H̃.

It remains to return H̃ to reduced Hessenberg form. The first n− k − 1 columns
of H̃ are still in unreduced Hessenberg form, so the first n − k − 1 steps of House-
holder’s method [29, Algorithm 7.4.2] do not modify H̃. Hence, when returning H̃
to Hessenberg form, the first n − k − 1 steps of Householder’s method [29, Algo-
rithm 7.4.2] are unnecessary and may be skipped. In addition Householder’s method
[29, Algorithm 7.4.2] does not modify T22 = Hn−m:n,n−m:n, so the last m − 1 steps
can be skipped as well. If k2  n, then the work required to return H + P back to
Hessenberg form is small compared to the cost of a QR sweep.

2.4. When are spike components negligible?. When an entry in the spike
is “small enough,” it may be safely set to zero without significant adverse effect on
accuracy. Considerable care is needed to make this decision without unnecessarily
sacrificing accuracy. A conservative stopping criterion was all that was needed to
greatly increase the accuracy of the Jacobi method [19]. This subsection presents a
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short discussion of the question in the context of aggressive early deflation but does
not give a definitive answer.

Setting the lastm components of the spike to zero is equivalent to adding a k-spike
perturbation of norm ‖sk−m+1:k‖2. Rounding errors in the reduction to Hessenberg
form and during the QR sweep are equivalent to perturbing H by an additive per-
turbation matrix of norm p(n)µ‖H‖2, where µ is the unit roundoff and p(n) is a low
degree polynomial that depends on the the norm, the details of the algorithm, and
the details of the finite precision arithmetic. (See [45, Chap. 3].) It is natural to re-
quire that ‖sk−m+1:k‖2 be at least roughly as small as the other unavoidable rounding
errors before it can be set to zero. This suggests what might be called norm-stable
deflation.

Norm-stable deflation:
The last m components of the spike may be set to zero if, for some rounding
error small number ε, ‖sk−m+1:k‖2 ≤ ε‖H‖F .

Requiring spike components to satisfy this criterion before being set to zero is
a minimum requirement. If H is a graded matrix, even norm-stable deflation may
deflate approximate eigenvalues before they have converged to a limiting accuracy.
The more conservative deflation strategies described below are empirically reliable
and, in some cases, yield more accurate computed eigenvalues.

In terms of the partitioning (2.1), aggressive early deflation depends only on H32

and H33. It is natural to use a deflation criterion that depends only upon them. This
suggests what we call window-norm-stable deflation.

Window-norm-stable deflation:
The last m components of the spike may be set to zero if, for some rounding
error small number ε, ‖sk−m+1:k‖2 ≤ ε‖[H32, H33]‖F .

Window-norm-stable deflation compromises between norm-stable deflation and
the EISPACK and LAPACK compare-to-nearby-diagonal-entries strategy. Note that
the deflation window size is likely to be substantial. (In the numerical examples
reported in section 3, window sizes ranged from k = 48 to k = 450.) Hence, window-
norm-stable deflation resembles norm-stable deflation and suffers many of the same
drawbacks.

EISPACK [28, 37] and LAPACK [1] use small-subdiagonal deflation. Subdiagonal
entries are considered small enough to deflate only if they are tiny compared to nearby
matrix entries. EISPACK [28, 37] subroutines HQR/HQR2 and LAPACK [1] subroutines
DHSEQR/DLAHQR ordinarily set a subdiagonal entry hi+1,i to zero only if |hi+1,i| ≤
µ(|hii| + |hi+1,i+1|), where µ is the unit roundoff. (If both hii = 0 and hi+1,i+1 = 0,
then EISPACK falls back on norm-stable deflation. LAPACK falls back on a modified
norm-stable deflation criterion. LAPACK also sets hi+1,i to zero when it is near the
underflow threshold.) This more conservative deflation strategy respects the local
scale of graded matrices and sometimes significantly improves the accuracy of the
computed eigenvalues.

A deflation strategy in the spirit of the EISPACK/LAPACK compare-to-nearby-
diagonal-entries strategy might be to compare the spike component sk to the diagonal
block of T in row k. For example, if tk,k is a 1-by-1 diagonal block in T , i.e., a real
eigenvalue of T , then sk might be set to zero if it is tiny compared to tkk. Once sk has
been set to zero, the same deflation strategy may be applied to sk−1 and then to sk−2

and so on until a nondeflatable eigenvalue is encountered. If Tk−1:k,k−1:k is a 2-by-2
diagonal block with complex conjugate eigenvalues λ and λ̄, then a similar deflation
strategy may be applied to the two spike components sk−1 and sk by comparing them
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to ‖Tk−1:k,k−1:k‖2 or |λ| =√det(Tk−1:k,k−1:k).

Nearby-diagonal deflation:
If tjj is a 1-by-1 diagonal block of T , then sj may be set to zero if, for some
rounding error small number ε, |sj | ≤ ε |tjj |.
If Tj:j+1,j:j+1 is a 2-by-2 diagonal block of T , then sj and sj+1 may be
set to zero if, for some rounding error small number ε, max(sj , sj+1) ≤
ε
√
det(Tj:j+1,j:j+1).

Recall that the spike is s = V TH32 = hn−k+1,n−kV1,:, where V
TH33V = T is a

real Schur decomposition. Setting sk−m+1:k to zero is equivalent to perturbing V to
a nearby matrix Ṽ by setting V1,k−m+1:k to zero. This corresponds to replacing the
Schur decomposition H33 = V TV T by the multiplicatively perturbed factorization
(I +E)−1H33(I +E) = ((I +E)−1V )T ((V T (I +E))) = Ṽ −TT Ṽ T , where E satisfies
V T (I + E) = Ṽ T . The matrix E may be chosen to be a 1-spike perturbation with
‖E‖2 = ‖E‖F = ‖V1,k−m+1:k‖2 = ‖sk−m+1:k‖2/hn−k+1,n−k.

Finite precision arithmetic nearly always prevents the computed version of V
from being exactly orthogonal, but it can be shown that the computed V is of the
form V̂ (I + Ê), where V̂ is exactly orthogonal and ‖Ê‖2 is rounding error small
[45, Chap. 3]. Hence, if ‖E‖2 is rounding error small, then replacing V by Ṽ =
V (I + E) is a perturbation of similar character to and similar or smaller magnitude
to the unavoidable rounding errors already contaminating V . Similarly, rounding
errors in the computation of the Schur decomposition of H33 are equivalent to a
perturbation of H33 that is typically at least as large as (and probably less structured
than) (I+E)−1H33(I+E) [29, p. 381]. Therefore, the components of V1,k−m+1:k may
not be distinguished from zero within rounding error generated uncertainties. This
suggests the next deflation strategy.

Window-Schur deflation:
The last m components of the spike may be set to zero if, for some rounding
error small number ε, ‖sk−m+1:k‖2 ≤ ε‖H32‖2.

The numerical examples reported in this paper use both nearby-diagonal defla-
tion and window-Schur deflation by setting small spike components to zero if either
criterion is satisfied.

At this point it is safe to remark that aggressive early deflation equipped with
any of the above strategies is a “normwise” backward numerically stable procedure.
It uses only orthogonal matrix computations well known to be backward numerically
stable in the presence of rounding errors [45], along with tiny perturbations that are
equivalent to normwise tiny perturbations of the original matrix A.

2.5. Combining aggressive early deflation with small-subdiagonal de-
flation. In our experience, aggressive early deflation is more powerful than small-
subdiagonal deflation. However, it does not replace small-subdiagonal deflation en-
tirely. Occasionally, a tiny subdiagonal entry may appear outside of the deflation
window. Such an opportunity for deflation goes undetected by aggressive early de-
flation. Even within the deflation window, aggressive early deflation may miss an
opportunity to deflate that small-subdiagonal deflation does not. For example, let

H =




2 3 4 5 6
1 2 0 0 1
0 1 2 0 0
0 0 ε 2 0
0 0 0 1 2


 ,
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where 0 < ε  1. Suppose that ε is negligible (i.e., small enough to be safely set to
zero), but

√
ε/2 is not. The small-subdiagonal strategy would deflate by setting ε to

zero.
With a deflation window size of k = 4, H33 is the trailing principal 4-by-4

submatrix of H, and H32 is the first column of the 4-by-4 identity matrix. The
eigenvalues of H33 are 2 ± ε1/4 and 2 ± iε1/4 with corresponding almost-normalized
right eigenvectors [±ε1/2, ε3/4, ±1, ε1/4] and [±iε1/2, −ε3/4, ∓i, ε1/4]. For any eigen-
value ordering in the Schur decomposition of H33, the tip of the spike has magnitude

|s4| =
√
ε
(
1 + ε1/2 + ε+ ε3/2

)−1/2
>
√
ε/2, which is not negligible.

It is inexpensive to monitor the subdiagonal entries during the course of a QR
sweep and take advantage of a small-subdiagonal deflation should one occur. Note
that this includes taking advantage of any small-subdiagonal entries that may appear
between the bulges during a two-tone multishift QR sweep [9, 10]. In [42], this is
called “vigilant deflation.”

Ordinarily, the bulges above a vigilant deflation collapse as they encounter the
newly created subdiagonal zero. This may block those shifts so that, for the current
QR sweep, the benefit of using many simultaneous shifts may be lost. However, the
bulges can be reintroduced, in the row in which the new zero subdiagonal appears,
using the same methods that are used to introduce bulges at the upper left-hand
corner [20, 24, 25], [29, p. 377], [45, p. 530]. In this way, the shift information passes
through a zero subdiagonal and the two-tone QR sweep continues with all its shifts.

2.6. Choice of shifts. It is well known that a good choice of shifts in the QR
algorithm leads to rapid convergence. Shifts selected to be the eigenvalues of a trailing
principal submatrix give local quadratic convergence [45, 43]. In the symmetric case,
convergence is cubic [46]. Deferred shifts retard convergence [40]. The implementation
of the large-bulge multishift QR algorithm in LAPACK selects its shifts to be the
eigenvalues of a trailing principal submatrix.

With aggressive early deflation, it is natural to select the shifts from among
the nondeflatable eigenvalues. This saves an extra small eigenvalue calculation and
incorporates more information from the matrix into the shifts. In the numerical
examples reported in this paper, we arbitrarily select the shifts to be the nondeflatable
eigenvalues that appear lowest along the diagonal of T in (2.6).

2.7. Iterated early deflation. In our experience, aggressive early deflation is
so effective that it is often better to skip a multishift QR sweep and immediately apply
the aggressive early deflation strategy again to the remaining, undeflated Hessenberg
matrix. Aggressive early deflation can be applied over and over again, sometimes
deflating a great many eigenvalues without the cost of a QR sweep. We find that it is
best to skip the next multishift QR sweep whenever aggressive early deflation isolates
more than a few eigenvalues.

2.8. Analysis of early deflation. This subsection gives a partial explanation
of the success of aggressive early deflation.

Let H33 = V TV T be the real Schur decomposition in (2.6). Suppose that tnn =
λ ∈ R is a 1-by-1 diagonal block in the quasi-triangular structure of T , i.e., λ = tnn
is a real eigenvalue of H33. The early deflation strategy finds at least one deflatable
eigenvalue if the tip of the spike, sk = hn−k+1,n−kv1k, is small enough. (The tip of
the spike is sk, the last component of s in (2.6).)

Let QR = (H33 − λI) be a QR factorization. Because H33 − λI is a singular,
unreduced Hessenberg matrix, Q ∈ Rk×k is also unreduced Hessenberg and the last
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row of the triangular factor R is zero. The last column of Q is a normalized left
eigenvector of H33 corresponding to the eigenvalue λ. The unreduced structure of
H33 also implies that λ has geometric multiplicity one and that its corresponding
real, normalized left eigenvector is unique up to scaling by a complex number of
modulus one. The last column of the matrix of Schur vectors V is also a normalized
left eigenvector corresponding to λ, and, in particular, |q1k| = |v1k|. The tip of the
spike may be written as |sk| = |hn−k+1,n−kv1k| = |hn−k+1,n−kq1k|.

The matrix Q is Hessenberg, so the (1, k)th cofactor is

(−1)k+1Q(1|k) = (−1)1+k
k−1∏
i=1

qi+1,i.

However, Q is also orthogonal, so

Q−1 = QT = adj(Q)/det(Q).

(Here, adj(Q) is the classical adjoint matrix or adjugate of Q.) Hence,

q1k =
(−1)k+1

∏k−1
i=1 qi+1,i

det(Q)
.

If q̄ is the geometric mean

q̄ =

∣∣∣∣∣
k−1∏
i=1

qi+1,i

∣∣∣∣∣
1/(k−1)

,

then, because |det(Q)| = 1, the tip of the spike has modulus

|sk| = |hn−k+1,n−kq1k| = |hn−k+1,n−k| q̄k−1.

The qi+1,i’s are entries in an orthogonal matrix, so for each i, |qi+1,i| ≤ 1 and, hence,
q̄ ≤ 1. Even when q̄ is only moderately smaller than one, q̄k−1 may be tiny. For
example, if q̄ ≤ 1/2 and the deflation window size is, say, k > 50, then q̄k−1 ≤ 9×10−16

and the tip of the spike, |sk| ≤ 9 × 10−16 |hn−k+1,n−k|, may well be small enough to
set to zero. Note that this can occur even when no subdiagonal of Q is particularly
small and when many have modulus one or close to one.

The geometric mean of the subdiagonal entries of H33, and hn−k+1,n−k,

h̄ =

∣∣∣∣∣∣
n−1∏

j=n−k

hj+1,j

∣∣∣∣∣∣
1/k

,

is proportional to q̄. To see this, note that the Hessenberg, orthogonal structure
of Q, the upper triangular structure of R, QR = (H33 − λI), implies that for i =
1, 2, 3, . . . , n− 1,

qi+1,irii = hn−k+i+1,n−k+i

and

(H33 − λI)(k|k) = Q(k|k)R(k|k).
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Also, because QT = Q−1 = adj(Q)/det(Q), |qkk| = |Q(k|k)|. The tip of the spike can
then be expressed as

|sk| = |hn−k+1,n−k| q̄k−1

= |hn−k+1,n−k|
k−1∏
i=1

∣∣∣∣hn−k+i+1,n−k+i

rii

∣∣∣∣
=

h̄k

|R(k|k)|(2.7)

=
|qkk| h̄k

|(H33 − λI)(k|k)| .(2.8)

This expression can be simplified under the assumption that λ has algebraic multi-
plicity one. In that case, let H33 = XJX−1 be the Jordan canonical form of H33

ordered so that the 1-by-1 Jordan block corresponding to λ appears in the lower
right-hand corner of J . For notational convenience, set Z = X−1, and partition
H33 − λI = X(J − λI)Z as

H33 − λI =
[
X11 X12

X21 X22

] [
(J11 − λI) 0

0 0

] [
Z11 Z12

Z21 Z22

]
,

where the (1, 1) blocks are (k − 1)-by-(k − 1), the (1, 2) blocks are (k − 1)-by-1,
the (2, 1) blocks are 1-by-(k − 1), and the (2, 2) blocks are 1-by-1. It follows that
(H33 − λI)(k|k) = det(X11(J11 − λI)Z11). Now, Z = X−1 = adj(X)/det(X) and, in
particular, Z22 = det(X11)/det(X). Similarly, X22 = det(Z11) det(X). Without loss
of generality, we may choose X and Z = X−1 such that those rows of Z which are left
eigenvectors have 2-norm equal to one. The last row of Z is a normalized left eigen-
vector of H33 corresponding to the eigenvalue λ, so |qkk| = |Z22| = |detX11/detX|.
Hence, (2.8) becomes

|sk| = |qkk| h̄k
|(H33 − λI)(k|k)|

=
|qkk| h̄k

|det(X11(J11 − λI)Z11)|

=

∣∣h̄k∣∣
|det(J11 − λI) det(X) det(Z11)|

=

∣∣h̄k∣∣
|det(J11 − λI)| |X22| .

Finally, if µ̄ is the geometric mean of the differences between λ and the other eigen-
values of H33,

µ̄ = |det(J11 − λI)|1/(k−1)
,

then

|sk| = h̄k

µ̄k−1 |X22| ,

where X22 is the last component of a right eigenvector corresponding to eigenvalue λ.
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Like q̄k−1, h̄k may be tiny even when no subdiagonal hj+1,j is particularly small.
If λ is well separated from the other eigenvalues H33 in the sense that µ̄k−1 |X22|
is not “too small,” then even a moderately small geometric mean h̄ may make λ a
deflatable eigenvalue.

The above observations apply equally well to all normalized left eigenvectors, but,
of course, not all of them will have tiny first components (except, perhaps, in the case
of a highly ill-conditioned eigenvalue). Suppose H33 is diagonalizable and that m of
the normalized left eigenvectors of H33 have tiny first components. Stack the left
eigenvectors as the rows of a matrix Y with the distinguished set of m vectors on
the bottom. Now, H33 = Y −1DY, where D is the diagonal matrix of eigenvalues. If
H33 = V TV H is a complex Schur decomposition with eigenvalues ordered along the
diagonal of T in the same order as along the diagonal of D, then R = Y V is upper
triangular and R−1Y:,1 = V H

1,: . In particular, the trailing m components of the first
row of V can be bounded in terms of the corresponding components of Y and the
trailing m-by-m principal submatrix of R as

‖V H
k−m+1:k,1‖2 = ‖R−1

k−m+1:k,k−m+1:kYk−m+1:k,1‖2
≤ ‖R−1

k−m+1:k,k−m+1:k‖2‖Yk−m+1:k,1‖2.

By assumption, ‖Yk−m+1:k,1‖2 is tiny. So is ‖V1,k−m+1:k‖2, if ‖R−1
k−m+1:k,k−m+1:k‖2 is

not “too big,” i.e., if no eigenvalue corresponding to the selected m left eigenvectors
is “too ill-conditioned.”

3. Numerical examples. We compared the performance of the large-bulge
multishift QR algorithm [3] and the small-bulge multishift QR algorithm [9, 10] with
and without aggressive early deflation. The test matrices included ad hoc and pseudo-
random Hessenberg matrices of order 500-by-500 to 10,000-by-10,000 and nonrandom
matrices of similar order taken from a variety of applications in science and engineer-
ing [2].

Computational environment. The numerical examples were run on an Ori-
gin2000 computer equipped with 400MHz IP27 R12000 processors and 16 gigabytes
of memory. Each processor uses 32 kilobytes of level 1 instruction cache, 32 kilobytes
of level 1 data cache, and 8 megabytes of level 2 combined instruction and data cache.
For serial execution, the experimental Fortran implementation of the small-bulge mul-
tishift QR algorithm was compiled with version 7.30 of the MIPSpro Fortran 77 com-
piler with options -64 -TARG:platform=ip27 -Ofast=ip27 -LNO. The same options
were used to compile DHSEQR from LAPACK version 2. For parallel execution the -mp
and -pfa options were added. The programs called optimized LAPACK and BLAS
subroutines from the SGI/Cray Scientific Library version 1.2.0.0.

In our computational environment, we observed that the measured serial “cpu
time” of any particular program with its particular data might vary by at most a few
percent. We were fortunate to get exclusive use of several processors for the purpose
of timing parallel benchmark runs.

Except where otherwise mentioned, n-by-n matrices were stored in n-by-n arrays.
We report the floating point execution rate in millions of floating point instruc-

tions per second or “mega-flops” for short. (A trinary multiply-add operation counts
as one instruction although it executes two flops.) For comparison purposes, we
measured the floating point execution rate of the level 3 BLAS matrix-matrix mul-
tiply subroutine DGEMM and triangular matrix multiply subroutine DTRMM from the
SGI/Cray Scientific Library version 1.2.0.0 applied to matrix products similar to those
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that dominate the small-bulge multishift QR algorithm [9, 10]. In serial execution,
in the Origin2000 computational environment described above, DGEMM computes the
product of the transpose of a 200-by-200 matrix times a 200-by-10,000 slab embed-
ded a 10,000-by-10,000 array at roughly 330 mega-flops. It computes the product of
a 10,000-by-200 slab times a 200-by-200 matrix at roughly 325 mega-flops. DTRMM

computes the product of the transpose of a triangular 200-by-200 matrix times a
200-by-10,000 slab at roughly 305 mega-flops if it is an upper triangular matrix and
at roughly 260 mega-flops if it is a lower triangular matrix. DTRMM computes the
product of a 10,000-by-200 slab times a 200-by-200 triangular matrix at roughly 275
mega-flops if it is an upper triangular matrix and at roughly 255 mega-flops if it is a
lower triangular matrix.

Implementation details. We call our experimental Fortran implementation of
the small-bulge multishift QR algorithm without aggressive early deflation TTQR and
with aggressive early deflation TTQRE. As described in [9, 10], the small-bulge multishift
QR algorithm avoids the phenomenon of shift-blurring by chasing a tightly packed
chain of m small bulges [9, 10]. Both TTQR and TTQRE use vigilant small-subdiagonal
deflation [42]. Following EISPACK [36] and LAPACK [1], a Hessenberg subdiagonal
entry hi+1,j is set to zero when |hi+1,i| ≤ ε (|hii|+ |hi+1,i+1|) with ε equal to the unit
roundoff.

The experimental implementation of TTQRE uses both nearby-diagonal deflation
and window-Schur deflation by setting small spike components to zero if either cri-
terion is satisfied. If the early deflation procedure with a k-by-k deflation window
isolates 15k/100 or more eigenvalues, then TTQRE skips the next QR sweep and im-
mediately applies the early deflation procedure again to the remaining unreduced
Hessenberg submatrix. In this way, TTQRE is sometimes able to isolate a great many
eigenvalues without the expense of a QR sweep.

Both TTQR and TTQRE use LAPACK subroutine DHSEQR [1], the conventional large-
bulge QR algorithm, to reduce diagonal subblocks of order no greater than 1.5 times
the number of simultaneous shifts.

For the large-bulge multishift QR algorithm, we use subroutine DHSEQR from LA-
PACK version 2 which is widely recognized to be an excellent implementation. For
the large-bulge multishift QR algorithm with aggressive early deflation, we modified
DHSEQR by inserting aggressive early deflation following the search for small subdiag-
onals. The modified program performs a large-bulge QR sweep only if no deflations
are found. We call the resulting program DHSEQRE.

For reference, Table 2 lists names and short descriptions of the four algorithms.

Choosing shift multiplicity and size of the deflation window. As of this
writing, it is not well understood how best to choose the number of simultaneous shifts
and the size of the deflation window. The relationship between shift multiplicity, defla-
tion window size, and execution time is a complex interaction between the character of
the Hessenberg matrix, the hardware architecture of the computational environment,
and the not-yet-well-understood convergence behavior of aggressive early deflation.
Cache size, cache strategy, and placement of data in machine memory can have a
strong effect on execution time.

In Example 1, we did extensive preliminary experiments to determine good choices
of these parameters for each algorithm. However, these choices may or may not per-
form well on a computer with a different architecture or when applied to Hessenberg
matrices of different character or different order. In Example 2, we did extensive
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Table 2
Names and descriptions of the algorithms in the numerical experiments described in section 3.

Name Description

DHSEQR: The large-bulge multishift QR algorithm [3] using only small-subdiagonal de-
flation as implemented in LAPACK 2.0 [1].

DHSEQRE: The large-bulge multishift QR algorithm [3] using both small-subdiagonal and
aggressive early deflation.

TTQR: The two-tone, small-bulge multishift QR algorithm [9, 10] using only small-
subdiagonal deflation.

TTQRE: The two-tone, small-bulge multishift QR algorithm [9, 10] using both small-
subdiagonal deflation and aggressive early deflation.

preliminary experiments on the order n = 5,000 example only. For the other exam-
ples, the choices are based upon a few preliminary experiments and ad hoc educated
guesses. Consequently, no particular significance should be attached to the shift mul-
tiplicities and deflation window sizes used in this paper.

In the examples reported here, we use a fixed number of simultaneous shifts and
a fixed deflation window size throughout. However, there may be an advantage in
choosing these parameters dynamically as the algorithm progresses.

Example 1. We ran DHSEQR, DHSEQRE, TTQR, and TTQRE on pseudorandomly gen-
erated Hessenberg matrices of various sizes from 500-by-500 to 1,000-by-1,000. We
selected the entries on the diagonal and upper triangle to be normally distributed
pseudorandom numbers with mean zero and variance one. We set the subdiagonal

entry hj,j+1 =
√
χ2
n−j , where χ

2
n−j is selected from a Chi-squared distribution with

n− j degrees of freedom. These pseudorandom Hessenberg matrices have essentially
the same distribution as if a matrix of normally distributed, mean zero, variance
one pseudorandom variables had been reduced to Hessenberg form using [29, Algo-
rithm 7.4.2].

Figure 1 displays the serial execution time, rate of floating point instruction exe-
cution, and hardware count of executed floating point instructions for pseudorandom
Hessenberg test matrices of orders n = 500 to n = 1,000 using the Origin2000 com-
puter described above.

To choose the number of simultaneous shifts and the deflation window size, we
ran preliminary experiments using a wide variety of simultaneous shifts and deflation
window sizes. Good choices of the parameters were usually different for each of
the different algorithms. Even for individual algorithms no single choice minimizes
execution time over the whole range of orders n = 500 to n = 1,000. However, the
following choices result in execution times that are no more than 10% longer than
the minimum that we observed. In Figure 1, DHSEQR uses 6 simultaneous shifts,
DHSEQRE uses 22 simultaneous shifts, and both TTQR and TTQRE use 60 simultaneous
shifts. DHSEQRE uses a 48-by-48 deflation window and TTQRE uses a 90-by-90 deflation
window. (The execution time of no algorithm would be reduced by changing the
number of simultaneous shifts or the deflation window size to the choice used by one
of the other algorithms. For example, reducing the number of simultaneous shifts
used by DHSEQRE to 6 increases its execution time between 10% and 50%. Increasing
the number of simultaneous shifts used by DHSEQR to 22 increases its execution time
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Fig. 1. Serial cpu execution time, rate of floating point instruction execution, and hardware
count of floating point instructions executed by DHSEQR, DHSEQRE, TTQR, and TTQRE computing the
quasi-triangular and orthogonal Schur factors of pseudorandom Hessenberg matrices. In this figure,
DHSEQR uses 6 simultaneous shifts, DHSEQRE uses 22 simultaneous shifts, and both TTQR and TTQRE

use 60 simultaneous shifts. DHSEQRE uses a 48-by-48 deflation window and TTQRE uses a 90-by-90
deflation window.

between 35% and 95%.)

To compare the effects of rounding errors in each of the algorithms, we computed
the relative residual ‖AQ̃−Q̃T̃‖F /‖A‖ and the departure from orthogonality ‖Q̃T Q̃−
I‖F /

√
n, where Q̃ is the computed nearly orthogonal factor and T̃ is the computed

quasi-triangular factor. (The matrix Q̃ would be orthogonal were it not for rounding
errors.) For all tested matrix orders between 500 and 1,000, and for all four algorithms,
the relative residuals and departure from orthogonality lie between 1

2 × 10−14 and
2×10−14. This compares well with the unit roundoff of the finite precision arithmetic
of 2.22× 10−16. As measured by “normwise backward error,” the four algorithms are
empirically numerically stable and of roughly equal accuracy.

Figure 1 demonstrates that aggressive early deflation is effective at reducing both
the execution time and the number of floating point instructions executed by both
the large- and small-bulge multishift QR algorithm. In addition, the level 3 BLAS
based small-bulge multishift QR algorithm used by TTQR and TTQRE [9, 10] maintains
a relatively high rate of execution of floating point instructions compared to the level 2
BLAS based large-bulge QR algorithm used by DHSEQR and DHSEQRE.
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Fig. 2. Serial cpu execution time of and floating point instructions executed by DHSEQR, DHSEQRE,
TTQR, and TTQRE computing both the orthogonal and quasi-triangular factor of the Schur decomposi-
tion of pseudorandom Hessenberg matrices. The same data is displayed on linear and semilog plots.
In this figure, both DHSEQR and DHSEQRE use 8 simultaneous shifts. DHSEQRE uses a 150-by-150 defla-
tion window. TTQR uses 150 simultaneous shifts per QR sweep. TTQRE uses 200 simultaneous shifts
with a 450-by-450 deflation window. Computational costs for the reduction to Hessenberg form are
not included.

Example 2. We repeated the previous numerical experiment using pseudoran-
dom Hessenberg matrices of orders between n = 5,000 and n = 10,000.

To choose the number of simultaneous shifts and the deflation window size, we
ran preliminary experiments on pseudorandom matrices of order n = 5,000 using a
wide variety of choices of these parameters. The following choices yield the minimum
execution times that we observed for the order n = 5,000 test matrix. In Figure 2,
both DHSEQR and DHSEQRE use 8 simultaneous shifts. TTQR uses 150 simultaneous
shifts, and TTQRE uses 200 simultaneous shifts. DHSEQRE used a 150-by-150 deflation
window, and TTQRE used a 450-by-450 deflation window.

In this example, TTQR and TTQRE execute between 240 and 280 million floating
point instructions per second (counting a trinary multiply-add operation as one in-
struction) with an average of 260 and 270, respectively. There is no obvious trend
in the execution rates. The rate of floating point instruction execution by DHSEQR

gradually declines from 100 million floating point instructions per second for the
5,000-by-5,000 example down to 80 million floating point instructions per second for
the 10,000-by-10,000 example. The rate of floating point instruction execution by
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Fig. 3. Serial execution time, number of floating point instructions executed, and floating
point execution rate of DHSEQR, DHSEQRE, TTQR, and TTQRE computing both the orthogonal and quasi-
triangular factor of the Schur decomposition of matrices of the form of (1.1). The two algorithms
DHSEQRE and TTQRE perform essentially identical operations, so their graphs coincide. DHSEQR uses 6
simultaneous shifts. TTQR uses 150 simultaneous shifts. Both DHSEQRE and TTQRE use a tiny 10-by-10
deflation window. (Similar results are obtained using larger deflation windows.)

DHSEQRE gradually declines from roughly 160 down to 113 million floating point in-
structions per second.

As n increases from 5,000 to 10,000, DHSEQR took 12 to 20 times longer, DHSEQRE
took 2.6 to 3.5 times longer, and TTQR took 5.5 to 8.8 times longer than TTQRE. In
addition, DHSEQR executed 4.2 to 5.7 times as many, DHSEQRE executed 1.4 to 1.5 times
as many, and TTQR executed 5.5 to 8.1 times as many floating point instructions as
TTQRE.

Example 3. This example shows aggressive early deflation at its best. Figure 3
displays serial execution time and hardware count of executed floating point instruc-
tions for DHSEQR, DHSEQRE, TTQR, and TTQRE applied to matrices of the form of (1.1)
of orders n = 1,000 to n = 10,000. DHSEQR uses 6 simultaneous shifts. TTQR uses 150
simultaneous shifts. Both DHSEQRE and TTQRE use a tiny 10-by-10 deflation window.
(Similar results are obtained using larger deflation windows.)

In this example, DHSEQRE and TTQRE complete the Schur decomposition in 0.04%
to 0.5% of the execution time used by DHSEQR and in 0.25% to 1% of the execution
time used by TTQR. TTQR maintains a floating point execution rate of over 250 million
floating point instructions per second throughout. Execution rates for the other three
programs drop from roughly 120 million floating point instructions per second for the
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Fig. 4. Serial execution times of DHSEQR, DHSEQRE, TTQR, and TTQRE computing the orthogonal
and quasi-triangular factor of the Schur decompositions of 20 non-Hermitian eigenvalue selected
from [2]. The numbers along the bottom edge of the bar graphs correspond to the numbers in the
left-hand column of Table 3. Both DHSEQR and DHSEQRE use 6 simultaneous shifts. DHSEQRE uses a
50-by-50, 100-by-100, or 150-by-150 deflation window when the order n of the test matrix falls in
the range 1,000 ≤ n < 2,000, 2,000 ≤ n < 4,000, and 4,000 < n, respectively. TTQR uses 60, 116,
150, or 180 simultaneous shifts when the order n of the text matrix falls in the range 1,000 ≤ n <
2,000, 2,000 ≤ n < 2,500, 2,500 ≤ n < 4,000, and 4,000 ≤ n, respectively. TTQRE uses 90, 120, 180,
240, or 270 simultaneous shifts when the order n of the test matrix falls in the range 1,000 ≤ n <
2,000, 2,000 ≤ n < 2,500, 2,500 ≤ n < 4,500, 4,500 ≤ n < 7,000, and 7,000 < n, respectively. As
usual, TTQRE uses a deflation window of order 1.5 times the number of simultaneous shifts. (The
execution time of the reduction to Hessenberg form is not included.)

n = 1,000 example down to roughly 75 million floating point instructions per second
for the n = 10,000 example.

The remarkable performance of DHSEQRE and TTQRE is due entirely to aggressive
early deflation. In our experimental implementation of aggressive early deflation, if
more than a few eigenvalues are isolated, then TTQRE and DHSEQRE skip the next QR
sweep and immediately apply aggressive early deflation to the remaining unreduced
Hessenberg submatrix. In this way, TTQRE and DHSEQRE complete the entire Schur
decomposition of (1.1) without once performing a multishift QR sweep outside of
a deflation window! This explains why DHSEQRE and TTQRE show nearly identical
execution time and floating point instruction count. It also explains TTQRE’s unchar-
acteristically low floating point execution rate. Most of its level 3 BLAS operations
lie in the unexecuted small-bulge multishift QR sweep.
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Fig. 5. Hardware count of floating point instructions executed by DHSEQR, DHSEQRE, TTQR, and
TTQRE computing the orthogonal and quasi-triangular factor of the Schur decompositions of 20 non-
Hermitian eigenvalue problems selected from [2]. The numbers along the bottom edge of the bar
graphs correspond to the numbers in the left-hand column of Table 3. Both DHSEQR and DHSEQRE use
6 simultaneous shifts. DHSEQRE uses a 50-by-50, 100-by-100, or 150-by-150 deflation window when
the order n of the test matrix falls in the range 1,000 ≤ n < 2,000, 2,000 ≤ n < 4,000, and 4,000
< n, respectively. TTQR uses 60, 116, 150, or 180 simultaneous shifts when the order n of the text
matrix falls in the range 1,000 ≤ n < 2,000, 2,000 ≤ n < 2,500, 2,500 ≤ n < 4,000, and 4,000
≤ n, respectively. TTQRE uses 90, 120, 180, 240, or 270 simultaneous shifts when the order n of
the test matrix falls in the range 1,000 ≤ n < 2,000, 2,000 ≤ n < 2,500, 2,500 ≤ n < 4,500, 4,500
≤ n < 7,000, and 7,000 < n, respectively. As usual, TTQRE uses a deflation window of order 1.5
times the number of simultaneous shifts. (Floating point instructions executed during the reduction
to Hessenberg form are not included.)

It is easy to show that in examples like this, if aggressive early deflation eliminates
the need for all or nearly all multishift QR sweeps, the amount of arithmetic work
needed to compute the n-by-n Hessenberg Schur decomposition grows as O(n2).

Example 4. Figures 4 and 5 display the serial execution times and hardware
count of executed floating point instructions of DHSEQR, DHSEQRE, TTQR, and TTQRE

applied to the real non-Hermitian eigenvalue problems from the NEP collection [2]
that are listed in Table 3. Each set of four bars in Figures 4 and 5 is labeled at the
bottom by the number of the corresponding test matrix in Table 3. Summaries of the
applications, descriptions of the matrices, and references can be found in [2].

To avoid cache conflicts, each n-by-n matrix is stored in an (n + 7)-by-(n + 7)
array. Both DHSEQR and DHSEQRE use 6 simultaneous shifts. DHSEQRE uses a 50-by-50,
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Table 3
Matrices selected from the collection of non-Hermitian eigenvalue problems [2]. The numbers

along the bottom edge of the bar graphs in Figures 4 and 5 correspond to the numbers in the left-hand
column.

Acronym Order n Discipline
1 OLM1000 1,000 Hydrodynamics
2 TUB1000 1,000 Computational fluid dynamics
3 TOLS1090 1,090 Aeroelasticity
4 RDB1250 1,250 Chemical engineering
5 RDB1250L 1,250 Chemical engineering
6 BWM2000 2,000 Chemical engineering
7 OLM2000 2,000 Hydrodynamics
8 TOLS2000 2,000 Aeroelasticity
9 DW2048 2,048 Electrical engineering
10 RDB2048 2,048 Chemical engineering
11 RDB2048L 2,048 Chemical engineering
12 PDE2961 2,961 Partial differential equations
13 MHD3200A 3,200 Plasma physics
14 MHD3200B 3,200 Plasma physics
15 RDB3200L 3,200 Chemical engineering
16 TOLS4000 4,000 Aeroelasticity
17 MHD4800A 4,800 Plasma physics
18 MHD4800B 4,800 Plasma physics
19 OLM5000 5,000 Hydrodynamics
20 RW5151 5,151 Probability
21 DW8192 8,192 Electrical engineering

100-by-100, or 150-by-150 deflation window when the order n of the test matrix falls
in the range 1,000 ≤ n < 2,000, 2,000 ≤ n < 4,000, and 4,000 < n, respectively. TTQR
uses 60, 116, 150, or 180 simultaneous shifts when the order n of the text matrix
falls in the range 1,000 ≤ n < 2,000, 2,000 ≤ n < 2,500, 2,500 ≤ n < 4,000, and
4,000 ≤ n, respectively. TTQRE uses 90, 120, 180, 240, or 270 simultaneous shifts when
the order n of the test matrix falls in the range 1,000 ≤ n < 2,000, 2,000 ≤ n < 2,500,
2,500 ≤ n < 4,500, 4,500 ≤ n < 7,000, and 7,000 < n, respectively. As usual, TTQRE
uses a deflation window of order 1.5 times the number of simultaneous shifts.

In Figure 4 the median ratio of DHSEQRE’s execution time to DHSEQR’s execution
time is .58. The median ratio of TTQR’s execution time to DHSEQR’s execution time is
.56. The median ratio of TTQRE’s execution time to DHSEQR’s execution time is .23.

Matrix number 21 in Table 3, DW8192, is not reported in Figures 4 and 5 only
because the execution times are out of scale with the other reported times. In the
Origin2000 computational environment described above, DHSEQR calculates the Schur
decomposition (including both quasi-triangular and orthogonal factors) of the Hes-
senberg matrix derived from DW8192 in 544 cpu minutes; DHSEQRE uses 300 minutes;
TTQR uses 301 cpu minutes; and TTQRE uses 120 cpu minutes.

Example 5. Our experimental implementation of TTQRE is not well tuned for
parallel computation. However, it does make heavy use of the level 3 BLAS (par-
ticularly matrix-matrix multiply), so it is not surprising to observe modest but not
insignificant speedups when the experimental version of TTQRE is compiled for parallel
execution and linked with parallel versions of the BLAS.

Figure 6 displays wall clock execution times and parallel speedups for TTQRE

applied to the pseudorandom Hessenberg matrices described in Example 1. (Parallel
speedup is the ratio T1/Tp, where T1 is the 1 processor wall clock execution time and Tp
is the p-processor wall clock execution time.) We were fortunate to get exclusive use of
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Fig. 6. Wall clock execution time and parallel speedups of TTQRE computing both the orthogonal
and quasi-triangular factor of the Schur decomposition of pseudorandom Hessenberg matrices. (The
execution time of the reduction to Hessenberg form is not included.)

several processors for the purpose of timing parallel benchmark runs. In this example,
TTQRE uses 150 simultaneous shifts along with a 226-by-226 deflation window. To
avoid cache conflicts, some n-by-n matrices were stored in (n+ 1)-by-(n+ 1) arrays.

The parallel speedups in Figure 6 are modest. For a 5,000-by-5,000 pseudorandom
Hessenberg matrix, TTQRE computes the quasi-triangular and orthogonal Schur factors
in approximately 9% of the time needed by DHSEQR. With four processor parallelism
execution time drops to only 4%. For a 10,000-by-10,000 pseudorandom Hessenberg
matrix, TTQRE computes the quasi-triangular and orthogonal Schur factors in approx-
imately 7% of the time needed by DHSEQR. With four processor parallelism execution
time drops to only 2%.

Our experimental implementation of TTQRE has one or more serial bottle necks.
The worst of these can be traced to the “near diagonal” portion of the small-bulge
multishift QR algorithm [9, 10]. A tuned production version of TTQRE that is designed
for parallel computation is in progress.

A similar numerical experiment using TTQR with a figure showing parallel execu-
tion times and speedups appears in [9].

4. Conclusion. Aggressive early deflation recognizes converged eigenvalues be-
fore classical small-subdiagonal deflation would. In experiments with random Hes-
senberg matrices and with Hessenberg matrices from a variety of engineering and
scientific applications [2], it significantly reduces both the number of floating point
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instructions and the execution time needed by both the large- and small-bulge mul-
tishift QR algorithm. Sometimes, aggressive early deflation reduces execution time
from hours down to minutes. In experiments with n-by-n Hessenberg matrices of the
form of (1.1), aggressive early deflation computes the Schur decomposition using only
O(n2) flops.

Aggressive early deflation is both theoretically and empirically “normwise” back-
ward numerically stable.

Although aggressive early deflation is effective in combination with conventional
QR algorithms, the combination of aggressive early deflation with the two-tone, small-
bulge multishift QR algorithm [9, 10] takes advantage of the capabilities of advanced
architecture computers to sustain a high floating point instruction execution rate and
attain at least modest parallel speedups.

Acknowledgment. The authors would like to thank David Watkins for helpful
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Abstract. In recent years there has been a growing interest in the dynamics of matrix differen-
tial systems on a smooth manifold. Research effort extends to both theory and numerical methods,
particularly on the manifolds of orthogonal and symplectic matrices. This paper concerns dynamical
systems on the manifold OB(n) of square oblique rotation matrices, a constraint appearing in some
minimization problems and in multivariate data analysis. Background and theoretical results on dif-
ferential equations on OB(n) are provided. Moreover, numerical procedures preserving the structure
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1. Introduction. In recent years there has been a growing interest in study-
ing matrix differential systems whose solutions evolve on a smooth manifold such as
the manifold of orthogonal or symplectic matrices (see, for instance, [3], [4], [8], [9],
[19]). In this paper we consider, both theoretically and numerically, matrix differential
systems on the manifold of square oblique rotation matrices

OB(n) = {Y ∈ R
n×n|diag(Y TY ) = In, and det(Y ) �= 0},

i.e., the open set of nonsingular matrices Y satisfying the constraint diag(Y TY ) = In,
where In is the n× n identity matrix. An example of a matrix differential system on
OB(n) is that associated with the minimization problem

min α‖AY −B‖F + β‖XY −T − Z‖F
subject to Y ∈ OB(n),(1.1)

where A,B,X,Z are given matrices of dimension n, α and β are known nonnegative
weights, and ‖·‖F denotes the Frobenius norm on matrices (see [17], [21]). This prob-
lem is known as the oblique Procrustes problem (hereafter ObPP(α, β)). If α = 1
and β = 0, we obtain the so-called classical ObPP(1, 0), which is a frequent prob-
lem in different areas of multivariate data analysis as, for example, factor analysis
for common-factor extraction and multidimensional scaling techniques (see [7], [12],
[18]). An advantageous feature of ObPP(1,0) is that it is equivalent to n independent
minimization problems on the unit sphere Sn−1 in R

n, i.e., it can be transformed
into n separate problems for each column of Y . Similarly, ObPP(0, 1) is known as
the oblique Procrustes rotation problem to the specified factor-pattern matrix (see
[1], [18]). With α and β both different from zero, ObPP(α, β) is a generalization of
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ObPP(1, 0) and ObPP(0, 1) that does not possess an explicit solution. Because of the
inverse in the second term of (1.1), separation into n independent minimization prob-
lems is not possible. Therefore, as pointed out in [21] and [22], for solving ObPP(α, β)
the use of a matrix approach is suggested.

In this paper we shall consider the general case where problems on OB(n) cannot
be separated into a set of n independent problems on the unit sphere. We propose a
flow approach to tackle the problems.

The remainder of this paper is organized as follows. In section 2, we provide some
background information on differential systems on OB(n), emphasizing the existence
of the solution and its conditioning. Note that it is possible that the solution of a
flow on OB(n) will converge to a singular matrix. We define the conditioning of a
problem on OB(n) and derive an upper bound on the associated condition number
as a function of time. In section 3, we focus our attention on the numerical solution
of problems on OB(n). The constraint diag(Y TY ) = In is equivalent to a set of n
quadratic conservation laws on the column of Y ; hence any numerical method that
preserves the obliqueness must first preserve the quadratic. For this reason we look
for obliqueness preserving methods among known quadratic integrators. We point
out that quadratic preserving methods such as Lie group schemes in [9] and [16] do
not correctly solve equations on OB(n) with respect to the constraint. However,
Gauss–Legendre Runge–Kutta methods and projection on the manifold OB(n) of
every explicit one-step or multistep method have good preservation properties. In
the last section, we present several numerical tests together with numerical results for
problems in ObPP(1, 1).

2. Background. Assume Y ∈ OB(n) and denote by TYOB(n) the tangent space
at Y . Clearly

TYOB(n) = {H ∈ R
n×n|diag(Y TH) = 0} ⊂ R

n×n.

Observe that the linear space

SK(n) = {F ∈ R
n×n|diag(F ) = 0}

is the tangent space at the identity matrix.
Let G : R×R

n×n → R
n×n be a continuous and locally Lipschitz matrix function

on the set D = (γ, ω)×W, where (γ, ω) is an open interval in R andW is a subdomain
of OB(n), and let (t0, Y0) ∈ D. Then the differential system

Y ′(t) = G(t, Y (t)), Y (t0) = Y0 ∈ OB(n)(2.1)

has a unique solution Y (t) defined in a neighborhood (τ−, τ+) of t0. It is known
that Y (t), τ−, and τ+ depend on (t0, Y0) (see [23]). In the following we assume that
(τ−, τ+) denotes the maximal interval of existence of the solution Y (t).

Theorem 2.1. Let Y (t) be a solution of the system (2.1). Suppose that Y (t) ∈
OB(n) for all t ∈ (τ−, τ+). Then the matrix function G(t, Y (t)) may be written as

G(t, Y (t)) = H(t, Y (t))− Y (t)diag[Y T (t)H(t, Y (t))],(2.2)

where H : R× R
n×n → R

n×n is a suitable matrix function.
Proof. To prove the relation (2.2) we essentially use a result derived in [5]. The

constraint diag(Y TY ) = I is equivalent to n constraints yTi yi = 1 for i = 1, . . . , n on
the columns of Y . This means that, if Y (t) ∈ OB(n), then each column Gi(t, Y (t))
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of the matrix function G(t, Y (t)) is necessarily tangent to the unit sphere Sn−1, that
is, 〈Gi(t, Y (t)), yi(t)〉 = 0. This feature may be exploited in order to transform a flow
on OB(n) into a sequence of flows on Sn−1. In particular, the ith column yi(t) of the
matrix solution Y (t) must satisfy the differential equation

y′i(t) = Hi(t, Y (t))− 〈Hi(t, Y (t)), yi(t)〉yi(t), i = 1, . . . , n,(2.3)

where the vector function Hi(t, Y (t)) is given by

Hi(t, Y (t)) = Gi(t, Y (t)) + αiyi(t)(2.4)

with αi ∈ R. Since 〈Gi(t, Y (t)), yi(t)〉 = 0 and 〈yi(t), yi(t)〉 = 1, it follows that
αi = 〈Hi(t, Y (t)), yi(t)〉 (see [5]) and this proves the theorem.

If the ith column of the matrix H(t, Y (t)) depends only on the vector yi(t), i.e.,
Hi(t, Y (t)) = Hi(t, yi(t)), then (2.3) becomes a set on n independent ODEs on Sn−1.
When (2.3) is not separable, one can approximate Hi(t, Y (t)) with a vector function
depending on yi(t) only, but this approximation provides a differential problem with
a larger condition number function.

Observe that since Y ∈ OB(n) is a nonsingular matrix, G ∈ TYOB(n) if and
only if G = Y −TF with F ∈ SK(n). Then the following characterization of ma-
trix differential systems on the manifold of square oblique rotation matrices may be
derived.

Theorem 2.2. Let Y (t) be the solution of (2.1) on the existence interval (τ−, τ+).
Then Y (t) belongs to OB(n) for all t ∈ (τ−, τ+) if and only if

F (t, Y (t)) = Y T (t)G(t, Y (t)), t ∈ (τ−, τ+),(2.5)

is a continuous and locally Lipschitz matrix function mapping OB(n) onto SK(n).
Proof. Let Y (t) be the solution of (2.1); then

d

dt
[Y T (t)Y (t)] =

(
d

dt
Y T (t)

)
Y (t)+Y T (t)

(
d

dt
Y (t)

)
= GT (t, Y (t))Y (t)+Y T (t)G(t, Y (t)),

and, therefore,

d

dt
diag(Y T (t)Y (t)) = diag[GT (t, Y (t))Y (t) + Y T (t)G(t, Y (t))], t ∈ (τ−, τ+).

Thus, if Y (t) ∈ OB(n), then

diag[GT (t, Y (t))Y (t) + Y T (t)G(t, Y (t))] = 0, t ∈ (τ−, τ+).

The matrixG(t, Y (t)) must belong to TY (t)OB(n), i.e., the matrix function F (t, Y (t)) =
Y T (t)G(t, Y (t)) is such that diag(F (t, Y (t))) = 0. It follows that F (t, Y (t)) ∈ SK(n)
for all t ∈ (τ−, τ+).

Conversely, consider the differential system

Y ′(t) = G(t, Y (t)), Y (t0) = Y0 ∈ OB(n)(2.6)

and the associated differential system

Y ′(t) = G(t, Q(Y (t))), Y (t0) = Y0 ∈ OB(n),(2.7)
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where F (t, Y (t)) = Y T (t)G(t, Y (t)) is a continuous, locally Lipschitz matrix function
mapping elements of OB(n) into SK(n) and Q : R

n×n → OB(n) is a continuous
projection of Y on OB(n). Let Y (t) be the solution of (2.7); then

d

dt
[Y T (t)Y (t)] = GT (t, Q(Y (t)))Y (t) + Y T (t)G(t, Q(Y (t))).

Since F (t, ·) maps elements of OB(n) into SK(n), the solution of (2.7) belongs to
OB(n) for all t in the existence interval. Therefore Q(Y (t)) = Y (t) and the differential
system (2.7) is equivalent to (2.6).

A dynamical system on OB(n) can therefore be written in the following form:

Y ′(t) = Y −T (t)F (t, Y (t)), Y (t0) = Y0 ∈ OB(n), t ∈ (τ−, τ+),(2.8)

where F is a continuous and locally Lipschitz matrix function, such that

F : R×OB(n)→ SK(n).(2.9)

Remark. We mention that an example of a dynamical system on OB(n) has arisen
from the oblique Procrustes problem. It has been proven in [21], using projected
gradient flow theory, that the solution of ObPP(α, β) can be computed as the limit
point of a matrix differential system on OB(n) of the form (2.1) with

G(Y ) = Y −T off[β(XY −T − Z)TXY −T − αY TAT (AY −B)],(2.10)

where off(·) is the matrix operator defined as off(A) = A− diag(A).
Note that when the matrix solution Y (t) of (2.1) evolves onOB(n), it is a bounded

matrix function for all t in the maximal existence interval (τ−, τ+). Thus if the escape
point τ+ is a finite value, then Y (t) tends to the boundary of the manifold for t→ τ+,
i.e., Y (t) converges to a singular matrix for t→ τ+.

The value of the escape point τ+ depends on the matrix function G(t, Y ) =
Y −TF (t, Y ). If G(t, Y ) is well defined at all matrices Y of R

n×n, then τ+ = ∞;
otherwise τ+ is a finite value. For instance, if F (t, Y ) is constant for all (t, Y ), then
G is not well defined at all singular matrices. In this case G will be a continuous and
locally Lipschitz matrix function only in neighborhoods of nonsingular initial matrices,
so that the solution Y (t) exists only on finite neighborhoods of t0 and approaches a
singular matrix for t→ τ+.

Example 2.3. The differential system

Y ′ = Y −T

(
0 − δ

2

− δ
2 0

)
, Y (0) =

1√
2


 1 −1

1 1


 , with δ �= 0,(2.11)

has a solution given by

Y (t) =
1√
2



√
1 + δt −√1 + δt

√
1− δt

√
1− δt


 ,

which exists and belongs to OB(n) in the neighborhood (−1/δ, 1/δ) of t0 = 0. In
this case the matrix function G(Y ) exists and is a continuous and Lipschitz matrix
function only in a neighborhood of Y (0).
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As shown in Example 2.3 differential problems on OB(n), the condition number
of the solution of a certain differential equation on OB(n) may become unbounded.
For this reason, the following result may be very useful.

Theorem 2.4. Let Y (t) be the solution of the differential system (2.8) and
suppose that ∥∥∥∥

∫ t

t0

[FT (s, Y (s)) + F (s, Y (s))]ds

∥∥∥∥ ≤ g(t), t ∈ [t0, τ
+),(2.12)

where g is a continuous nonnegative function such that g(t0) = 0 and ‖ · ‖ is the 2-
norm on matrices. Let λmax(t0) and λmin(t0) be, respectively, the largest and smallest
strictly positive eigenvalues of Y T

0 Y0. Let σ be the largest value of the interval [t0, τ
+)

such that

λmin(t0)− g(t) > 0, t ∈ [t0, σ).(2.13)

Then the condition number function µ(t) in the 2-norm of the solution Y (t) satisfies

µ(t) ≤
√
λmax(t0) + g(t)

λmin(t0)− g(t)
, t ∈ [t0, σ).(2.14)

Proof. The condition number function µ(t) in the 2-norm of Y (t) is the square
root of the ratio between the largest and smallest eigenvalue of the symmetric positive
definite matrix Y T (t)Y (t). This matrix function satisfies the differential equation

d

dt
[Y T (t)Y (t)] = [FT (t, Y (t)) + F (t, Y (t))], Y T (t0)Y (t0) = Y T

0 Y0,(2.15)

whose solution may be written as

Y T (t)Y (t) = Y T
0 Y0 +

∫ t

t0

[FT (s, Y (s)) + F (s, Y (s))]ds, t ∈ (τ−, τ+).(2.16)

From (2.16) and the Bauer–Fike theorem (see [11]), it follows that

min
1≤i≤n

|λi(t0)− λ(t)| ≤
∥∥∥∥
∫ t

t0

[FT (s, Y (s)) + F (s, Y (s))]ds

∥∥∥∥ , t ∈ [t0, τ
+),(2.17)

where λi(t0) for i = 1, . . . , n are the eigenvalues of Y T
0 Y0 and λ(t) is a generic eigen-

value of Y T (t)Y (t). Hence, there exists j ∈ 1, . . . , n such that

|λj(t0)− λ(t)| = min
1≤i≤n

|λi(t0)− λ(t)|, t ∈ [t0, τ
+),

and consequently

λmin(t0)− λ(t) ≤ λj(t0)− λ(t) ≤ |λj(t0)− λ(t)|.
Therefore, from (2.12) and (2.17) we have

λmin(t0)− λ(t) ≤ g(t), t ∈ [t0, τ
+).

In particular, for λ(t) = λmin(t) the smallest eigenvalue of Y T (t)Y (t), we have

λmin(t0) ≤ λmin(t) + g(t), t ∈ [t0, τ
+),(2.18)
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and hence

λmin(t0)− g(t) ≤ λmin(t), t ∈ [t0, τ
+).(2.19)

In the same manner, if λ(t) is replaced by λmax(t) the largest eigenvalue of Y (t)TY (t),
we obtain

λmax(t) ≤ λmax(t0) + g(t), t ∈ [t0, τ
+).(2.20)

Thus, if t ∈ [t0, σ), then the lower bound on λmin(t) in (2.18) becomes strictly pos-
itive. Finally, since µ(t) =

√
λmax(t)/λmin(t), by using (2.18) and (2.20), (2.14)

follows.
Observe that, when F (t, Y ) is a skew-symmetric matrix function, Theorem 2.4

implies that the condition number function µ(t) is constant on the time interval. The
differential problem (2.8) is said to be ill-conditioned when µ(t) is unbounded on the
interval [t0, τ

+); otherwise, it is said to be well-conditioned.
The value σ, given by (2.13), provides a lower bound of the escape point τ+.

The conditioning of a differential problem on OB(n) depends on the function g(t). In
particular, the problem will be ill-conditioned when g(t) approaches λmin(t0) at some
t in [t0, σ).

Example 2.3 has a general implication: Differential systems where F is constant
are typically ill-conditioned. In fact, in this case we may choose g(t) = (t−t0)‖F+FT ‖
for all t ≥ t0, and so g(σ) = λmin(t0) for σ = (t0+λmin(t0))/‖F+FT ‖. Thus the escape
point τ+ may be estimated by σ. Instead, examples of well-conditioned problems are
those satisfying (2.13) for all t in [t0,+∞). These remarks can be summarized in the
following result.

Proposition 2.5. If F (t, Y ) is a constant matrix function, then (2.8) will
be ill-conditioned on [t0, τ

+). Furthermore, if the differential system (2.8) is well-
conditioned on [t0,+∞), then F (t, Y ) is a skew-symmetric or not constant matrix
function.

3. Numerical methods. For the sake of simplicity, we concentrate our atten-
tion on autonomous differential systems, even though the main results derived in this
paper may also be applied to the nonautonomous cases. Let h > 0 be the time step.
Consider a partition of the time interval given by tk+1 = tk + h, and denote by Yk an
approximation of Y (tk) at tk, for k ≥ 0.

As pointed out previously, the constraint diag(Y TY ) = In is equivalent to a set
of n quadratic conservation laws on the columns of Y . We thus look for obliqueness
preserving schemes among integrators on Sn−1. A first negative result is that the
quadratic preserving methods based on Lie group theory (see [9] and [16]) do not pre-
serve the constraint diag(Y TY ) = In. Instead, positive results may be obtained by us-
ing Gauss–Legendre Runge–Kutta methods and projection techniques. We also show
that Gauss–Legendre Runge–Kutta schemes preserve the condition number function
of the solution, i.e., they satisfy a relation like (2.16) at each time step tk. However,
they require very small time steps of integration when Y (t) converges to a singularity
or F (t, Y ) depends on the inverse of Y (t).

3.1. Runge–Kutta methods. Consider the v-stage Runge–Kutta method de-
fined by the Butcher array

c A
b

,(3.1)
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where cT = (c1, . . . , cv), A = (aij), b = (b1, . . . , bv) (see [14]). Applying (3.1) to (2.8)
we get

Yk+1 = Yk + h

v∑
i=1

biY
−T
ki F (Yki),(3.2)

with

Yki = Yk + h

v∑
j=1

aijY
−T
kj F (Ykj), i = 1, . . . , v, k ≥ 0.(3.3)

Definition 3.1. A Runge–Kutta method (3.1) applied to (2.8) is said to be
diagonal preserving if and only if it provides a sequence Yk for k ≥ 0 such that

diag(Y T
k+1Yk+1) = diag(Y T

k Yk), k ≥ 0.(3.4)

Furthermore, it is said to be condition number function preserving if and only if

Y T
k+1Yk+1 = Y T

k Yk + h

v∑
i=1

bi[F (Yki) + FT (Yki)], k ≥ 0.

Finally, it is said to be obliqueness preserving when it is both diagonal and condition
number function preserving.

Concerning the diagonal and conditioning preserving feature of Runge–Kutta
methods, the following result may be trivially derived.

Lemma 3.2. For differential system (2.8) where (2.9) is replaced by

F : R
n×n → SK(n),(3.5)

the Runge–Kutta scheme (3.2)–(3.3) with coefficient matrix

M = (bibj − biaij − bjaji)(3.6)

identically zero preserves both the diagonal and the condition number function along
the solution.

Proof. Consider the numerical solution Yk+1 given by (3.2)–(3.3). By using
techniques similar to those used in quadratic or symplectic methods (see [2], [6], [8],
[10], [20]), we obtain

Y T
k+1Yk+1 = Y T

k Yk + h
∑v

i=1 bi[F
T (Yki) + F (Yki)]

+h2
∑v

i=1

∑v
j=1(bibj − biaij − bjaji)F

T (Yki)Y
−1
ki Y −T

kj F (Ykj).
(3.7)

If the coefficient matrix M is equal to zero, then the Runge–Kutta scheme preserves
the condition number function. Furthermore, since F maps all matrices of R

n×n into
SK(n), then diag[FT (Yki) + F (Yki)] = 0, and hence

diag(Y T
k+1Yk+1) = diag(Y T

k Yk), k ≥ 0;

that is, the Runge–Kutta method is diagonal preserving.
From Lemma 3.2 it follows that no explicit Runge–Kutta method is diagonal pre-

serving, while all v-stage Gauss–Legendre Runge–Kutta methods (denoted by GLv)
possess this property (see [14]).
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Remark. Note that the intermediate values Yki do not lie on OB(n). Thus, if
in Lemma 3.2 the condition on the function F is replaced with (2.9), it follows that
F (Yki) does not belong to SK(n) and hence GLv are not diagonal preserving. In this
case we can apply the following projected version of GLv (denoted by PGLv):

Yk+1 = Yk + h

v∑
i=1

biY
−T
ki P[F (Yki)],(3.8)

Yki = Yk + h

v∑
j=1

aijY
−T
kj P[F (Ykj)], i = 1, . . . , v,(3.9)

where the projection of F onto SK(n) is given by

P(F ) = F − diag(F ).

Obviously the PGLv method is diagonal preserving and it has the same order of
accuracy of GLv. In fact, PGLv is equivalent to GLv applied to the differential
problem

Z ′ = Z−TP[F (Z)], Z(t0) = Y0 ∈ OB(n),

which is equivalent to (2.8). A cheaper procedure may be derived by substituting
(3.9) into (3.3). This method will be denoted by WPGLv.

It is known that a cheap way to solve the nonlinear system associated with (3.3)
is the functional fixed-point iteration scheme, yielding

Y
(m+1)
kl = Yk + h

v∑
j=1

alj(Y
(m)
kj )−TF (Y

(m)
kj ), l = 1, . . . , v,(3.10)

with initial guess given by Y
(0)
kl = Yk for l = 1, . . . , v and stopping criteria

∥∥∥∥Y (m+1)
kl − Yk − h

v∑
j=1

alj [Y
(m+1)
kj ]−TF (Y

(m+1)
kj )

∥∥∥∥ < tol, l = 1, . . . , v.

We illustrate the scheme by considering the implicit midpoint rule (GL1) where at
every step k the nonlinear system to be solved is

H(Z) = Z − Yk − h

2
Z−TF (Z) = 0,(3.11)

while the functional iteration may be written as

Z(m+1) = Yk +
h

2
[Z(m)]−TF (Z(m)) for m ≥ 0,(3.12)

with Z(0) = Yk.
Theorem 3.3. Let L1 be the Lipschitz constant of F with respect to Y on a

domain D and assume that there exists a constant L2 such that

for all Y ∈ D : ‖F (Y )‖ ≤ L2.(3.13)
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Let Z be the solution of the nonlinear system (3.11) and suppose that the functional
iteration (3.12) provides approximations Z(m) of Z such that

‖[Z(m)]−1‖ ≤ L3‖Z−1‖, m ≥ 0,(3.14)

where L3 is a positive constant independent of m. Then the functional iteration (3.12)
converges if the time step h is such that

h <
2

L3‖Z−1‖{L1 + L2‖Z−1‖} .(3.15)

Proof. From (3.11) and (3.12) we have

Z(m+1) − Z =
h

2
{[Z(m)]−TF (Z(m))− Z−TF (Z)}

=
h

2
{[Z(m)]−T [F (Z(m))− F (Z)] + ([Z(m)]−T − Z−T )F (Z)}

=
h

2
{[Z(m)]−T [F (Z(m))− F (Z)] + [Z(m)]−T (ZT − [Z(m)]T )Z−TF (Z)}.

Since the 2-norm of a matrix is equal to the 2-norm of its transpose, it follows that

‖Z(m+1) − Z‖ ≤ h
2 ‖Z(m) − Z‖‖[Z(m)]−1‖{L1 + L2‖Z−1‖}

≤ h
2 ‖Z(m) − Z‖L3‖Z−1‖{L1 + L2‖Z−1‖},

and if (3.15) is satisfied, the convergence follows.
From (3.15), it follows that the functional iteration needs very small time steps

of integration near a singularity of the solution Y . Furthermore, even if the matrix
solution Y does not approach a singularity, but if F (Y ) depends on the inverse of
the matrix solution Y , then the constants L1 and L2 may grow with ‖Y −1‖. This
means that h may be very small also for problems with ‖Y −1‖ of moderate size. For
instance, in the case of ObPP(1, 1), the quotient appearing in (3.15) is O(‖Z−1‖4).

Remark. A step-size selection strategy may be considered where the value of h
is reduced until the functional iteration converges, that is, until the new value hnew
satisfies (3.15). This reduction may be stopped when hnew becomes smaller than a
prefixed lower bound.

A more accurate reformulation for the fixed-point iterations in the implicit Runge–
Kutta methods may be used in order to reduce the influence of round-off errors and
improve convergence (see [15] for details).

3.2. Projected methods. In the same spirit as the work in [8] where projected
methods on the orthogonal manifold have been proposed, we can consider numerical
procedures based on projecting on OB(n) of the numerical solution of (2.8) obtained
by any explicit Runge–Kutta or multistep method onto OB(n). A projection Y of a
matrix Q on OB(n) is given by the closest oblique rotation in the least square sense,
i.e.,

Y = Qdiag(QTQ)−
1
2 ,(3.16)



ODEs ON MANIFOLD OF SQUARE OBLIQUE ROTATION MATRICES 983

with

‖Q− Y ‖ ≤ ‖Y ‖‖I − diag(QTQ)
1
2 ‖.

This projection may be used in conjunction with one-step or multistep explicit schemes
in order to obtain a semi-implicit procedure where no iteration is required. In partic-
ular, given Yk ∈ OB(n), first we compute Ỹk+1 by the explicit Runge–Kutta method

Ỹk+1 = Yk + h

v∑
i=1

biY
−T
ki F (Yki),

Yki = Yk + h

i−1∑
j=1

aijY
−T
kj F (Ykj), i = 1, . . . , v.

(3.17)

Then we project Ỹk+1 on OB(n); that is, we compute

Yk+1 = Ỹk+1diag(Ỹ
T
k+1Ỹk+1)

− 1
2 .(3.18)

If the basic Runge–Kutta method is of order p, we have

diag(Ỹ T
k+1Ỹk+1) = I +D(hp),(3.19)

where D(hp) is a diagonal matrix with elements that are O(hp). Therefore, we have

Ỹk+1 − Yk+1 = Yk+1[I − diag(Ỹ T
k+1Ỹk+1)

1
2 ] = Yk+1[I − (I +D(hp))

1
2 ].

Hence, ‖Ỹk+1−Yk+1‖ = O(hp) implies that the projected method is of the same order
as that of the basic Runge–Kutta scheme. Furthermore, from (3.18) it follows that

Y T
k+1Yk+1 = [diag(Ỹ T

k+1Ỹk+1)
− 1

2 ]T Ỹ T
k+1Ỹk+1diag(Ỹ

T
k+1Ỹk+1)

− 1
2 .

By (3.19), we have

Y T
k+1Yk+1 = Ỹ T

k+1Ỹk+1 +O(hp),

with

Ỹ T
k+1Ỹk+1 = Y T

k Yk + h

v∑
i=1

bi[F
T (Yki) + F (Yki)]

+h2

v∑
i=1

v∑
j=1

(bibj − biaij − bjaji)F
T (Yki)Y

−1
ki Y −T

kj F (Ykj).

Since the matrix M of an explicit Runge–Kutta method cannot be the zero matrix,
the last term in the previous equality does not vanish. Therefore a projected Runge–
Kutta method is not condition number function preserving.

Observe that in a step-size selection strategy to control the local truncation error,
the new time step hnew must satisfy the relation

hnew ≤
(

θε

h‖r(tk, Yk)‖
) 1

p+1

,(3.20)
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where θ is a safety factor, ε is the local truncation error bound, and

r(tk, Yk) =

v̂∑
i=1

(bi − b̂i)Y
−T
ki F (Yki),

where the b̂i denote the coefficients of a Runge–Kutta method of order p + 1. From
(3.20) it follows that very small time steps will be required for solving differential
problems which are ill-conditioned or where F (Y ) depends on Y −1.

4. Numerical tests. All the numerical tests have been obtained by Matlab
codes implemented on a scalar computer Alpha 200 5/433 with 512 Mb RAM. We
compare obliqueness preserving methods on different problems. Comparisons have
been performed in terms of accuracy (measured by ‖Y (tk) − Yk‖∞ with ‖ · ‖∞ the
infinity norm on matrices), deviation from the manifold OB(n) (measured by Ω(Yk) =
‖I − diag(Y T

k Yk)‖F ), and CPU time. The theoretical solution Y (tk), if unknown, has
been estimated applying the numerical method with a half step-size. We denote by
PRKv and PABv the projected methods of section 3.2 based on explicit Runge–Kutta
and Adams–Bashforth methods of order v, respectively. The starting approximations
for PABv have been obtained by a Runge–Kutta method of the same order. GLv
have been implemented solving the nonlinear system (3.3) by functional iteration
with tolerance tol = 10−15.

Example 4.1. First, we consider differential problem (2.8) with constant matrix
function

F =


 0 2/3 1

1 0 8/5
−3 5/4 0




and initial condition Y0 given by the identity matrix. Figure 4.1 (a) plots the behavior
of the function g(t) = ‖FT + F‖t in the interval [0, σ), where σ ≈ 0.2280 is the
intersection point of g(t) and λmin(0).
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Fig. 4.1. Conditioning of Example 4.1.

Figure 4.1 (b) plots the behavior of the condition number function obtained by
GL1 applied on [0, σ) with the variable step-size strategy described at the end of
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Table 4.1

Method CPU time Ω(Yk) Global error µ(t)
GL1 0.5000 1.1957e-15 0.0016 48.4875

PRK2 0.1167 2.2204e-16 0.0031 50.4054
PAB2 0.0667 2.2402e-16 0.0080 52.4978

GL2 0.5500 1.4603e-15 5.4116e-08 49.1144
PRK4 0.2000 2.2204e-16 1.0151e-07 49.1144
PAB4 0.1060 2.4825e-16 4.1564e-06 49.1161

0 0.5 1 1.5 2 2.5 3 3.5
10

0

10
1

10
2

10
3

10
4

Time

Lo
g(

µ(
Y

(t
k))

)

Fig. 4.2. Condition number function of second order methods.

subsection 3.1, where the value of h is the largest value for which the functional
iteration converges. It can be observed that the condition number function increases
near the singularity of the solution.

Example 4.2. We consider the nonautonomous differential system Y ′(t) =
Y −T (t)F (t) for t ∈ [0.1, 3], where the matrix function F (t) is given by

F (t) =




0
t2 − t

√
t2 + 3

(t2 + 4)3/2
√
t4 + 4t2 + 3

t−√t2 + 3

(1 + t2)3/2
√
t2 + 4

0




and the theoretical solution is the matrix function

Y (t) =


 (t2 + 1)−1/2 (t2 + 4)−1/2

t(t2 + 1)−1/2 (t2 + 3)1/2(t2 + 4)−1/2


 .

Table 4.1 reports the performance of the methods at t = 3 for h = 0.25. The GLv
methods seem to be more expensive but more accurate than the projected procedures.

Figure 4.2 plots the logarithm of the condition number function of the theoretical
solution (solid line) and of the numerical solution given by GL1 (dash-dotted line)
and PRK2 (dotted line) with step-size h = 0.1. The GL1 method reproduces the
exact behavior of the condition number function while PRK2 needs smaller step-sizes
h to correctly integrate the problem.

Example 4.3. We consider the system (2.8), where F (Y ) = A+(I−diag(Y TY ))
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maps only matrices of OB(n) into SK(n), with A and Y0 given by

A =


 0 −2.28 −0.74

2.1 0 1.3
0.8 −1.5 0


 , Y0 =


 0.9487 0.5392 0.7071

0 0.5392 0
0.3162 0.6470 0.7071


 .

Table 4.2 summarizes the performance at t = 1 of the obliqueness preserving
methods integrating on [0, 1] with h = 0.000625. The GLv methods destroy the
diagonal structure of the matrix Y T

k Yk because the matrix function F satisfies only
(2.9), while WPGLv and PGLv preserve both the diagonal and the condition number
function better than GLv.

Table 4.2
Performance of the methods at t = 1.

Method CPU time Ω(Yk) Global error µ(t)
GL1 4.3500 8.9457e-06 5.4614e-05 8.1319

PGL1 4.9833 6.6986e-15 2.7383e-06 8.1314
WPGL1 4.7333 2.5762e-09 2.7508e-06 8.1314

GL2 7.7167 9.8231e-13 7.2228e-12 8.1314
PGL2 8.8333 3.1480e-15 3.9928e-13 8.1314

WPGL2 8.5000 1.4358e-14 3.2199e-13 8.1314

4.1. Numerical tests for ObPP(1, 1). We now approximate the numerical
solution of ObPP(1, 1) with problem data sets generated randomly. In particular, we
generate random matrices A, X, and Yin, where Yin is a projection on OB(n) of a
random matrix Q. We then define B = AYin and Z = XY −T

in so that the underlying
problem has a global solution at Yin. The initial condition Y0 is a projection on
OB(n) of a perturbation of Yin by a random matrix generated by Matlab function
rand, that is, Q = Yin + rand(n). In our numerical simulations we intend to observe
how frequently the numerical methods reconstruct the matrix Yin either with different
data sets A, Y0, Yin or with different initial values Y0.

The tables show the number of cases in which Yin is reconstructed (called re-
constructions); the number of cases in which the objective function is minimized but
the numerical solution differs from Yin (called deviations); the number of cases in
which it is not minimized (called failures), and, finally, the cases when the functional
iteration does not converge (called divergences). The solution Yin is considered to be
faithfully reconstructed if the local error ‖Yk−Yin‖/‖Yk‖ is less than 10−3 for second
order methods and 10−6 for fourth order methods. The time step used is h = 0.001.
We observe that when the functional iteration diverges a smaller step-size should be
employed.

Table 4.3 reports the results of 100 simulations with different data, while Table
4.4 gives the results of 100 solutions of the problem with only different starting matrix
Y0.

It seems that GLv reach the global solution of ObPP(1, 1) with different data a
greater number of times than the projected procedures.

We analyze in more details the problem with the following data:

A =


 0.9688 0.7553 0.2512

0.3557 0.8948 0.9327
0.0490 0.2861 0.1310


 , X =


 0.1171 0.8234 0.9492

0.7699 0.0466 0.2888
0.3751 0.5979 0.8888
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Table 4.3

Method Reconstructions Deviations Failures Divergences
GL1 66 13 12 9

PRK2 67 23 10 -
PAB2 65 21 14 -

GL2 66 13 12 9
PRK4 67 23 10 -
PAB4 65 21 14 -

Table 4.4
Solutions of 100 different ObPP with α = 1 and β = 1.

Method Reconstructions Deviations Failures Divergences
GL1 63 14 13 10

PRK2 55 23 22 -
PAB2 57 23 20 -

GL2 63 14 13 10
PRK4 55 23 22 -
PAB4 57 23 20 -

and

Yin =


 0.6498 0.4124 0.7964

0.4848 0.8969 0.5259
0.5855 0.1598 0.2988


 , Y0 =


 0.5259 0.3992 0.7934

0.6942 0.9006 0.3771
0.4915 0.1719 0.4778


 .

Figures 4.3 (a), (b), and (c) show, respectively, the semilog plot of the deviation from
the diagonal structure, the deviation from the expected matrix Yin, and the value of
the objective function in (1.1) for the numerical solution given by GL1 with h = 0.001.
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Fig. 4.3. Performance of GL1 method.

Tables 4.5 and 4.6 summarize the results obtained integrating 50 ObPP(1, 1) prob-
lems by means of the variable step-size version of GL1 (denoted by GL1(vs)) and a
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Table 4.5

Method Reconstructions Deviations Failures
GL1(vs) 28 15 7
PODE23 15 26 9

Table 4.6

Method Reconstructions Deviations Failures
GL1(vs) 39 10 1
PODE23 37 12 1

projected version of the Matlab function ode23 (denoted by PODE23). In particular,
Table 4.5 reports the results of 50 numerical simulations of different ObPP(1, 1) prob-
lems, while Table 4.6 shows the results obtained solving the same problem starting
from 50 different initial matrix Y0. Table 4.5 seems to indicate that GL1(vs) gives
better results than the variable step-size PODE23 method.

5. Conclusions. Differential systems on the manifold OB(n) arise in several
important applications. In this paper we have provided some theoretical results on
these differential systems and studied the conditioning of the solution. We have also
considered different numerical methods for the integration of problems on OB(n).
With the expectation that the integrator should preserve both the oblique structure
and the conditioning of the theoretical solution, we have found that Gauss–Legendre
Runge–Kutta schemes preserve both these properties. Numerical tests, in particular
for the solution of the oblique Procrustes problem, have highlighted the necessity of
using very small integration steps.

Acknowledgments. The authors wish to thank the anonymous referees for their
many helpful suggestions.
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Abstract. In this paper we establish the inverse inequalities of the Hadamard inequality and
the Szasz inequality. To prove these results, we give two sharpenings of the Hadamard inequality
and the Szasz inequality.
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1. Introduction. Let A = (aij)n×n be an n×n positive Hermitian matrix. The
classical Hadamard inequality states that

detA ≤
n∏

i=1

aii.(1.1)

It is well known that the geometric form of (1.1) is the following: Let
{x1, x2, . . . , xn} be a linearly independent set of vectors from R

n, V (P[x1,x2,...,xn])
the volume of the n-parallelotope P[x1,x2,...,xn] which has {x1, x2, . . . , xn} as n edge
vectors; then

V (P[x1,x2,...,xn]) ≤
n∏

i=1

‖xi‖.(1.2)

Szasz has generalized the Hadamard inequality (1.2). One of the main results of
Szasz is the following (see [1, 6]): Let P[x1,...,xi−1,xi+1,...,xn] be the facet of P[x1,x2,...,xn];
then

V n−1(P[x1,x2,...,xn]) ≤
n∏

i=1

V (P[x1,...,xi−1,xi+1,...,xn]).(1.3)

The equalities in (1.2) and (1.3) occur if and only if {x1, x2, . . . , xn} is a set of or-
thogonal nonzero vectors in R

n.
The other generalizations of the Hadamard inequality to the block matrices and

to other types of matrices are obtained by Fisher, Johnson and Markham, Veljan, and
others (see [1, 5, 6, 7, 8, 13, 15, 16]). The estimates for the ratio detA/

∏n
i=1 aii are

investigated by Johnson and Newman, Dixon, Reznikov, and others (see [3, 4, 9, 11,
12]). Some eigenvalues estimates of Wolkowitz and Styan could also be interpreted as
estimates of detA [14].

The object of this paper is to investigate the inverse forms of the Hadamard
inequality (1.2) and Szasz inequality (1.3).
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Denote by P[x1,x2,...,xm] the m-parallelotope which has m linearly independent
vectors x1, x2, . . . , xm as m edge vectors. Let P[x1,...,xi−1,xi+1,...,xn] be the facet of
P[x1,x2,...,xn] which lies in a hyperplane πi. Let yi be the orthogonal component of
xi with respect to πi. Then we call yi the altitude vector on P[x1,...,xi−1,xi+1,...,xm].
For a given m-parallelotope, it is easy to see that there exist m linearly independent
altitude vectors. Conversely, we have the following lemma.

Lemma 1.1. Let {x1, x2, . . . , xm} be a given set of linearly independent vectors
from Rn. Then there exists an m-parallelotope P ∗

[x1,x2,...,xm] which has x1, x2, . . . , xm
as m altitude vectors.

Proof. Since x1, x2, . . . , xm are linearly independent, there arem linear functionals
f1, f2, . . . , fm such that

fj(xi) = δij‖xi‖2, i, j = 1, 2, . . . ,m,

where δij is the Kronecker delta symbol.
According to Riesz’s representation theorem for the linear functional, there are

vectors v1, v2, . . . , vm such that

〈xi, vj〉 = δij‖xi‖2,
where 〈, 〉 denote the ordinary inner product of R

n.
Suppose that

m∑
j=1

ajvj = 0, aj ∈ R.

Then

0 =

〈
xi,

m∑
j=1

ajvj

〉
= ai‖xi‖2, i = 1, 2, . . . ,m.

Hence ai = 0, i = 1, 2, . . . ,m. It follows that v1, v2, . . . , vm are linearly independent.
Let Q[v1,v2,...,vm] denote the m-parallelotope which has v1, v2, . . . , vm as m edge

vectors, and let Q[v1,...,vi−1,vi+1...,vm] denote the facet of Q[v1,v2,...,vm]. Since xi⊥vj(j 
=
i), it follows that

xi⊥Q[v1,...,vi−1,vi+1,...,vm].

Therefore, Q[v1,v2,...,vm] is an m-parallelotope which has x1, x2, . . . , xm as altitude
vectors; this is P ∗

[x1,x2,...,xm], as desired.
Our main results are the following two theorems.
Theorem 1.2. Let {x1, x2, . . . , xn} be a set of linearly independent vectors

from R
n and P ∗

[x1,x2,...,xn] be the n-parallelotope, which has x1, x2, . . . , xn as n al-

titude vectors. Further, let P ∗
[x1,...,xi−1,xi+1,...,xn] be the (n − 1)-parallelotope, which

has x1, . . . , xi−1, xi+1, . . . , xn as (n− 1) altitude vectors. Then

V n−1(P ∗
[x1,x2,...,xn]) ≥

n∏
i=1

V (P ∗
[x1,...,xi−1,xi+1,...,xn]),(1.4)

V (P ∗
[x1,x2,...,xn]) ≥

n∏
i=1

‖xi‖.(1.5)
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The equalities in (1.4) and (1.5) occur if and only if {x1, x2, . . . , xn} is a set of or-
thogonal nonzero vectors in R

n.
In fact, we will establish two inequalities more general than (1.4) and (1.5), as

follows.
Theorem 1.3. Let P ∗

[x1,x2,...,xn] and P
∗
[x1,...,xi−1,xi+1,...,xn] be as in Theorem 1.2,

let θij(1 ≤ i < j ≤ n) denote the dihedral angle between πi and πj, and let αij(1 ≤
i < j ≤ n) denote the angle between xi and xj. Then

V n−1(P ∗
[x1,x2,...,xn])∏n

i=1 V (P ∗
[x1,...,xi−1,xi+1,...,xn])

≥ 1∏
1≤i<j≤n sin θij

,(1.6)

V (P ∗
[x1,x2,...,xn])∏n
i=1 ‖xi‖

≥ 1∏
1≤i<j≤n sinαij

.(1.7)

The equalities in (1.6) and (1.7) occur if and only if {x1, x2, . . . , xn} is a set of or-
thogonal nonzero vectors in Rn.

This paper, except for the introduction, is divided into three sections. In section 2
we make some preparations. We establish the sharpenings of the Hadamard inequality
and the Szasz inequality in section 3. By using the results of sections 2 and 3, we will
give the proof of Theorem 1.3 in section 4.

2. Some preliminary results. Suppose that Ω is the n-exterior differential
form in R

n, namely, Ω ∈ ∧n(Rn). The following classical result holds for Ω (see [2]).
Lemma 2.1. Let Ω ∈ ∧n(Rn) and Ω 
= 0; {v1, v2, . . . , vn} and {x1, x2, . . . , xn}

are the two bases of Rn. Assume that

vj =

n∑
i=1

aijxi, j = 1, 2, . . . , n.

Then

Ω(v1, v2, . . . , vn) = det(aij)n×n · Ω(x1, x2, . . . , xn).(2.1)

The main ingredient in the proof is the following well-known formula for the
canonical volume forms (see [10]).

Lemma 2.2. Let {x1, x2, . . . , xn} be a given linearly independent set of vectors
from R

n, and let Ω ∈ ∧n−1(Rn) be the canonical volume form. Then

Ω(x2 ∧ x3 ∧ · · · ∧ xn, x1 ∧ x3 ∧ · · · ∧ xn, . . . , x1 ∧ x2 ∧ · · · ∧ xn−1)

= Ωn−1(x1, x2, . . . , xn).
(2.2)

We need some other notations: Let U be a linear subspace of R
n. For any x ∈ R

n,
it is easy to see that there are w⊥U and z ∈ U such that x = w + z. We call w the
orthogonal component of x corresponding to U and call z the orthogonal projection
of x corresponding to U . If x ∈ R

n, we define that 〈x, U〉 is the angle between x and
its orthogonal projection z.

Lemma 2.3. Let T and S be two linear subspaces of R
n, and assume T ⊆ S.

Then

sin〈x, T 〉 ≥ sin〈x, S〉.(2.3)
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Proof. Let w1 and w2 be orthogonal components of x corresponding to T and S,
respectively. Since

‖w1‖ = inf
v∈T
‖x− v‖ ≥ inf

v∈S
‖x− v‖ = ‖w2‖,

it follows that

sin〈x, T 〉 = ‖w1‖
‖x‖ ≥

‖w2‖
‖x‖ = sin〈x, S〉.

Lemma 2.4. Let {x1, x2, . . . , xn} be a set of linearly independent vectors from
Rn, and let Sk be the linear subspace spanned by x1, x2, . . . , xk(k = 1, 2, . . . , n). Then

V (P[x1,x2,...,xn]) =

n∏
i=1

‖xi‖
n∏

i=2

sin〈xi, Si−1〉.(2.4)

Proof. Let xi = wi + zi, wi⊥Si−1, zi ∈ Si−1. Then

‖wi‖ = ‖xi‖ sin〈xi, Si−1〉.
Hence, according to the recursive definition of the volume of a parallelotope, we have

V (P[x1,x2,...,xn]) =

n∏
i=1

‖wi‖ =
n∏

i=1

‖xi‖
n∏

i=2

sin〈xi, Si−1〉.

This is the desired equality.

3. The sharpenings of the Hadamard inequality. To prove Theorem 1.3,
we establish the sharpenings of the Hadamard inequality (1.2) and the Szasz inequality
(1.3).

The following theorem is a sharpening of the Hadamard inequality.
Theorem 3.1. Let {x1, x2, . . . , xn} be a set of linearly independent vectors from

R
n, and let αij be the angle between xi and xj (i, j = 1, 2, . . . , n). Then

V (P[x1,x2,...,xn]) ≤
n∏

i=1

‖xi‖

 ∏

1≤i<j≤n

sinαij




2
n

.(3.1)

The equality in (3.1) occurs if and only if {x1, x2, . . . , xn} is a set of orthogonal
nonzero vectors from R

n.
Proof. Since S1 ⊆ Si−1 (i = 2, 3, . . . , n), it follows from Lemma 2.3 that

sin〈xi, Si−1〉 ≤ sinαi1.(3.2)

Combining (2.4) and (3.2), we obtain

V (P[x1,x2,...,xn]) ≤
n∏

i=1

‖xi‖
n∏

i=2

sinαi1.(3.3)

By substituting x1 by xj in (3.3), we find

V (P[x1,x2,...,xn]) ≤
n∏

i=1

‖xi‖
n∏

i=1
i �=j

sinαij , j ∈ {1, 2, . . . , n}.
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By multiplying all n obtained inequalities, we arrive at

V n(P[x1,x2,...,xn]) ≤
(

n∏
i=1

‖xi‖
)n n∏

j=1


 n∏

i=1
i �=j

sinαij


 .

Rearranging it, inequality (3.1) follows.
Theorem 3.2. Let {x1, x2, . . . , xn} be a set of linearly independent vectors from

R
n, and let θij be the dihedral angle between πi and πj. Then

V n−1(P[x1,x2,...,xn]) ≤
n∏

i=1

V (P[x1,...,xi−1,xi+1,...,xn])


 ∏

1≤i<j≤n

sin θij




2
n

.(3.4)

The equality in (3.4) occurs if and only if {x1, x2, . . . , xn} is a set of orthogonal
nonzero vectors in R

n.
Proof. Let ei be the unit normal vector of the facet P[x1,...,xi−1,xi+1,...,xn]. Then

x1 ∧ · · · ∧ xi−1 ∧ xi+1 ∧ · · · ∧ xn = V (P[x1,...,xi−1,xi+1,...,xn])ei.

By Lemma 2.1, we have

Ω(x2 ∧ x3 ∧ · · · ∧ xn, x1 ∧ x3 ∧ · · · ∧ xn, . . . , x1 ∧ x2 ∧ · · · ∧ xn−1)

=

(
n∏

i=1

V (P[x1,...,xi−1,xi+1,...,xn])

)
Ω(e1, e2, . . . , en).

(3.5)

Applying Lemma 2.2 to the left-hand side of (3.5), we obtain

V n−1(P[x1,x2,...,xn]) = Ωn−1(x1, x2, . . . , xn)

=

(
n∏

i=1

V (P[x1,...,xi−1,xi+1,...,xn])

)
Ω(e1, e2, . . . , en).

(3.6)

On the other hand, it is easy to see that the angle between ei and ej is equal to
π − θij . Using Theorem 3.1, we get

Ω(e1, e2, . . . , en) = V (P[e1.e2,...,en])

≤

 ∏

1≤i<j≤n

sin(π − θij)



2
n

=


 ∏

1≤i<j≤n

sin θij




2
n

.
(3.7)

From (3.6) and (3.7), (3.4) follows, as desired.
Remark. The inequality (3.4) is a sharpening of the Szasz inequality (1.3).

4. The proof of Theorem 1.3.
Theorem 4.1. Let {x1, x2, . . . , xn} be a given set of linearly independent vectors

from R
n, and let P[x1,x2,...,xn] and P

∗
[x1,x2,...,xn] be as in section 1. Then

V (P ∗
[x1,x2,...,xn])V (P[x1,x2,...,xn]) =

(
n∏

i=1

‖xi‖
)2

.(4.1)
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Proof. Let z1, z2, . . . , zn be the n edge vectors of P ∗
[x1,x2,...,xn], which are linearly

independent. Let F ∗ be the facet of

P ∗
[x1,x2,...,xn] = span{z1, . . . , zi−1, zi+1, . . . , zn}.

It should be noted that P ∗
[x1,...,xi−1,xi+1,...,xn] is not the facet of P ∗

[x1,x2,...,xn]. Then

x1

‖x1‖ ,
x2

‖x2‖ , . . . ,
xn
‖xn‖

are the unit normal vectors of F ∗
1 , F

∗
2 , . . . , F

∗
n , respectively.

Since

z1 ∧ · · · ∧ zi−1 ∧ zi+1 ∧ · · · ∧ zn = V (F ∗
i )

xi
‖xi‖

and

V (F ∗
i )‖xi‖ = V (P ∗

[x1,x2,...,xn]),

it follows that

Ω(z2 ∧ z3 ∧ · · · ∧ zn, z1 ∧ z3 ∧ · · · ∧ zn, . . . , z1 ∧ z2 ∧ · · · ∧ zn−1)

=

n∏
i=1

V (F ∗
i )

‖xi‖ Ω(x1, x2, . . . , xn)

=
V n(P ∗

[x1,x2,...,xn])V (P[x1,x2,...,xn])(
n∏

i=1

‖xi‖
)2 .

(4.2)

On the other hand, by Lemma 2.2, we have

Ω(z2 ∧ z3 ∧ · · · ∧ zn, z1 ∧ z3 ∧ · · · ∧ zn, · · · , z1 ∧ z2 ∧ · · · ∧ zn−1)

= Ωn−1(z1, z2, . . . , zn)

= V n−1(P ∗
[x1,x2,...,xn]).

(4.3)

Therefore, (4.1) follows from (4.2) and (4.3).
Proof of Theorem 1.3. From Theorems 4.1 and 3.1, we obtain

(
n∏

i=1

‖xi‖
)2

= V (P ∗
[x1,x2,...,xn])V (P[x1,x2,...,xn])

≤ V (P ∗
[x1,x2,...,xn])

n∏
i=1

‖xi‖

 ∏

1≤i<j≤n

sinαij




2
n

.

Rearranging the above inequality, (1.7) is proved.
Applying Theorem 4.1 to set {x1, . . . , xi−1, xi+1, . . . , xn}, we have

V (P ∗
[x1,...,xi−1,xi+1,...,xn])V (P[x1,...,xi−1,xi+1,...,xn]) =




n∏
j=1
j �=i

‖xj‖




2

.
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It follows that

n∏
i=1

(
V (P ∗

[x1,...,xi−1,xi+1,...,xn])V (P[x1,...,xi−1,xi+1,...,xn])
)
=

(
n∏

i=1

‖xi‖
)2(n−1)

.(4.4)

Again applying Theorem 4.1 to the right-hand side of (4.4), we have

n∏
i=1

(
V (P ∗

[x1,...,xi−1,xi+1,...,xn])V (P[x1,...,xi−1,xi+1,...,xn])
)

= V n−1(P ∗
[x1,x2,...,xn])V

n−1(P[x1,x2,...,xn]);

that is,

V n−1(P ∗
[x1,x2,...,xn])

n∏
i=1

V (P ∗
[x1,...,xi−1,xi+1,...,xn])

=

n∏
i=1

V (P[x1,...,xi−1,xi+1,...,xn])

V (P[x1,x2,...,xn])
.(4.5)

Hence, from Theorem 3.2 and (4.5), we derive inequality (1.6), so Theorem 1.3 is
proved.

By (1.2) and (1.7), we can easily derive the following interesting inequality.
Corollary 4.2.

V (P[x1,x2,...,xn])

V (P ∗
[x1,x2,...,xn])

≤

 ∏

1≤i<j≤n

sinαij




2/n

≤ 1.(4.6)

Let

θ =

∑
1≤i<j≤n θij(

n
2

) , α =

∑
1≤i<j≤n αij(

n
2

) .

Since y = sinx is a convex function in [0, π], by applying the arithmetricogeometric
mean inequality and the Jensen inequality, we get


 ∏

1≤i<j≤n

sin θij




2
n

≤



∑

1≤i<j≤n sin θij(
n
2

)


n−1

≤ sinn−1



∑

1≤i<j≤n θij(
n
2

)



≤ (sin θ)n−1.

Similarly, 
 ∏

1≤i<j≤n

sinαij




2
n

≤ (sinα)n−1.
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Therefore, from Theorem 1.3 and Corollary 4.2, we immediately get the following
corollary.

Corollary 4.3.

V n−1(P ∗
[x1,x2,...,xn])∏n

i=1 V (P ∗
[x1,...,xi−1,xi+1,...,xn])

≥ 1

(sin θ)n−1
,

V (P ∗
[x1,x2,...,xn])∏n
i=1 ‖xi‖

≥ 1

(sinα)n−1
,

V (P[x1,x2,...,xn])

V (P ∗
[x1,x2,...,xn])

≤ (sinα)n−1.
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Abstract. We describe the implementation and performance of a novel fill-minimization or-
dering technique for sparse LU factorization with partial pivoting. The technique was proposed by
Gilbert and Schreiber in 1980 but never implemented and tested. Like other techniques for ordering
sparse matrices for LU with partial pivoting, our new method preorders the columns of the matrix
(the row permutation is chosen by the pivoting sequence during the numerical factorization). Also
like other methods, the column permutation Q that we select is a permutation that attempts to re-
duce the fill in the Cholesky factor of QTATAQ. Unlike existing column-ordering techniques, which
all rely on minimum-degree heuristics, our new method is based on a nested-dissection ordering of
ATA. Our algorithm, however, never computes a representation of ATA, which can be expensive.
We only work with a representation of A itself. Our experiments demonstrate that the method is
efficient and that it can reduce fill significantly relative to the best existing methods. The method
reduces the LU running time on some very large matrices (tens of millions of nonzeros in the factors)
by more than a factor of 2.

Key words. nested-dissection, vertex separators, wide separators, LU factorization, Gaussian
elimination, partial pivoting

AMS subject classifications. 05C50, 15A23, 65F05, 65F50
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1. Introduction. Reordering the columns of sparse nonsymmetric matrices can
significantly reduce fill in sparse LU factorizations with partial pivoting. Reducing
fill in a factorization reduces the amount of memory required to store the factors, the
amount of work in the factorization, and the amount of work in subsequent triangular
solves. Symmetric positive-definite matrices, which can be factored without pivoting,
are normally reordered to reduce fill by applying the same permutation to both the
rows and columns of the matrix. Applying the same permutation to the rows and
columns preserves the symmetry of the matrix. When partial pivoting is required for
maintaining numerical stability, however, prepermuting the rows is meaningless, since
the rows are exchanged again during the factorization. Therefore, we often preorder
the columns and let numerical considerations dictate the row ordering. Since columns
are reordered before the row permutation is known, we need to order the columns
such that fill is reduced no matter how rows are exchanged. (Some nonsymmetric
factorization codes that employ pivoting, such as ma38 [5, 6], determine the column
permutation during the numerical factorization; such codes do not preorder columns,
so the technique in this paper does not apply to them.)

A result by George and Ng [10] suggests one effective way to preorder the columns
to reduce fill. They have shown that the fill of the LU factors of PA is essentially
contained in the fill of the Cholesky factor of ATA for every row permutation P . (P
is a permutation matrix that permutes the rows of A and represents the actions of
partial pivoting.) Gilbert and Ng [13] later showed that this upper bound on the fill
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of the U factor is not too loose, in the sense that for a large class of matrices, for every
fill element in the Cholesky factor of ATA there is a pivoting sequence P that causes
the element to fill in the U factor of A. Thus, nonsymmetric direct sparse solvers
often preorder the columns of A using a permutation Q that attempts to reduce fill
in the Cholesky factor of QTATAQ.

The main challenge in column-ordering algorithms is to find a fill-minimizing
permutation without computing ATA or even its nonzero structure. While computing
the nonzero structure of ATA allows us to use existing symmetric ordering algorithms
and codes, it may be grossly inefficient. For example, when an n-by-n matrix A has
nonzeros only in the first row and along the main diagonal, computing ATA takes
Ω(n2) work, but factoring it takes only O(n) work. Consider an n-by-n matrix in
which all the nonzeros are in the first row and along the main diagonal, such as (×’s
represent nonzeros)

A =




× × × × × ×
×
×
×
×
×



.

The matrix ATA is full, so computing its structure requires at least Θ(n2) work. But
since ATA is full, all its orderings are equivalent in terms of fill. Thus, we perform
Ω(n2) work and get no useful information. If we factor this matrix without reordering
its columns, no pivoting takes place and no fill is produced, so the factorization
requires only Θ(n) work. To summarize, computing ATA may require significantly
more memory and work than the partial-pivoting numerical factorization requires.
(This example is somewhat weak, in that A is already triangular. The sum of a
tridiagonal matrix and a zero matrix with one dense row provides a stronger example.
Such a matrix A cannot be permuted to a nontrivial block triangular form, and
forming ATA requires Θ(n2) work, whereas factoring it may take as little as Θ(n) if
the dense row is used as the last pivot row.)

This challenge has been met for the class of reordering algorithms based on the
minimum-degree heuristic. Modern implementations of minimum-degree heuristics
use a clique-cover to represent the graph GA of the matrix1 A (see [9]). A clique-
cover represents the edges of the graph (the nonzeros in the matrix) as a union of
cliques, or complete subgraphs. The clique-cover representation allows us to simulate
the elimination process with a data structure that only shrinks and never grows.
There are two ways to initialize the clique-cover representation of GATA directly from
the structure of A. Both ways create a data structure whose size is proportional to
the number of nonzeros in A, not the number of nonzeros in ATA. From then on,
the data structure only shrinks, so it remains small even if ATA is relatively dense.
In other words, finding a minimum-degree column ordering for A requires about the
same amount of work and memory as finding a symmetric ordering for AT + A, the
symmetric completion of A.

Nested-dissection ordering methods were proposed by George in the early 1970s
[11]. Berman and Schnitger [2] showed that they are theoretically superior to minimum-
degree methods for important classes of sparse symmetric definite matrices. Only

1The graph GA = (V,E) of an n-by-n matrix A has a vertex set V = {1, 2, . . . , n} and an edge
set E = {(i, j)|aij �= 0}. We ignore numerical cancellations in this paper.
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in the last few years, however, have nested-dissection methods been shown experi-
mentally to be more effective than minimum-degree methods. Today’s state-of-the-
art methods use fast multilevel algorithms for finding separators and fuse nested-
dissection and minimum-degree to reduce fill below the level that either method alone
produces.

In 1980 Gilbert and Schreiber proposed a method for ordering GATA when A
is symmetrically structured using nested-dissection heuristics, without ever forming
ATA [12, 14]. Their method uses wide separators, a term that they coined. They
have never implemented or tested their proposed method.

The main contribution of this paper is an implementation and an experimental
evaluation of the wide-separator ordering method, along with a new presentation of
the theory of wide separators. Our code dissects GATA without forming it. The code
then uses existing techniques for minimum-degree column ordering to reduce fill in
LU with partial pivoting to below that of any existing technique.

Modern symmetric ordering methods generally work as follows:

1. The methods find a small vertex separator that separates the graph G into
two subgraphs with roughly the same size.

2. Each subgraph is dissected recursively until each subgraph is fairly small
(typically several hundred vertices).

3. The separators are used to impose a coarse ordering. In nested-dissection
codes, the vertices in the top-level separator are ordered last, the vertices in the
second-to-top level come before them, and so on. The vertices in the small sub-
graphs that are not dissected any further appear first in the ordering. The ordering
within each separator and the ordering within each subgraph have not yet been deter-
mined. In multisector codes the vertices in all the separators are ordered last and the
other vertices ordered first. The ordering within the multisector and the ordering of
nonmultisector vertices has not yet been determined.

4. A minimum-degree algorithm computes the final ordering, subject to the
coarse ordering constraints.

While there are many variants, most codes use this overall framework.

Our methods apply the same framework to the graph of ATA, but without com-
puting it. We find separators in ATA by finding wide separators in AT + A. We
find a wide separator by finding a conventional vertex separator and widening it by
adding to it all the vertices that are adjacent to the separator in one of the subgraphs.
Such a wide separator corresponds to a vertex separator in ATA. Just like symmetric
methods, our methods recursively dissect the graph, but using wide separators. When
the remaining subgraphs are sufficiently small, we compute the final ordering using a
constrained column-minimum-degree algorithm. We use nested-dissection-type con-
straints, as opposed to multisector constraints. We use existing techniques to produce
a minimum-degree ordering of ATA without computing GATA (either the row-clique
method or the augmented-matrix method).

The (conventional) vertex-separator code that we use is part of a library called
spooles [1]. Our code can use spooles’s minimum-degree code, as well as a version
of colamd [7, 15] that we modified to respect the coarse ordering.

Experimental results show that our method can reduce the work in the LU factor-
ization by up to a factor of 3 compared to state-of-the-art column-ordering codes. The
running times of our method are higher than the running times of strict minimum-
degree codes, such as colamd, but they are low enough to easily justify using the new
method. On many matrices, including large ones, our method significantly reduces
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the work compared to all the existing column-ordering methods. On some matrices,
however, constraining the ordering using wide separators increases fill rather than
reducing it.

The rest of the paper is organized as follows. Section 2 presents the theory of wide
separators and algorithms for finding them. Our experimental results are presented
in section 3. We discuss our conclusions from this research in section 4.

2. Wide separators: Theory and algorithms. Our column-ordering meth-
ods find separators in GATA by finding a so-called wide separator in GAT +A. We
work with the graph of AT +A and not with GA for two reasons. First, this simplifies
the definitions and proofs. Second, to the best of our knowledge all existing vertex-
separator codes work with undirected graphs, so there is no point in developing the
theory for the directed graph GA.

A vertex subset S ⊆ V of an undirected graph G = (V,E) is a separator if the
removal of S and its incident edges breaks the graph into two components G1 =
(V1, E1) and G2 = (V2, E2) such that any path between i ∈ V1 and j ∈ V2 passes
through at least one vertex in S. A vertex set is a wide separator if every path
between i ∈ V1 and j ∈ V2 passes through a sequence of two vertices in S (one after
the other along the path).

Our first task is to show that every wide separator in GAT +A is a separator in
GATA. The next theorem proves this result. Figures 1 and 2 illustrate the same result
using matrices rather than graphs.

Theorem 2.1. A wide separator in GAT +A is a separator in GATA.
Proof. Let S be a wide separator in GAT +A. Suppose for contradiction that S

is not a separator in GATA: there exists a path in GATA between i ∈ V1 and j ∈ V2

that does not pass though a vertex s in S. There must be a pair of vertices i′ and j′

along the path such that i′ ∈ V1 and j′ ∈ V2. Thus, i′ and j′ are neighbors in GATA,
so the (i′, j′) element in ATA is nonzero. Since (ATA)i′,j′ =

∑
k Ak,i′Ak,j′ �= 0,

there must be some k such that Ak,i′ �= 0 and Ak,j′ �= 0. Hence, there is a path
i′ ↔ k ↔ j′ in GAT +A between i′ and j′ that passes through only one vertex in S, a
contradiction.

The converse is not always true. There are matrices with separators in GATA

that do not correspond to wide separators in AT +A. Consider

A =

[ ×
×

]

(the ×’s represent nonzeros). The empty set is a separator in the graph of

ATA =

[ ×
×

] [ ×
×

]
=

[ ×
×
]
,

but it is not a wide separator in the graph of AT +A (it is not even a separator). The
converse of the Theorem 2.1 is true, however, for symmetrically structured matrices
with no zeros on the main diagonal.

Theorem 2.2. If A is symmetrically structured with no zeros on the diagonal,
then a separator in GATA is a wide separator in GAT +A.

Proof. Let S be a separator in GATA. Suppose for contradiction that S is not a
wide separator in GAT +A. There exists a path in GAT +A between some i ∈ V1 and
j ∈ V2 that does not pass though a sequence of two vertices in S. This can happen in
two ways: (1) there are some i′ ∈ V1 and j′ ∈ V2 that are adjacent in GAT +A(that is,



1002 IGOR BRAINMAN AND SIVAN TOLEDO

G1

S
S1

G2

G1

G2

S

SG1 G2

Fig. 1. A separator and a wide separator. The top figure shows a 15-by-15 mesh G which has
been partitioned into G1 and G2 using a separator S. The vertex set S1 ⊆ G2 widens the separator:
S ∪ S1 widely separates G1 from G2 \ S1. When the vertices are ordered row by row, top to bottom,
the nonzero pattern of the matrix of the graph is pentadiagonal (bottom left). Permuting the rows
and the columns of the matrix so that S’s vertices appear last results in a 3-by-3 block matrix with
large zero 21 and 12 blocks (bottom right). (Continued in Figure 2.)

S is not a separator at all in GAT +A), or (2) there are some i′ ∈ V1 and j′ ∈ V2 that
are separated in GAT +A but not widely; there is a path i′ ↔ s↔ j′ in GAT +A.

In both cases the edge (i′, j′) will be in GATA, as illustrated in Figure 3. In case
(1), (i′, j′) will be in GATA because AT

i′,i′ = Ai′,i′ and Ai′,j′ are nonzero and because

AT
i′,j′ = Aj′,i′ and Aj′,j′ are nonzero. In case (2), (i′, j′) will be in GATA because

AT
i′,s = As,i′ and As,j′ are nonzero.

The theorem does not hold for matrices without a symmetric structure, even if
they have a nonzero diagonal. Consider

A =


 × ×

× ×
×


 .

Vertex 3 is a separator in GATA, but not a wide separator in GAT +A.



NESTED DISSECTION FOR NONSYMMETRIC LU 1003

G1

S

SG1 G2-S1

S1

S1

G2-S1

G1

S

SG1 G2-S1

S1

S1

G2-S1

Fig. 2. (Continued from Figure 1.) The permuted matrix in Figure 1 has many zero columns
in its 32 block, which can be blocked together by permuting the rows and columns of S1 to the end of
the G2 (left). By permuting only the rows so that the rows of G1∪S appear first and the rows of G2

appear last, we observe that two large rectangular zero blocks have formed (in gray). The zeros in
this block are preserved by LU with partial pivoting; the columns of S∪S1 form a column separator.
In practice there is no need to reorder the rows: we have reordered them in the figure only to reveal
the zero blocks.

=

=

row i'

row i'

colum
n j'

colum
n j'

ATA AT A

ATA AT A

row s

col. s

Fig. 3. An illustration of the two cases in Theorem 2.2. Case (1) is illustrated on top, and case
(2) on the bottom. The nonzeros, represented by the dark squares, are the ones that cause element
i′, j′ in ATA to fill.

Given a code that finds conventional separators in an undirected graph, finding
wide separators is easy. The separator and its neighbors in either G1 or G2 form a
wide separator, as stated by the following lemma.

Lemma 2.3. Let S be a separator in an undirected graph G. The sets S1 = S ∪
{i|i ∈ V1, (i, j) ∈ E for some j ∈ S} and S2 = S∪{i|i ∈ V2, (i, j) ∈ E for some j ∈ S}
are wide separators in G.
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The proof is trivial. The sizes of S1 and S2 are bounded by d|S|, where d is the
maximum degree of vertices in S. Given S, it is easy to enumerate S1 and S2 in time
O(d|S|). This running time is typically insignificant compared to the time it takes to
find S.

Which one of the two candidate wide separators should we choose? A wide sep-
arator that is small and that dissects the graph evenly reduces fill in the Cholesky
factor of ATA, and hence in the LU factors of A. The two criteria are usually con-
tradictory. Over the years it has been determined that the best strategy is to choose
a separator that is as small as possible, as long as the ratio of the number of vertices
in G1 and G2 does not exceed 2 or so.

The following method is, therefore, a reasonable way to find a wide separator:
Select the smallest of S1 and S2, unless the smaller wide separator unbalances the
separated subgraphs (so that one is more than twice as large as the other) but the
larger does not. Our code, however, is currently more naive and always chooses the
smaller wide separator.

3. Experimental results. This section summarizes our experimental results.
We begin by describing our code, our collection of test matrices, and the computer that
was used to carry out the experiments. We then describe and analyze the results of
our experiments. The analyses focus on the effectiveness of various ordering methods
and on their performance. By effectiveness we mean the number of nonzeros in the
factors, the number of floating-point operations (flops) required to compute them,
and the factorization time. By performance we mean the cost, mostly in terms of
time, of the ordering algorithm itself.

3.1. Experimental setup. The experiments that this section describes test the
effectiveness and performance of several column-ordering codes. We have tested our
new codes, which implement nested-dissection-based orderings, as well as two existing
ordering codes.

Our codes build a hierarchy of wide separators and use the separators to con-
strain a minimum-degree algorithm. We obtain the wide separators by widening
separators in GAT +A that spooles [1] finds. Spooles is a library of sparse order-
ing and factorization codes written by Ashcraft and others. Our codes then invoke
a column-minimum-degree code to produce the final ordering. One minimum-degree
code that we use is spooles’s multistage-minimum-degree (msmd) algorithm, which
we run on the augmented matrix

Ã =

[
I A
AT 0

]
.

We constrain the minimum-degree code to eliminate the first n rows/columns first.
This elimination constructs a clique-cover representation of GATA on the remaining
vertices, which msmd eliminates next under the wide-separator constraints.

The other minimum-degree code that we used is a version of colamd [7, 15] that
we modified to respect the constraints imposed by the separators.

We use the following acronyms to refer to the ordering methods: msmd refers to
spooles’s minimum-degree code operating on the augmented matrix without con-
straints, wsmsmd refers to the same minimum-degree code but constrained to respect
wide separators, and similarly for colamd and wscolamd.

In the experiments reported here, we always reduce the input matrices to block
triangular form (see [17]) and factor only the diagonal blocks in the reduced form.
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Many of the matrices in our test suite have numerous tiny diagonal blocks (most of
them 1-by-1); we report the performance of factoring all the diagonal blocks with
dimension at least 250.

We factor the reordered matrix using SuperLU [8, 16] version 2.0, a state-of-
the-art sparse partial-pivoting LU code. SuperLU uses the Basic Linear Algebra
Subroutines (blas). We used atlas,2 a high-performance implementation of the
blas.

We conducted the experiments on a 600MHz dual Pentium III computer with
2 GBytes of main memory running Linux. The machine was configured without
swap space so no paging occurred during the experiments. This machine has two
processors, but our code uses only one processor. The compiler that we used is GCC
version egcs-2.91.66. We used the recommended optimization level for each package:
-O for spooles and -O3 for SuperLU.

3.2. Matrices. We tested the ordering methods on a set of nonsymmetric sparse
matrices from Davis’s sparse matrix collection.3 We used all the nonsymmetric ma-
trices in Davis’s collection that are not too small (factorization time with the best
ordering method at least 1/1000 of a second). Two of the matrices in Davis’s col-
lection were too large to factor on our machine (appu and pre2) and spooles broke
down on two more (av41092 and twotone; we are unsure whether the breakdown was
due to a bug in our code or due to a problem in spooles).

The matrices are listed in Tables 1 and 2. We split the matrices into small
ones and large ones based on the number of flops in the factorization. We refer to
matrices whose factorization with the best ordering requires more than 100 Mflops
(millions of flops) as large, the rest are referred to as small. We always sort matrices
by this factorization-flops metric. The tables show the matrix’s name, dimension (n),
number of nonzeros (nnz), number of blocks in the block triangular form, number of
big blocks (dimension at least 250) in the block triangular form, and the best flop
count in millions.

Note that three of the matrices, psmigr 1, psmigr 2, and psmigr 3, are essentially
dense. Although they are fairly sparse to begin with, as shown by the number of
nonzeros, they fill tremendously with all the ordering codes. The number of flops to
factor them with even the best ordering code is about 75% of the flop count required
to factor a dense matrix of the same order, so their sparsity is insignificant.

We also run experiments on matrices whose graphs are regular 2- and 3-dimensional
meshes and whose values are random numbers in the range [0, 1].

3.3. Results and analysis. Table 3 and Figures 4, 5, and 6 summarize the
results of our experiments. These results supersede the preliminary results that we
reported in [3, 4].

Table 3 shows that wide-separator (ws) orderings are both effective and efficient.
On the largest 2- and 3-dimensional meshes, ws orderings lead to the fastest factoriza-
tion times and to the fastest overall solution time (including ordering time). Beyond
performance, WS orderings enable us to solve problems that we could simply not solve
with minimum-degree orderings with this amount of main memory (2GB).

Wide-separator orderings are not effective on small matrices. Of the 45 small
matrices in our test suite, ws orderings reduce flop counts significantly (by more than
25%) over colamd on only 2 matrices (ex8 and ex9). We note, however, that even

2http://www.netlib.org/atlas
3http://www.cise.ufl.edu/research/sparse/matrices
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Table 1
General information for the small matrices.

btf big btf best
no name n nnz blocks blocks mflops
1 raefsky6 3402 137845 3402 0 0
2 raefsky5 6316 168658 6316 0 0
3 poli large 15575 33074 15466 0 0
4 bwm2000 2000 7996 1 1 0
5 epb0 1794 7764 1 1 0
6 cavity04 317 7327 82 0 0
7 lhr01 1477 18592 298 1 2
8 rdist2 3198 56934 199 1 4
9 bayer02 13935 63679 2151 1 7
10 bayer10 13436 94926 1541 1 8
11 rdist3a 2398 61896 99 1 8
12 rdist1 4134 94408 199 1 8
13 orani678 2529 90158 700 1 17
14 lhr04c 4101 82682 439 1 17
15 lhr04 4101 82682 439 1 18
16 bayer04 20545 159082 6378 1 18
17 ex9 3363 99471 1 1 23
18 lhr07c 7337 156508 672 2 27
19 lhr07 7337 156508 672 2 27
20 ex31 3909 115357 1 1 28
21 rw5151 5151 20199 6 1 30
22 bayer01 57735 277774 8861 1 30
23 ex28 2603 77781 1 1 35
24 lhr11 10964 233741 1192 3 35
25 lhr11c 10964 233741 1192 3 35
26 lhr10c 10672 232633 908 3 36
27 lhr10 10672 232633 908 3 36
28 ex19 12005 259879 305 3 36
29 memplus 17758 126150 1 1 39
30 lhr14 14270 307858 1556 5 42
31 lhr14c 14270 307858 1556 5 42
32 lhr17 17576 381975 1798 6 55
33 lhr17c 17576 381975 1798 6 56
34 ex8 3096 106344 1 1 68
35 ex35 19716 228208 173 4 73
36 cavity26 4562 138187 322 1 91
37 cavity24 4562 138187 322 1 91
38 onetone2 36057 227628 3843 1 92
39 cavity25 4562 138187 322 1 92
40 cavity23 4562 138187 322 1 92
41 cavity22 4562 138187 322 1 92
42 cavity21 4562 138187 322 1 94
43 cavity20 4562 138187 322 1 94
44 cavity19 4562 138187 322 1 95
45 cavity18 4562 138187 322 1 98

though wide separators do not reduce work in the factorization of small matrices, they
rarely increase work by a factor of 2 or more. Since wide-separator orderings do not
appear to be effective on small matrices, the rest of this section refers only to large
matrices.

Figures 4, 5, and 6 summarize the results with large matrices from a test-matrix
collection. A comparison of the best ws method to the best non-ws method, shown in
Figure 6, shows that ws orderings are effective. ws and non-ws orderings produced
similar flop counts (within 25%) on 14 of the 33 matrices. ws orderings reduced flop
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Table 2
General information for the large matrices.

# of # of big best
no name n nnz blocks blocks mflops
46 cavity17 4562 138187 322 1 101
47 epb1 14734 95053 1 1 123
48 utm5940 5940 83842 147 1 126
49 lhr34 35152 764014 3533 10 128
50 lhr71 70304 1528092 7066 20 259
51 lhr71c 70304 1528092 7066 20 262
52 shyy161 76480 329762 25761 1 479
53 epb2 25228 175027 1 1 517
54 goodwin 7320 324784 2 1 524
55 epb3 84617 463625 1 1 809
56 raefsky2 3242 294276 1 1 921
57 raefsky1 3242 294276 1 1 921
58 graham1 9035 335504 478 1 989
59 garon2 13535 390607 1 1 1061
60 ex40 7740 458012 1 1 1075
61 rim 22560 1014951 2 1 1877
62 onetone1 36057 341088 3843 1 2371
63 olafu 16146 1015156 1 1 2584
64 venkat01 62424 1717792 1 1 4299
65 venkat50 62424 1717792 1 1 4299
66 venkat25 62424 1717792 1 1 4299
67 rma10 46835 2374001 1 1 4386
68 af23560 23560 484256 1 1 4515
69 raefsky3 21200 1488768 1 1 5243
70 raefsky4 19779 1328611 1 1 7800
71 ex11 16614 1096948 1 1 11194
72 psmigr 2 3140 540022 1 1 13412
73 psmigr 3 3140 543162 1 1 14649
74 psmigr 1 3140 543162 1 1 14776
75 wang3 26064 177168 1 1 15515
76 wang4 26068 177196 1 1 24484
77 bbmat 38744 1771722 1 1 44553
78 li 22695 1350309 2 2 84241

Table 3
A comparison of wide-separator and minimum-degree orderings on regular 2- and 3-dimensional

meshes. All the matrix entries are random. The first three columns show the dimensions of the
meshes, the next two the best factorization time and the ordering method that led to the best time.
The last four columns show the combined ordering and factorization times. All times are reported
in seconds.

Best
Fact. Best Ordering+Factorization Times

Nx Ny Nz Time Method wscolamd colamd wscolmsmd colmsmd
500 500 113 wscolamd 150 202 150 —
750 750 496 wscolamd 601 — 684 —
30 30 30 352 colamd 399 352 1210 404
40 40 40 786 wscolamd 792 2340 958 —

counts by more than 25% on 12 matrices including 5 of the 10 largest. On the other
hand, ws orderings increased flop counts on only 7 matrices, none of them in the
top 10. The results with colmsmd and wscolmsmd, shown in Figure 5, are even
better: the overall numbers are the same, but ws orderings reduce work significantly
on 7 matrices in the top 10. The results with colamd and wscolamd are a bit less
favorable to ws orderings: they reduce work on 9 matrices but increase work on 8
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Fig. 4. The ratios of wscolamd’s performance to that of colamds. Performance is reported
in terms of flops, number of nonzeros in L and U , factorization times, and total times (including
ordering). Data points below 1 indicate that wscolamd is better than colamd. Matrices are sorted
by best factorization flops. The y-axis is logarithmic.

(discounting relative differences of less than 25%).

Nonzero counts in the LU factors and factorization times are generally correlated
with flop counts; smaller flop counts usually imply fewer nonzeros in the LU factors
and shorter factorization times.

The improvement due to wide separators is often large. On the largest matrix in
our test suite, li, wide separators reduce flop counts and factorization time by about
a factor of 2. The reduction in terms of flop counts compared to non-ws methods is
also highly significant on wang3, raefsky1/2/3, rim, and especially epb3.
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Fig. 5. Wscolmsmd to colmsmd ratios.

When ws orderings do poorly compared to non-ws methods, however, they some-
times do significantly poorer. On ex40, for example, using wide separators slows down
the factorization by a factor of about 2.5. Figure 7 shows that without reduction to
block triangular form, the slowdowns are even more dramatic. The figure shows that
on some of the matrices, especially the lhr ones, reduction to block triangular form
saves significant amounts of time, and that the savings are larger for ws orderings
than for non-ws orderings.

ws orderings are somewhat more expensive to compute than strict minimum-
degree orderings. Figure 6 shows that when the ordering times are taken into account,
ws orderings speed up the total solution time by more than 25% in only 6 out of the
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Fig. 6. Best ws to best non-ws methods.

33 matrices (but including 4 in the top 10). But there are no cases where ws orderings
significantly reduce the factorization time but significantly increase the total times.
Hence, ordering is a significant cost in ws-based factorization, but not a dominant
one. We also note that even when a ws ordering reduces the factorization time but
not the total time, it typically also reduces the size of the factors, which is often highly
important (since it saves memory, reduces the occurrence of paging, and speeds up
subsequent triangular solves).

4. Conclusions and discussion. Our main conclusion from this research is
that hybrid wide-separator minimum-degree column orderings are effective. Wide-
separator orderings are clearly superior to minimum-degree orderings alone on large
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Fig. 7. The effect of reduction to block triangular form on the factorization and ordering time.
The graph shows, on a logarithmic scale, the ratio of the ordering+factorization times without
reduction to block triangular form to the times with reduction. Data points above 1 indicate that the
reduction saves time. The graph shows the ratios for four ordering methods. Only large matrices
with nontrivial block triangular form are shown.

2- and 3-dimensional meshes that require pivoting. On matrices obtained from a
matrix collection, wide-separator orderings often substantially reduce the amount of
time and storage required to factor a sparse matrix with partial pivoting, compared
to column-minimum-degree orderings. They are more expensive to compute than
minimum-degree orderings, but the expense is often more than paid for by reductions
in time and storage during the factorization stage.

Wide-separator orderings, like other column orderings based on fill in the factors
of ATA, are robust but pessimistic. They are robust in the sense that they reduce
worst-case fill. Optimistic column orderings that attempt to reduce the fill in the
factors of AT + A tend to reduce fill better than pessimistic orderings when little or
no pivoting occurs, but can lead to catastrophic fill when pivoting does occur. Further
discussion of pessimistic versus optimistic orderings is beyond the scope of this paper.

The combined results of this paper and of an earlier paper [3] show that first
permuting the matrix to block triangular form reduces the wide-separator ordering
times and improves the quality of the ordering on some matrices.

This work can be extended in several directions. First, improving the perfor-
mance of the ordering phase itself would be significant. This can be done by tuning
the parameters of the ordering code (stopping the recursive bisection on fairly large
subgraphs) or by improving the wide-separator algorithm itself. Second, one can try
to improve the orderings by trying to derive smaller wide separators from a given
conventional separator. Third, one can interleave the ordering and factorization in a
way that widens separators only when necessary. That is, we would find a conven-
tional separator S in G, recursively order G1, and factor the columns corresponding
to G1. Once this phase is completed, we can widen the separator by adding to S the
neighbors of vertices that were used as pivots. We now recursively order and factor
the (shrunken) G2.
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Abstract. We present and discuss error estimates for nonautonomous linear compartmental
systems. The estimates are based on Kamke’s comparison theorem for cooperative differential equa-
tions.
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Introduction. Compartmental models are abundant in medicine, physiology,
ecology, and other disciplines of science. Frequently they represent simplified versions
of real-life scenarios, but models of this type are very useful as first approximations.
Moreover, if the underlying mechanisms are not well understood, or there are insuffi-
cient data, compartmental models may even be seen as the most adequate approach.
Many examples and applications can be found in the classical monograph by Jacquez
[5], the book by Anderson [1], and the recent book by Walter and Contreras [10].
Applications to fate modeling of chemicals and ecotoxicology can be found in Mackey
et al. [8] and Hutzinger et al. [4]. It may be said that linear compartmental systems
form the most important class in view of applications. Even though this may be
considered a well-understood class, there is little knowledge about the properties of
the solutions in the nonautonomous case. The purpose of this note is to contribute a
better understanding of such systems.

A frequent problem with models of biological or ecological systems is rooted in
the fact that parameters are not easy to determine, and often only very rough esti-
mates are known. (For instance, estimates for partition coefficients in ecotoxicology
models frequently differ by several orders of magnitude.) In such situations, standard
sensitivity analysis—which, by design, tests a system’s response to small parameter
changes—is not an appropriate tool to investigate the effects of parameter variations.
The purpose of this note is to show that linear compartmental systems are amenable
to quite efficient error estimates. The underlying reason is that linear compartmental
systems are cooperative systems in the sense of Kamke [7] and Walter [11], and for
these systems Kamke’s comparison theorem holds true. The main technical problem
is that a direct application of Kamke’s theorem may yield unsatisfactory results (e.g.,
the resulting estimates may grow exponentially although the solutions are bounded);
therefore a different approach is necessary; see Theorem 2.1. The results are stated
and proved for nonautonomous systems, but they address a problem that also occurs
in the autonomous case, and the method is of course also applicable in this con-
text. Several examples illustrate the method and show that it is capable of producing
satisfactory results.
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1. Basic facts. In this section we introduce some notation and review a number
of facts about compartmental systems. Proofs are included only if they are not directly
accessible from other sources.

A linear compartmental system is, by definition, a differential equation,

ẋ =




−r1 −
∑

j �=1 dj1 d12 · · · · · · d1n

d21 −r2 −
∑

j �=2 dj2 d23 · · · ...
... d32 · · · · · · ...
...

... d1,n−1

dn1 dn2 · · · · · · −rn −
∑

j �=n djn



·x+




b1
...
...
...
bn



.

Here the ri, dij , and bi are nonnegative continuous functions on some interval
(usually [0,∞)). We abbreviate this system as

ẋ = A · x+ b,

and we call A a compartmental matrix, following the terminology of Jacquez and
Simon [6].

The situation we want to investigate is as follows. We assume that there are
estimates

0 ≤ dij ≤ dij ≤ dij ,

0 ≤ ri ≤ ri ≤ ri ,

0 ≤ bi ≤ bi ≤ bi

for all i and j. The underlined and overlined quantities may themselves be (con-
tinuous) functions; in this case the inequalities are to be understood pointwise. We
will use the notation introduced above throughout this paper. In applications, the
available estimates are not necessarily “good,” and the problem we want to address
is determining what estimates can still be deduced for the solutions of the differential
equation.

The theory of compartmental matrices with constant coefficients may be seen as
part of the theory of nonnegative matrices, as was noted and elaborated by Jacquez
and Simon [6]. (Negatives of compartmental matrices are known as M-matrices.)
We recall some essential features. As usual, the notion P ≥ 0, resp., q ≥ 0, for
real matrices or vectors is to be understood entrywise, and we speak of nonnegative
matrices, resp., vectors. The notion of irreducibility carries over verbatim to com-
partmental matrices. A reducible compartmental matrix may, after a permutation of
indices, be written in block triangular form, with irreducible blocks in the diagonal.
It is immediate from the definitions that these blocks are themselves compartmental
matrices.
Proposition 1.1. Let A be a nonzero compartmental matrix with constant coef-

ficients. Then the following hold.
(a) There is a nonnegative matrix B, with spectral radius ρ(B), and a real s > 0,

s ≥ ρ(B), such that A = B − sE.
(b) If A is irreducible and some rj > 0, then A is invertible.
(c) Let A = B − sE as in part (a). Then

(c1) ρ(B)− s is an eigenvalue of A, and all eigenvalues of A have real parts
≤ ρ(B)− s;
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(c2) if A is irreducible, then ρ(B)− s has multiplicity 1, and all other eigen-
values of A have real parts < ρ(B)− s.

(d) If A is invertible, and b ≥ 0, then the unique solution of Ax + b = 0 is
nonnegative.

(e) If A is invertible, then there exists v with positive entries such that all entries
of Av are negative.

Proof. All proofs follow from results in Berman and Plemmons [2, Chap. 6]; see
also Jacquez and Simon [6]. Therefore we elaborate only the proofs of parts (a) and
(b), which are not immediate from these sources. (Jacquez and Simon discuss only
invertible compartmental matrices.)

(a) We show that −A is an M-matrix in the sense of [2, Chap. 6]; by using
criterion A6 from Theorem 4.6 in [2, Chap. 6] for the transpose of A. Accordingly,
we have to show that for each signature matrix S = diag (ε1, . . . , εn), with all εi ∈
{1,−1}, there is a nonzero x ≥ 0 such that −SAtSx ≥ 0. We may assume S =
diag (1, . . . , 1,−1, . . . ,−1), with the first q ≥ 1 entries equal to 1. Then

−SAtS =




r1 +
∑

dj1 −d21 · · · −dq1
−d12

...
...

... ∗
... −dq−1,q

−d1,q · · · rq +
∑

djq
d1,q+1 · · · dq,q+1

...
... ∗

d1n · · · dqn




,

and x := (1, . . . , 1, 0, . . . , 0)t satisfies

−SAtSx =


r1 +

∑
j>q

dj1, . . . , rq +
∑
j>q

djq,
∑
j≤q

dj,q+1, . . . ,
∑
j≤q

djn


 ≥ 0.

Now the assertion −A = sE − B follows from the definition of an M-matrix in [2,
Chap. 6].

(b) Take v = (v1, . . . , vn)
t
, with all vi > 0. Since

(1, . . . , 1) · (−A) = (r1, . . . , rn)

and some rj > 0, one gets

(1, . . . , 1) · (−A) · v ≥ rjvj > 0.

Therefore A · v 
= 0, and the assertion follows from [2, Chap. 6, Thm. 4.16(2)].
Part (c) follows from Perron–Frobenius.
(d) The inverse of −A is nonnegative according to [2, Chap. 6, Thm. 2.3].
(e) This is criterion M34 in [2, Chap. 6, Thm. 2.3].
Remark 1.2. Suppose that A is an invertible compartmental matrix with constant

entries. Using Proposition 1.1(e) for the transpose of A, we see that there is a row
vector (v1, . . . , vn) such that all vi > 0 and all entries of vA are negative. There are
some cases when such a vector can be determined easily, as can be seen below:

(i) If all ri > 0, then one may choose v = (1, . . . , 1).
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(ii) If A is irreducible, then “the” positive left eigenvector of A (guaranteed by
Perron–Frobenius) has the desired property.

Some of this may be saved for the nonautonomous case. For instance, if there is
a constant ρ > 0 such that ri(t) ≥ ρ for all t and i, one still has

(1, . . . , 1) ·A ≤ −ρ · (1, . . . , 1).
Likewise, it may be possible to find estimates in cases such as (ii) by employing
positive left eigenvectors of suitable constant matrices.

Let us now turn to the linear compartmental system

(∗) ẋ = A(t) · x+ b(t).

The nonnegative orthant of Rn is forward invariant for this differential equation, and
we are exclusively interested in nonnegative solutions. (Boundedness of solutions is
not automatic, even if b is bounded.)

Differential inequalities yield the following result, which is sometimes useful for
finding upper estimates.
Proposition 1.3. Assume that there are α1, . . . , αn > 0 and α∗

1, . . . , α
∗
n > 0

such that

(α1, . . . , αn) ·A ≤ −(α∗
1, . . . , α

∗
n)

and define µ := min {α∗
1/α1, . . . , α

∗
n/αn}. Let z(t) be a nonnegative solution of (∗).

Then

zi(t) ≤ v(t)/αi for all t ≥ t0, 1 ≤ i ≤ n,

with the solution v(t) of

ẏ = −µ · y + (α1b1 + · · ·+ αnbn), y(t0) = α1z1(t0) + · · ·+ αnzn(t0).

In particular, if b(t) is bounded, then every solution of (∗) is bounded.
Proof. The hypothesis implies

d

dt
(α1z1 + · · ·+ αnzn) ≤ −µ · (α1z1 + · · ·+ αnzn) + (α1b1 + · · ·+ αnbn);

thus (α1z1+ · · ·+αnzn) ≤ v(t) from standard properties of scalar differential inequal-
ities; see Walter [11].

The hypothesis of (1.3) is always satisfied for invertible compartmental matrices
with constant entries, as Proposition 1.1(e) shows. Moreover, we then have a (possibly
crude) upper estimate for the solutions. A variant of this strategy may be used to
provide lower estimates.

Now we recall Kamke’s comparison theorem for cooperative systems in the special
context of linear cooperative systems. Generally, a differential equation ẋi = fi(t, x)
(1 ≤ i ≤ n), which is defined on a convex subset U of Rn with nonempty interior and
C1 right-hand side in x, is called cooperative on U if ∂fi/∂xj ≥ 0 whenever i 
= j.
(There is an extensive qualitative theory of autonomous cooperative systems which
was initiated by Hirsch [3]; see the monograph by Smith [9].) A linear differential
equation ẋ = P · x + q is cooperative if and only if all off-diagonal entries of P are
nonnegative. In this paper we will refer to such matrices as cooperative matrices. The
specialization of Kamke’s comparison theorem [7] to linear systems is as follows.
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Proposition 1.4. Let U ⊆ Rn be convex, with nonempty interior, and suppose
that the linear differential equations

ẋ = P (t) · x+ q(t) and ẋ = P ∗(t) · x+ q∗(t)

are given on U , with t in some interval J . Assume that

(i) P (t) is cooperative for all t or P ∗(t) is cooperative for all t;

(ii) P (t) · x+ q(t) ≥ P ∗(t) · x+ q∗(t) for all t ∈ J and all x ∈ U .

Let t0 ∈ J , and let u(t), respectively, u∗(t), be a solution of the first, respectively,
the second, equation in U such that u(t0) ≥ u∗(t0). Then u(t) ≥ u∗(t) for all t ≥ t0.

This result has an obvious application to linear compartmental systems on the
nonnegative orthant. (Clearly compartmental systems are cooperative.) Given A, b
as above, define

A =




−r1 −
∑

j �=1 dj1 d12 · · · · · · d1n

d21 −r2 −
∑

j �=2 dj2 d23 · · · ...
... d32 · · · · · · ...
...

... d1,n−1

dn1 dn2 · · · · · · −rn −
∑

j �=n djn



, b =




b1
...
...
...
bn



,

A =




−r1 −
∑

j �=1 dj1 d12 · · · · · · d1n

d21 −r2 −
∑

j �=2 dj2 d23 · · · ...
... d32 · · · · · · ...
...

... d1,n−1

dn1 dn2 · · · · · · −rn −
∑

j �=n djn



, b =




b1
...
...
...
bn



.

Then, by construction,

A · x+ b ≤ A · x+ b ≤ A · x+ b

for all nonnegative x. Thus we have the following.

Corollary 1.5. If u, u, and u, respectively, are nonnegative solutions of ẋ =
A · x + b, ẋ = A · x + b, and ẋ = A · x + b, with u(t0) ≤ u(t0) ≤ u(t0), then
u(t) ≤ u(t) ≤ u(t) for all t ≥ t0.

Note that ẋ = A · x + b is again a compartmental system. On the other hand,
ẋ = A · x + b is in general no longer a compartmental system and will in general
have unbounded solutions in the nonnegative orthant. (For instance, there may be
an index j such that rj = 0 and dij < dij for some i. Then A is not a compartmental

matrix.) If all solutions of ẋ = A · x + b are bounded, then ẋ = A · x + b will not
provide sensible estimates for large times. Therefore, more work is needed here to
obtain upper estimates. For arbitrary cooperative systems there are improvements of
Kamke’s theorem by Walter [11], which generally yield sharper estimates but do not
resolve the problem here. For linear systems there is another, direct, approach, which
we will introduce in the next section.
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2. Estimates for linear cooperative systems.
Theorem 2.1. Let P and P ∗ be cooperative matrices with P ≥ P ∗, let P be such

that P ≥ P , and furthermore let q, q∗ ≥ 0. Let u and u∗ be nonnegative solutions of
ẋ = P · x + q and ẋ = P ∗ · x + q∗, respectively, for t ≥ 0. Moreover, let t0 ≥ 0 and
let z, z∗ be functions such that u(t) ≤ z(t) and u∗(t) ≤ z∗(t) for all t ≥ t0. Then the
following hold:

(a) For t ≥ t0 one has u(t) − u∗(t) ≥ v(t), where v(t) solves any of the initial
value problems

ẋ = P · x+ (q − q∗), x(t0) = u(t0)− u∗(t0);
ẋ = P ∗ · x+ (q − q∗), x(t0) = u(t0)− u∗(t0).

(b) For t ≥ t0 one has u(t) − u∗(t) ≤ w(t), where w(t) solves any of the initial
value problems

ẋ = P · x+ (P − P ∗) · z∗ + (q − q∗), x(t0) = u(t0)− u∗(t0);
ẋ = P ∗ · x+ (P − P ∗) · z + (q − q∗), x(t0) = u(t0)− u∗(t0);

ẋ = P · x+ (P − P ∗) · z∗ + (q − q∗), x(t0) = u(t0)− u∗(t0);

ẋ = P ∗ · x+ (P − P ∗) · z + (q − q∗), x(t0) = u(t0)− u∗(t0).

Proof. We have

d

dt
(u− u∗) = P · u− P ∗ · u∗ + q − q∗ =

{
P · (u− u∗) + (P − P ∗) · u∗ + q − q∗

P ∗ · (u− u∗) + (P − P ∗) · u+ q − q∗

}

and both P and P ∗ are cooperative. Since P ≥ P ∗, we get 0 ≤ (P − P ∗) · u∗ ≤
(P − P ∗) · z∗, and therefore

P · (u− u∗) + q − q∗ ≤ d

dt
(u− u∗) ≤ P · (u− u∗) + (P − P ∗) · z∗ + q − q∗.

The first assertions of parts (a) and (b) now follow directly from (1.4). The remaining
claims are proven in a similar manner.

Note that all the systems given in (2.1) are themselves cooperative, and therefore
Kamke’s theorem may be used once more.

Let us briefly discuss the quality of the estimates thus obtained. Concerning lower
estimates, in case q ≥ q∗ part (a) will yield a result which is no worse than direct
application of Kamke’s theorem. Concerning part (b), the crucial question is whether
an initial estimate u ≤ z will actually be improved. As it turns out, much depends
on the proper choice of q∗. We illustrate this in a very elementary situation.
Example 2.2. Consider one-dimensional equations, with P = −1, P ∗ = −2,

q = 3, and q∗ to be determined later. Let u, u∗ with u(0) = u∗(0) = 0; thus u(t) =
3− 3 exp(−t), and u∗(t) = q∗/2− q∗/2 · exp(−2t).

Take some constant upper estimate z for u (any z ≥ 3 works), and use the
second equation in Theorem 2.1(b) to compare solutions. Thus v̇ = −2v+(3+z−q∗),
v(0) = 0, and choosing q∗ = 3+z yields v = 0. Hence, if u∗(t) solves ẋ = −2x+(3+z),
x(0) = 0, then u ≤ u∗. The computation yields u(t) ≤ (3 + z)/2 · (1 − exp(−2t)) ≤
(3 + z)/2, hence an improved upper estimate for u. Note that the procedure can be
iterated.

The strategy used in this simple example can be adapted to more interesting
scenarios.



ERROR ESTIMATES FOR LINEAR COMPARTMENTAL SYSTEMS 1019

Remark 2.3. Given a linear compartmental system ẋ = A ·x+ b, one may choose
P = A, P ∗ = A and compare solutions with solutions of a system

ẋ = A · x+ b∗,

with b∗ to be determined. If an initial (bounded) upper estimate z for a solution u of
ẋ = A · x+ b is known (for instance, with the help of Proposition 1.3), then Theorem
2.1(b), together with Kamke’s theorem, yields u(t)− u∗(t) ≤ w(t), with w(t) solving

ẋ = A · x+ (A−A) · z + (b− b∗); w(t0) = u(t0)− u∗(t0).

Since A is a compartmental matrix, one will obtain bounded estimates by choosing
b∗ such that

(A−A) · z + b− b∗ ≥ 0.

The special choice

b∗ = (A−A) · z + b

yields the equation ẋ = A · x for w, and thus limt→∞ w(t) = 0 under mild addi-
tional conditions. (For instance, this holds whenever A has constant entries and is
invertible.) In particular, w = 0 if u(t0) = u∗(t0), and then u ≤ u∗ follows.

3. Examples. We first discuss a nontrivial example which is not directly related
to an application, but it will illustrate how the results of the previous section can be
applied.

3.1. A two-compartment model. Consider the compartmental system with

A =

(−r − d21 d12

d21 −d12

)
, b =

(
0

1 + β

)
,

where r(t) = 3+ρ(t), d21(t) = 4+ θ21(t), d12(t) = 3+ θ12(t). We assume 0 ≤ θ12 ≤ 2,
0 ≤ θ21 ≤ 1, 0 ≤ ρ ≤ 1, and 0 ≤ β ≤ 9.

In this model, inflow goes exclusively to compartment 2, and loss or degradation
of material occurs only in compartment 1. The rates are given only within certain
error bounds, which have the same order of magnitude as the constant approximation.
Therefore, the errors are not “small.” In particular, the inflow rate is permitted to
vary over a wide range. Lower and upper estimates are

A =

(−9 3
4 −5

)
, A =

(−7 5
5 −3

)
, b =

(
0
1

)
, b =

(
0
10

)
.

We will discuss the solution u(t) with u(0) = 0, and in particular its long-term be-
havior. Since A has a positive eigenvalue, a direct application of Proposition 1.4 will
not produce bounded estimates.

(a) Use Proposition 1.3 to find an initial upper estimate:

d

dt
(2x1 + 3x2) = −(2x1 + 3x2)− 2ρx1 + θ21x1 − θ12x2 + 3(1 + β)

≤ −(2x1 + 3x2) + θ21/2 · (2x1 + 3x2) + 30

≤ −1/2 · (2x1 + 3x2) + 30,
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and thus

2u1 + 3u2 ≤ 60(1− exp(−t/2)) ≤ 60.

This yields

u1(t) ≤ z1 := 30 and u2(t) ≤ z2 := 20.

(The choice of linear form is motivated by the observation that (2, 3) is a left eigen-
vector of A in case ρ = θ21 = θ12 = 0. As noted in section 1, finding such an initial
upper estimate may be problematic; here it works because of the bounds on ρ and
the θij .)

(b) Kamke’s theorem (Proposition 1.4) provides as a lower estimate the solution
of ẋ = A · x + b, x(0) = 0. The solution of this equation approaches the stationary
point 1

11 (1, 3)
t.

(c) Now use the initial upper estimate z and Theorem 2.1(b) to obtain improved
upper estimates.

(i) If w(t) solves

ẋ = A · x+ (A−A) · z + (b− b∗), x(0) = 0,

and u∗(t) solves

ẋ = A · x+ b∗, x(0) = 0,

then u− u∗ ≤ w for all t ≥ 0. Following Remark 2.3, choose

b∗ = (A−A) · z + b

=

(
2 2
1 2

)
·
(
30
20

)
+

(
0
10

)
=

(
100
80

)

to ensure u ≤ u∗.
Here we focus on the behavior for large times. For t → ∞, u∗ approaches the

stationary point

A−1 · b∗ =
20

33
·
(
37
56

)
<

(
22.5
34

)
,

and hence u(t) ≤ ( 22.5
34 ) for all sufficiently large t. Combining estimates, one has

u(t) ≤
(
22.5
20

)

for sufficiently large t.
(ii) Repeat the procedure with z = ( 22.5

20 ). Then

b∗ =

(
85
72.5

)
and u(t) <

(
19.5
20

)

for sufficiently large t. A few more repetitions yield

u(t) ≤
(
17.8
20

)
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for sufficiently large t.
(d) Obviously, the iteration carried out above to determine estimates in the lim-

iting case t→∞ is related to the linear difference equation with matrix

Q := A−1 · (A−A)

and constant term c := A−1 · b. (A similar observation holds generally.) In the given
situation, the eigenvalues of Q have modulus < 1 and the iteration converges, albeit
slowly. But it should be noted that pursuing this “pure” strategy is less effective than
combining estimates, as above. (Naturally, the combined strategy itself leads to a
difference equation.)

(e) The error in these estimates is of the same order of magnitude as the errors in
the right-hand side of the equation, and this is quite satisfactory concerning estimates
for large times. An elementary computation shows that among the autonomous sys-
tems in the class under consideration, the limit is always bounded above by 1

3 (
10
30 ),

and thus the estimates are reasonable, if not perfect.
(f) Finally, consider the “degradation problem”

ẋ = Ax, x(0) =

(
1
1

)

as an illustration of the method with nonconstant estimates. Just as in part (a) the
solution u satisfies

d

dt
(2u1 + 3u2) ≤ −1/2 · (2u1 + 3u2),

and with (2u1 + 3u2)(0) = 5 this yields the initial upper estimates

u1(t) ≤ z1(t) := 5/2 · exp(−t/2), u2(t) ≤ z2(t) := 5/3 · exp(−t/2).
Now we use the fourth equation in Theorem 2.1(b) with q∗ = 0 and u∗(0) = 0 (thus
u∗ is identically zero) to see that u is majorized by the solution of

ẋ = Ax+
(
A−A

)
z, x(0) =

(
1
1

)
.

Solving the latter equation shows that the new estimates are indeed better than the
initial ones and that, for instance,

u1(1) < 0.382, u1(2) < 0.229, u1(3) < 0.139;

u2(1) < 0.571, u2(2) < 0.340, u2(3) < 0.206.

Compare this, for example, with the solution w of ẋ = Ãx with the same initial value,
where Ã is characterized by ρ = 0, θ21 = 1, θ12 = 2. Then

w1(1) = 0.230, w1(2) = 0.085, w1(3) = 0.031;

w2(1) = 0.460, w2(2) = 0.170, w2(3) = 0.062.

Once again, the estimates are not perfect but reasonably good. Repeating the proce-
dure in this case, with z replaced by the improved estimates found in the first step,
turns out to yield upper estimates that are actually worse. (A look at the structure
of the closed form solution shows that such a phenomenon may occur.) Finally, it
should be remarked that making direct use of Kamke’s theorem here does not lead to
meaningful estimates.

Next comes an example from “real life.”
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3.2. An example from ecotoxicology. The system to be discussed here is
derived from a model describing the fate of a chemical substance (nonylphenol) in a
small pond, as part of an interdisciplinary ecotoxicology project. The model is used for
simulations to determine the amount of chemical in the different compartments of the
pond system. Its principal purpose is to help the experimenters in understanding the
distribution of the substance in the system, and therefore the task includes detecting
inadequacies in the model itself, with subsequent corrections. (For instance, there
may be a priori unknown effects which contribute to degradation of the substance.)
After calibration, a simulation should produce reliable estimates of the substance’s
concentration in various compartments. Since this is a typical situation where certain
parameters (like partition coefficients) are known only within large margins of error,
and others (such as temperature) may vary strongly with time, error estimates are
crucial to assessing the quality of the simulation results.

(a) The full model will be discussed elsewhere. Here we present a simplified
version, but it should be emphasized that this version reflects a real system: The
“pond” in question is a vessel which contains about 200 liters of lake water above 40
liters of lake sediment. The sediment layer has a thickness of 7.5 centimeters. The
vessel itself is immersed in a water pool. The chemical is added to the water at a
constant rate. In the model to be discussed here, there are only four compartments
(water and three sediment compartments) for the sake of simplicity. Moreover, we
discuss an idealized situation where the chemical leaves the system only by evaporation
from water to air, and there is no degradation in any compartment. The upper
sediment compartment has an organic carbon content (TOC) of 3%, while the water
and the other sediment compartments contain no organic carbon at all. This idealized
situation has been chosen in part to make error estimates harder to obtain, but it is
also a reasonable strategy to initially work with a model that allows no degradation
within the compartments: determining a priori the rates of such processes may be a
serious problem.

The numbers xi, i = 1, . . . , 4, represent the mass of the chemical in the com-
partments, in milligrams. The unit of time is one day. Compartment 1 is water,
compartments 2 through 4 are sediment layers of increasing depth. The differential
equation is

ẋ = A · x+ b,

with

A =



−(5r1 + 6) · 10−3 2K−1 0 0
−6 · 10−3 −4K−1 0.33 0

0 2K−1 −0.53 0.2
0 0 0.2 −0.2


 , b =




10
0
0
0


 .

Estimates for the organic carbon-water partition coefficient K in the literature vary
between 104 and 106, and the rate r1, which describes evaporation, varies between
0.5 and 1.6, corresponding to a variation in temperature between 10 and 30 degrees
centigrade. For reasons of convenience, we have included some idealizations in the
model; for instance, we assume that all the other quantities are known with negligibly
small error. But these idealizations do not significantly alter the picture. The exper-
imenters are interested in the distribution of the chemical over the duration of a few
months. In this example we choose a time span of one hundred days, and we assume
that initially there is no chemical substance in the system. Thus we investigate the
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solution u(t) of

ẋ = A · x+ b, x(0) = 0.

(b) Using the terminology introduced in section 2, we have

A =



−1.4 · 10−2 2 · 10−6 0 0
0.6 · 10−2 −4 · 10−4 0.33 0

0 2 · 10−6 −0.53 0.2
0 0 0.2 −0.2


 ,

A =



−0.9 · 10−2 2 · 10−4 0 0
0.6 · 10−2 −4 · 10−6 0.33 0

0 2 · 10−4 −0.53 0.2
0 0 0.2 −0.2


 ,

and b = b = b.
To obtain a lower estimate, we solve the equation

ẋ = A · x+ b, x(0) = 0.

At time t = 100 (days) this yields

u1(100) > 538, u2(100) > 195, u3(100) > 10−3, u4(100) > 10−3.

(c) In the given scenario, and for the given duration of time, it turns out that a
direct application of Kamke’s theorem, i.e., solving

ẋ = A · x+ b, x(0) = 0,

yields sharper upper bounds than using Theorem 2.1(b), mostly since no good initial
upper estimate is available. (There is a natural candidate for such an estimate: Take
z = 103 · (1, 1, 1, 1)t; this reflects the fact that each compartment contains at most
the mass that was brought into the whole system during the given time span. But
starting with this and using Theorem 2.1(b) yields weaker estimates than proceeding
directly.) The estimates we obtain are

u1(100) < 661, u2(100) < 229, u3(100) < 0.13, u4(100) < 0.12.

Thus we have reasonable upper and lower estimates in this situation.
(d) The strategy from Theorem 2.1(b) is also useful here, since the matrix A has

a positive eigenvalue (approximately equal to 3 · 10−4), and therefore solutions grow
exponentially with time. Let us consider the equation ẋ = Ax, with initial value
(600, 200, 0.1, 0.1) at t = 0. This may describe the case when the substance has been
added at a constant rate 10 for 100 days (compare the data from parts (b) and (c)),
and then the system is left to itself. We will proceed as in (e) of section 3.1.

The problematic part is to find an initial upper estimate. If we take v as a left
eigenvector of A with parameters K = 106, and r = 0.5, then applying Proposition
1.3 yields µ = 6.67 · 10−7 and the initial upper estimate

z(t) = 300 exp(−µt)




2
3
3
3


 .
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Since this is the best possible µ for one particular case, one cannot expect better
general estimates. Incidentally, v is close (but not equal) to (2, 3, 3, 3).

Solving ẋ = Ax + (A − A)z with the given initial values produces improved
upper estimates. For instance, the upper estimate for u1 decreases fairly quickly, with
u1(50) < 484 and u1(100) < 396. In contrast, the estimate for u2 is increasing for
t between 0 and 100, with u2(100) < 506. (Such a phenomenon also occurs in the
pond system: Even if there is no more addition of chemical substance to the water
compartment, the concentration in the sediment layers will still increase for some
time.) The mass in the third and fourth compartments also increases for t between
0 and 100 and seems to approach a plateau near 0.37. Of course, in the long range
all the masses (and estimates) will approach zero. Comparing the estimates with
simulations shows, once again, that they are quite reasonable. The principal value of
such estimates is that they provide verifiable (or refutable) predictions that can be
tested against experimental data, and thus they are useful in the model validation
process.
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Abstract. The centroid decomposition, an approximation for the singular value decomposition
(SVD), has a long history among the statistics/psychometrics community for factor analysis research.
We revisit the centroid method in its original context of factor analysis and then adapt it to other
than a covariance matrix. The centroid method can be cast as an O(n)-step ascent method on
a hypercube. It is shown empirically that the centroid decomposition provides a measurement of
second order statistical information of the original data in the direction of the corresponding left
centroid vectors. One major purpose of this work is to show fundamental relationships between the
singular value, centroid, and semidiscrete decompositions. This unifies an entire class of truncated
SVD approximations. Applications include semantic indexing in information retrieval.
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1. Introduction. We first review factor analysis [5, 9, 7] in the terms used by the
applied statistics/psychometrics (AS/P) community with the notation of numerical
linear algebra. This provides a setting to show how the centroid method developed
as an approximate singular value decomposition (SVD). Our work was motivated by
a recent article [11] and correspondence from Lawrence Hubert drawing our attention
to the application of SVDs in the AS/P context. In particular we have found Horst’s
[9] description of the centroid decomposition proposed in the AS/P literature quite
illuminating. The use of the SVD or ideas associated with it has a rich history [7] in
the AS/P community dating back at least to Pearson [15] in 1901. Stewart’s scholarly
historical treatise [16] has traced the early history of the SVD back to Beltrami in
1873 and Jordan in 1874. Within the numerical linear algebra (NLA) community,
besides Hotelling’s work [10] and that of Eckert and Young [6], there seems little
awareness of the AS/P work. The AS/P community generally considers Thurston’s
1931 paper [17] as being the most complete description of the centroid method. In
point of fact the centroid method was used in 1917 by Burt [2]. So what turned out
to be an approximation for the SVD had its beginnings before there was widespread
knowledge of the SVD itself.

We begin in section 2 with the factor analysis setting, providing a brief but prac-
tical background for further understanding of the underlying matrix decompositions.
This should unify the differences in vocabulary and notation used by the AS/P and
NLA communities. The classical Wedderburn rank reduction formula has been used
by the AS/P community at least since the early 1940s. In section 3 we show how they
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connect the rank reduction formula with the centroid method, which provides insight
into the reduced matrix. What they call centroid factors are indeed the centroids of a
sequence of the orthogonally reduced loading matrices. Section 4 further develops the
centroid method with the necessary modifications for the reduction of the covariance
matrix. Section 5 gives the details of the centroid algorithm along with an ascent hy-
percube description, proof of convergence, and computational complexity. Section 6
provides a general stochastic treatment of the truncated SVD and thereby the sta-
tistical soundness of the centroid decomposition. Section 7 compares the similar yet
different setups between the centroid method and some latent semantic indexing tech-
niques used in data mining. Section 8 discusses a modified centroid algorithm that
does not require the explicit formation of the product moment or covariance matrix.
Finally, in section 9 we use the SVD triad of variational formulations to unify a class of
approximations to the SVD, including the data retrieval semidiscrete decomposition
(SDD) and the centroid decomposition.

2. The factor analysis setting. An indispensable task in almost every dis-
cipline of science is the analysis of data in search of relationships between sets of
externally caused and internal variables. Such a task has become especially impor-
tant in this era of information and digital technologies, when massive amounts of
data are being generated at almost all levels of applications. In many situations, the
digitized information is gathered and stored as a data matrix. Quite often the data
observed from complex phenomena represent the integrated result of several inter-
related variables acting together. When these variables are less precisely defined, it
becomes important to distinguish which variable is related to which and how the vari-
ables are related before deductive sciences can further be applied. Toward that end,
factor analysis is a class of procedures that can help identify and test what constructs
might be used to explain the interrelationships among the variables.

Let Y = [yij ] ∈ R
n×� denote the matrix of observed data. One of the main

applications of factor analysis is to analyze relationships between questions on tests.
Thus we will use here, as is done for almost any application, yij to represent, in a
broad sense, the standard score of variable i on entity j. By a standard score we mean
that a raw score has been normalized to have mean 0 and standard deviation 1. The
matrix

R :=
1

�
Y Y T ,(2.1)

therefore, represents the correlation matrix of all n variables. Note that rii = 1 and
|rij | ≤ 1 for all i, j = 1, . . . , n.

In a linear model, it is assumed that the score yij is a linearly weighted score of
entity j on several factors. That is, we assume

Y = AF,(2.2)

where A = [aik] ∈ R
n×m is a matrix with aik denoting loadings of variable i on factor

k, and F = [fkj ] ∈ R
m×� with fkj denoting the score of factor k on entity j. To

better grasp the notion of linear modeling in (2.2), readers might want to think, for
example, that each of the � columns of the observed matrix Y represents the transcript
of a college student (an entity) at his/her freshman year on n fixed subjects (the
variables), e.g., calculus, English, chemistry, and so on. It is generally believed that a
college freshman’s academic performance depends on a number of factors, including,
for instance, family social status, finances, high school GPA, cultural background, and
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so on. Upon entering the college, each student could be asked to fill out a questionnaire
inquiring about these factors of his/her background. In turn, individual responses to
those factors are translated into scores and placed in the corresponding column of the
scoring matrix F . What is not clear to the educators/administrators is how to choose
the factors to compose the questionnaire or how each of the chosen factors would be
weighted (the loadings) to reflect the effect on each particular subject. In practice, we
usually do not have a priori knowledge about the number and character of underlying
factors in A. Sometimes we do not even know the factor scores in F . Only the data
matrix Y is observable. Explaining the complex phenomena observed in Y with the
help of a minimal number of factors extracted from the data matrix is the primary
and most important goal of factor analysis.

It is customary to assume that all sets of factors being considered are uncorrelated
with each other. If we further assume, similar to Y , that the scores in F for each
factor are normalized, then it is true that

1

�
FFT = Im,(2.3)

where Im stands for the identity matrix in R
m×m. It follows that the correlation

matrix R can be expressed directly in terms of the loading matrix A, i.e.,

R = AAT .(2.4)

Factor extraction now becomes a problem of decomposing the correlation matrix R
into the product AAT using as few factors as possible.

As a whole, the ith row of A may be interpreted as how the data variable i is
weighted across the list of current factors. If the sum of squares of this row, called
the communality of variable i, is small, it suggests that this specific variable is of little
consequence to the current factors. On the other hand, the kth column of A may
be interpreted as correlations of the data variables with that particular kth factor.
Those data variables with high factor loadings are considered to be more like the
factor in some sense, and those with zero or near-zero loadings are treated as being
unlike the factor. The quality of this likelihood, which we call the significance of the
corresponding factor, is measured by the norm of the kth column of A. One basic
idea in factor analysis is to rewrite the loadings of variables over some newly selected
factors so as to manifest more clearly the correlation between variables and factors.
Suppose the newly selected factors are expressed in terms of columns of the orthogonal
matrix

V := [v1, . . . ,vm] ∈ R
m×m.(2.5)

Then this rewriting of factor loadings with respect to V is mathematically equivalent
to a change of basis, i.e., A is now written as B := AV . One of the fundamental
problems in the practice of factor analysis is to determine some appropriate new basis
for V . Note that because V V T = Im, the very same observed data now is decomposed
as Y = AF = (AV )(V TF ) = BG with B andG = V TF representing, respectively, the
factor loadings and uncorrelated standard factor scores corresponding to the factors
in V . From this we also see that the correlation matrix R = AAT = BBT ∈ R

n×n is
independent of factors selected. This is another reason that in the process of defining
new factors it is often desirable to retrieve information directly from the correlation
matrix R rather than from any particular loading matrix A. The centroid method,
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the main topic of this paper, has been used for retrieving such factors. The new
factors in the centroid method were defined via successive rank reduction applied to
the correlation matrix R.

3. Centroid factor. We shall denote A1 := A, R1 := R, and call the relation-
ship R1 = A1A

T
1 the product moment of A1. Temporarily assuming that a loading

matrix A1 is given, the coordinate axes in R
m represent a set of m abstractly defined

factors. The centroid method amounts to a procedure of defining a new coordinate
system representing what are called the centroid factors. The most important feature
of the centroid method is that loadings with respect to the centroid factors can be
calculated without the knowledge of A1 or even of the centroid factors. The assump-
tion of knowing A1 a priori, therefore, is not needed. But in the following we continue
to use A1 to gain insight into the meaning of the extraction steps.

The ith row in the matrix A1 denotes the loadings of variable i across the spec-
trum of the current set of factors. Denoting each row of A1 as a point in the factor
space R

m, the arithmetic mean of these points might be used to indicate a collective
trend of the variables. That direction could be a substantial factor to be weighted
in and thus constitutes the essential idea of a centroid factor. Before we move into
details, we should comment that generally variables that tend to vary together form
clusters. If all the variables are truly independent, there should be no clusters at all.
On the other extreme, if all the variables are dependent on the same factor, then a
single cluster should be formed. In between the two extremes, we do not know a priori
how many clusters are to be expected. There are many cluster detection techniques.
See, for example, the book [1]. Among these, the so called k-means method is perhaps
the most commonly used in practice. The centroid method we are about to describe
is the simplest special variation of the k-means method. The centroid method itera-
tively searches for one mean a time. Since the goal of this paper is to compare the
relationships of various discrete variational decompositions with the SVD, our present
discussion will be concentrating on the (1-mean) centroid method only. The gener-
alization of comparison to a k-means method should be another interesting research
topic in the future.

Given A1 ∈ R
n×m, the centroid of these n variables is given by the column vector

c1 :=
AT

1 1n

n
=

[∑n
i=1 ai1
n

, . . . ,

∑n
i=1 aim
n

]T
,(3.1)

where 1n denotes the column vector 1n := [1, . . . , 1]T ∈ R
n. The first centroid factor

is defined to be the normalized vector

v1 :=
c1

‖c1‖ .(3.2)

The new loadings of variables with respect to this new factor v1, i.e., the first column
b1 = [b11, . . . , bn1]

T of the new loading matrix B (which is yet to be found), can be
calculated without referring to A1 as follows: Each component bj1 is precisely the
projection component of variable j along the unit vector v1, i.e., b1 = A1v1. This
can be rewritten as

b1 = A1
AT

1 1n

‖AT
1 1n‖ =

R11n√
1T
nR11n

.(3.3)

In this way, we note that the first loading vector b1 is extracted directly from R1. No
reference to A1 or v1 is needed.
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Once the loadings b1 for the centroid factor v1 are found, the product moment
R1 is conventionally updated to a new matrix R2 defined by

R2 := R1 − R11n1
T
nR1

1T
nR11n

.(3.4)

It is important to understand the meaning of R2. Define

A2 := A1 −A1v1v
T
1 .(3.5)

Observe that each row in the matrix A2 represents the component of the original
loadings A1 in the direction orthogonal to v1. We shall call A2 the orthogonally
reduced loading matrix of A1 with respect to v1. Note that A2 inherits most of the
loading information of the original A1 except for the loadings along the direction v1.
The information along v1 is subtracted from A1 to form A2. The following statement
provides an interesting interpretation of R2.

Theorem 3.1 (see [3]). The traditional rank-one update (3.4) from R1 is sim-
ply another way to calculate the product moment of the orthogonally reduced loading
matrix A2 without directly referring to A2.

Proof. The product moment of A2 can be computed as follows:

A2A
T
2 =

(
A1 −A1v1v

T
1

) (
AT

1 − v1v
T
1 A

T
1

)
= A1A

T
1 −A1v1v

T
1 A

T
1

= R1 − R11n1
T
nR1

1T
nR11n

,

where the last equality follows from (3.1).
With A2 or R2 in hand, it seems that the above procedure can be repeated to

extract the next centroid factor for A2, to introduce the next reduced loading matrix,
and so on. Unfortunately, this is not the case. The procedure cannot be repeated
because AT

2 1n = 0m. In other words, because the centroid of A2 is residing squarely
at the origin of R

m, the second centroid factor is null. We have to modify the notion
of centroid somewhat to circumvent this situation.

It is worth mentioning that the update (3.4) is simply one special case of the
well-known Wedderburn rank reduction formula [4]. The rank of R2 is precisely one
less than that of R1.

4. Modified centroid factor. In factor analysis, one major task is to ascribe
the loadings in A1 to as few essential factors as possible. We consider that a factor
is essential if loadings with respect to that particular factor are relatively weighty.
Being the average of all variables, the centroid factor v1 would delineate an essential
factor under the following circumstances:

1. When all points in R
m representing rows of A1 stay near the line determined

by v1: In this case, each variable is approximately a scalar multiple of v1.
The scalar can be positive or negative, indicating a positive or negative lin-
ear correlation between the variable and the factor v1. In either case, it is
clear that a substantial portion of loadings in A1 should be attributed to the
factor v1.

2. When the centroid c1 is far away from the origin: In this case, the variables
are asymmetrically distributed in the factor space R

m. The quantity ‖c1‖
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measures, in some sense, the eccentricity of the system of variables with re-
spect to the origin. That is, the farther c1 is away from the origin, the more
variables are qualitatively scattered in a general area surrounding c1. Thus
the larger ‖c1‖ is, the better an essential factor v1 represents.

It is worth noting again, as we have already pointed out in the first remark above,
that replacing one particular variable by its negative does not cause trouble in the
identification of an essential factor. We therefore should change the sign of certain
rows if that helps to bring out other properties such as that described in the second
remark above. On the other hand, the scalar

1T
nR1n = ‖AT

1 1n‖2 = n2‖c1‖2(4.1)

is a fixed multiple of ‖c1‖. Combining these observations, we are motivated to consider
the integer programming problem

max
|z|=1

zTR1z,(4.2)

where |z| = 1 means the components of the column vector z are either 1 or −1. We
call z a sign vector. There are only 2n sign vectors for a fixed n. Without causing
any ambiguity, we shall use the same notation to represent the vectors

c1 :=
AT

1 z1

n
,(4.3)

v1 :=
AT

1 z1

‖AT
1 z1‖ ,(4.4)

where z1 is the optimizer of (4.2), and call them the modified centroid and the modified
centroid factor, respectively. For later reference, we shall call

µ1 :=
1

n
max
|z|=1

zTR1z(4.5)

the first centroid value of A1. The following results are generalizations of (3.3) and
Theorem 3.1.

Theorem 4.1. The loading b1 with respect to the modified centroid factor v1

defined by (4.4) is given by the projection b1 = A1v1 and can be computed by

b1 =
R1z1√
zT1 R1z1

.(4.6)

The product moment R2 of the orthogonally reduced loading matrix A2 = A1−A1v1v
T
1

can be computed by

R2 = R1 − R1z1z
T
1 R1

zT1 R1z1
.(4.7)

We remark again that in the above expression both b1 and R2 can be calculated
without making explicit reference to A1. By now, it should be clear that the notion of
modified centroid factor can be applied to R2 to induce the next R3, and so on. With
this generalization, we should also point out that henceforth the matrix R no longer
denotes a correlation matrix but rather a general symmetric and positive semidefinite
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matrix. Each application of this centroid factor retrieval will reduce the rank of the
loading matrix by one. The procedure therefore has to come to a stop in finitely many
steps. In this way, with the recurrence

Ai = Ai−1 −Ai−1vi−1v
T
i−1, i = 2, . . . , γ,(4.8)

where vi is the modified centroid factor of Ai, γ is the rank of A1, and with the
loadings bi = Aivi, we may write

A = A1 = bγv
T
γ + · · ·+ b1v

T
1 ,(4.9)

which we will call a centroid decomposition of A.

Let z2 be the sign vector that maximizes zTR2z. Note that z2 �= z1 because

R2z1 = 0. The modified centroid c2 for A2, according to (4.3), should be c2 =
AT

2 z2

n .
It is interesting to note that

cT1 c2 =
1

n2

(
zT1 A1

) (
AT

2 z2

)
=

1

n2

(
zT1 A1

) [
AT

1

(
z2 − zT1 R1z2

zT1 R1z1
z1

)]
= 0,(4.10)

i.e., the modified centroids (and factors) are mutually orthogonal even though they
are not explicitly calculated.

5. Centroid method. To perform the centroid decomposition, a sequence of
integer programming problems such as (4.2) must be solved. The feasible set con-
sists of 2n sign vectors. An exhaustive search would be expensive. Fortunately, an
interesting quick iterative approach, called the centroid method, has been developed
in the AS/P literature for solving the underlying maximization problem. We shall
briefly review the centroid method in this section. In particular, we want to provide
a geometric interpretation of the centroid method.

Upon identifying −1 as 0 and keeping 1 as 1, we can associate a unique binary
tag to each sign vector. Each binary tag, in turn, is translated into a unique integer
between 0 and 2n−1 that provides a natural ordering of the sign vectors. For example,
sign vectors [−1,−1,−1,−1]T and [−1, 1,−1, 1]T have binary tags 0000 and 0101 and
are the 0th and the 5th in the order, respectively. If we consider each sign vector as
one node connected to all other sign vectors whose binary tags differ from its own
by exactly one bit, then topologically the set of 2n sign vectors can be identified as
an n-dimensional hypercube. A 4-dimensional hypercube layout together with the
ordering of its vertices is depicted in Figure 5.1. Note (see Figure 5.1) that each
n-dimensional hypercube consists of two (n − 1)-dimensional subhypercubes where
one subhypercube is simply a bit reversal of the other. The objective values zTRz
therefore always appear in pairs.

The integer programming problem over sign vectors now becomes the maxi-
mization of zTRz over vertices on the hypercube. Without causing any ambigu-
ity, let R stand for any of the product moments Ri involved in the process. Write
R = [rij ] = P +diag(diag(R)). Since zTRz = zTPz+

∑n
i=1 rii, it suffices to consider

the problem of maximizing

f(z) := zTPz

with |z| = 1. The classical centroid method is described next.
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Fig. 5.1. Topology of a 4-dimensional hypercube.

Algorithm 5.1. Given any sign vector z(0) and machine zero threshold ε, define
w(0) := Pz(0). Repeat the following steps for i = 0, 1, . . . :

1. If sgn(w
(i)
k ) = sgn(z

(i)
k ) for all k = 1, . . . , n, then stop; otherwise, choose k

so that |w(i)
k | > ε and is the largest among all |w(i)

j |’s where sgn(w
(i)
j ) �=

sgn(z
(i)
j ).

2. Define z(i+1) by simply changing the sign of z
(i)
k .

3. Define w(i+1) := w(i) + 2sgn(z
(i+1)
k )P (:, k).

Since at most one bit is changed in each cycle, it is seen from the above that the
centroid method involves advancing from one node to one of its neighboring nodes
on the hypercube. The convergence behavior of this algorithm can be seen from the
following result.

Theorem 5.1. The sequence {f(z(i))} where z(i) is generated by the centroid
method from any starting value z(0) is finite and increasing.

Proof. We can rewrite the definition of z(i+1) as

z(i+1) := z(i) − 2sgn(z
(i)
k )ek,

where ek is the standard kth unit vector. Observe

f(z(i+1)) =
(
z(i) − 2sgn(z

(i)
k )ek

)T
P
(
z(i) − 2sgn(z

(i)
k )ek

)
= f(z(i))− 4sgn(z

(i)
k )(eTk Pz

(i))

= f(z(i))− 4sgn(z
(i)
k )w

(i)
k .

Note that, by the definition of k, the second term in the last equality is negative,

showing that f(z(i+1)) is strictly larger than f(z(i)) by 4|w(i)
k |. The centroid method
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Fig. 5.2. Number of steps per centroid value in the centroid method for a matrix of size 200.

can be regarded as a steepest ascent method along the nodes of the hypercube. There
are only finitely many nodes; the sequence therefore has to converge in finitely many
steps.

Although there are 2n nodes on an n-dimensional hypercube, to go from one node
to another node in order to maximize zTRz is not an NP problem. Indeed, recall that
each node is identified by a binary tag of length n. Recall also that the centroid
method (Algorithm 5.1) has the unique feature of changing only one bit at a time
and never descends. The worst scenario is that the iteration moves from one binary
tag, say 1010 in the case n = 4, to its bit reversal tag, say 0101. In other words, it
takes at most n iterations to locate a maximum. We can prove by induction that the
expected number of iterations required for convergence to a centroid value is in fact
n
2 . To illustrate this point, we report in Figure 5.2 just one of the many numerical
simulations we have conducted on the number of iterations needed to generate each
centroid value. The lower graph in Figure 5.2, depicting the histogram of these number
of iterations, suggests that the mean is about 100.

We conclude this section by cautioning that the centroid method only finds a
local maximum. Even after excluding the parity resulting from bit reversal mentioned
before, the local maximum may not be unique for a given P . For example, with

P =




0 3.5 3 1
3.5 0 −4 −3
3 −4 0 −3.5
1 −3 −3.5 0


 ,
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the objective value zTPz has local maxima at the 1st, 2nd, and 4th sign vectors. The
mechanism built in the first step of the centroid method dictates that the algorithm
converges to the 2nd (or its bit reversal, 14th) sign vector [−1,−1,−1, 1]T unless
the starting value happens to be the other two local maximizers, in which case the
algorithm stalls right there.

6. Relationship to truncated matrices. In the practice of information re-
trieval, quite often the original data matrix Y is not exact due to noise. It is often
sufficient to replace Y by a simpler approximation. This approximation matrix is ob-
tained by truncating the original matrix in some sense. In this section we shall provide
a statistical meaning of truncation. At the end of this section we establish the statis-
tical soundness of the centroid method and compare its decomposition with the SVD.
In contrast,we shall see in the next section that the SDD [12], though approximating
a SVD decomposition, does not readily imply the same desirable stochastic meaning.

We first consider a general random variable X in R
n. Let E [X ] denote the expected

value of X . Typically, cov(X ) := E [(X − E [X ])(X − E [X ])T ] ∈ R
n×n is defined as the

covariance matrix of X . Let

cov(X ) =
n∑

j=1

λjuju
T
j(6.1)

denote the spectral decomposition of cov(X ) with eigenvalues arranged in the de-
scending order λ1 ≥ λ2 ≥ · · · ≥ λn. Note that u1, . . . ,un form an orthonormal basis
for R

n. Express the random column variable X as

X =

n∑
j=1

(uT
j X )uj .(6.2)

Note that the columns in the matrix U := [u1, . . . ,un] are deterministic vectors
themselves. The randomness of X therefore must come solely from the randomness
of each coefficient in (6.2). The following observation in [3] sheds important insight
on the portion of randomness of X in each eigenvector direction of covX .

Theorem 6.1. Let α := UTX . Then α is a random variable whose components
are mutually stochastically independent. Indeed,

E [α] = UTE [X ],(6.3)

cov(α) = diag{λ1, . . . , λn}.(6.4)

In other words, the larger the eigenvalue λj of cov(X ) is, the larger the variance
of αj is, i.e., the more stochastic properties such as randomness the vector αjuj

contributes to X . From (6.2) it appears intuitive that those coefficients αj with larger
variance represent a more integral part of X . We therefore can rank the importance
of corresponding eigenvectors uj as essential components for the variable X according
to the magnitude of λj .

If it becomes desirable to approximate the random variable X by another unbiased
yet simpler variable X̂ , we see from Theorem 6.1 that X̂ had better capture those
components corresponding to larger λj in the expression (6.2). Indeed, it is entirely

sensible to require that cov(X̂ ) be reasonably close to cov(X ). We quantify this notion
with the following theorem, which provides the basic idea of truncation. The proof
can be found in [3], which uses results from [13, 14].
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Theorem 6.2. Suppose that X is a random variable in R
n with mean zero and

that its covariance matrix has a spectral decomposition given by (6.1). Then among
all unbiased variables restricted to any r-dimensional subspaces in R

n, the random
variable

X̂ :=

r∑
j=1

(uT
j X )uj(6.5)

is the best approximation to X in the sense that ‖cov(X̂ ) − cov(X )‖ is minimized.
In addition, X̂ is the best linear minimum-variance estimate of X in the sense that
E [‖X̂ − X‖2] is minimized.

It is important to note that in the above linear minimum-variance estimation, the
variable X is centered at zero. If X is not centered at zero, the expression for truncation
would be much more complicated. Without the centering, the mere truncated data
in the form of a low rank approximation would suffer from the loss of some significant
statistical meanings.

The above observation is based on the fact that the random variable X is com-
pletely known. Such an assumption is not practical in reality since often the prob-
ability distribution function of X is not known a priori. One common practice in
applications then is to simulate the random variable X by a collection of � random
samples. These samples are recorded in an n× � matrix. Our data matrix Y = [yij ] is
precisely such an example where each column of Y represents one random sample of
(standard) score for a certain random variable X ∈ R

n which, in this case, has mean
zero. It is known that when � is large enough, many of the stochastic properties of X
can be recouped from Y .

The question now is how to retrieve a sample data matrix from Y to represent
the truncated variable X̂ . The connection lies in the observations that the matrix
R is close to cov(X ) by the law of large numbers. Note that the eigenvalues of R
are precisely the squares of the singular values of Y/

√
� and that the singular values,

by Theorem 6.1, measure the degree of randomness (of X ) in the direction of the
left singular vectors (of Y ). In the spirit of truncation described in Theorem 6.2
above, the data matrix Ŷ for X̂ should be such that both ‖Y − Ŷ ‖ and ‖Y Y T −
Ŷ Ŷ T ‖ are minimized. It turns out that the truncated SVD of Y by throwing away
its smaller singular values satisfies precisely these requirements. See [3] for a more
detailed discussion. In this way, we understand now that the truncated SVD Ŷ not
only is the best approximation to Y in the sense of norm but more importantly
is the closest approximation to Y in the sense of statistics. It maintains the most
significant stochastic portion of the original data matrix Y . Generally speaking, any
lower rank approximation to an empirical data matrix Y should carry properties
similar to the truncated SVD, i.e., should contain substantial stochastic information
about the original random variable X .

Coming back to the factor retrieval problem (2.4), we should note that while
the product moment AAT gives rise to the same (covariance) matrix R as Y does,
the loading matrix A itself does not represent a sample data matrix of any random
variable. Indeed, the number m of factors (or columns) in A could be far shorter than
� to represent meaningful samples. However, as far as approximating R by the product
moment of some lower rank matrices is concerned, the idea of truncation can still be
carried over. That is, we would like that a significant portion of those components
in R corresponding to larger eigenvalues be captured by its low rank approximation
R̂ regardless of whether R̂ is calculated via truncated random samples Ŷ or reduced
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Fig. 6.1. Comparison of geometric meanings of z1 and u1(R1) when n = 2.

factors Â. The centroid method is an alternative way to accomplish that goal, as we
shall now explain below.

For convenience, let λ1(M) ≥ λ2(M) ≥ · · · ≥ λn(M) denote the eigenvalues
of any given real-valued symmetric M . Let the corresponding unit eigenvectors be
denoted as u1(M), . . . ,un(M). Recall the Rayleigh–Ritz theorem asserting that [8]

λ1(M) = max
‖x‖=1

xTMx,(6.6)

λk(M) = max
‖x‖=1

x⊥u1(M),...,uk−1(M)

xTMx for k = 2, . . . , n.(6.7)

This variational characterization suggests a scheme for eigenvalue computation. Al-
though the scheme is of little practical value in itself, its comparison with the centroid
method is worth mentioning. First, observe that

λ1(R1) = (u1(R1))
T
R1u1(R1) = max

‖u‖=1
uTR1u = max

‖u‖=1
‖AT

1 u‖2

≥ µ1 =
1

n
zT1 R1z1 =

1

n
max
|z|=1

zTR1z =
1

n
max
|z|=1

‖AT
1 z‖2,(6.8)

where z1 is used to define the first modified centroid (see (4.2)). This relationship sug-
gests that the sign vector z1 and the centroid value µ1 are mimicking the left singular
vector u1 and the square of the singular value λ1 of A1, respectively. Recall that the
singular values of AT

1 are precisely the lengths of the semiaxes of the hyperellipsoid
E defined by

E := {AT
1 x ∈ R

m|x ∈ R
n, ‖x‖ = 1},

whence the first left singular vector u1(R1) of A1 is mapped via AT
1 to the first major

semiaxis of E. On the other hand, the unit cube

C := {x ∈ R
n|‖x‖∞ = 1}

is mapped under AT
1 to a hyperparallelepiped that circumscribes E. The geometric

meanings of z1 and u1(R1) can be compared via Figure 6.1, where we draw C and E
for the case n = 2.
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Recall that once a factor represented by a unit vector v is determined, the com-
ponents in the product b = A1v represent the loadings of all variables in that factor.
The size of ‖b‖, called the significance earlier, can be used to indicate how essential
that factor is to the variables. While the modified centroid is obtained by weighting
loadings of all variables uniformly in the factor space, i.e., by constant weight 1

n ex-
cept signs, the SVD amounts to weighting these loadings unevenly so as to maximize
the significance of the resulting biased centroid (giving rise to the left singular vector).
The latter is a fairly expensive and difficult task to accomplish, while the former is
relatively easy to do via the centroid method. In this sense, we say that z1 gives a
foretaste of the location of u1.

Recall in the centroid method that once the first centroid factor is found, the
matrix R1 is reduced to R2 according to (4.7) and the search for the next centroid
factor continues. In exactly the same way, once the first eigenvector u1(R1) is found,
the matrix R1 can be reduced, by the same Wedderburn rank reduction formula, to

R2 := R1 − λ1u1(R1) (u1(R1))
T
.(6.9)

It can easily be proved from (6.7) that

(u2(R1))
T
R1u2(R1) = λ2(R1) = λ1(R2) =

(
u1(R2)

)T
R2u1(R2).(6.10)

The relationship described above between z1 and u1(R1) in principle can be carried
over to a similar relationship between z2 and u2(R1). The only problem is that

R2 �= R2(6.11)

because the two matrices are reduced from R1 using z1 and u1(R1), respectively.
However, we have pointed out earlier that at least in the initial stage z1 mimics the
role of u1(R1) reasonably, so most of the stochastic information in R2 should remain
close to that in R2. As the iteration continues, of course, the closeness between Ri

and Ri begins to depart. Consequently, the resemblance between zi and ui(Ri) is
expected to deteriorate progressively. Regardless, if we are interested in only the first
few essential factors, i.e., in capturing the qualitative behavior of the (truncated) SVD
of A1, the centroid decomposition seems to be a reasonable and quick alternative. We
summarize the comparison of the centroid decomposition and SVD in Table 6.1. We
indicate only the first step in both decompositions. The successive steps are done
similarly.

Furthermore, we plot in Figure 6.2 the centroid values and the singular values
of the correlation matrix of a randomly generated 200× 200 matrix A1. Recall from
Theorem 6.1 that the singular values indicate the degree of contribution to the ran-
domness by the left singular vectors. Figure 6.2 is a typical representation of our
many random tests. From the figure we see that the centroid values seem to mimic
the behavior of singular values reasonably well and, hence, should provide a reasonable
measurement of the original stochastic nature.

On the other hand, we point out that the reduced matrices Ri are no longer the
same as Ri after the first step. We therefore plot in Figure 6.3 the logarithmic values
of | cos(θi)| where θi is the angle between zi and ui for i = 1, . . . , 200. These values
allow us to examine the degree of alignment of the sign vector zi for the matrix Ri

with the ith left singular vector of R1. This diagram seems to suggest that the loss
of alignment is not bad. In fact, toward the end of the calculation, it seems that
the alignment is remarkably good. Further research is needed to understand this
alignment issue.
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Table 6.1
Comparison of centroid decomposition and SVD.

Centroid decomposition SVD

µ1 = 1
n

max|z|=1 zTR1z λ1 = max‖x‖=1 xTR1x

(centroid value) (eigenvalue)

z1 = arg max|z|=1 zTR1z u1 = arg max‖x‖=1 xTR1x

(sign vector for modified centroid) (left singular vector)

easy to obtain z1 in O(n) steps not easy to obtain u1 via iterations

(transverse hypercube) (nonlinear iteration)

v1 =
AT

1 z1√
nµ1

v̂1 =
AT

1 u1√
λ1

(centroid factor ) (right singular vector)

γ1 = ‖A1v1‖ σ1 =
√
λ1 = ‖A1v̂1‖

(significance) (largest singular value)

b1 = A1v1 σ1u1 = A1v̂1

(loading vector) (internal relation)

A1 =
∑

biv
T
i A1 =

∑
σiuiv̂

T
i

(centroid decomposition) (SVD)

R =
∑

bib
T
i =

∑
γ2i

bi
‖bi‖

(
bi

‖bi‖
)T

R =
∑

λiuiu
T
i =

∑
σ2i uiu

T
i

(factor decomposition) (spectral decomposition)

R2 = R1 − R1z1z
T
1 R1

zT1 R1z1
= R1 − γ21

b1
‖b1‖

(
b1

‖b1‖
)T

R2 = R1 − R1u1u
T
1 R1

uT
1 R1u1

= R1 − λ1u1uT
1

(rank reduction) (rank reduction)
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Fig. 6.2. Comparison of centroid values and singular values for correlation matrix of n = 200.
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7. Relationship to data retrieval. The research and notions of factor analysis
have been used in many disciplines, notably in educational, social, psychological,
and behavioral measurements [5]. In this section, we connect and illustrate factor
analysis development of the centroid method to that of information retrieval and
data mining. This illustration leads to the unification of a class of approximations to
the SVD.

We shall limit our goal in information retrieval to the task of finding documents
relevant to given queries [12]. The idea in the so-called latent semantic indexing
(LSI) is as follows: The textual documents are usually collected in an indexing matrix
H = [hkj ] in R

m×�. Each document is represented by one column in H. The entry
hkj in H represents the weight of one particular term k in document j whereas each
term could be defined by just one single word or a string of phrases. A natural choice
of the weight hkj is obtained by counting the number of times that the term k occurs
in document j. More elaborate weighting schemes can be found in the literature
(see, for example, [12]) and are observed to yield better performance. Each query is
represented as a row vector qT

i = [qi1, . . . , qim] in R
m where qik represents the weight

of term k in the query i. Again, the weighting for terms in a query can also use
more elaborate schemes. To measure how the query qT

i matches the documents, we
calculate the row vector

sTi = qT
i H(7.1)

and rank the relevance of documents to q according to the scores in s. To put the
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notation in the context of our discussion in the preceding sections, we observe the
following analogies:

indexing matrix H ←→ scoring matrix F ,

document j ←→ entity j,

term k ←→ factor k,

weight hkj ←→ score of factor k on entity j,

one query qT
i ←→ one row in loading matrix A,

weights qik ←→ loadings of query i on factor k,

scores in sTi ←→ scores in i row of data matrix Y .

Nevertheless, in contrast to the factor retrieval described above, the calculations in-
volved in an LSI application place emphasis not so much on computing the factors
based on the scores in sTi , i = 1, . . . , n, but rather on the vector-matrix multiplication
(7.1). Indeed, in a search engine application, quite often there is only one query, i.e.,
n = 1, per the user’s request. The factors are already specified by predetermined
terms. The focus in LSI has been on representing the indexing matrix and the queries
in a more compact form so as to facilitate the computation of the scores. Toward that
end, one way to do LSI is to use the truncated SVD of H.

From our discussion in section 6, we now understand well why using the truncated
SVD to represent H makes sense, provided data in H have been centered. It is not
just the best approximation to H in norm, but more importantly it also contains a
substantial portion of stochastic nature of the originalH. On the other hand, since the
original indexing matrix H is never exact, truncation also has the benefit of cutting
away noise when the signal-to-noise ratio (SNR) is too small. Suppose that

H =

γ∑
i=1

σiuiv
T
i(7.2)

denotes the SVD of H of rank γ. A general practice in LSI is to replace H by

Ĥk :=

k∑
i=1

σiuiv
T
i(7.3)

with k � γ and compute s ≈ qT Ĥk. The problem is that the low rank Ĥk could
require more storage than the original H that often is sparse. One of the suggestions
for saving storage has been to approximate H by the SDD [12] that also resembles
the SVD, i.e.,

H̃k :=

k∑
i=1

δixiy
T
i ,(7.4)

where each xi and yi is constrained to have integer entries −1, 0, or 1, and the di are
positive real numbers.

One purpose of this paper is to suggest using the truncated centroid decomposition
as an alternative low rank approximation to an indexing matrix H, even though the
objective of LSI is not to retrieve factors from observed data of scores. There is
considerable similarity between the centroid decomposition and the SDD, but there
is also a significant difference, as we shall address later in section 9.
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8. General centroid algorithm. In the context of factor retrieval, we would
like to have as few factors as possible. It is often the case that m � � and n � �.
The centroid method is applied directly to the product moment R = AAT . In the
context of data retrieval, what is given is the index matrix H. If m � �, we could
simply apply Algorithm 5.1 to the product moment HHT . This would correspond to
a subject area where the number of terms is relatively limited, while the number of
documents is large. However, in the context of LSI, it is common that each document
contains many more terms (or keywords) and that the contents of the documents
should sparsely overlap each other. It is reasonable to assume that m � �. In this
case, it probably is not economical to form the product moment HHT , as is the
practice with factor analysis (2.1). We modify the centroid method to work directly
with H.

Algorithm 8.1 (general centroid algorithm). Assume that initial values |z(0)| =
1,w(0) := HT z(0) as well the vector d = diag(HHT ) are available. Repeat the follow-
ing steps for i = 0, 1, . . . :

1. Compute g(i) := d− sgn(z(i)) ◦ (Hw(i)).

2. Choose k so that g
(i)
k is maximal and greater than ε; otherwise, stop.

3. Define z(i+1) by simply changing the sign of z
(i)
k .

4. Update w(i+1) := w(i) + 2sgn(z
(i+1)
k )H(k, :)T .

As with Algorithm 5.1 this is an ascent method (on an m-dimensional hypercube)
because

‖HT z(i+1)‖2 =
(
z(i) − 2sgn(z

(i)
k )ek

)T
HHT

(
z(i) − 2sgn(z

(i)
k )ek

)
= ‖HT z(i)‖2 + 4eTkHHTek − 4sgn(z

(i)
k )(eTkHw(i))

= ‖HT z(i))‖2 + 4g
(i)
k

and g
(i)
k > ε. Once the optimal z1 is found, the matrix H1 = H is reduced to

H2 := H1 −H1v1v
T
1 ,(8.1)

where v1 is the normalized unit vector of HT
1 z1, and then the algorithm is applied

to H2 and so on. A common practice in factor analysis is to terminate the algorithm
whenever the resulting significance ‖bk‖ drops below a specific threshold level. If the
algorithm is carried to the end, we obtain the centroid decomposition

H = H1 = bγv
T
γ + · · ·+ b1v

T
1 ,(8.2)

where bk := Hkvk, k = 1, . . . , γ, is the loading whose significance is analogous to
the singular value of Hk. (See the comparison in Table 6.1.) Furthermore, from the
discussion in section 6, we see that the first few loadings carry most of the stochastic
information in H. That is, a truncated centroid decomposition may often be as effec-
tive as the truncated SVD and can be expected to be much cheaper computationally,
as we will now see.

Since a single centroid iteration on a correlation has an order n sorting (step 1
in Algorithm 5.1) and an n-dimensional vector addition (step 3 in Algorithm 5.1),
the complexity is O(kn2) for a rank-k approximation. When the centroid algorithm
is executed on H rather than HHT , then the number of expected iteration steps
is m

2 for each centroid value. Note that the first step in Algorithm 8.1 involves an
m-dimensional vector subtraction and an O(m�) matrix to vector multiply, the next
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step an m-dimensional sorting, and an �-dimensional vector addition in the last step.
A rank-k centroid decomposition approximation to the rank-k truncated SVD of the
scoring matrix H would involve O(km2�) complexity. Obviously, the complexity may
be further reduced if sparsity can be exploited.

9. Conclusions. We have recast the centroid method as an O(n)-step opti-
mization problem on a hypercube. This interpretation enables us to view the centroid
method as a matrix approximation with many similarities to the truncated SVD.

Furthermore, we offer the insight that given any data matrix (with mean zero)
whose columns represent random samples from a certain unknown distribution, its
singular values then provide a measurement of the second order statistical informa-
tion of the original data in the direction of the corresponding left singular vectors.
This insight explains why, how, and when a low rank approximation can be used
as a reasonable approximation to the original matrix. Although low rank approxi-
mation has been a common practice used in many important applications, we have
not seen a satisfactory stochastic justification. There seems to be much misuse and
misunderstanding of low rank approximation techniques.

We justify the truncated SVD as not only the nearest distancewise approxima-
tion, but also as the minimum-variance approximation to the original data. It seems
fitting that any low rank approximation should carry stochastic properties similar to
the truncated SVD. We have shown this to be true of the centroid decomposition em-
pirically. Furthermore, we have shown that the centroid method can be generalized
so that it might be used for many applications, e.g., the LSI problem.

Figure 9.1 can be viewed as a fundamental triad which includes the three equiv-
alent variational formulations for the largest singular value of a matrix A.

The SDD method is analogous to the top vertex of the triad using only vectors
u and v, whose components are restricted to the set {0, 1,−1}. The centroid method

✁
✁
✁
✁
✁
✁
✁
✁
✁
✁

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆

A = UΣV T

max
‖u‖=1,‖v‖=1

uTAv
⇑

max
x∈{1,0−1}n,y∈{1,0,−1}m

xTAy
‖x‖‖y‖

(SDD method)

max
‖u‖=1

‖uTA‖
⇓

max
z∈{1,−1}n

‖zTA‖√
n

(Centroid method)

max
‖v‖=1

‖Av‖
⇓

max
w∈{1,−1}m

‖Aw‖√
m

Fig. 9.1. Fundamental SVD triad.
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is analogous to the left vertex of the triad, with the restriction that the vector u
is allowed to have components only from the set {0, 1,−1}; note, however, that the
inclusion of 0 does not give any additional discrete approximation because the corre-
sponding objective function is convex and the maximum must occur at a sign vector
(vertex). We call these sets restricted, whereas the vectors that determine the singular
values are completely unrestricted. The form in the lower right corner stands ready
to be analyzed in future work.

Finally, the important unification idea is that we can consider the centroid and
semidiscrete methods as producing approximations to the truncated SVD using just
two of the classes of many restricted discrete sets. We summarize relationships of
centroid decomposition, SDD, and SVD in Table 9.1.

Table 9.1
Comparison of centroid decomposition, SVD, and SDD.

Decomposition

Centroid Singular value Semidiscrete

µ = 1
n

max|z|=1 ‖zTA‖2
(centroid value)

σ = max‖u‖=1 ‖uTA‖
(singular value)

v = AT z
‖AT z‖ v = AT u

‖AT u‖
(centroid factor) (right singular vector)

σ = max‖u‖=‖v‖=1 |uTAv| δ = max|x|=|y|∈{1,0}
|xTAy|
‖x‖‖y‖

σ = max‖v‖=1 ‖Av‖

b = Av σu = Av

(loading vector) (internal relation)

γ = ‖b‖
(significance)

A ≈ (Av)vT A ≈ (Av)vT A ≈ (δx)yT

A1 =
∑

biv
T
i A1 =

∑
σiuiv

T
i A1 =

∑
δixiy

T
i

(CD) (SVD) (SDD)

rank(A− γ b
‖b‖vT ) = rank(A− σuvT ) =

rank(A) − 1 rank(A) − 1 (no rank subtraction)
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Abstract. The existence, uniqueness, and parametrization of Lagrangian invariant subspaces for
Hamiltonian matrices is studied. Necessary and sufficient conditions and a complete parametrization
are given.

Some necessary and sufficient conditions for the existence of Hermitian solutions of algebraic
Riccati equations follow as simple corollaries.

Key words. eigenvalue problem, Hamiltonian matrix, symplectic matrix, Lagrangian invariant
subspace, algebraic Riccati equation
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1. Introduction. The computation of invariant subspaces of Hamiltonian ma-
trices is an important task in many applications in linear quadratic optimal and H∞
control, Kalman filtering, or spectral factorization; see [13, 15, 20, 28] and the refer-
ences therein.

Definition 1.1. A matrix H ∈ C2n,2n is called Hamiltonian if JnH = (JnH)H is
Hermitian, where Jn =

[
0

−In
In
0

]
, In is the n×n identity matrix, and the superscript

H denotes the conjugate transpose.
Every Hamiltonian matrix H has the block form

H =

[
A M
G −AH

]
,

with M = MH , G = GH . Hamiltonian matrices are closely related to algebraic
Riccati equations of the form

AHX +XA−XMX +G = 0.(1.1)

It is well known [15] that if X = XH solves (1.1), then

H
[
In 0
−X In

]
=

[
In 0
−X In

] [
(A−MX) M

0 −(A−MX)H

]
.(1.2)

This implies that the columns of
[
In
−X
]
span an invariant subspace of H associated

with the eigenvalues of A −MX. Invariant subspaces of this form are called graph
subspaces [15]. The graph subspaces of Hamiltonian matrices are special Lagrangian
subspaces.
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Definition 1.2. A subspace L of C2n is called a Lagrangian subspace if it has
dimension n and

xHJny = 0 ∀x, y ∈ L.

Clearly a subspace L is Lagrangian if and only if every matrix L whose columns
span L satisfies rankL = n and LHJnL = 0.

Despite the fact that Hamiltonian matrices, algebraic Riccati equations, and their
properties have been a very active area of research for the last 40 years, there are
still many open problems. These problems are mainly concerned with Hamiltonian
matrices that have eigenvalues with zero real part and in particular with numerical
methods for such problems.

In this paper we summarize and extend the known conditions for existence of
Lagrangian invariant subspaces of a Hamiltonian matrix. Based on these results we
then give a complete parametrization of all possible Lagrangian invariant subspaces
and also discuss necessary and sufficient conditions for the uniqueness of Lagrangian
invariant subspaces.

Most of the literature on this topic is stated in terms of Hermitian solutions
for algebraic Riccati equations; see [15]. For several reasons we will, however, be
mainly concerned with the characterization of Lagrangian invariant subspaces. First
of all, the concept of Lagrangian invariant subspaces is a more general concept than
that of Hermitian solutions of the Riccati equation, since only graph subspaces are
associated with Riccati solutions. A second and more important reason is that in
most applications the solution of the Riccati equation is not the primary goal, but
rather a dangerous detour; see [21]. Finally, even most numerical solution methods
for the solution of the algebraic Riccati equations (with the exception of Newton’s
method) proceed via the computation of Lagrangian invariant subspaces to determine
the solution of the Riccati equation; see [3, 5, 6, 7, 8, 16, 17, 20, 27]. These methods
employ transformations with symplectic matrices.

Definition 1.3. A matrix S ∈ C2n,2n is called symplectic if SHJnS = Jn.
If S is symplectic, then by definition its first n columns span a Lagrangian sub-

space. Conversely, if the columns of S1 span a Lagrangian subspace, then it generates
a symplectic matrix, given, for example, by S = [S1, JnS1(S

H
1 S1)

−1]. Hence the re-
lation between Lagrangian subspaces and symplectic matrices can be summarized as
follows.

Proposition 1.4. If S ∈ C2n,2n is symplectic, then the columns of S[ In0 ] span a
Lagrangian subspace. If the columns of S1 ∈ C2n,n span a Lagrangian subspace, then
there exists a symplectic S such that rangeS[ In0 ] = rangeS1.

Considering Lagrangian invariant subspaces L of a Hamiltonian matrix H, we
immediately have the following important equivalence.

Proposition 1.5. Let H ∈ C2n,2n be a Hamiltonian matrix. There exists a
Lagrangian invariant subspace L of H if and only if there exists a symplectic matrix
S such that rangeS[ In0 ] = L and

S−1HS =

[
R D
0 −RH

]
.(1.3)

The form (1.3) is called Hamiltonian block triangular form, and if furthermore R
is upper triangular (or quasi-upper triangular in the real case), it is called Hamiltonian
triangular form or Hamiltonian Schur form. Note that for the existence of Lagrangian
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invariant subspaces it is not necessary that R in (1.3) is triangular if one is not
interested in displaying actual eigenvalues. Most numerical methods, however, will
return a Hamiltonian triangular or quasi-triangular form.

Necessary and sufficient conditions for the existence of such transformations were
given in [18, 22] and in full generality in [19], and we will briefly summarize these
conditions in the next section. Numerically backward stable methods to compute
such forms have been developed in [1, 2, 3, 4].

The contents of this paper are summarized as follows. In section 2, after recall-
ing some of the results on Hamiltonian triangular forms, we discuss the existence of
Lagrangian invariant subspaces corresponding to all possible eigenvalue selections. In
section 3 we give complete parametrizations of all possible Lagrangian subspaces of
a Hamiltonian matrix associated with a particular set of eigenvalues. Based on these
results we summarize necessary and sufficient conditions for the existence and unique-
ness of Lagrangian invariant subspaces in section 4. Finally we apply these results to
give some simple proofs of (mostly known) theorems on existence and uniqueness of
Hermitian solutions to algebraic Riccati equations in section 5.

2. Hamiltonian block triangular forms and existence of Lagrangian in-
variant subspaces. To study an invariant subspace problem we first need to discuss
the possible selection of associated eigenvalues.

We denote by Λ(A) the spectrum of a square matrix A, counting multiplicities.
For a Hamiltonian matrix, if λ ∈ Λ(H) and Reλ �= 0, then it is easy to see that also
−λ̄ ∈ Λ(H); see [15, 20]. Furthermore, if H has the block triangular form (1.3) and if
iα is a purely imaginary eigenvalue (including zero), then it must have even algebraic
multiplicity. It follows that the spectrum of a Hamiltonian matrix H in the form (1.3)
can be partitioned into two disjoint subsets,

Λ1(H) = {λ1, . . . , λ1︸ ︷︷ ︸
n1

,−λ̄1, . . . ,−λ̄1︸ ︷︷ ︸
n1

, . . . , λµ, . . . , λµ︸ ︷︷ ︸
nµ

,−λ̄µ, . . . ,−λ̄µ︸ ︷︷ ︸
nµ

},

Λ2(H) = {iα1, . . . , iα1︸ ︷︷ ︸
2m1

, . . . , iαν , . . . , iαν︸ ︷︷ ︸
2mν

},(2.1)

where λ1, . . . , λµ are pairwise disjoint eigenvalues with positive real part and iα1, . . . ,
iαν are pairwise disjoint purely imaginary eigenvalues (including zero).

If a matrix is transformed as in (1.3), then the spectrum associated with the
Lagrangian invariant subspace spanned by the first n columns of S is Λ(R). Since
Λ(H) = Λ(R) ∪ Λ(−RH), it follows that Λ(R) must be associated to a characteristic
polynomial

µ∏
j=1

(λ− λj)tj (λ+ λ̄j)nj−tj
ν∏
j=1

(λ− iαj)mj ,

where tj are integers with 0 ≤ tj ≤ nj for j = 1, . . . , µ. We denote the set of all
possible such selections of eigenvalues by Ω(H). Note that Ω(H) contains∏µj=1(nj+1)
different selections.

In most applications it is desirable to determine Lagrangian invariant subspaces
associated with eigenvalue selections for which only one of the eigenvalues of the pair
λj ,−λ̄j (which are not purely imaginary) can be chosen in Λ(R). In another words,
tj must be either 0 or nj . Such subspaces all called unmixed, and the associated
Riccati solution, if it exists, is called the unmixed solution of the Riccati equation; see
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[26]. We denote the subset of all possible such selections by Ω̃(H). Obviously Ω̃(H)
contains 2µ different elements.

Note that all selections in Ω(H) contain the same purely imaginary eigenvalues.
Note further that if H cannot be transformed to the Hamiltonian block triangular
form (1.3), then the set Ω(H) may be empty. A simple example for this is the matrix
J1.

We now recall some results on the existence of Hamiltonian triangular forms. In
the following we denote a single Jordan block associated with an eigenvalue λ by
Nr(λ) = λIr +Nr, where Nr is a nilpotent Jordan block of size r. We also frequently
use the antidiagonal matrices

Pr =




−1
(−1)2

. .
.

(−1)r


(2.2)

and denote by ej the jth unit vector of appropriate size.
Lemma 2.1 (see [19]). Suppose that iα is a purely imaginary eigenvalue of a

Hamiltonian matrix H and that the Jordan block structure associated with this eigen-
value is N(iα) := iαI +N , where

N = diag(Nr1 , . . . , Nrs).

Then there exists a full column rank matrix U such that HU = UN(iα) and

UHJnU = diag(π1Pr1 , . . . , πsPrs),

where πk ∈ {1,−1} if rk is even and πk ∈ {i,−i} if rk is odd.
Using the indices and matrices introduced in Lemma 2.1, the structure inertia

index associated with the eigenvalue iα is defined as

IndS(iα) = {β1, . . . , βs},

where βk = (−1) rk
2 πk if rk is even, and βk = (−1) rk−1

2 iπk if rk is odd. Note that
the βi are all ±1 and there is one index associated with every Jordan block. The
structure inertia index is closely related to the well-known sign characteristic for
Hermitian pencils (see [15]), since every Hamiltonian matrix H can be associated
with the Hermitian pencil λiJ − JH. Although the sign characteristic is a more
general concept since it also applies to general Hermitian pencils, we prefer to use
the structure inertia index, because it is better suited for the analysis of Hamiltonian
triangular forms; see [19].

For the following analysis the tuple IndS(iα) is partitioned into three parts,
IndeS(iα), Ind

c
S(iα), Ind

d
S(iα), where IndeS(iα) contains all the structure inertia in-

dices corresponding to even rk, Ind
c
S(iα) contains the maximal number of structure

inertia indices corresponding to odd rk in ±1 pairs, and InddS(iα) contains the re-
maining indices; i.e., all indices in InddS(iα) have the same sign; see [19].

Necessary and sufficient conditions for the existence of a symplectic similarity
transformation to a Hamiltonian triangular Jordan-like form (1.3) are given in the
following theorem.

Theorem 2.2. Let H be a Hamiltonian matrix, let iα1, . . . , iαν be its pairwise
distinct purely imaginary eigenvalues, and let the columns of Uk, k = 1, . . . , ν, span
the associated invariant subspaces of dimensionmk. Then the following are equivalent:
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(i) There exists a symplectic matrix S such that S−1HS is Hamiltonian block
triangular.

(ii) There exists a unitary symplectic matrix U such that UHHU is Hamiltonian
block triangular.

(iii) UHk JUk is congruent to Jmk
for all k = 1, . . . , ν.

(iv) InddS(iαk) is void for all k = 1, . . . , ν.
Moreover, if any of the equivalent conditions holds, then the symplectic matrix S can
be chosen such that S−1HS is in Hamiltonian triangular Jordan form



Rr 0 0 0 0 0
0 Re 0 0 De 0
0 0 Rc 0 0 Dc
0 0 0 −RHr 0 0
0 0 0 0 −RHe 0
0 0 0 0 0 −RHc



,(2.3)

where the blocks with subscript r are associated with eigenvalues of nonzero real part
and have the substructure

Rr = diag(Rr1, . . . , R
r
µ), Rrk = diag(Ndk,1

(λk), . . . , Ndk,pk
(λk)), k = 1, . . . , µ.

The blocks with subscript e are associated with the structure inertia indices of even rk
for all purely imaginary eigenvalues and have the substructure

Re = diag(Re1, . . . , R
e
ν), Rek = diag(Nlk,1

(iαk), . . . , Nlk,qk
(iαk)),

De = diag(De1, . . . , D
e
ν), Dek = diag(βek,1elk,1

eHlk,1
, . . . , βek,qkelk,qk

eHlk,qk
).

The blocks with subscript c are associated with pairs of blocks of inertia indices associ-
ated with odd-sized blocks for purely imaginary eigenvalues and have the substructure

Rc = diag(Rc1, . . . , R
c
ν), Rck = diag(Bk,1, . . . , Bk,rk),

Dc = diag(Dc1, . . . , D
c
ν), Dck = diag(Ck,1, . . . , Ck,rk),

where

Bk,j =


 Nmk,j

(iαk) 0 −
√

2
2 emk,j

0 Nnk,j
(iαk) −

√
2

2 enk,j

0 0 iαk


 ,

Ck,j =

√
2

2
iβck,j


 0 0 emk,j

0 0 −enk,j

−eHmk,j
eHnk,j

0


 .

Proof. The proof of equivalence for (i) and (iv) is given in Theorem 1.3 in [25].
The equivalence of the other conditions and the structured Hamiltonian triangular
Jordan form (2.3) was derived in [19].

Remark 1. For real Hamiltonian matrices a real quasi-triangular Jordan form
analogous to (2.3) and a similar set of equivalent conditions as in Theorem 2.2 can be
given. We refer the reader to [25] and Theorem 24 in [19] for details.

The necessary and sufficient conditions in Theorem 2.2 guarantee the existence of
only one Lagrangian invariant subspace associated to one selection in Ω(H). But the
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following theorem shows they also guarantee the existence of a Lagrangian invariant
subspace associated to every selection in Ω(H).

Theorem 2.3. Let H be a Hamiltonian matrix. If any of the conditions in
Theorem 2.2 holds, then for every eigenvalue selection ω ∈ Ω(H) there exists at least
one corresponding Lagrangian invariant subspace.

Proof. A proof for this result based on condition (iv) was given in [23, 25], but
a simple proof follows directly from (2.3). Note that any ω contains half the number
of eigenvalues for every purely imaginary eigenvalue. So a basis for a corresponding
invariant subspace is easily determined from (2.3). For an eigenvalue pair λk,−λ̄k
we need to consider only the small Hamiltonian block

[
Rr

k
0

0
−(Rr

k)H
]
. Note that Rrk

is upper triangular. Suppose that the selection ω contains tk copies of λk and sk
copies of −λ̄k. A corresponding basis of the invariant subspace can then be chosen
based on a symplectic permutation which exchanges trailing sk× sk blocks in Rrk and
−(Rrk)H .

In this section we have reviewed some results on the existence of (unitary) sym-
plectic transformations to Hamiltonian block triangular form and the existence of
Lagrangian invariant subspaces. In the next section we use these results to give a full
parametrization of all possible Lagrangian subspaces and therefore also a parametriza-
tion of all symplectic similarity transformations to Hamiltonian block triangular form.

3. Parametrization of all Lagrangian invariant subspaces. In the previ-
ous section we have shown that if H has a Hamiltonian block triangular form, then
for every eigenvalue selection ω ∈ Ω(H) there exists at least one corresponding invari-
ant subspace. In this section we will parametrize all possible Lagrangian invariant
subspaces associated to a given selection ω.

For this we will need some technical lemmas.

Lemma 3.1. Consider pairs of matrices (πkPrk , Nrk), k = 1, 2, where r1, r2 are
either both even or both odd. Let π1, π2 ∈ {1,−1} if both rk are even and π1, π2 ∈
{i,−i} if both rk are odd; let

(Pc,Nc) :=
([

π1Pr1 0
0 π2Pr2

]
,

[
Nr1 0
0 Nr2

])
;

and let d := |r1−r2|
2 . If π1 = (−1)d+1π2, i.e., β1 = −β2 for the corresponding β1 and

β2, then we have the following transformations to Hamiltonian triangular form:

1. If r1 ≥ r2, then with

Z1 :=



Id 0 0 0
0 Ir2 0 − 1

2 π̄2P
−1
r2

0 0 π̄1P
−1
d 0

0 −Ir2 0 − 1
2 π̄2P

−1
r2




we obtain ZH1 PcZ1 = J r1+r2
2

and

Z−1
1 NcZ1 =

[
N r1+r2

2
D

0 −NHr1+r2
2

]
,

where D = τede
H
r1+r2

2

+ τ̄ e r1+r2
2
eHd , τ = − 1

2π2.
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2. If r1 < r2, then with

Z2 =



π1Pr1 0 1

2Ir1 0
0 π2Pd 0 0

−π1Pr1 0 1
2Ir1 0

0 0 0 Id




we obtain that ZH2 PcZ2 = J r1+r2
2

and

Z−1
2 NcZ2 =

[ −NHr1+r2
2

D

0 NHr1+r2
2

]
,

where D = τe1e
H
r1+1 + τ̄1er1+1e

H
1 , τ = − 1

2π1.

Proof. The proof is a simple modification of the proof of Lemma 18 in [19].

Lemma 3.2. Consider a nilpotent matrix in Jordan form N = diag(Nr1 , . . . , Nrp).

(i) If the columns of the full column rank matrix X form an invariant subspace of
N , i.e., NX = XA for some matrix A, then X = UZ, where Z is nonsingular
and

U =




It1 0 . . . 0 0
0 V1,2 . . . V1,p−1 V1,p

0 It2 . . . 0 0
0 0 . . . V2,p−1 V2p

...
...

. . .
...

...
0 0 . . . Itp−1

0
0 0 . . . 0 Vp−1,p

0 0 . . . 0 Itp
0 0 . . . 0 0




.(3.1)

Here for k = 1, . . . , p, 0 ≤ tk ≤ rk, and for i = 1, . . . , p−1 and j = i+1, . . . , p,
we have Vi,j ∈ Csi,tj with si = ri−ti. Moreover, if Ms = diag(Ns1 , . . . , Nsp),
Mt = diag(Nt1 , . . . , Ntp), and E = diag(et1e

H
1 , . . . , etpe

H
1 ), then

V =




0 V12 . . . V1p

. . .
. . .

...
. . . Vp−1,p

0




satisfies the algebraic Riccati equation

MsV − VMt − V EV = 0.

(ii) If the columns of the full column rank matrix X form an invariant subspace
of NH , i.e., NHX = −XA for some matrix A, then X = ÛZ, where Z is
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nonsingular and

Û =




0 0 . . . 0 0
−It̂1 0 . . . 0

V̂2,1 0 . . . 0 0
0 −It̂2 . . . 0 0
...

...
. . .

...
...

V̂p−1,1 V̂p−1,2 . . . 0 0
0 0 . . . −It̂p−1

0

V̂p,1 V̂p,2 . . . V̂p,p−1 0
0 0 . . . 0 −It̂p




.(3.2)

Here for k = 1, . . . , p, 0 ≤ t̂k ≤ rk, and for i = 2, . . . , p and j = 1, . . . , i− 1,
we have V̂i,j ∈ Cŝi,t̂j with ŝi = ri− t̂i. Moreover, if Mŝ = diag(Nŝ1 , . . . , Nŝp),
Mt̂ = diag(Nt̂1 , . . . , Nt̂p), and E = diag(e1e

H
ŝ1
, . . . , e1e

H
ŝp
), then

V̂ =




0

V̂21
. . .

...
. . .

. . .

V̂p1 . . . V̂p,p−1 0




satisfies the algebraic Riccati equation

MHŝ V̂ − V̂ MHt̂ − V̂ EV̂ = 0.

Proof. We will derive the structure of X by multiplying nonsingular matrices
to X from the right. Let us first prove part (i). Partition X =

[
X1

X2

]
so that X2

has rp rows. Then using the QR or singular value decomposition [12], there exists
a nonsingular (actually unitary) matrix Y1 such that X2 = [0, X22]Y1, where X22 ∈
Crp,tp and rankX22 = tp. (This implies that 0 ≤ tp ≤ rp.) Then we have the partition

X̂ = XY −1
1 =

[
X11

0
X12

X22

]
. Since rangeX is an invariant subspace of N , so is range X̂.

Hence, there exists a matrix Â such that

NX̂ = X̂Â.(3.3)

If we partition Â =
[
A11

A21

A12

A22

]
conformally with X̂, then (3.3) implies that A21 = 0

and NrpX22 = X22A22. Because X22 has full column rank and Nrp is a single Jordan
block, it is clear that A22 is similar to Ntp , i.e., there exists a nonsingular matrix

Y22 such that Y −1
22 A22Y22 = Ntp , and hence Nrp(X22Y22) = (X22Y22)Ntp . By Lemma

4.4.11 in [14], X22Y22 =
[
T
0

]
, where T is an upper triangular Toeplitz matrix and T

must be nonsingular, since X22 has full column rank. Therefore, by setting X̃ = X̂Y2

with Y2 = diag(I, Y22)T
−1, it follows that

X̃ =


 X̃1 X̃2

0 Itp
0 0


 ,

and (3.3) becomes NX̃ = X̃
[
Ã11

0
Ã12

Ntp

]
. Setting Ñ = diag(Nr1 , . . . , Nrp−1) it follows

that ÑX̃1 = X̃1Ã11, and since X has full column rank, X̃1 also has full column rank.



LAGRANGIAN INVARIANT SUBSPACES 1053

By inductively applying the construction that leads from X to X̃, we determine
a nonsingular matrix Z1 such that XZ−1

1 = X̆, where X̆ has the block structure

X̆ =




It1 W1,2 . . . W1,p−1 W1,p

0 V1,2 . . . V1,p−1 V1,p

0 It2 . . . W2,p−1 W2,p

0 0 . . . V2,p−1 V2,p

...
...

. . .
...

...
0 0 . . . Itp−1 Wp−1,p

0 0 . . . 0 Vp−1,p

0 0 . . . 0 Itp
0 0 . . . 0 0




,

with 0 ≤ ti ≤ ri. The blocks Wi,j in X̆ can be eliminated by performing a sequence
of block Gaussian type eliminations from the right. Hence, there exists a nonsingular
matrix Z2 such that X̆Z−1

2 = U , where U is in (3.1). Therefore, by setting Z := Z2Z1

we have X = UZ.
From the block form of U we can determine a block permutation matrix Q such

that QU =
[
I
V

]
and QNQ−1 =

[
Mt

0
E
Ms

]
. Since

[
I
V

]
is invariant to QNQ−1, we have

MsV − VMt − V EV = 0.
Part (ii) is proved analogously by beginning the reduction from the top and

compressing in each step to the left.
Using these lemmas we are able to parametrize the set of all Lagrangian invariant

subspaces of a Hamiltonian matrix H associated with a fixed eigenvalue selection in
ω ∈ Ω(H). Let H be in Hamiltonian block triangular form (1.3) and let the spectrum
of H be as in (2.1). Then (see [19]) there exists a symplectic matrix S such that
S−1HS =

[
R
0

D
−RH

]
, where R = diag(R1, . . . , Rµ+ν) and D = diag(D1, . . . , Dµ+ν).

Furthermore, the blocks are reordered such that Hk :=
[
Rk

0
Dk

−RH
k

]
is Hamiltonian

block triangular and associated with an eigenvalue pair λk,−λ̄k with nonzero real
part for k = 1, . . . , µ and purely imaginary eigenvalues iαk for k = µ + 1, . . . , µ + ν.
Furthermore, Λ(R) = ω and rangeS[ I0 ] = L.

For this block diagonal form there exists a block permutation matrix P such that

PHJP = diag(Jn1 , . . . , Jnµ ;Jm1 , . . . , Jmν ) =: J̃ ,

P−1S−1HSP = diag(H1, . . . , Hµ;Hµ+1, . . . , Hµ+ν).(3.4)

Suppose that there exists another Lagrangian invariant subspace L̃ corresponding to
ω. Using the same argument, there exists a symplectic matrix S̃ such that for the
same block permutation matrix P we have

P−1S̃−1HS̃P = diag(H̃1, . . . , H̃µ; H̃µ+1, . . . , H̃µ+ν),

where again all H̃k are Hamiltonian block triangular and Λ(H̃k) = Λ(Hk) for all
k = 1, . . . , µ + ν. Therefore, we have S̃P = SPE for some block diagonal matrix
E = diag(E1, . . . , Eµ+ν) satisfying HkEk = EkH̃k. Since PHJP = J̃ and since S and

S̃ are symplectic, it follows that E = P−1S−1S̃P satisfies EH J̃E = J̃ , which implies
that all blocks Ek are symplectic. Since S̃ = SPEP−1, the difference between S̃ and
S (and therefore L̃ and L) is completely described by the first half of the columns
of the symplectic matrices Ek, i.e., the Lagrangian invariant subspaces of the small
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Hamiltonian matrices Hk (note that all H̃ are Hamiltonian block triangular). Fol-
lowing this argument, it is sufficient to parametrize all possible Lagrangian invariant
subspaces of a Hamiltonian matrix with either a single purely imaginary eigenvalue
iα or a single eigenvalue pair λ,−λ̄ with Reλ �= 0.

Consider first the case of a single purely imaginary eigenvalue. In this case Ω(H)
has only one element. So all Lagrangian invariant subspaces are associated to the
same eigenvalue.

To simplify our analysis we need the following Hamiltonian Jordan form.

Lemma 3.3. Let H be a Hamiltonian matrix that has only one eigenvalue iα.
Then there exists a symplectic matrix S such that

R := S−1HS =

[
N(iα) D

0 −N(iα)H

]
,(3.5)

where N = diag(Nr1 , . . . , Nrp), D = diag(D1, . . . , Dp). Here either Dj = β
e
j erje

H
rj , so

that H has a Jordan block N2rj with structure inertia index βej ∈ {1,−1}, or Dj =
τjedje

H
rj + τ̄jerje

H
dj

with τj =
1
2 (−1)

rj+dj+1

2 iβj if rj+dj is odd, and τj =
1
2 (−1)

rj+dj
2 βj

if rj + dj is even for some βj ∈ {−1, 1}, so that H has two Jordan blocks Nrj+dj ,
Nrj−dj with structure inertia indices βj, −βj, respectively.

Proof. Since H− iαI is Hamiltonian, we may without loss of generality (w.l.o.g.)
consider the problem with α = 0, i.e., H that has only the eigenvalue zero. Since
H has only one multiple eigenvalue, the columns of every nonsingular matrix span a
corresponding invariant subspace so that condition (iii) of Theorem 2.2 holds. The
canonical form (3.5) then is obtained in a similar way as for (2.3); see [19]. The
only difference is that here we match all possible pairs of Jordan block with opposite
structure inertia indices in such a way that even blocks are matched with even blocks,
and odd blocks with odd blocks, and furthermore the blocks are ordered in decreasing
size. Finally we use the technique given in Lemma 3.1.

The complete parametrization is then as follows.

Theorem 3.4. Let H be a Hamiltonian matrix that has only one purely imaginary
eigenvalue. Let S be symplectic such that S−1HS is in Hamiltonian canonical form
(3.5). Then all possible Lagrangian subspaces can be parametrized by rangeSU , where

U =




It1 0 . . . 0 0 0 . . . 0 0
0 V12 . . . V1,p−1 V1p W11 . . . W1,p−1 W1p

0 It2 . . . 0 0 0 . . . 0 0
0 0 . . . V2,p−1 V2p WH

12 . . . W2,p−1 W2p

...
...

. . .
...

...
...

. . .
...

...
0 0 . . . Itp−1 0 0 . . . 0 0

0 0 . . . 0 Vp−1,p WH
1,p−1 . . . Wp−1,p−1 Wp−1,p

0 0 . . . 0 Itp 0 . . . 0 0
0 0 . . . 0 0 WH

1p . . . WH
p−1,p Wpp

0 0 . . . 0 0 0 . . . 0 0
0 0 . . . 0 0 −Is1 0 . . . 0
0 0 . . . 0 0 V H

12 0 . . . 0
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 0 0 V H
1,p−1 . . . 0 0

0 0 . . . 0 0 0 . . . −Isp−1 0

0 0 . . . 0 0 V H
1p . . . V H

p−1,p 0

0 0 . . . 0 0 0 . . . 0 −Isp




,(3.6)
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with block sizes 0 ≤ sj , tj ≤ rj and sj + tk = rj. Then, setting

Mt = diag(Nt1 , . . . , Ntp),

Ms = diag(Ns1 , . . . , Nsp),

E = diag(et1e
H
1 , . . . , etpe

H
1 ),

partitioning the Hermitian blocks

Dj =

[
Gj Fj
FHj Kj

]
,

and setting

K = diag(K1, . . . ,Ks),

F = diag(F1, . . . , Fs),

G = diag(G1, . . . , Gs),

it follows that the block matrices

V :=




0 V1,2 . . . V1,p

. . .
. . .

...
. . . Vp−1,p

0


 , W :=



W1,1 . . . W1,p

...
. . .

...
WH1,p . . . Wp,p


 =WH

satisfy

[
Ms FH

0 −MHt

] [
W V
V H 0

]
+

[
W V
V H 0

] [
MHs 0
F −Mt

]

−
[
W V
V H 0

] [
0 EH

E G

] [
W V
V H 0

]
−
[
K 0
0 0

]
= 0,(3.7)

or equivalently V , W satisfy

0 =MsV − VMt − V EV,(3.8)

0 = (Ms − V E)W +W (Ms − V E)H

+ (V F )H + V F − V GV H −K.(3.9)

Every Lagrangian invariant subspace is uniquely determined by a set of parameters
t1, . . . , tp with 0 ≤ tj ≤ rj and a set of matrices Vi,j, i = 1, . . . , p− 1, j = i+1, . . . , p,
and Wi,j, i = 1, . . . , p, j = i, . . . , p, satisfying (3.8) and (3.9).

Moreover, all symplectic matrices that transform H to Hamiltonian block triangu-
lar form can be parametrized as SUY, where Y is a symplectic block triangular matrix,
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U = [U, Ũ ], with U as in (3.6), and

Ũ =




0 0 . . . 0 0 0 0 . . . 0 0
0 0 . . . 0 0 It1 0 . . . 0 0
0 0 . . . 0 0 0 0 . . . 0 0
0 0 . . . 0 0 0 It2 . . . 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 . . . 0 0 0 0 . . . 0 0
0 0 . . . 0 0 0 0 . . . Itp−1 0
0 0 . . . 0 0 0 0 . . . 0 0
0 0 . . . 0 0 0 0 . . . 0 Itp
Is1 0 . . . 0 0 0 0 . . . 0 0
0 0 . . . 0 0 0 0 . . . 0 0
0 Is2 . . . 0 0 0 0 . . . 0 0
0 0 . . . 0 0 0 0 . . . 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 . . . Isp−1 0 0 0 . . . 0 0
0 0 . . . 0 0 0 0 . . . 0 0
0 0 . . . 0 Isp 0 0 . . . 0 0
0 0 . . . 0 0 0 0 . . . 0 0




.(3.10)

Proof. As in Lemma 3.3, we assume that the only eigenvalue of H is zero. Consid-
ering the form (3.5), it is sufficient to prove that every basis X of a Lagrangian invari-
ant subspace of R can be expressed as X = UY . To prove this, we first compress the
bottom square block of X, i.e., we determine a matrix Y1 such that XY1 =

[
X11

0
X12

X22

]
where X22 has full column rank. Obviously X11 also has full column rank. Then,
since XY1 is still a basis of an invariant subspace of R, the block triangular form of R
implies that the columns ofX11 andX22 form bases of the invariant subspace ofN and
−NH , respectively. Applying Lemma 3.2, there exist matrices Z1 and Z2 such that
U11 := X11Z1 and U22 := X22Z2 have structures as the matrices in (3.1) and (3.2)
associated with the integer parameters t1, . . . , tp and t̂1, . . . , t̂p, respectively. Now let

U := XY1

[
Z1

0
0
Z2

]
Y2 =

[
U11

0
U12

U22

]
, where Y2 is used to eliminate the blocks in X12Z2

using the identity blocks in U1,1. Since X, and hence also U , is Lagrangian, we have

that UH11U22 = 0. Thus, we have t̂j = mj − tj =: sj for all j = 1, . . . , p and V̂i,j = V
H
j,i

for all i = 2, . . . , p, j = 1, . . . , p−1. Since UH12U22 is Hermitian, it follows that U12 has
the desired form. To prove (3.7), as in the proof of Lemma 3.2, there exists a block
permutation matrix P such that P [U11, U12] =

[
I
V

0
W

]
. Let P̃ = diag(P, P ), which is

symplectic. Then

P̃U =



I 0
V W
0 V H

0 −I


 , P̃−1RP̃ =



Mt E G F
0 Ms FH K
0 0 −NHt 0
0 0 −EH −NHs


 .

Since the columns of P̃U form an invariant subspace for P̃−1RP̃, it follows that the
matrices V,W satisfy (3.7). Conditions (3.8) and (3.9) follow directly from (3.7).
To show the uniqueness of a particular Lagrangian invariant subspace, suppose that
there are two matrices U1, U2 of the same form as U such that rangeSU1 = rangeSU2.
Then UH2 JU1 = 0, and from this it follows first that the associated integer parameters
t1, . . . , tp must be the same, and thus all the blocks Vi,j , Wi,j must be the same.

To prove the second part, let X be a symplectic matrix which triangularizes H.
Since the first n columns of X form a Lagrangian invariant subspace, there exists
a matrix U of the form (3.6) such that rangeX [ I0 ] = rangeSU . Then the matrix



LAGRANGIAN INVARIANT SUBSPACES 1057

U = [U, Ũ ] with Ũ as in (3.10) is symplectic. Since both X and SU are symplectic
and their first n columns span the same subspace, there exists a symplectic block
triangular matrix Y such that X = SUY.

These results show that the parameters that characterize a Lagrangian invariant
subspace are integers tj with 0 ≤ tj ≤ mj , and the matrices Vi,j , Wi,j satisfying the
Riccati equations (3.7) or, equivalently, (3.8) and (3.9). Note that the equation forW
is a singular Lyapunov equation. The equation for V is quadratic. But if we consider
it blockwise, it is equivalent to a sequence of singular Sylvester equations,

NsiVi,j − Vi,jNtj −
j−1∑
k=i+1

Vi,kEkVk,j = 0(3.11)

for i = p− 1, . . . , 1, j = i+ 1, . . . , p. For results on nonsymmetric Riccati equations,
see [10].

In general not much more can be said about this parametrization. In the special
case of a Hamiltonian matrixH that has only two Jordan blocks, we have the following
result.

Corollary 3.5. Consider a Hamiltonian matrix H that has exactly two Jordan
blocks Nr1(iα), Nr2(iα) with 0 < r2 ≤ r1 and the corresponding structure inertia
indices β1 = −β2. Then there exists a symplectic matrix S such that

S−1HS =

[
Nm(iα) D

0 −Nm(iα)H
]
,

where m = (r1 + r2)/2, d = (r1 − r2)/2, and D = τede
H
m + τ̄ eme

H
d , and τ = ±i/2 if

r1 is odd and τ = ±1/2 if r2 is even. All Lagrangian invariant subspaces of H can be
parametrized by

rangeS



It 0
0 W
0 0
0 −Is


 ,

and all symplectic matrices that transform H to Hamiltonian block triangular form
can be parametrized as

S



Ip 0 0 0
0 W 0 Iq
0 0 Ip 0
0 −Iq 0 0


Y,

where Y is symplectic block triangular, d ≤ t ≤ m, t+ s = m, W =WH satisfying

NsW +WNHs = 0,(3.12)

which has infinitely many solutions for every s > 0.
Proof. Note that r1 + r2 is the size of the Hamiltonian matrix H, which must be

even. So r1 and r2 must be both even or odd. The canonical form and the form of
the parametrization follow directly from Theorem 3.4 by setting there p = 1. So we
need to prove only that d ≤ t ≤ m and that (3.12) holds. For p = 1, (3.8) reduces to

NsW +WNHs = K,
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where K is the trailing s × s block of D. Then K = 0 if t ≥ d (s ≤ r2) and
K = τed−teHs + τ̄ ese

H
d−t if t < d (s > r2). If t ≥ d, then the singular Lyapunov

equation has infinitely many Hermitian solutions W ; see [11, 14]. If t < d and r1, r2
are both even, then it follows that τ �= 0 is real. By comparing the elements, it follows
that the Lyapunov equation has no solution. The same conclusion follows for the case
that r1, r2 are both odd. Consequently W exists if and only if d ≤ t ≤ m.

In this simple case the parameters are completely given. But more importantly
this result also gives a sufficient condition that a Hamiltonian matrix has infinitely
many Lagrangian invariant subspaces.

Corollary 3.6. If a Hamiltonian matrix H has exactly one eigenvalue iα and
has at least two even-sized or two odd-sized Jordan blocks with opposite structure
inertia indices, then H has infinitely many Lagrangian invariant subspaces.

Proof. We may assume w.l.o.g. that the two (even or odd) Jordan blocks are
arranged in trailing position of R in the canonical form (3.5). Choosing tj = rj for
all j = 1, . . . , p− 1 implies that all Vi,j are void, W =Wp,p, and

U =




I 0 0
0 Itp 0
0 0 Wpp
0 0 0
0 0 −Isp


 .

By Corollary 3.5 there are infinitely many Lagrangian invariant subspaces (that
are parametrized by Wp,p) for the small Hamiltonian matrix

Hp :=

[
Nmp(iα) Dp

0 −Nmp(iα)
H

]
,

and hence there are also infinitely many Lagrangian invariant subspaces for H.
This corollary shows that to obtain a unique Lagrangian invariant subspace, all

structure inertia indices of H must have the same sign. Moreover, by Theorem 2.2
this also implies that H has only even-sized Jordan blocks. In the next section we
will prove that this is also sufficient.

In order to complete the analysis we need to study Hamiltonian matrices H that
have only two eigenvalues λ, −λ̄ that are not purely imaginary. If H ∈ C2n,2n, then
the algebraic multiplicities of λ, −λ̄ are both n, and hence Ω(H) consists of n + 1
selections ω(m), m = 0, . . . , n, where ω(m) contains m copies of λ and n−m copies
of −λ̄.

It follows from Theorem 2.2 that in this case there exists a symplectic matrix S
such that

R := S−1HS =

[
N(λ) 0
0 −N(λ)H

]
,(3.13)

where N(λ) = λI +N , N = diag(Nr1 , . . . , Nrp).
For every ω(m), 0 ≤ m ≤ n, the parametrization of all possible Lagrangian

invariant subspaces can be derived in a similar way as in the case of purely imaginary
eigenvalues.

Theorem 3.7. Let H ∈ C2n×2n be a Hamiltonian matrix that has only eigenval-
ues λ,−λ̄ which are not purely imaginary. Let S be a symplectic matrix that trans-
forms H to the form (3.13). For every selection ω(m) ∈ Ω(H) all the corresponding
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invariant subspaces can be parametrized by rangeSU , where U has the form




It1 0 . . . 0 0 0 0 . . . 0 0
0 V12 . . . V1,p−1 V1,p 0 0 . . . 0 0
0 It2 . . . 0 0 0 0 . . . 0 0
0 0 . . . V2,p−1 V2,p 0 0 . . . 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 . . . Itp−1

0 0 0 . . . 0 0
0 0 . . . 0 Vp−1,p 0 0 . . . 0 0
0 0 . . . 0 Itp 0 0 . . . 0 0
0 0 . . . 0 0 0 0 . . . 0 0
0 0 . . . 0 0 0 0 . . . 0 0
0 0 . . . 0 0 −Is1 0 . . . 0 0
0 0 . . . 0 0 V H1,2 0 . . . 0 0
0 0 . . . 0 0 0 −Is2 . . . 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 . . . 0 0 V H1,p−1 V H2,p−1 . . . 0 0
0 0 . . . 0 0 0 0 . . . −Isp−1

0
0 0 . . . 0 0 V H1p V H2,p . . . V Hp−1,p 0
0 0 . . . 0 0 0 0 . . . 0 −Isp




,(3.14)

with 0 ≤ sj , tj ≤ rj, sj + tj = rj, and
∑p
j=1 tj = m. If we set

Mt = diag(Nt1 , . . . , Ntp),

Ms = diag(Ns1 , . . . , Nsp),

E = diag(et1e
H
1 , . . . , etpe

H
1 ),

then the matrix

V :=




0 V12 . . . V1p

. . .
. . .

...
. . . Vp−1,p

0




must satisfy the Riccati equation

0 =MsV − VMt − V EV.(3.15)

Every Lagrangian invariant subspace associated with ω(m) is uniquely determined by
a set of parameters {t1, . . . , tp} with 0 ≤ tj ≤ rj and

∑p
j=1 tj = m and a set of

matrices Vi,j, i = 1, . . . , p− 1, j = i+ 1, . . . , p, satisfying (3.15).

Moreover, all symplectic matrices that transform H to Hamiltonian block tri-
angular form can be parametrized by SUY, where Y is symplectic block triangular,
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U = [U, Ũ ] with U as in (3.10), and

Ũ =




0 0 . . . 0 0 0 0 . . . 0 0
0 0 . . . 0 0 It1 0 . . . 0 0
0 0 . . . 0 0 0 0 . . . 0 0
0 0 . . . 0 0 0 It2 . . . 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 . . . 0 0 0 0 . . . 0 0
0 0 . . . 0 0 0 0 . . . Itp−1 0
0 0 . . . 0 0 0 0 . . . 0 0
0 0 . . . 0 0 0 0 . . . 0 Itp
Is1 0 . . . 0 0 0 0 . . . 0 0
0 0 . . . 0 0 0 0 . . . 0 0
0 Is2 . . . 0 0 0 0 . . . 0 0
0 0 . . . 0 0 0 0 . . . 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 . . . Isp−1

0 0 0 . . . 0 0
0 0 . . . 0 0 0 0 . . . 0 0
0 0 . . . 0 Isp 0 0 . . . 0 0
0 0 . . . 0 0 0 0 . . . 0 0




.

Proof. It is sufficient to consider the Lagrangian invariant subspaces of R in
(3.13). Let the columns of X span a Lagrangian invariant subspace of R associated
with ω(m). Then RX = XA and Λ(A) = ω(m). Since λ �= −λ̄, there exists a matrix
Y such that Y −1AY =

[
A1

0
0
A2

]
, where A1 is m × m and has only the eigenvalue

λ and A2 is (n − m) × (n − m) and has only the eigenvalue −λ̄. If we partition
XY =

[
X11

X21

X12

X22

]
conformally with Y −1AY , then from the block diagonal form of R

we obtain X12 = 0, X21 = 0 and N(λ)X11 = X11A1, −N(λ)HX22 = X22A2, since
X11, X22 must have full column rank. We apply Lemma 3.2, and then the result
follows as in the case of purely imaginary eigenvalues.

The parametrization in this case is essentially the same as in the case of purely
imaginary eigenvalues except that here W is void and

∑p
j=1 tj is fixed for a given

ω(m). In both cases the blocks Vi,j still satisfy a sequence of Sylvester equations
(3.11).

Again we have a corollary.
Corollary 3.8. Let H ∈ C2n×2n be a Hamiltonian matrix that has only the

eigenvalues λ,−λ̄ which are not purely imaginary. If H has exactly two Jordan blocks
with respect to λ, then for every fixed ω(m) ∈ Ω(H) the corresponding Lagrangian
invariant subspaces can be parametrized as

S




It1 0 0 0
0 V 0 0
0 It2 0 0
0 0 0 0
0 0 0 0
0 0 −Is1 0
0 0 V H 0
0 0 0 −Is2



,

where t1 + t2 = m, tj + sj = rj, and 0 ≤ tj , sj ≤ rj for j = 1, 2.
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Furthermore, V = [0, T ] if s1 < t2 and V =
[
T
0

]
if s1 ≥ t2, where T is an

arbitrary square upper triangular Toeplitz matrix. So for every ω(m) with 0 < m < n
there are infinitely many Lagrangian invariant subspaces.

Proof. Applying Theorem 3.7 for p = 2 we obtain the parametrization and the
restrictions for t1, t2. The expression for V follows from the fact that V satisfies the
Sylvester equation Ns1V − V Nt2 = 0.

In this special case we have the following uniqueness result.
Corollary 3.9. Let H ∈ C2n×2n be a Hamiltonian matrix that has only the

eigenvalues λ,−λ̄ which are not purely imaginary. Then we have the following:
(i) For ω(0) or ω(n) the corresponding Lagrangian subspace is unique.
(ii) If H has only a single Jordan block with respect to λ, then for every fixed

ω(m) ∈ Ω(H) with 0 ≤ m ≤ n the corresponding Lagrangian invariant sub-
space is unique. In this case there exists a symplectic matrix Ŝ such that

Ŝ−1HŜ =

[
R D
0 −RH

]
,(3.16)

with R = diag(Nm(λ),−Nn−m(λ)H), D = eme
H
m+1 + em+1e

H
m.

(iii) If H has at least two Jordan blocks with respect to λ, then for every fixed
ω(m) ∈ Ω(H) with 0 < m < n there are infinitely many corresponding La-
grangian invariant subspaces.

Proof. (i) For ω(0) all tj must be zero, so U =
[

0
−In

]
is unique. Analogously, for

ω(n) the unique Lagrangian invariant subspace is U =
[
In
0

]
.

(ii) By assumption p = 1, so for a fixed ω(m), U is unique as


Im
0
0

−In−m


 .

Then (3.16) follows from (3.13) and the special form U for p = 1.
(iii) In this case we can choose the integers tj such that t1 < r1 and tp > 0. We

set Vi,j = 0 except for V1,p, which is chosen to satisfy Ns1V1,p − V1,pNtp = 0. Since
s1, tp > 0, there are infinitely many solutions V1,p and, hence, infinitely many U .

In the next section we will use the parametrizations to characterize the existence
and uniqueness of Lagrangian invariant subspaces.

4. Existence and uniqueness of Lagrangian invariant subspaces. In this
section we summarize all results given in the previous sections and give a complete
characterization of the existence and the uniqueness of Lagrangian invariant subspaces
for a Hamiltonian matrix. This complete result includes previous results based on the
structure inertia indices of [23, 25].

Theorem 4.1 (existence). Let H ∈ C2n×2n be a Hamiltonian matrix, let iα1, . . . ,
iαν be its pairwise distinct purely imaginary eigenvalues, and let λ1,−λ̄1, . . ., λµ,−λ̄µ
be its pairwise distinct nonimaginary eigenvalues. The following are equivalent:

(i) H has a Lagrangian invariant subspace for one ω ∈ Ω(H).
(ii) H has a Lagrangian invariant subspace for all ω ∈ Ω(H).
(iii) There exists a symplectic matrix S such that S−1HS is Hamiltonian block

triangular.
(iv) There exists a unitary symplectic matrix U such that UHHU is Hamiltonian

block triangular.
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(v) For all k = 1, . . . , ν, if Uk span the invariant subspace associated with iαk,
then UHk JUk is congruent to Jmk

.

(vi) InddS(iαk) is void for all k = 1, . . . , ν.

Proof. This result in different notation is known; see [19, 23, 24, 25].

Theorem 4.2 (uniqueness for Ω̃(H)). Let H ∈ C2n×2n be a Hamiltonian ma-
trix. Let iα1, . . . , iαν be its pairwise distinct purely imaginary eigenvalues and let
λ1,−λ̄1, . . . , λµ,−λ̄µ be its pairwise distinct nonimaginary eigenvalues. Suppose that
any of the equivalent conditions of Theorem 4.1 for the existence of Lagrangian in-
variant subspaces holds. Then the following are equivalent:

(i) For every ω ∈ Ω̃(H) there exists a unique associated Lagrangian invariant
subspace.

(ii) If ω ∈ Ω̃(H) and if S1 and S2 are symplectic matrices such that S−1
1 HS1 =[

R1

0
D1

−RH
1

]
, S−1

2 HS2 =
[
R2

0
D2

−RH
2

]
, and Λ(R1) = Λ(R2) = ω, then S−1

1 S2 is

symplectic block triangular.
(iii) There exists an ω ∈ Ω̃(H) such that H has a unique associated Lagrangian

invariant subspace.
(iv) There exists an ω ∈ Ω̃(H) such that if S1 and S2 are symplectic matrices satis-

fying S−1
1 HS1 =

[
R1

0
D1

−RH
1

]
, S−1

2 HS2 =
[
R2

0
D2

−RH
2

]
, and Λ(R1) = Λ(R2) = ω,

then S−1
1 S2 is symplectic block triangular.

(v) Let
[
A
0

B
−AH

]
be an arbitrary Hamiltonian block triangular form of H. If

for a purely imaginary eigenvalue iαk the columns of Φk form a basis of the
left eigenvector subspace of A, i.e., ΦHk A = iαkΦ

H
k , then ΦHk BΦk is positive

definite or negative definite.
(vi) For every purely imaginary eigenvalue iαk there are only even-sized Jordan

blocks which, furthermore, have all structure inertia indices of the same sign.

If the uniqueness conditions do not hold, then for every ω ∈ Ω̃(H) there are infinitely
many Lagrangian invariant subspaces. They can be parametrized by applying Theo-
rem 3.4 for every iαk.

Proof. The proof of the equivalence of (i) and (vi) has been given (in different
notation) in Theorem 1.3 of [25]. For completeness we give the whole proof in our
terminology. By the argument in section 3 it suffices to consider a Hamiltonian matrix
H that has either a single purely imaginary eigenvalue iα or an eigenvalue pair λ and
−λ̄. In the first case we again take iα = 0.

Since by Corollary 3.9 for nonimaginary eigenvalues the corresponding invari-
ant subspaces are unique, we need to consider only the case of a purely imaginary
eigenvalue.

The proofs of (i) ⇔ (ii) and (iii) ⇔ (iv) are obvious. Corollary 3.6 implies that
(ii) ⇒ (vi). If (vi) holds, then by Theorem 2.2 there exists a symplectic matrix S
such that

R := S−1HS =

[
R D
0 −RH

]
,(4.1)

where R = diag(Nl1 , . . . , Nlq ) andD = β diag(el1e
H
l1
, . . . , elqe

H
lq
). (Recall that iα = 0.)

We need to prove only that for every symplectic Z satisfying Z−1RZ =
[
R̃
0

D̃
−R̃H

]
, Z

is block triangular. Partitioning Z =
[
Z11

Z21

Z12

Z22

]
, it follows that

RZ11 +DZ21 = Z11R̃(4.2)
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and

−RHZ21 = Z21R̃.(4.3)

Suppose that Z21 �= 0; then by (4.3) it follows that rangeZ21 is an invariant
subspace of −RH . Hence, there exists a vector x such that Z21x �= 0 and

RHZ21x = 0,(4.4)

i.e., Z21x is a left eigenvector of R. Multiplying (Z21x)
H and x on both sides of (4.2)

and using (4.4), we get

(Z21x)
HD(Z21x) = −xHZH21Z11R̃x.

Since Z is symplectic, we have ZH21Z11 = ZH11Z21. Combining (4.3) and (4.4), we get

xHZH21Z11R̃x = xHZH11Z21Ãx = −xHZH11RHZ21x = 0

and, therefore,

(Z21x)
HD(Z21x) = 0.

On the other hand, since Z21x is a left eigenvector of R, by the structure of R
there must exist a nonzero vector y such that Z21x = Ey, where

E := [ep1 , . . . , epq ],(4.5)

with pk =
∑k
j=1 lj for k = 1, . . . , q. But EHDE = βIq and hence

0 = (Z21x)
HD(Z21x) = y

HEHDEy = βyHy �= 0,

which is a contradiction.
(i) ⇒ (iii) is obvious and (iii)⇒ (i) follows from (iii)⇒ (vi) by Corollary 3.6 and

(vi) ⇔ (i).
To prove (vi) ⇒ (v) let R̂ =

[
A
0

B
−AH

]
be an arbitrary Hamiltonian triangular

form of H and let R be as in (4.1). Since (vi) holds and (vi)⇔ (ii), there exists a

symplectic block triangular matrix S =
[
S1

0
S2

S−H
1

]
(see [5]) such that R̂ = S−1RS.

Hence S−1
1 RS1 = A and B = S−1

1 RS2 + S
−1
1 DS

−H
1 + SH2 R

HS−H
1 . Since A is similar

to R, a left eigenvector subspace of A can be chosen as Φ = SH1 E, where E is as in
(4.5). Then a simple calculation yields ΦHBΦ = βIq.

For (v)⇒ (vi) suppose that R̂ =
[
A
0

B
−AH

]
satisfies (v). Using the same argument

as for (vi) ⇒ (ii) and replacing R by R̂ we obtain that (v) ⇒ (ii). Since (ii) ⇔ (vi),
it follows that (v) also implies (vi).

Theorem 4.3 (uniqueness for Ω(H)). Let H ∈ C2n×2n be a Hamiltonian ma-
trix. Let iα1, . . . , iαν be its pairwise distinct purely imaginary eigenvalues and let
λ1,−λ̄1, . . . , λµ,−λ̄µ be its pairwise distinct nonimaginary eigenvalues. Suppose that
any of the equivalent conditions of Theorem 4.1 for the existence of Lagrangian in-
variant subspaces holds. Then the following are equivalent:

(i) For every ω ∈ Ω(H) there exists a unique associated Lagrangian invariant
subspace.
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(ii) Let ω ∈ Ω(H). If S1 and S2 are symplectic matrices such that S−1
1 HS1 =[

R1

0
D1

−RH
1

]
, S−1

2 HS2 =
[
R2

0
D2

−RH
2

]
, and Λ(R1) = Λ(R2) = ω, then S−1

1 S2 is

symplectic block triangular.
(iii) There exists an ω ∈ Ω(H), but ω �∈ Ω̃(H), such that H has a unique associated

Lagrangian invariant subspace.
(iv) There exists an ω ∈ Ω(H), but ω �∈ Ω̃(H), such that if S1 and S2 are sym-

plectic matrices satisfying S−1
1 HS1 =

[
R1

0
D1

−RH
1

]
, S−1

2 HS2 =
[
R2

0
D2

−RH
2

]
, and

Λ(R1) = Λ(R2) = ω, then S−1
1 S2 is symplectic block triangular.

(v) Let
[
A
0

B
−AH

]
be an arbitrary Hamiltonian block triangular form of H. Then

either A has one of λk,−λ̄k as its eigenvalue and has a unique corresponding
left eigenvector, or A has both λk,−λ̄k as eigenvalues and has unique corre-
sponding left eigenvectors xk and yk such that xHk Byk �= 0. Furthermore, for
every iαk if the columns of Φk form a basis of the left eigenvector subspace of
A, i.e., ΦHk A = iαkΦ

H
k , then ΦHk BΦk is positive definite or negative definite.

(vi) For every nonimaginary eigenvalue, H has only one corresponding Jordan
block, and for every purely imaginary eigenvalue iαk, H has only even-sized
Jordan blocks with all structure inertia indices of the same sign.

If the uniqueness conditions do not hold, then for every ω ∈ Ω(H) there are infinitely
many Lagrangian invariant subspaces. They can be parametrized by applying Theo-
rem 3.4 for every iαk and Theorem 3.7 for every pair λk,−λ̄k.

Proof. The proof of the equivalence of (i) and (vi) has again been given (in
different notation) in Theorem 1.3 of [25]. For completeness we again give the whole
proof in our terminology.

By the argument in section 3 it suffices to consider that the Hamiltonian matrix
H has only either a single purely imaginary eigenvalue iα or an eigenvalue pair λ and
−λ̄, and in the first case we will assume iα = 0. For the purely imaginary eigenvalue
the proof is as that of Theorem 4.2. Hence, consider H with an eigenvalue pair λ,−λ.
The parts (i)⇔ (ii) and (iii)⇔ (iv) are obvious. (i)⇔ (vi) follows from Corollary 3.9.
(i) ⇔ (iii) follows, since (iii) ⇒ (vi) and (vi) ⇔ (i), and since ω �∈ Ω̃(H) implies
that both λ and −λ̄ have been chosen in ω. It remains to prove (v) ⇔ (vi). We may
assume that both λ, −λ̄ are in Λ(A), since otherwise ω ∈ Ω̃(H).

For (vi) ⇒ (v) let R̂ =
[
A
0

B
−AH

]
be an arbitrary Hamiltonian triangular form

of H. Since (vi) holds, by (3.16) in Corollary 3.9 the Hamiltonian canonical form is
R =

[
R
0

D
−RH

]
, where R = diag(Nt(λ),−Ns(λ)H), D = ete

H
t+1 + et+1e

H
t , and t is the

multiplicity of λ in Λ(A). By (ii) there exists a symplectic matrix S =
[
S1

0
S2

S−H
1

]
such

that R̂ = S−1RS. Hence S−1
1 RS1 = A and B = S−1

1 RS2 +S
−1
1 DS

−H
1 +SH2 R

HS−H
1 .

If only one of λ,−λ̄ is in Λ(A), then, since A is similar to R, it is also in Λ(R).
Hence, either t = 0 or s = 0 and R (and thus also A) has only one corresponding left
eigenvector. If both λ,−λ̄ are in Λ(A), then s, t > 0. In this case R has only left
eigenvectors et and et+1 with respect to λ and −λ̄, respectively. Therefore, A also has
only left eigenvectors SH1 et and S

H
1 et+1 for λ and −λ̄, respectively. Then it is easy to

see that eHt S1BS1et+1 = eHt Det+1 = 1.

For (v) ⇒ (vi), if A has only one of λ,−λ̄ as its eigenvalue and has a unique left
eigenvector, then A also has only one right eigenvector. Since Λ(A) ∩ Λ(−AH) = ∅,
in this case R̂ has also a unique corresponding right eigenvector. Therefore, there
is only one corresponding Jordan block. By the canonical form (3.13) for the other
eigenvalue there is also only one Jordan block. If A has both λ,−λ̄, then we first show
that for left eigenvectors x, y of A such that xHBy �= 0, condition (ii) holds. Then we
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show that x, y must be unique. As in the proof of Theorem 4.2 we need only prove

that for every symplectic matrix Z satisfying Z−1R̂Z =
[
R̃
0

D̃
−R̃H

]
, Λ(R̃) = Λ(A) it

follows that Z is block triangular. Partitioning Z =
[
Z11

Z21

Z12

Z22

]
, it follows that

AZ11 +BZ21 = Z11R̃(4.6)

and

−AHZ21 = Z21R̃.

Suppose that Z21 �= 0; then rangeZ21 is an invariant subspace of −AH . Hence there
exists z1, with either R̃z1 = −λ̄z1 or R̃z1 = λz1 such that Z21z1 �= 0, which implies
that Z21z1 is the left eigenvectors of A corresponding to λ or −λ̄. W.l.o.g., assume
that z1 satisfies R̃z1 = −λ̄z1. Let z2 �= 0 satisfy zH2 A = −λ̄zH2 . Multiplying zH2
and z1 on both sides of (4.6), a simple calculation yields zH1 B(Z21z2) = 0, which is a
contradiction.

Suppose that x, y are not unique. Then let X form the left eigenvector subspace
of A with respect to λ. Since XHBy has more than one row, there always exists
a vector z such that zHXHBy = 0, which is a contradiction. So x and y must be
unique.

Remark 2. For real Hamiltonian matrices it is reasonable to consider real La-
grangian invariant subspaces. For this problem we have to give a natural additional
restriction on the eigenvalue selections. Note that in this case if λ is a nonreal eigen-
value of H, then λ̄,−λ̄, and −λ are also eigenvalues of H. To obtain real invariant
subspaces it is necessary to keep the associated eigenvalues in conjugate pairs. So if
we choose a nonreal λ we must choose λ̄ with same multiplicity. But essentially we
can use the same construction as for the complex case to solve this problem (see [19]),
since if H is real, then for real eigenvalues the corresponding invariant subspaces can
be chosen real. So for these eigenvalues we can still use Theorems 3.7 and 3.4 by
choosing V and W real.

In this section we have given necessary conditions for the existence and uniqueness
of Lagrangian invariant subspaces. In the following section we obtain as corollaries
several results on the existence and uniqueness of Hermitian solutions of the algebraic
Riccati equation.

5. Hermitian solutions of Riccati equations. In this section we apply the
existence and uniqueness results for Lagrangian invariant subspaces to analyze the
existence and uniqueness of Hermitian solutions of the algebraic Riccati equation

AHX +XA−XMX +G = 0,(5.1)

with M =MH and G = GH . The related Hamiltonian matrix is H =
[
A
G

M
−AH

]
. The

following result is well known; see, e.g., [15].
Proposition 5.1. The algebraic Riccati equation (5.1) has a Hermitian solution

if and only if there exists a 2n × n matrix L =
[
L1

L2

]
, with L1, L2 ∈ Cn×n and L1

invertible, such that the columns of L span a Lagrangian invariant subspace of the
related Hamiltonian matrix H associated to ω ∈ Ω(H). In this case X = −L2L

−1
1 is

Hermitian and solves (5.1) and Λ(A−MX) = ω.
It follows that we can study the existence and uniqueness of solutions of algebraic

Riccati equations via the analysis of Lagrangian invariant subspaces of the associated
Hamiltonian matrices.
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Unlike the Lagrangian invariant subspace problem, which only depends on the
Jordan structure, Hermitian solutions of the Riccati equation depend further on the
top block of the basis of the Lagrangian invariant subspace and the choice of the
associated eigenvalues. In other words, for a given Hamiltonian block triangular
form R, all Hamiltonian matrices which are similar to R have Lagrangian invariant
subspaces, while for Riccati equation solutions these Hamiltonian matrices may be
partitioned into three groups which (i) have Hermitian solutions for all selections
Ω(R), (ii) have Hermitian solutions for some ω ∈ Ω(R), (iii) have no Hermitian
solution for any ω ∈ Ω(R).

Example 1. Consider three Riccati equations with matrices

(a) A =

[
i 0
0 1

]
, M =

[
1 −1− i

−1 + i 0

]
, G =

[
0 0
0 0

]
,

(b) A =

[
i 0
0 1

]
, M =

[
1 −1− i

−1 + i −2
]
, G =

[
0 0
0 0

]
,

(c) A =

[
i 0
0 −1

]
, M =

[
0 0
0 0

]
, G =

[ −1 −1 + i
−1− i 0

]
.

In all three cases the related Hamiltonian matrices have the same Hamiltonian Jordan
canonical form 


i 0 1 0
0 1 0 0
0 0 i 0
0 0 0 −1


 ,

and Ω(H) = {ω1, ω2} with ω1 = {i, 1}, ω2 = {i,−1}. Certainly for both ω1, ω2 all
Hamiltonian matrices have a unique Lagrangian invariant subspace. But the Hermi-
tian solutions of the Riccati equation are different. In case (a) for ω1 the solution is
X = 0 and for ω2 there is no solution. In case (b) for ω1 the solution is 0 and for ω2

the solution is X =
[
0
0

0
−1

]
. In case (c) for both ω1 and ω2 there is no solution at

all. It is also possible that the Riccati equation has no Hermitian solution, while the
related Hamiltonian matrix has infinitely many Lagrangian invariant subspaces.

Example 2. For

A =M =

[
0 0
0 0

]
, G =

[
0 1
1 0

]

the Riccati equation (5.1) has no solution. But for the associated Hamiltonian matrix
the bases of the Lagrangian invariant subspace can be parametrized as



−iβ 0
−1 0
0 1
α iβ


 ,




0 γ
0 0
0 1
1 0


 ,




0 1
0 0
0 0
1 0


 ,

where α, β, γ are real.
By using the parametrizations in section 3 we can give a necessary and sufficient

condition for the existence of the Hermitian solutions of the Riccati equation (5.1).
Note that for the solvability of the Riccati equation it is necessary that the Hamilto-
nian matrix H associated to (5.1) has a Hamiltonian block triangular form. So there
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exists a symplectic matrix S such that

S−1HS =

[
R D
0 −RH

]
(5.2)

with R = diag(R1, . . . , Rµ;Rµ+1, . . . , Rµ+ν), D = diag(0, . . . , 0;Dµ+1, . . . , Dµ+ν). A

submatrixHk :=
[
Rk

0
0

−RH
k

]
has the Jordan form (3.13) with respect to the eigenvalues

λk,−λ̄k for k = 1, . . . , µ, and a submatrix Hk :=
[
Rk

0
Dk

−RH
k

]
has the Jordan form (3.5)

with respect to iαk−µ for k = µ+ 1, . . . , µ+ ν.

Theorem 5.2. Let H be the Hamiltonian matrix associated with the algebraic
Riccati equation (5.1) and assume that H has a Hamiltonian block triangular form.
Let S be a symplectic matrix satisfying (5.2) and let P be a permutation matrix such
that

P−1S−1HSP = diag(H1, . . . , Hµ;Hµ+1, . . . , Hµ+ν),

PHJP = diag(Jn1 , . . . , Jnµ ;Jm1
, . . . , Jmν ),(5.3)

where Hk =
[
Rk

0
0

−RH
k

]
. Then for an eigenvalue selection ω ∈ Ω(H), the Riccati

equation (5.1) has a Hermitian solution X with Λ(A−MX) = ω if and only if there
exist matrices U1, . . . , Uµ and Q1, . . . , Qν with the following properties. The matrices
Uk are 2nk × nk and have the block form (3.10) with blocks satisfying (3.15) and the
matrices Qk are 2mk ×mk and have the block form (3.6) with blocks satisfying (3.8)
and (3.9) such that

L1 := [In, 0]SP diag(U1, . . . , Uµ;Q1, . . . , Qν)(5.4)

is nonsingular.

Moreover, X = −[0, In]SP diag(U1, . . . , Uµ;Q1, . . . , Qν)L
−1
1 .

Proof. Since H has a Hamiltonian block triangular form, we have (5.2) and P
can easily be determined to obtain (5.3). A given ω specifies the number elements
λk, −λ̄k, and hence by Theorems 3.7 and 3.4 we obtain the parametrizations for the
bases of the associated Lagrangian invariant subspaces of H. Thus by Proposition 5.1
we have the conclusion.

Remark 3. If in the Hamiltonian matrixH =
[
A
G

M
−AH

]
the matrixM is positive or

negative semidefinite, then the invertibility of L1 in (5.4) is ensured by a controllability
assumption; see Theorem 3.1 and Remark 3.2 in [9] or [15] for details. If (5.1) has a
Hermitian solution with respect to a selection ω, then the uniqueness follows directly
from the uniqueness results for Lagrangian invariant subspaces.

Theorem 5.3. Let X = XH be a Hermitian solution of (5.1) with Λ(A−MX) =
ω. Then X associated to ω is unique if and only if the related Hamiltonian matrix H
has a unique Lagrangian invariant subspace associated to ω. Moreover, in this case
if ω ∈ Ω̃(H), then for every selection in Ω̃(H) for which the associated Hermitian
solutions exists, it is unique.

If the uniqueness condition for the Lagrangian invariant subspaces of H does not
hold and if (5.1) has at least one Hermitian solution associated with a selection ω,
then (5.1) has infinitely many Hermitian solutions associated to ω.

Proof. The uniqueness conditions for the Hermitian solutions follows from the
equivalence of (i) and (iii) in Theorems 4.2 and 4.3.
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If (5.1) has a solution X associated to an ω, following Theorem 5.2, there must
be two sets of matrices U1, . . . , Uµ and Q1, . . . , Qν such that for

L = SP diag(U1, . . . , Uµ;Q1, . . . , Qν) =:

[
L1

L2

]
,

L1 is nonsingular and X = −L2L
−1
1 . If the uniqueness condition for H does not

hold, then for at least one pair λk, −λ̄k or one purely imaginary eigenvalue iαk the
uniqueness condition does not hold. In the case of a pair λ,−λ̄, by Theorem 3.7 the
parameters s1, . . . , sp cannot be all zero. So the matrix V cannot be void and satisfies
(3.15) or equivalently (3.11). For every Vi,j the associated equation is a singular
Sylvester equation. So at least for the last Vi,j , say V1,p, there are infinitely many
solutions. This means that we can choose infinitely many bases which are near to a
certain Uk. For the case of an eigenvalue iα from Theorem 3.4 again s1, . . . , sp cannot
be all zero. So W cannot be void. Since W must satisfy the singular Lyapunov
equation (3.8), there are infinitely many solutions. So we can also choose infinitely
many bases which are near to a certain Qk. Consequently if the uniqueness condition
of H does not hold, then there are infinitely many bases L̃ of the Lagrangian invariant
subspaces associated to ω such that ||L̃− L|| < ||L−1

1 ||, which implies that there are
infinitely many Hermitian solutions corresponding to such L̃.

If a Hermitian solution X is known, then we can use it to verify the uniqueness.
Corollary 5.4. Let X be a Hermitian solution of (5.1) with Λ(A−MX) = ω.

Let the columns of Φk, k = 1, . . . , ν, span the left eigenspaces of A−MX corresponding
to iαk. If Φ

H
k MΦk is either positive definite or negative definite for all k = 1, . . . , ν,

then ω ∈ Ω̃(H) implies that X is unique. If ω �∈ Ω̃(H), then X is unique if we
have the additional condition that for every eigenvalue pair λk and −λ̄k the matrix
A−MX either has one of them as its eigenvalue and has a unique corresponding left
eigenvector, or has both of them as eigenvalues and the corresponding left eigenvectors
xk, yk satisfy x

H
k Myk �= 0 for k = 1, . . . , µ.

Proof. The proof follows directly from the fact that

S−1HS =

[
A−MX M

0 −(A−MX)H

]
=: R,

where S =
[
I

−X
0
I

]
is symplectic, and from (v) in Theorems 4.2 and 4.3.

6. Conclusion. Based on Hamiltonian block triangular forms for Hamiltonian
matrices under symplectic similarity transformations we have given necessary and suf-
ficient conditions for the existence and uniqueness of Lagrangian invariant subspaces.
If the subspace is not unique, then we have given a complete parametrization of all
possible Lagrangian invariant subspaces. We have then applied these results to derive
existence and uniqueness results for Hermitian solutions of algebraic Riccati equations
as corollaries.
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Abstract. Assume N ∈ C
n×n is a square matrix with the characteristic polynomial p(z) =

f(x, y) + ig(x, y). Viewing the spectrum σ(N) of N as an algebraic subvariety of R
2, by Bézout’s

theorem, the degrees of f and g seem to be unnecessarily high for locating σ(N). Starting from
this observation, we employ real analytic techniques to find the spectrum of a normal matrix N . At
most 1-dimensional information is obtained with polyanalytic polynomials of degree not exceeding√

2n. This is achieved by performing only matrix-vector products with an algorithm relying on a
recurrence with a very slowly growing length. For large problems three practical alternatives are
proposed via computing Ritz values, eigenvalue exclusion, and eigenvalue inclusion regions.

Key words. Bézout’s theorem, algebraic subvariety of R
2, eigenvalue localization, normal

matrix, polyanalytic polynomial, slowly growing length of the recurrence, Ritz value
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1. Introduction. Assume N ∈ C
n×n is a square matrix with the characteristic

polynomial p. Rewriting p as p(z) = f(x, y) + ig(x, y) with bivariate polynomials f
and g, the spectrum of N equals the algebraic subvariety of R

2 defined by

{
f(x, y) = 0,
g(x, y) = 0.

(1.1)

It is clear that deg(f) = deg(g) = deg(p) = n. A naive application of Bézout’s theorem
then tells us that this system could have as many as n2 isolated solutions. So using
complex analytic techniques on (1.1) to find the spectrum of N would appear fruitless.
In this paper we demonstrate that if N is normal, then real analytic techniques yield
us bivariate polynomials such that generically

deg(f)deg(g) ≤ 4n(1.2)

holds pairwise. As there are n eigenvalues, counting multiplicities, (1.2) is of correct
order in light of Bézout’s theorem. We show that the algebraic subvariety of R

2 defined
by this altered set of bivariate polynomials remains unchanged so that the spectrum
of N can actually be found with our techniques. For large problems, aside from
computing Ritz values, we derive a new approach to finding exclusion and inclusion
regions for the eigenvalues.

From now on we assume that N belongs to the set of normal matrices N . Iden-
tifying multiplications by N and N∗ with z and z, respectively, we can associate
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polyanalytic polynomials [3] with the elements of N in a natural way. Denoting by
Pk the set of polynomials of degree at most k, polyanalytic polynomials are of the
form

p(z) =

k∑
j=0

hj(z)z
j ,(1.3)

with hj ∈ Pk−j and k ∈ N0. We use the notation PPk for polyanalytic polynomials
of degree at most k and set PP =

⋃
k∈N0

PPk. Since N commutes with its adjoint,
p(N) is well defined for p ∈ PP by identifying z and z with N and N∗, respectively.

Polyanalytic polynomials of the form zjzl are called polyanalytic monomials and
an order > among them is set as follows. Let zj1zl1 and zj2zl2 be two polyanalytic
monomials. If j1 + l1 > j2 + l2, then zj1zl1 > zj2zl2 . If j1 + l1 = j2 + l2 and j1 > j2,
then zj1zl1 > zj2zl2 . With an order among the polyanalytic monomials we define the
minimal polyanalytic polynomial pj,l ∈ PP of N ∈ N to be the monic polyanalytic
polynomial of least degree j+ l annihilating N . The minimal polyanalytic polynomial
has a number of desired properties, i.e., it is unique, its degree does not exceed√
2deg(N), and it can be computed in a stable manner. Moreover, its zero set is at

most 1-dimensional containing the spectrum of N . Its intersection with Gershgorin’s
disks yields very accurate information about the location of the eigenvalues. However,
as opposed to the minimal polynomial, the zero set of pj,l can be strictly larger than
the spectrum so that for equality further annihilating polyanalytic polynomials may
need to be computed.

Finding further annihilating polyanalytic polynomials for N is not obvious. Since
there are infinitely many algebraic curves in R

2 containing the eigenvalues of N , a
natural criterion for choosing a preferred polyanalytic polynomial is computability.
The minimal polyanalytic polynomial can be found by introducing an Arnoldi [2]
type of minimization problem

∣∣∣∣N jN l∗q̂0 − p̂j,l(N)q̂0
∣∣∣∣ = min

p̂<zjzl

∣∣∣∣N jN l∗q̂0 − p̂(N)q̂0
∣∣∣∣(1.4)

for a vector q̂0 ∈ C
n [18]. The corresponding monic polyanalytic polynomial of interest

equals Pj,l(z) = zjzl − p̂j,l(z), yielding a sequence Pj,l ∈ PPk with j + l = k for
k ∈ N. The process for computing these polyanalytic polynomials is iterative, relying
on a construction of an orthonormal basis of C

n. This is achieved by multiplying
an already computed vector with either N or N∗. Then a new vector is obtained by
orthogonalizing this against the vectors computed so far. The length of the recurrence
for this purpose neither is fixed 3 nor does it grow linearly with the iteration number,
as is the case with the Hermitian Lanczos and Arnoldi methods, respectively. Denoting
by d the number of the orthogonal polyanalytic polynomials computed so far, the
length of the recurrence is at most

√
8d.

There appears zero vectors among the vectors generated and to each of them
corresponds an element of PP annihilating N . The first zero vector yields the minimal
polyanalytic polynomial of N . The remaining ones can be divided into two classes:
irreducible and reducible. The irreducible polyanalytic polynomials yield independent
information, and we show that the intersection of their zero sets yields the spectrum
of N exactly. We find this quite remarkable as the characteristic polynomial is not
used to this end. Generically this involves polyanalytic polynomials of degree at most√
2deg(N), i.e., pairwise the degree condition (1.2) is satisfied.
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For large problems the computation of all the annihilating polyanalytic polyno-
mials of N as just described is not realistic. So we propose three practical alternative
tools for isolating the eigenvalues: Ritz values, eigenvalue exclusion regions, and eigen-
value inclusion regions. The computation of the Ritz values is fairly straightforward
by projecting N to the subspaces computed. Since this is realized with a slowly grow-
ing recurrence, our scheme is significantly more efficient than the Arnoldi method.
Regarding the second alternative, we have a method for generating potentially very
“sharp” exclusion regions for the eigenvalues of N by computing lemniscates

{z ∈ C : ||p(N)|| < |p(z)| , p ∈ PP}(1.5)

due to the fact that (1.4) gives rise to polyanalytic polynomials Pj,l approximately
annihilating N . The complexity of this scheme is O(n2). In particular, using these
techniques with the Bauer–Fike bound yields a method for generating exclusion re-
gions for the eigenvalues of any matrix A ∈ C

n×n. Then the problem reduces, in
essence, to finding normal approximants to A. For eigenvalue inclusion regions we
invoke the ideas of Householder [14, 15] by employing polyanalytic polynomials to
compute separating loci.

The paper is organized as follows. In section 2 we consider computable algebraic
subvarieties of R

2 for finding the spectrum of a normal matrix. In section 3 we
introduce an Arnoldi type of iterative method, i.e., a method relying on matrix-vector
multiplications for generating polyanalytic polynomials in practice. The algorithmic
derivation in section 3 overlaps with [18]. In section 4 we consider computing Ritz
values with the method proposed. In section 5 we consider generating eigenvalue
exclusion regions, and in section 6 we show how to compute eigenvalue inclusion
regions. A brief discussion of the implementation of Algorithm 1 from section 3 in
finite precision and numerical examples are given in section 7.

2. Algebraic subvarieties of R
2 for the spectrum of a normal matrix.

Let p(z) = f(x, y) + ig(x, y) be the characteristic polynomial of a square matrix
N ∈ C

n×n. By considering the real and imaginary parts of p separately, the spectrum
of N is an algebraic subvariety of R

2 defined by

{
f(x, y) = 0,
g(x, y) = 0

(2.1)

with deg(f) = deg(g) = deg(p) = n. Since p is complex analytic, this 2-by-2
system has at most n solutions in R

2. However, by Bézout’s theorem there are
deg(f)deg(g) = n2 solutions in the projective plane P2(C). Thus, is it possible to
come up with another set of bivariate polynomials, without altering the subvariety,
such that deg(f)deg(g) ≤ cn would hold for some constant c 
 n instead? In this
section we show that for a normal N there is an algorithm to this end with c = 4
generically.

2.1. The minimal polyanalytic polynomial of a normal matrix. Assume
N is a normal matrix and consider executing iterative methods based on matrix-
vector products with N and its adjoint N∗. Since N commutes with N∗, the set
of polynomials is not the largest class of functions that can be used to analyze such
algorithms. Identifying multiplications by N and N∗ with z and z, respectively,
renders the usage of the so-called polyanalytic polynomials [3] more natural. Let Pj

denote the set of polynomials of degree at most j and set N0 = {0} ∪ N.
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Definition 2.1. Polyanalytic polynomials are functions of the form

p(z) =

k∑
j=0

hj(z)z
j ,(2.2)

with hj ∈ Pk−j and k ∈ N0.
If, for some j, there holds deg(hj) = k− j for p in (2.2), then the degree of p is k.

The set of polyanalytic polynomials of degree at most k will be denoted by PPk and
PP =

⋃
k∈N0

PPk. In particular, Pk ⊂ PPk. Polyanalytic polynomials of the form

zjzl, with j, l ∈ N0, will be called polyanalytic monomials.
As opposed to complex analytic polynomials, equations involving polyanalytic

polynomials can have no solution, a discrete set of solutions, or an infinite number of
solutions. To give an example, consider the polyanalytic polynomial q(z) = zz + 1.
Obviously, the equation q(z) = 0 has no solutions. On the other hand, if w(z) = zz−1,
then the solution set of w(z) = 0 is the unit circle, i.e., a continuum.

On PP we employ the order set in section 1. Then the leading term LT(p) of a
polyanalytic polynomial p is well defined.

Example 1. For p(z) = iz3+zz2+(1− i)z2−3z the leading term is LT(p) = zz2.
With an order on PP we define p ∈ PP to be monic if LT(p) = zjzl, that is,

if the leading term of p is a polyanalytic monomial. For instance, p in Example 1 is
a monic polyanalytic polynomial. Recall that the minimal polynomial of A ∈ C

n×n

is the monic polynomial of least degree annihilating A. The degree of the minimal
polynomial of A is denoted by deg(A)

Definition 2.2. A minimal polyanalytic polynomial of N ∈ N is a monic p ∈
PP of least possible degree annihilating N .

Example 2. Assume N ∈ C
n×n is unitary with at least 4 distinct eigenvalues.

Then a minimal polyanalytic polynomial of N is p(z) = zz − 1. On the other hand,
if N is Hermitian, then p(z) = z − z is a minimal polyanalytic polynomial of N .

By the same argument as for the minimal polynomial, it is easy to see that a
minimal polyanalytic polynomial is unique as well as unitarily invariant [18].

Proposition 2.3. A minimal polyanalytic polynomial of N ∈ N is unique, and
unitarily similar N1, N2 ∈ N have the same minimal polyanalytic polynomial.

An algorithm for finding the minimal polyanalytic polynomial of N will be pre-
sented later.

The subindices of the minimal polyanalytic polynomial pj,l of N ∈ N refer to
LT(pj,l) = zjzl. The following is obvious.

Proposition 2.4. Let pj,l be the minimal polyanalytic polynomial of N ∈ N .

Then qj,l(z) := pj,l(z) is the minimal polyanalytic polynomial of N∗.
The degree of pj,l can be bounded as follows.
Theorem 2.5 (see [18]). Let pj,l be the minimal polyanalytic polynomial of

N ∈ N . Then deg(pj,l) ≤
√
2deg(N).

Proof. With d = deg(N) form a matrix Krylov subspace

Kd(N ; I) := span{I,N, . . . , Nd−1}(2.3)

which contains all the polynomials in N . Since N is normal, N∗ = q(N) for a
polynomial q; see, e.g., [11, Condition 17]. Thus,

Kd(N ; I) = spanj+l=k∈N0
{N jN l∗} = span{I,N∗, N,N2∗, NN∗, N2, . . . }.(2.4)
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Forming a basis of Kd(N ; I) from the sequence (2.4) instead must yield a linearly

dependent N jN l∗ for k = l + j with (k+1)(k+2)
2 ≥ deg(N). The first one corresponds

to the minimal polyanalytic polynomial of N and thus k ≤√2deg(N).

By σ(A) we denote the spectrum of a square matrix A and by ||A|| its spectral
norm. The zero set of the minimal polynomial equals the spectrum, whereas with the
minimal polyanalytic polynomial we have an inclusion.

Theorem 2.6. Assume N ∈ N and p ∈ PP. Then σ(N) ⊂ {z ∈ C : |p(z)| ≤
||p(N)||}.

Proof. A simple way to see this is to recall that since N is normal, N∗ = q(N)
for a polynomial q. Therefore, inserting this into p(N) ≡ p(N,N∗) in place of N∗ we
have ||p(N,N∗)|| = maxλ∈σ(N) |p(λ, q(λ))|, which yields the claim.

See also [24, section 2.10] for this concept when p is polynomial.

Corollary 2.7. Assume N ∈ N and p ∈ PP. Then the boundary of {z ∈ C :
|p(z)| ≤ ||p(N)||} contains an eigenvalue of N .

Proof. Clearly p(N) is normal. The claim follows then from the fact that the
spectral radius of a normal matrix equals the spectral norm of the matrix.

Corollary 2.8. Let pj,l be the minimal polyanalytic polynomial of N ∈ N .
Then the eigenvalues of N are contained in the zero set of pj,l.

Consequently, consider those N ∈ N whose eigenvalues lie on a given algebraic
curve. Then the corresponding polyanalytic polynomial annihilates N regardless of
the number of distinct eigenvalues of N . Conversely, recall that deg(N) of a normal
matrix N equals the cardinality of σ(N).

Example 3. Assume the spectrum of a normal N is contained in the set defined
by the limacon r = 1− cos(θ). Then the minimal polyanalytic polynomial of N is

p2,2(z) = z2z2 − z2z − zz2 +
1

4
z2 − 1

2
zz − 1

4
z2

as long as σ(N) has at least 12 distinct eigenvalues. (If there were fewer, then the
minimal polyanalytic polynomial would change. For instance, with only 11 distinct
eigenvalues the leading term of the minimal polyanalytic polynomial would be zz3.)

Thus, finding the minimal polyanalytic polynomial pj,l of N ∈ N yields a spectral
exclusion set for the eigenvalues after finding the zero set of pj,l. As we have seen in
Example 3, this can be a continuum so that the difference is genuine then. This does
not mean that Corollary 2.8 cannot yield accurate information.

Example 4. Let N = diag(1, 0, i) ∈ C
3×3. The minimal polyanalytic polynomial

of N is p0,1(z) = z2 − ( 1
2 +

i
2 )z + (−1

2 + i
2 )z = x2 − y2 − x+ y − 2xyi = (x− y)(x+

y − 1) − 2xyi. The zero set of the real part is the union of the lines y = x and
y = −x+1. The zero set of the imaginary part is the union of the real and imaginary
axes. Intersecting these zero sets yields the spectrum exactly.

Let Γ(N) denote the zero set of the minimal polyanalytic polynomial of a normal
matrix N . First, Γ(N) cannot have interior points in C so that its planar measure is
zero. Second, although the length of Γ(N) may be infinite, a relevant portion of it
can be bounded as follows.

Theorem 2.9. Assume N ∈ N and a disk D of radius R contains σ(N). If
pj,l = p�j,l + ip�j,l is the minimal polyanalytic polynomial of N and d is the smallest

strictly positive value of deg(p�j,l) and deg(p�j,l), then the length of Γ(N)∩D is at most
2πRd.

Proof. For the proof, modify [4] to our setting.
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Note the significance of the square root of Theorem 2.5 giving d ≤ √2n, which is
a very modest growth (as a function of the dimension n) for the length of Γ(N) ∩D.

There are several inexpensive alternatives for finding disks D containing σ(N),
such as the field of values or Gershgorin’s disks. For finding an inclusion region for
the eigenvalues, the following is useful when combined with Theorem 2.9.

Theorem 2.10 (see [26]). For N = (nij) ∈ N each of the disks

{
λ ∈ C : |nii − λ| ≤

(∑
j �=i

|nij |2
) 1

2
}

contains an eigenvalue of N .

2.2. Further computable annihilating polyanalytic polynomials for a
normal matrix. The spectrum of N is a zero-dimensional algebraic subvariety of R

2

so that there exists an infinite number of algebraic curves containing it as a subset.
Being given by the characteristic polynomial, only algebraic curves defined by p ∈
PPk, with k ≤ n, are of interest for finding the spectrum in practice. According to
Theorem 2.5, the minimal polyanalytic polynomial belongs to this category. However,
since its zero set can be 1-dimensional, additional annihilating elements of PP may
need to be generated for locating the eigenvalues exactly. To illustrate this consider
the following example.

Example 5. Assume N ∈ C
8×8 is unitary with the characteristic polynomial

p(z) = z8 − 1. Then the minimal polyanalytic polynomial of N is p1,1(z) = zz − 1.
Besides these, p4,0(z) = z4−z4 = 8xy(x2−y2)i annihilates N . Its zero set is the union
of the real and imaginary axis and the lines y = x and y = −x. The intersection of the
zero sets of p1,1 and p4,0 equals the spectrum of N such that deg(p1,1)deg(p4,0) = 8.

More generally, let N ∈ C
n×n be unitary of even degree at least 4 so that p1,1(z) =

zz − 1 is the minimal polyanalytic polynomial of N . Form a union of 1
2deg(N)

distinct lines passing through two different eigenvalues of N each. The corresponding
polyanalytic polynomial q annihilatingN is of degree 1

2deg(N). The intersection of the
zero sets of p1,1 and q equals the spectrum of N such that deg(p1,1)deg(q) = deg(N) ≤
n. Clearly q is not unique (as opposed to the minimal polyanalytic polynomial, which
is unique) for finding the spectrum of N with p1,1.

In addition to the degree restriction, only those annihilating polyanalytic poly-
nomials can be regarded as useful which are computable with an algorithm whose
complexity does not exceed the complexity of finding the characteristic polynomial.
The minimal polynomial of N belongs to this category as it can be found, for instance,
by generating the matrix Krylov subspace

Kd(N ; I) = span{I,N, . . . , Nd−1},(2.5)

with d = deg(N). By using the standard inner product

(A,B) := tr(AB∗)(2.6)

on C
n×n, the Arnoldi method yields an orthonormal basis {Qt}d−1

t=0 of (2.5). Then
Qt = pt(N) for a polynomial pt of degree t for 0 ≤ t ≤ d − 1. After computing the

Fourier coefficients αt, we have NQd−1 −
∑d−1

t=0 αtpt(N) = 0 so that rearranging the
terms gives the minimal polynomial of N . Of course, to get a less complex algorithm,
one should employ Krylov subspaces instead [15].
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We mimic this approach to compute other annihilating polyanalytic polynomials
for N . Namely, with the Arnoldi method only the minimal polynomial is obtained
annihilating the spectrum. To get others, we generate an orthonormal basis of (2.5)
by employing both N and its adjoint N∗ after noticing that

Kd(N ; I) = spanj+l=k∈N0
{N jN l∗} = span{I,N∗, N,N2∗, NN∗, N2, . . . },(2.7)

indicating the order of the multiplications. By performing the orthogonalizations, this
yields a sequence of matrices {Qt}t≥0 according to the rule

I
︷ ︸︸ ︷
N∗ N

︷ ︸︸ ︷
N∗ N N

︷ ︸︸ ︷
N∗ N N N

︷ ︸︸ ︷
N∗ N N N N · · ·

I Q0 Q0 Q1 Q1 Q2 Q3 Q3 Q4 Q5 Q6 Q6 Q7 Q8 Q9 · · ·
Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10Q11Q12Q13Q14 · · · ,

(2.8)

where the first row shows the multiplying matrix, i.e., either N or N∗. The second
row indicates the numbering of the matrix which is multiplied by the matrix in the
first row above. And the third row indicates, after orthogonalizing against all the
previous matrices in the third row and scaling by its length, the numbering of the
resulting new matrix. We call, for k = 1, 2, . . . , the orthogonalization sweeps “cycles”
corresponding to the overbraces. Thus, the kth cycle consists of k + 1 mappings

Q (k−1)k
2
→ Q k(k+1)

2
and Q (k−1)k

2 −1+s
→ Q k(k+1)

2 +s
(2.9)

for 1 ≤ s ≤ k. The first one corresponds to the multiplication byN∗ and the remaining
k to the multiplications by N .

Analogously to the Arnoldi method, behind this process there are polyanalytic
polynomials pj,l yielding matrices Qt when evaluated at N . More precisely, due to
the identification used, the orthogonalization process (2.8) gives rise to polyanalytic
polynomials pj,l with the leading terms zj z̄l as illustrated in Figure 1. Thus, each
cycle corresponds to climbing the points along the respective diagonal.

Lemma 2.11. For N ∈ N the orthogonalization process (2.8) yields deg(N)
orthonormal matrices.

Proof. Since N∗ is a polynomial of N , there will be at most deg(N) orthonor-
mal matrices. So it remains to show that there will be exactly deg(N) orthonormal
matrices.

Assume QtT is the last nonzero matrix obtained with the process (2.8). Collect
all the computed nonzero Qtl for l = 1, . . . , T . Clearly Qt1 is a multiple of the unit
matrix and each Qtl is a polynomial of N since N∗ is a polynomial of N . Now

N [Qt1 · · ·QtT ] =

[
T∑
l=1

α1
lQtl · · ·

T∑
l=1

αT
l Qtl

]
(2.10)

holds for some constants αk
l ∈ C for 1 ≤ l, k ≤ T . Take any vector b ∈ C

n. Then
(2.10) yields

N [Qt1b · · ·QtT b] =

[
T∑
l=1

α1
lQtlb · · ·

T∑
l=1

αJ
l Qtlb

]
,(2.11)

that is, span{Qtlb}Tl=1 is an invariant subspace of N containing the vector b. Choose
b such that it has components from every spectral subspace of N . Because of the
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Fig. 1. The order in which polyanalytic polynomials pj,l are generated by the process (2.8).
The nodes are numbered as t = 0, 1, 2, . . . corresponding to the matrices Qt.

invariance, the dimension of span{Qtlb}Tl=1 must equal deg(N). Thus, T = deg(N),
and this completes the proof.

Note that there can be zero matrices among {Qt}t≥0. To give an example, if N is
Hermitian, then at every cycle all but one Qt generated equals zero. We are interested
in those matrices Qt �= 0 which are mapped to the zero matrix in the process (2.9),
since to each of them there corresponds an annihilating polyanalytic polynomial of
N . However, a portion of these matrices can yield redundant information in the same
sense that the characteristic polynomial yields redundant information compared with
the minimal polynomial.

Example 6. Assume N ∈ C
n×n is a nonderogatory Hermitian matrix. Clearly

p1,0(z) = z − z is its minimal polyanalytic polynomial and only one nonzero Qt is
produced at every cycle. At the 2nd cycle 0 �= Q1 → Q4 = 0 to which corresponds
q(z) = z2−z2. Since q(z) = p1,0(z)(z+z), the zero set of q yields no new information
regarding the location of σ(N). The next element of PP annihilating N which is not
divisible by p1,0 is obtained at the nth cycle. It is the characteristic polynomial of
N .

A generalization of this also tells us why the redundant annihilating polyanalytic
polynomials are easy to detect.

Proposition 2.12. Assume p ∈ PP with LT(p) = zjzl annihilates N ∈ N .
Then, for k ≥ j + l, we have Q k(k+1)

2 +s
= 0 for j ≤ s ≤ k − l.

Obviously it is only the following set of annihilating polyanalytic polynomials
that is of interest for our purposes.

Definition 2.13. Assume a monic q ∈ PP annihilates N ∈ N . If no monic
p ∈ PP annihilating N divides q, then q is an irreducible annihilating polyanalytic
polynomial for N .

In particular, if the minimal and characteristic polynomials of N differ, then the
former is irreducible whereas the latter is not. Obviously the minimal polyanalytic
polynomial of N is irreducible.

Example 7. Let N = diag(1,−1, i,−i, eiπ
4 , e−iπ

4 , ei
3π
4 , e−i 3π

4 ) ∈ C
8×8, so that
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p1,1(z) = zz − 1. With this matrix we have Q7 = Q8 = 0 since we already had
Q4 = 0. However, 0 �= Q9 → Q14 = 0 and the corresponding polyanalytic polynomial
is q(z) = z4 − z4 = ixy(x2 − y2), which is clearly not divisible by p1,1. In particular,
q is an irreducible annihilating polyanalytic polynomial for N .

Let {pk}sk=1 denote the irreducible annihilating polyanalytic polynomials of N ∈
N generated with the process (2.8). It is obvious that s is finite, as the process (2.8)
will stop after a finite number of steps. We denote by

V({pk}) := {z ∈ C : pk(z) = 0 for all 1 ≤ k ≤ s}(2.12)

the algebraic subvariety of R
2 defined by {pk}sk=1. Now we can state the main result

of this section.
Theorem 2.14. Let {pk}sk=1 be the irreducible annihilating polyanalytic polyno-

mials of N ∈ N generated with the process (2.8). Then V({pk}) = σ(N).
Proof. By Lemma 2.11 there will be d = deg(N) orthonormal matrices Qt after

the process (2.8) has been completed. Let Qtd be the one that was computed last.
Thus Qtd+s = 0 for s ≥ 1, with the process (2.8). Let kd be the cycle corresponding
to Qtd and finish the computation of the (kd+1)st cycle. Then all the arising Qt’s will
be zero. Take the corresponding polyanalytic polynomials {p̂k}. They are obviously
all annihilating for N .

Since σ(N) ⊂ V({pk}), we need to demonstrate that the inclusion is actually an
equality. Assume that this is not the case. For that purpose, let S be a finite subset
of V({pk}) that contains σ(N) genuinely, i.e., S �= σ(N). Assign to this set a normal
matrix NS with σ(NS) = S. Then run the orthogonalization process (2.8) for NS .
Since there are annihilating polyanalytic polynomials {p̂k} with the properties just
described, this orthogonalization process will stop before it has generated card(σ(NS))
orthogonal matrices, as all Qt will be zero for t > td. This is in contradiction with
Lemma 2.11. Therefore V({pk}) = σ(N) must hold.

With a Hermitian N we actually do get the minimal polynomial at the last step
with the process (2.8). Then the minimal polyanalytic polynomial is obtained at the
3rd step which is very early. This is also very exceptional since for a generic normal
matrix N only zero matrices occur after its minimal polyanalytic polynomial has been
generated. This can be seen by considering the determinant of an n-by-n matrix with
the jth row consisting of the n first polyanalytic monomials evaluated at the jth point
of σ(N) (assume fixing some order). Generically the determinant is nonzero. In this
case each pk in (2.12) satisfies deg(pk) ≤

√
2deg(N). Thereby (1.2) also holds. Of

course, then the minimal polynomial cannot be among {pk}sk=1.

3. An Arnoldi type of iterative method for generating polyanalytic
polynomials in practice. Being based on the inner product (2.6), the algorithm
suggested in the previous section is too complex for generating polyanalytic polyno-
mials in practice. Consequently, we will use a method relying only on matrix-vector
products instead. The algorithm and its description follows [18] closely, where it was
used in least squares approximation and bivariate interpolation.

To this end, consider an Arnoldi [2] type of minimization problem as follows. For
N ∈ N and for j + l = k set∣∣∣∣N jN∗lq̂0 − p̂j,l(N)q̂0

∣∣∣∣ = min
p̂<zjzl

∣∣∣∣N jN∗lq̂0 − p̂(N)q̂0
∣∣∣∣(3.1)

for a vector q̂0 ∈ C
n. The resulting monic polyanalytic polynomial of interest equals

Pj,l(z) = zjzl − p̂j,l(z). To compute these and the value of (3.1), the multiplications
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by N and N∗ need to be ordered appropriately to take all the vectors of the form
N jN∗lq̂0, for j, l ∈ N0, into account. Also, the corresponding orthogonalization pro-
cess must be realized in a numerically stable way while simultaneously keeping track
of the arising polyanalytic polynomials. For that purpose, take a vector q̂0 ∈ C

n of
unit length and form a table

I
︷ ︸︸ ︷
N∗ N

︷ ︸︸ ︷
N∗ N N

︷ ︸︸ ︷
N∗ N N N

︷ ︸︸ ︷
N∗ N N N N · · ·

q̂0 q̂0 q̂0 q̂1 q̂1 q̂2 q̂3 q̂3 q̂4 q̂5 q̂6 q̂6 q̂7 q̂8 q̂9 · · ·
q̂0 q̂1 q̂2 q̂3 q̂4 q̂5 q̂6 q̂7 q̂8 q̂9 q̂10 q̂11 q̂12 q̂13 q̂14 · · · ,

(3.2)

which is read from left to right. As in (2.8), the first row indicates the multiplying
matrix. The second row indicates the numbering of the vector which is multiplied
by the matrix in the first row above. And the third row indicates, after orthogonal-
izing against all the previous vectors in the third row and scaling by its length, the
numbering of the resulting new vector. The purpose of the overbraces is to make the
proposed rule more clear, as there are several ways to arrange the orthogonalizations.
For k = 1, 2, . . . , each cycle indicated by the overbraces gives rise to k + 1 vectors.
The rule is such that, to obtain the kth cycle, the first vector produced in the (k−1)st
cycle is multiplied once by N∗. Then all the vectors of the (k − 1)st cycle are multi-
plied once by N starting from the first vector. Consequently, after k cycles have been

completed there are (k+1)(k+2)
2 vectors in all.

With the ordering (3.2) all the powers N jN∗lq̂0 are catered to in a numerically
stable way, and we have obtained an Arnoldi type of iterative method for normal
matrices. We stress that we have not ruled out the possibility of having zero vectors
among {q̂j}j≥0. For instance, if N is Hermitian, then most of these vectors equal zero.
In doing so we can with relative ease keep track of the arising polyanalytic polynomials.
Obviously, if each cycle produces k + 1 new linearly independent vectors, then the

number of cycles is bounded according to (k+1)(k+2)
2 ≤ n.

A pseudocode for the process (3.2) for computing the orthogonalizations as well
as all the relevant quantities is as follows.

Algorithm 1. “For computing vectors {q̂j}j≥0.”
Assume N ∈ N and q̂0 is of unit length.
for k = 1 : K

Define k0 ≡ (k − 2)(k − 1)/2, k1 ≡ (k − 1)k/2, k2 ≡ k(k + 1)/2
qk2 = N∗ q̂k1

for s = k0 : k2 − 1
αk1
s = (qk2 , q̂s), qk2 = qk2 − αk1

s q̂s
end

αk1

k2
= ||qk2

||
if αk1

k2
> 0 then

q̂k2 = (1/αk1

k2
) qk2

else
q̂k2

= 0
for l = k1 : k2 − 1

qk+l+1 = N q̂l
for s = l − k + 1 : k + l

βl
s = (qk+l+1, q̂s), qk+l+1 = qk+l+1 − βl

sq̂s
end
βl
k+l+1 = ||qk+l+1||
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if βl
k+l+1 > 0 then
q̂k+l+1 = (1/βl

k+l+1) qk+l+1

else
q̂k+l+1 = 0

end
end

The corresponding polyanalytic polynomial recurrence obtained by computing
the coefficients with Algorithm 1 can then be written as

p0,0(z) = 1,(3.3)

α0
1p0,1(z) = zp0,0(z)− α0

0p0,0(z),(3.4)

β0
2p1,0(z) = zp0,0(z)− β0

1p0,1(z)− β0
0p0,0(z),(3.5)

α1
3p0,2(z) = zp0,1(z)− α1

2p1,0(z)− α1
1p0,1(z)− α1

0p0,0(z),(3.6)

β1
4p1,1(z) = zp0,1(z)− β1

3p0,2(z)− β1
2p1,0(z)− β1

1p0,1(z)− β1
0p0,0(z),(3.7)

and so on.
We state a number of basic properties of the orthogonalization process (3.2) and

the corresponding Algorithm 1.
Proposition 3.1 (see [18]). Assume N ∈ N and q̂0 ∈ C

n. Then

span{q̂0, . . . , q̂ (k+1)(k+2)
2 −1

} = spanp∈PPk
{p(N)q̂0}.

By a generic q̂0 ∈ C
n for N ∈ N we mean a vector that is supported by every

spectral subspace of N .
Corollary 3.2. Let q̂0 ∈ C

n be generic for N ∈ N and assume no element of
PPk\{0} vanishes on σ(N). Then q̂0, . . . , q̂ (k+1)(k+2)

2 −1
are linearly independent.

As usual, for 1 ≤ k ≤ n, we denote by

Kk(N ; q̂0) = span{q̂0, Nq̂0, . . . , N
k−1q̂0}(3.8)

the Krylov subspaces of N ∈ C
n×n at q̂0 ∈ C

n.
Proposition 3.3 (see [18]). Assume N ∈ N and q̂0 ∈ C

n. Then the number of
nonzero vectors generated by the process (3.2) equals dim(Kn(N ; q̂0)).

The reason for arranging the orthogonalizations according to (3.2) is to be able
to control the leading terms of the polyanalytic polynomials yielding vectors q̂j .

Theorem 3.4 (see [18]). Assume N ∈ N and q̂0 ∈ C
n. Then the process (3.2)

yields q̂ k(k+1)
2 +s

= ps,k−s(N)q̂0 with LT(ps,k−s) = c k(k+1)
2 +s

zszk−s and c k(k+1)
2 +s

∈ C

for k ∈ N and 0 ≤ s ≤ k.
Note that we allow ck(k+1)/2+s = 0.

Corollary 3.5. Polyanalytic polynomials Ps,k−s(z) =
1

ck(k+1)/2+s
ps,k−s(z) real-

ize (3.1). The first ck(k+1)/2+s = 0 corresponds to zero in (3.1).
Proposition 2.12 has an analogue for Algorithm 1 revealing redundant annihilating

polyanalytic polynomials that are divisible by the minimal polyanalytic polynomial.
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Fig. 2. Illustration of the annihilating polyanalytic polynomials p1,1(z) and p4,0(z) from Ex-
ample 7 and 8 computed with Algorithm 1.

Corollary 3.6. Let q̂0 ∈ C
n be generic for N ∈ N with the minimal polyanalytic

polynomial pj,l. Then, for k ≥ j + l, we have q̂ k(k+1)
2 +s

= 0 for j ≤ s ≤ k − l.

In practice Algorithm 1 proceeds as follows.

Example 8. Let N = diag(1,−1, i,−i, eiπ
4 , e−iπ

4 , ei
3π
4 , e−i 3π

4 ) ∈ C
8×8 and take

q̂0 = 1
2
√

2
[1, 1, . . . , 1]T . The minimal polyanalytic polynomial of N is obtained by

multiplying q̂1 �= 0 by N . The next nonzero vector yielding a zero vector that is not
forecast by Corollary 3.6 is q̂9 when multiplied with N , since then Nq̂9 − q̂10 = 0.
The corresponding polyanalytic polynomial equals p4,0(z) = z4 − z4 = 8xy(x2 − y2)i.
This annihilates N , and its zero set is the union of the lines x = 0, y = 0, y = x,
and y = −x. This set is very different from the one yielded by the minimal poly-
analytic polynomial of N . In fact, their intersection equals the spectrum of N ; see
Figure 2.

By Proposition 3.1 the vectors q̂j have the property that, after having completed
k − 1 cycles, gives us

span{q̂0, . . . , q̂ k(k+1)
2 −1

} = spanp∈PPk−1
{p(N)q̂0}.(3.9)

Then the kth cycle is obtained by multiplying, for (k−1)k
2 ≤ s ≤ k(k+1)

2 − 1, vectors
q̂s by either N or N∗. However, the inner products

(N∗q̂s, q̂j) = (q̂s, Nq̂j , ) and (Nq̂s, q̂j) = (q̂s, N
∗q̂j)(3.10)

are zero for q̂j ∈ spanp∈PPk−3
{p(N)q̂0}. This property that the new iterates spanning

the kth cycle are orthogonal against the previous span, modulo a small portion of
vectors, has been noticed by Elsner and Ikramov in [10], where they used it for
deriving condensed forms for normal matrices.

A more careful inspection of the ordering (3.2) of the orthogonalizations reveals
that to finish the kth cycle, we need to save at most 2k + 1 vectors. In other words,
the length of recurrence is at most 2k during the kth cycle.

Theorem 3.7. Let q̂0 ∈ C
n be generic for N ∈ N and assume no element of

PPk\{0} vanishes on σ(N). Then, to finish the kth cycle, the length of the recurrence
for computing q̂ k(k+1)

2 +s
is 2k for s = 0, . . . , k.
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Proof. In the beginning of the kth cycle there are (k − 1) + k = 2k − 1 stored
vectors. Then, to generate q̂ k(k+1)

2 +2
, orthogonalize Nq̂ (k−1)k

2 +1
against the vectors

generated at the (k−2)nd and (k−1)st cycle as well as against q̂ k(k+1)
2

and q̂ k(k+1)
2 +1

,

i.e., in all against 2k + 1 vectors. However, the first vector of the (k − 2)nd cycle is
already orthogonal against Nq̂ (k−1)k

2 +1
since

(Nq̂ (k−1)k
2 +1

, q̂ (k−2)(k−1)
2

) = (q̂ (k−1)k
2 +1

, N∗q̂ (k−2)(k−1)
2

)(3.11)

and N∗q̂ (k−2)(k−1)
2

is a linear combination of the vectors q̂j , with 0 ≤ j ≤ (k−1)k
2 . Thus,

orthogonalization needs to be made only against 2k vectors. Similarly, to compute
q̂ k(k+1)

2 +3
the first and second vectors of the (k − 2)nd cycle are already orthogonal

against Nq̂ (k−1)k
2 +2

since

(Nq̂ (k−1)k
2 +2

, q̂ (k−2)(k−1)
2

) = (q̂ (k−1)k
2 +2

, N∗q̂ (k−2)(k−1)
2

)(3.12)

and

(Nq̂ (k−1)k
2 +2

, q̂ (k−2)(k−1)
2 +1

) = (q̂ (k−1)k
2 +2

, N∗q̂ (k−2)(k−1)
2 +1

).(3.13)

Now (3.11) is zero by the same argument as (3.12) and (3.13) is zero by the following
arguments. By Theorem 3.4, the leading term of q̂ (k−2)(k−1)

2 +1
is zz(k−2)−1 multiplied

by a constant. Therefore the leading term of N∗q̂ (k−2)(k−1)
2 +1

is zz(k−1)−1 multiplied

by a constant. Consequently, N∗q̂ (k−2)(k−1)
2 +1

is a linear combination of the vectors q̂j ,

with 0 ≤ j ≤ (k−1)k
2 + 1, and thus (3.12) is zero. This reasoning extends throughout

the kth cycle in the sense that when q̂ k(k+1)
2 +s

is computed with 2 ≤ s ≤ k, then

orthogonalizations against q̂j with 0 ≤ j ≤ (k−2)(k−1)
2 + s− 2 are redundant.

We actually could squeeze this length by one, i.e., to 2k− 1 by a minor modifica-
tion.

Clearly d = (k+1)(k+2)
2 yields an upper bound on the dimension of the subspace

spanp∈PPk
{p(N)q̂0}. Conversely, k2 ≤ 2d so that the number of saved vectors is

bounded by 2
√
2d+1 =

√
8d+1 when the subspace generated has dimension d. This

is very modest growth.

If the minimal polyanalytic polynomial pj,l of N ∈ N is of low degree, then
zero vectors will appear among {q̂j}j≥0 according to Corollary 3.6. As their number
increases at every cycle, these zero vectors are not saved in practice to save storage.
Also, Algorithm 1 is tuned in such a way that zero vectors are discarded from the
recurrence. With these modifications, the length of the recurrence does not grow but
remains of fixed length from that point on.

4. Computing Ritz values. The matrix representation for the action of N in
(3.2) can be used to compute Ritz values; for a wealth of information regarding Ritz
values, see [29, 25, 9]. More precisely, with the ordering (3.2) of the orthogonalization
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process, the canonical form Q̂∗NQ̂ of Elsner and Ikramov has the nonzero structure


β0
0β
0
0β
0
0 β1

0

β0
1 β1

1β
1
1β
1
1 β2

1 β3
1

β0
2 β1

2 β2
2β
2
2β
2
2 β3

2 β4
2

β1
3 β2

3 β3
3β
3
3β
3
3 β4

3 β5
3 β6

3

β1
4 β2

4 β3
4 β4

4β
4
4β
4
4 β5

4 β6
4

β2
5 β3

5 β4
5 β5

5β
5
5β
5
5 β6

5

β3
6 β4

6 β5
6 β6

6β
6
6β
6
6 . . .

β3
7 β4

7 β5
7 β6

7

β4
8 β5

8 β6
8

β5
9 β6

9

β6
10

β6
11




(4.1)

under the assumptions that the starting vector is generic and no p ∈ PPk\{0}, with
(k+1)(k+2)

2 < n, vanishes on the spectrum of N . For clarity, the diagonal is boldfaced.
Note that the nonzero structure is “nearly” symmetric, i.e., on the jth column there
is at most one more nonzero element than on the jth row for every j ≥ 1.

During the iteration we have

N [q̂0 q̂1 · · · q̂ k(k−1)
2 −1

] = [q̂0 q̂1 · · · q̂ (k+1)(k+2)
2 −1

]Nk(4.2)

after k cycles have been completed. Here Nk ∈ C
(k+1)(k+2)

2 × k(k+1)
2 is obtained from

Algorithm 1 by collecting the values of the inner products as in the matrix repre-
sentation (4.1). Removing from Nk the last k + 1 rows gives a square matrix which
is then used to compute Ritz values. The resulting matrices are not normal in gen-
eral. However, because of the sparsity structure of the canonical form (4.1), they are
nearly normal in the sense introduced in [19], that is, their self-commutators are of
small rank.

If the minimal polyanalytic polynomial of N is of low degree, then there appear
zero vectors among {q̂j}j≥0. In the corresponding matrix representation (4.1) these

vectors are obviously discarded as the columns of Q̂ are orthonormal. For example, if
N is Hermitian, then the arising matrix is exactly the one yielded by the Hermitian
Lanczos method. Or, conversely, Algorithm 1 extends the Hermitian Lanczos method
to normal matrices.

Behind the Ritz values computed, there is the characteristic polynomial pk of the
square matrix obtained from Nk. We do not know if there is any way to relate pk
to the polyanalytic polynomial Pj,l realizing the minimum (3.1) at the corresponding
step.

5. Generating eigenvalue exclusion regions. Besides Ritz values, the pre-
scribed scheme yields other tools to locate the eigenvalues of large matrices. In Bauer’s
terminology, an exclusion region for the eigenvalues of A ∈ C

n×n is a subset of C that
contains no eigenvalues, and hence its complement contains all the eigenvalues of A;
see [14, Chapter 19] and [15]. In particular, as opposed to Ritz values, exclusion
regions can be regarded as yielding reliable information.

5.1. Normal matrices. The construction of eigenvalue exclusion regions for a
given square matrix is a classical problem of matrix analysis; see, e.g., [13, Chapter 6].
Using lemniscates to locate the eigenvalues has been suggested at least in [24, section
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2.10] and in [30, p. 262]. The difference between these two considerations is that in
the former the proposed sets are guaranteed to contain the eigenvalues, whereas in
the latter the regions are more heuristic. Both consider just using polynomials.

Employing Theorem 2.6, i.e., the fact that for any p ∈ PP the set

{z ∈ C : |p(z)| ≤ ||p(N)||}(5.1)

contains the eigenvalues of N ∈ N , can be used to generate eigenvalue exclusion re-
gions. Because of the minimization property (3.1), we also have reasonable candidates
from PP before any annihilating polyanalytic polynomials of N have been found. For
a computed p ∈ PP we then need to consider ways to find, with sufficient accuracy,

{z ∈ C : |p(z)| = C}(5.2)

for those parts of the complex plane that are of interest. Crude approximations for
finding (5.2) are available by using contour plotting with the existing mathematical
software. For more accurate estimates one can proceed as follows. To find a point
on the lemniscate, there are several efficient algorithms [5, 7] implemented on most
available software packages. These can then be combined, for instance, with path
following techniques to locate the further points on the lemniscate. A good general
reference to this end is [1].

Regarding numerical stability of this process, the polyanalytic polynomials com-
puted with Algorithm 1 have generically very low degree. In particular, according to
Theorem 2.5, we have at most 1-dimensional information with a polyanalytic polyno-
mial of degree not exceeding

√
2deg(N). This is in strong contrast with the Arnoldi

method, which yields only analytic polynomials. Their degree grows linearly with the
iteration number.

Algorithm 2. “Eigenvalue exclusion regions for a normal matrix N ∈ C
n×n.”

Step 1. With Algorithm 1 and for q̂0 ∈ C
n, generate a polyanalytic polynomial p.

Step 2. Estimate C = ||p(N)||.
Step 3. Find (5.2).
For estimating the spectral norm at Step 2 there are methods with O(n2) com-

plexity [12]. Step 3 is computed only for those parts of the complex plane that are
of interest, for example, by employing Gershgorin’s disks first. Alternatively, Step 3
can be implemented by computing an inclusion of the set (5.2) by means of inter-
val arithmetic (see, e.g., [23]), which has become readily available in several software
implementations [20, 28].

5.2. Nonnormal matrices. For a nonnormal A ∈ C
n×n, exclusion regions for

the eigenvalues are typically computed by using normal matrices as a tool. The
most famous examples in this respect are Gershgorin’s disks and the ovals of Cassini;
see, e.g., [6] and the references therein. Exclusion regions with these methods are
generated by employing very simple normal matrices; i.e., first the diagonal of A is
extracted, and thereafter its eigenvalues are surrounded with sets in the well-known
manner. Obviously, these estimates are not unitarily invariant.

For unitarily invariant estimates, assume A ∈ C
n×n is nonnormal and let N be

any normal approximant of A. The computation of an eigenvalue exclusion region for
the eigenvalues of N with Algorithm 2 combined with the Bauer–Fike bound yields
in a straightforward manner an exclusion region for the eigenvalues of A. Recall that
the Bauer–Fike bound guarantees that

dist(λ, σ(N)) ≤ ||A−N ||(5.3)
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holds for any λ ∈ σ(A), where ||·|| denotes the spectral norm. This provides a stable
way to circumvent conceivably a very ill-conditioned nonnormal eigenproblem with a
recurrence having a slowly growing length. Moreover, assume S ⊂ C containing the
spectrum of N is so generated. Then it is elementary to verify that

∣∣∣∣(λI −A)−1
∣∣∣∣ ≤ 1

dist(λ, S)− ||A−N ||(5.4)

holds as long as λ ∈ C is chosen so that ||A−N || < dist(λ, S). Thus, finding eigen-
value exclusion regions for normal matrices yields resolvent estimates for near nonnor-
mal matrices. Obviously the key for the proposed scheme is to have sparse methods
for finding normal matrices close to a given square matrix. An algorithm to this end
was suggested in [16, 17].

6. Generating eigenvalue inclusion regions. In Bauer’s terminology, an in-
clusion region for the eigenvalues of A ∈ C

n×n is a subset of C that contains at least
one eigenvalue of A; see [14, Chapter 19] and [15]. Corollary 2.7 as well as Theorem
2.10 yield an inclusion region for the eigenvalues of a normal matrix N . Orthogonal
polyanalytic polynomials provide a further tool to this end.

6.1. Orthogonal polyanalytic polynomials. The process described in section
3 yields orthogonal polyanalytic polynomials on discrete subsets of C with respect to
the following measure. Let N = UΛU∗ be a diagonalization of a normal N ∈ C

n×n

by a unitary matrix U . Denote by q1, . . . , qn the columns of U and by λ1, . . . , λn the
corresponding eigenvalues. Without loss of generality, assume that the eigenvalues of
N are distinct. We set an inner product in PP via

〈p, q〉 = (p(N)q̂0, q(N)q̂0) =

n∑
j=1

|(q̂0, qj)|2 p(λj)q(λj)(6.1)

for polyanalytic polynomials p and q. In particular, attaching to λj the mass mj =

|(q̂0, qj)|2 for j = 1, . . . , n yields a discrete measure on the spectrum of N . With
this inner product we obtain orthogonal polyanalytic polynomials with Algorithm 1
as initialized in (3.3)–(3.7) after dividing by the multiplicative constants on the left-
hand side. According to Theorem 3.7, the length of the recurrence for computing
these orthogonal functions has a very modest growth.

Theorem 6.1 (see [18]). Assume N ∈ C
n×n is normal with n distinct eigenvalues

and q̂0 ∈ C
n is generic for N . Then Algorithm 1 produces n polyanalytic polynomials

orthogonal with respect to the inner product (6.1).
Example 9. This is Example 8 continued. Clearly N is unitary, so that the

unit circle is an algebraic curve of degree 2 containing the spectrum. For this N
and q̂0 Algorithm 1 produces zero vectors q̂4 = q̂7 = q̂8 = 0. Therefore we have
C

8 = span{q̂0, q̂1, q̂2, q̂3, q̂5, q̂6, q̂9, q̂10}, and the corresponding orthogonal polyanalytic
polynomials are p0,0(z) = 1, p0,1(z) = z, p1,0(z) = z, p0,2(z) = z2, p2,0(z) = z2,
p0,3(z) = z3, p3,0(z) = z3, and p0,4(z) = z4.

6.2. The Householder method for eigenvalue inclusion regions. The fol-
lowing approach for generating inclusion regions for the eigenvalues is, in essence,
from [14, Chapter 20]. There, only the Arnoldi method is considered with analytic
polynomials, whereas our purpose is to employ orthogonal polyanalytic polynomials
obtained with Algorithm 1 without any additional cost.
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Theorem 6.2. Assume N ∈ C
n×n is normal, q̂0 ∈ C

n, and p1, p2 ∈ PP. If
p2(N)q̂0 �= 0, then

{
λ ∈ C :

||p1(N)q̂0||
||p2(N)q̂0|| ≤

∣∣∣∣p1(λ)

p2(λ)

∣∣∣∣
}

(6.2)

is an inclusion region for the eigenvalues of N .
Proof. The reasoning follows [14, Chapter 20], except that now we consider poly-

analytic polynomials. Assuming for the moment that p2(N) is invertible, we have

||p1(N)q̂0|| =
∣∣∣∣p1(N)p2(N)−1p2(N)q̂0

∣∣∣∣ ≤ ∣∣∣∣p1(N)p2(N)−1
∣∣∣∣ ||p2(N)q̂0|| ,

so that since
∣∣∣∣p1(N)p2(N)−1

∣∣∣∣ = maxλ∈σ(N)

∣∣∣p1(λ)
p2(λ)

∣∣∣, we obtain
||p1(N)q̂0||
||p2(N)q̂0|| ≤ max

λ∈σ(N)

∣∣∣∣p1(λ)

p2(λ)

∣∣∣∣ .(6.3)

Thus the claim follows, since at least one eigenvalue must be contained in the set
(6.2).

If p2(N) is not invertible, then we proceed as follows. Since N∗ = q(N) for a
polynomial q, we can assume without loss of generality that p1 and p2 are polynomials.
Let p1(N)q̂0 = p̃1(N)q̃0 and p2(N)q̂0 = p̃2(N)q̃0 be such that p1(λ) = p̃1(λ)p(λ) and
p2(λ) = p̃2(λ)p(λ), where p̃1, p̃2 ∈ P do not have common factors. Then if p̃2(N) is
invertible, we have

||p1(N)q̂0||
||p2(N)q̂0|| =

||p̃1(N)q̃0||
||p̃2(N)q̃0|| ≤ max

λ∈σ(N)

∣∣∣∣ p̃1(λ)

p̃2(λ)

∣∣∣∣ = max
λ∈σ(N)

∣∣∣∣p1(λ)

p2(λ)

∣∣∣∣ .(6.4)

If p̃2(N) is not invertible, then the right-hand side of (6.4) is infinity and the claim is
trivially true.

Corollary 6.3. Assume p1(N)q̂0 and p2(N)q̂0 are orthonormal and τ ∈ C is
such that |τ | = 1. Then

{
λ ∈ C : 1 ≤

∣∣∣∣τp1(λ) + p2(λ)

p1(λ)− τp2(λ)

∣∣∣∣
}

(6.5)

is an inclusion region for the eigenvalues of N .
Proof. This follows from

||(τp1(N) + p2(N))q̂0||2 = ||(p1(N)− τp2(N))q̂0||2 = 2,

which with (6.2) proves the claim.
We illustrate this with an example.
Example 10. This is Example 9 continued. After five iterations we know that the

eigenvalues are on the unit circle. Take p1(z) = p0,2(z) = z2 and one more iterate to
get p2(z) = p2,0(z) = z2. Then with τ = −1 the set (6.5) is {λ ∈ C : 1 ≤ | 2xy

x2−y2 |}.
Thus, we obtain a sector in each of the 4 quadrants located symmetrically on the unit
circle such that the one in the first quadrant is {eiθ : π

8 ≤ θ ≤ 3π
8 }. By Corollary 6.3

we can deduce that there is at least one eigenvalue in one of these sectors.
In practice these regions can be computed with a modification of Algorithm 2 by

simply discarding Step 2, that is, the evaluation of the spectral norm.
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7. Implementation and numerical examples. Next we consider issues re-
lated to implementation. Then finally we illustrate with numerical examples how
Algorithms 1 and 2 perform. All the computations were done with Matlab version
5.3 [22] on a PC with IEEE double precision arithmetic running the Linux operating
system.

7.1. Numerical implementation of Algorithm 1. The implementation of
Algorithm 1 is straightforward except for the detection of zero vectors among q̂0, q̂1,
. . . , q̂ k(k+1)

2
that correspond to annihilating polyanalytic polynomials of N . In finite

precision the orthogonalization will not, due to round-off errors, yield exact zero
vectors, and a more robust numerical criterion has to be used. From Algorithm 1 we
notice that this also corresponds to deciding whether the vector being orthogonalized
lies numerically in the span of the vectors it is being orthogonalized against. Several
authors [8, 27], [25, page 113] present numerical algorithms for solving this problem
in the context of updating a QR factorization after adding a column to the original
matrix. Here we use a variant of the implementation from [27], based on modified
Gram–Schmidt orthogonalization with one step of reorthogonalization.

Given k orthonormal vectorsQ ≡ [q1, . . . , qk] and the vector w, the function ORTH
computes the Fourier coefficients si = (qi, w), i = 1, . . . , k, and qk+1 = (I −QQ∗)w,
the orthogonal projection of w onto the complement of span{q1, . . . , qk}. If w is
numerically in span{q1, . . . , qk}, then qk+1 = 0 is returned. On exit sk+1 = ‖qk+1‖.

The function ORTH.

function
[
[s1, . . . , sk, sk+1], qk+1

]
= ORTH([q1, . . . , qk], w)

ν0 = ‖w‖
for i = 1 : k

si = (qi, w), w = w − siqi
end
if ‖w‖ > 0.707ν0 then

qk+1 = w/‖w‖, sk+1 = ‖w‖
return

end
ν1 = ‖w‖
for i = 1 : k

s′i = (qi, w), w = w − s′iqi, si = si + s′i
end
if ‖w‖ > max(0.707ν1, εtol ν0) then

qk+1 = w/‖w‖, sk+1 = ‖w‖
else

/* w lies numerically in span{q1, . . . , qk} */
qk+1 = 0, sk+1 = 0

end

In our implementation εtol was chosen as 2lu, where l is the length of w and
u is the unit round-off in the floating point arithmetic used. When ORTH is used,
Algorithm 1 can be written in the following compact form.

Algorithm 1 using ORTH.

Assume N ∈ N and q̂0 is of unit length.
for k = 1 : K

Define k0 ≡ (k − 2)(k − 1)/2, k1 ≡ (k − 1)k/2, k2 ≡ k(k + 1)/2
qk2 = N∗ q̂k1
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Fig. 3. The sparsity structure of the canonical form of Elsner and Ikramov for the random
normal matrix N ∈ C

300×300 of Example 11.

[
[αk1

k0
, . . . , αk1

k2−1, α
k1

k2
], q̂k2

]
= ORTH([q̂k0

, . . . , q̂k2−1], qk2
)

for l = k1 : k2 − 1
qk+l+1 = N q̂l[
[βl

l−k+1, . . . , β
l
l+k, β

l
k+l+1], q̂k+l+1

]
= ORTH([q̂l−k+1, . . . , q̂l+k], qk+l+1)

end
end

The behavior of Algorithm 1 in finite precision seems to be similar to that of the Lanc-
zos algorithm in the sense that some loss of orthogonality occurs among vectors from
different cycles after many steps have been performed. As in the Hermitian Lanczos
algorithm, this phenomenon appears to be closely connected to the convergence of
Ritz values associated with (4.2). None of the examples below were affected by this
effect.

7.2. Numerical examples. We demonstrate Algorithms 1 and 2 with four ex-
amples. The first one illustrates how far it is possible to iterate with these algorithms,
due to the mild growth of the length of the recurrence, as opposed to the Arnoldi
method. In the two examples that then follow we compare Ritz values computed
with Algorithm 1 and the Arnoldi method. The final example deals with generating
exclusion regions for the eigenvalues.

Example 11. In this example we spy the sparsity structure of the canonical
form of Elsner and Ikramov (4.1) by taking a random diagonal normal matrix N ∈
C

300×300. Already this small example illustrates well the significance of the factor
√
8d

of Theorem 3.7 for the length of recurrence, since we only need to store �√8 ∗ 300� ≤
50 vectors to compute (4.1), as plotted in Figure 3. For comparison, with the Arnoldi
method only a tiny Hessenberg matrix—1

6 × 1
6 of the size of the computed canonical

form in Figure 3—could be generated with the same amount of storage.
Example 12. In this example we compute Ritz values with the aid of the canonical

form (4.1) and the relation (4.2). We consider a “larger” version of [21, Example 1];
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Fig. 4. Ritz values computed by Algorithm 1 (designated by “◦”) and the Arnoldi algorithm
(designated by “+”) for the matrices in Example 12 (left panel) and Example 13 (right panel).

that is, we assume N to be of size 1000 with eigenvalues uniformly distributed in the
half-annulus {z ∈ C : 1 ≤ |z| ≤ 5, Re(z) ≤ 0}. We assume that the storage is the
bottleneck, so that at most 30 vectors can be saved. This means that we can compute a
matrix of size 30 and 120 with the Arnoldi method and Algorithm 1, respectively, that
is, �√8 ∗ 120� ≤ 30. In the left panel of Figure 4 we have plotted the corresponding
approximations obtained with the starting vector q̂0 =

1√
1000

[1, 1, . . . , 1]T . Note how

uniformly Algorithm 1 generates Ritz values with respect to σ(N) compared with the
Arnoldi method.

Example 13. In this example let N be of size 1000, and again we compute Ritz
values. We assume that the eigenvalues of N are contained uniformly inside two
“disks” as follows. One is centered at the origin of radius 4 and the other is centered
at the point 10+10i of radius 1. Again we assume that the storage is the bottleneck,
so that at most 30 vectors can be saved. Thus we can compute a matrix of size 30
and 120 with the Arnoldi method and Algorithm 1, respectively. In the right panel of
Figure 4 we have plotted the corresponding approximations obtained with the starting
vector q̂0 = 1√

1000
[1, 1, . . . , 1]T . Again, note how uniformly Algorithm 1 yields Ritz

values with respect to σ(N) compared with the Arnoldi method. The two Ritz values
outside are “on their way” to the disk centered at 10 + 10i.

Example 14. In this example we illustrate Algorithm 2. Let N ∈ C
200×200

be the unitary Hessenberg matrix where the elements on the first subdiagonal and
the (1, 200)-element are 1 while the other elements are zero. Let N = UΛU∗ be a
diagonalization of N by a unitary U , where Λ is diagonal with the numbers {z ∈ C :
z200 = 1} on the diagonal. We perturb Λ slightly with a random diagonal matrix
∆ with ‖∆‖ ≤ 0.2 to have Ñ = U(Λ + ∆)U∗. Obviously Ñ ∈ N although Ñ is
not unitary anymore. Also, Gershgorin’s disks are not very accurate as Ñ is close to
N , for which Gershgorin’s disks are just disks of radius 1 centered at the origin. In
Figure 5 we have plotted examples of eigenvalue exclusion regions for Ñ computed
by Algorithm 2 with the starting vector q̂0 =

1√
1000

[1, 1, . . . , 1]T . As can be seen from
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Fig. 5. Examples of eigenvalue exclusion regions computed by Algorithm 2 for the matrix from
Example 14. Panels A, B, and C show the sets {z ∈ C : |q(z)| ≤ ‖q(Ñ)‖} for q ∈ {p1,0, p1,1, p4,0}.
Panel D shows the union of the eigenvalue exclusion regions corresponding to the first 15 polyanalytic
polynomials generated by Algorithm 1. Crosses indicate the position of the eigenvalues of Ñ .

panel B, very accurate information about the location of the spectrum is obtained
with the polynomial p1,1, which is generated after performing only five steps with
Algorithm 1. For an illustration, two other exclusion regions corresponding to p1,0

and p4,0 are plotted in panels A and C. Panel C was obtained after 15 iterations. In
panel D we have taken the union of all 15 exclusions regions computed so far.

As a final comment regarding Example 14, recall that by Corollary 2.7 the bound-
aries of these exclusion regions always contain at least one eigenvalue of N . So in
panels A, B, and C, there is an eigenvalue on each of the boundaries.

8. Conclusions. Considering the 2-by-2 nonlinear system of real polynomials
given by the real and imaginary parts of the characteristic polynomial naturally leads
one to consider real analytic techniques for finding the eigenvalues. Starting from
this observation, we have shown that the spectrum of a normal matrix can be found
exactly without resorting to the characteristic polynomial. Besides Ritz values, the
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algorithm introduced generates low degree polyanalytic polynomials with a slowly
growing length of the recurrence. These can be used to generate exclusion regions for
the eigenvalues. Orthogonal polyanalytic polynomials can be used in finding eigen-
value inclusion regions. Thus, with the iterative method suggested, these 3 different
tools can be employed simultaneously for eigenapproximation.

Acknowledgments. We are very grateful to the anonymous referees for their
careful reading and extremely useful comments on an earlier version of the paper. As
a result, the paper improved significantly.
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Abstract. We present an algorithm for iteratively solving a linear system Nx = b, with a
normal N ∈ C

n×n and b ∈ C
n, with an optimal 3-term recurrence by extending the Hermitian

Lanczos method to normal matrices. This is achieved by considering the Toeplitz decomposition
N = H + iK of N with Hermitian H and K. Generically, the inverse of a normal matrix is a
polynomial in its Hermitian part. Using this and the fact that N and H commute, we obtain a
minimization problem

min
pj−1∈Pj−1

||Npj−1(H)b− b|| = min
pj−1∈Pj−1

||pj−1(H)Nb− b|| ,

where Pj−1 denotes the set of polynomials of degree j − 1 at most. Thus, at the jth step, the best
approximation to b needs to be found from the Krylov subspace Kj(H;Nb). Since this involves the
Hermitian matrix H, this is realizable with a 3-term recurrence.

Key words. normal matrix, GMRES, Toeplitz decomposition, Hermitian Lanczos method
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1. Introduction. Assume N ∈ C
n×n is invertible and b ∈ C

n and consider
solving the linear system

Nx = b(1.1)

using an optimal k-term recurrence. By an optimal k-term recurrence we mean a
method that produces approximate solutions to (1.1) characterized by a minimization
property over a Krylov subspace and which can be obtained recursively from the most
recently generated k vectors. It is well known that an optimal 3-term recurrence is
obtained by considering the normal equations instead. Then the original linear system
is converted into a completely different one by multiplying (1.1) with N∗ from the left.
It is equally well known that this may not be a good idea as the speed of convergence
of iterations can be very slow for this new system. This can be explained, at least
partially, by the squared conditioning of the altered coefficient matrix. Consequently,
a major problem of numerical linear algebra, posed by Golub [31], was that of devising
an optimal k-term recurrence, with k � n, for solving (1.1) that avoids using the
normal equations or a proof that there cannot be such a method.

In [7] Faber and Manteuffel showed that there does not exist an optimal k-term
recurrence (in any of the norms that are typically of interest) for solving (1.1) relying
on matrix-vector multiplications with N only, i.e., by generating Krylov subspaces
with N , unless N is normal. See also [32, 8]. Their result is very negative in the sense
that even then, except for a few anomalies, the eigenvalues of N must be contained
in a line. If this is the case, then k = 3. Thus, it seems that without employing the
normal equations there does not exist an optimal short term recurrence for solving
(1.1) for any readily available class of matrices aside from translations and rotations
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of Hermitian matrices. For a scheme that is in a less strict sense a Krylov subspace
method, see [30].

In this paper we show that if N is normal, then there exists an optimal 3-term
recurrence for solving the linear system (1.1) without resorting to the normal equations
by extending the Hermitian Lanczos method to the set of normal matrices N . To this
end we employ the Toeplitz decomposition of N defined via

N = H + iK,(1.2)

with Hermitian H = 1
2 (N + N∗) and K = 1

2i (N − N∗). The key is to notice that
a generic normal matrix N is a polynomial in its Hermitian part H obtained from
the Toeplitz decomposition [18]. Since N is assumed to be invertible, by elementary
linear algebra, its inverse is a polynomial in N . Consequently, we can deduce that
N−1 is generically a polynomial in H.

Although seldom stated explicitly, the simple fact that the inverse of N is a
polynomial in N is the reason behind the success of many iterative methods. Denoting
by Pj−1 the set of polynomials of degree j − 1 at most, this is most concretely seen
from the GMRES [29] minimization problem

min
pj−1∈Pj−1

||Npj−1(N)b− b||(1.3)

at the jth step. In practice the inverse can be approximated with very low degree
polynomials in N only because, unless N is a translation and a rotation of a Hermitian
matrix, the length of the recurrence as well as the need for storage grow linearly with
the iteration number. To circumvent this we do not construct Krylov subspaces with
the coefficient matrix. Instead, since for a normal N the inverse is generically a
polynomial in H, we replace the GMRES optimality condition (1.3) with

min
pj−1∈Pj−1

||Npj−1(H)b− b|| .(1.4)

The reasoning behind the minimization problems (1.3) and (1.4) is based on exactly
the same argument, that is, N−1 is a polynomial in N and H, respectively.

The key to solving the minimization problem (1.4) with a 3-term recurrence is to
employ the fact that N and H commute. Consequently, (1.4) equals

min
pj−1∈Pj−1

||pj−1(H)Nb− b|| ,(1.5)

which can be readily solved by computing the best approximation to the vector b from
the Krylov subspace Kj(H;Nb) = span{Nb,HNb, . . . ,Hj−1Nb}. Using the Hermi-
tian Lanczos method with H and the starting vector q̂0 = Nb

‖Nb‖ yields the value of

(1.5) and thereby that of (1.4) with an optimal 3-term recurrence. This does not,
however, yield an approximation to the solution of the linear system (1.1) unless we
multiply once with the inverse of N . This is obviously not what we suggest, as the
inverse is not assumed to be available. Instead, we use the Hermitian Lanczos recur-
rence to generate the standard Lanczos vectors, but premultiplied by N−1. However,
we are able to do without ever applying N−1 because of our starting vector for the
iteration. This gives rise to a 3-term recurrence for solving (1.1) with the same storage
requirements as in the classical Hermitian Lanczos method.

At each step j the approximate solution generated satisfies the optimality condi-
tion (1.4). For a Hermitian N this condition is the GMRES minimization problem.
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Thus, we extend MINRES for Hermitian matrices to normal matrices without los-
ing the optimality or increasing the length of the recurrence. This demonstrates,
combined with the results of [18], that the set of Hermitian matrices does not en-
joy any particular algorithmic advantages over its complement in N . Of course,
the qualitative behavior of the algorithm can be very varied for different matrices
from N .

In addition to the basic algorithm, we consider its restarted and rotated imple-
mentation aimed at nongeneric or nearly nongeneric normal matrices. These include,
in particular, those normal N which are not polynomials in their Hermitian part.
However, generically, a rotation of N is a polynomial in its Hermitian part. Thus, a
solution is to restart the basic algorithm with a rotated eiθN for θ ∈ [0, 2π). Values
for θ can be chosen based on some a priori information or they can be randomly gener-
ated periodically. This can speed up the convergence dramatically and, in particular,
it is simple to code to increase adaptivity in the basic algorithm.

The scheme proposed cannot be extended beyond normal matrices as such. In
particular, it seems that the barrier between normal matrices and nonnormal matri-
ces is impenetrable. However, an optimal method for solving linear systems involving
normal matrices can be utilized when solving nonnormal problems. An obvious al-
ternative is to use the method introduced in preconditioning. Aside from this, we
discuss how the algorithm is related to solving linear systems in general.

The paper is organized as follows. In section 2 we consider properties of the
Toeplitz decomposition for normal matrices. These properties are then used in de-
riving a minimization problem for the elements of N that is analogous to the ideal
GMRES problem [13]. In section 3 we introduce a local version of this which gives rise
to a Hermitian Lanczos method for solving linear systems involving normal matrices.
In section 4 we consider how the methods obtained relate to solving nonnormal linear
systems. Numerical experiments are presented in section 5.

2. The Toeplitz decomposition for normal matrices. The set of normal
matrices is a large class of matrices containing, for instance, the set of Hermitian,
skew-Hermitian, circulant, and unitary matrices. For numerical manipulations normal
matrices are particularly well suited, as a matrix is normal if and only if it is unitarily
similar to a diagonal matrix. Although this is how normality is most often used in
practice, the original definition is purely algebraic in the sense that N ∈ C

n×n is
defined to be normal if

NN∗ −N∗N = 0(2.1)

holds. Besides these two characterizations, there are many other ways to define nor-
mality. So far about 90 equivalent conditions for a matrix to be normal have been
collected by Grone et al. [15] and by Elsner and Ikramov [5]. The characterization
(2.1) is taken to be the first in these listings although it is numbered as the condition
zero.

Given the abundance of characterizations of normality, it is not surprising that
several of them deal with the canonical decompositions. Being unitarily diagonalizable
is, for instance, one such. Another is based on the Toeplitz decomposition

N = H + iK(2.2)

of N , with H = 1
2 (N + N∗) and K = 1

2i (N − N∗). The condition 21 in [15] states
that N is normal if and only if H and K commute. In what follows, we consider the
Toeplitz decomposition for normal matrices in more detail.



A HERMITIAN LANCZOS METHOD FOR NORMAL MATRICES 1095

Commutativity is both a powerful tool and a stringent condition. In particular,
it is well known that for a nonderogatory matrix A ∈ C

n×n the set of matrices
commuting with A equals the set of polynomials in A [16]. With normal matrices this
can be used as follows. We denote by Nn ⊂ C

n×n the set of normal matrices N whose
Hermitian part H = 1

2 (N + N∗) is nonderogatory. In our claims regarding normal
matrices we use the induced topology of the standard metric topology of C

n×n.
Theorem 2.1 (see [18]). Nn is an open dense subset of N .
This set is readily parametrizable. Namely, if we denote by Hn ∈ C

n×n the set
of nonderogatory Hermitian matrices, then the mapping

(H,α0, . . . , αn−1)→ H + i

n−1∑
j=0

αjH
j(2.3)

from Hn × R
n onto Nn is injective. In particular, combining this with Theorem 2.1,

we can deduce that a generic normal matrix N is a polynomial in its Hermitian part
H. This is also true for certain normal matrices not belonging to Nn. By a generic
property in a set S we mean that it holds for an open dense subset of S. We denote
by σ(A) the spectrum and by #σ(A) the number of distinct eigenvalues of A ∈ C

n×n.
Theorem 2.2. Assume N = H + iK is normal such that #σ(N) = #σ(H).

Then N = H + ip(H) for a polynomial p of degree #σ(N)− 1 at most.
Proof. LetN be unitarily diagonalizable by a unitary matrix U so that its Toeplitz

decomposition is

N = U



�(λ1)

. . .

�(λn)


U∗ + iU



�(λ1)

. . .

�(λn)


U∗ = H + iK,

(2.4)

where λ1, . . . , λn denote the eigenvalues of N , counting multiplicities, arranged in
nondecreasing order of modulus. Since #σ(N) = #σ(H), we can construct the La-
grange interpolation polynomial p attaining the values �(λ1), . . . ,�(λn) at points
�(λ1), . . . ,�(λn). The degree of p is #σ(N)− 1 and clearly N = H + ip(H).

The property #σ(N) = #σ(H) is generic not only in N but also in subsets of N
that are relevant for our purposes.

Proposition 2.3. The property #σ(N) = #σ(H) is generic in

{N = H + iK ∈ N|#σ(N) = k}(2.5)

for every 1 ≤ k ≤ n.
Proof. Assume N ∈ {N = H + iK ∈ N|#σ(N) = k} and let λ̂1, . . . , λ̂k denote

the distinct eigenvalues of N sorted by real part. Define a mapping

N →
k−1∏
j=1

(�(λ̂j+1)−�(λ̂j))(2.6)

from {N = H + iK ∈ N|#σ(N) = k} into R. This is clearly continuous. The inverse
image of 0 for (2.6) equals those N ∈ {N = H + iK ∈ N|#σ(N) = k} for which
#σ(N) > #σ(H), which thereby is a closed set. To see that its complement is dense,
rotations eiθN of N remain in the set (2.5). Choosing an arbitrarily small positive θ
results in #σ(eiθN) = #σ( 1

2 (eiθN + e−iθN∗)).
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With these preliminaries, assume one has an invertible, not necessarily normal
matrix A ∈ C

n×n. By elementary linear algebra, A−1 = p(A) for a polynomial p.
Based on this, in the ideal GMRES approximation problem [13] one considers, for
1 ≤ j ≤ n,

min
pj−1∈Pj−1

||Apj−1(A)− I|| ,(2.7)

where Pj−1 denotes the set of polynomials of degree j − 1 at most. Typically the
behavior of these quantities is of interest for only small values of j compared with
the dimension n. The reason for this is that (2.7) can be related to solving a linear
system Ax = b, with a vector b ∈ C

n, by using GMRES via the inequality

min
pj−1∈Pj−1

||Apj−1(A)b− b|| ≤ min
pj−1∈Pj−1

||Apj−1(A)− I|| ||b|| .(2.8)

Since in general both the length of the GMRES recurrence and the required storage
grow linearly with the iteration number, one typically must accept j � n in practice.
Therefore the problems of understanding the convergence behavior of ideal GMRES
as well as GMRES for solving Ax = b have received a lot attention in the 1990s; see
[29, 11, 24, 14] and references therein as well as the more recent [21, 19, 17, 20]. For
normal matrices both of these problems can be considered to be understood [12].

There is an algebraic property of A bounding the ultimate number of steps needed
for solving Ax = b exactly (in exact arithmetic) with GMRES. To this end, recall that
the minimal polynomial of A is the monic polynomial of least degree annihilating A.
Let deg(A) denote the degree of the minimal polynomial of A ∈ C

n×n.
Proposition 2.4. Assume A ∈ C

n×n is invertible. Then A−1 = p(A) for a
polynomial of degree deg(A)− 1.

This is well known and can be found, e.g., in [24, 1]. In particular, due to
the inequality (2.8), after at most deg(A) steps GMRES yields the solution to the
corresponding linear system.

For normal matrices Theorem 2.2 gives rise to a problem analogous to the ideal
GMRES problem in the following manner. Namely, according to Theorem 2.2, a
generic normal matrix N is a polynomial in its Hermitian part H = 1

2 (N + N∗).
Assuming N to be invertible, it follows that N−1 is a polynomial in N . Consequently,
the inverse of a generic normal invertible matrix N is a polynomial in its Hermitian
part. Regarding Proposition 2.4, we have the following analogy.

Theorem 2.5. Assume N ∈ N is invertible and generic in the sense of Propo-
sition 2.3. Then N−1 = p(H) for a polynomial p of degree deg(N)− 1 at most.

Proof. Let N = UΛU∗ be a diagonalization of N by a unitary matrix U so that its
Toeplitz decomposition is as in (2.4). Since N is normal, there holds #σ(N) = deg(N)
and being generic in the sense of Proposition 2.3 implies that deg(H) = deg(N).

The Toeplitz decomposition N−1 = Ĥ + iK̂ of N−1 is

N−1 = U



�(1/λ1)

. . .

�(1/λn)


U∗ + iU



�(1/λ1)

. . .

�(1/λn)


U∗.

(2.9)

By using Lagrange interpolation, find a real polynomial p1 that attains the values
�(1/λ1), . . . ,�(1/λn) at points �(λ1), . . . ,�(λn). Then, analogously, find a real poly-
nomial p2 attaining the values �(1/λ1), . . . ,�(1/λn) at the points �(λ1), . . . ,�(λn).
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The degrees of both p1 and p2 are at most deg(N)− 1. By this construction we have
p(H) = p1(H) + ip2(H) = N−1 and the claim follows.

Thus, since the inverse of N ∈ N is generically a polynomial in its Hermitian
part, we are naturally led to consider, aside from the ideal GMRES problem,

min
pj−1∈Pj−1

||Npj−1(H)− I||(2.10)

for 1 ≤ j ≤ n. According to Theorem 2.5, zero is attained in (2.10) no later than in the
ideal GMRES problem whenever N is generic. As with (2.7), for practical purposes
the behavior of the quantities (2.10) is of most interest for values of j far smaller than
the underlying dimension n. However, as opposed to solving complex polynomial
approximation problems on the spectrum of N , the corresponding approximation
problems are solved on the spectrum of H, that is, on a subset of R. From the proof
of Theorem 2.5 we obtain the following obvious bound.

Corollary 2.6. Let pr and pi solve minpj−1∈Pj−1
||�(Λ−1) − pj−1(ΛH)|| and

minpj−1∈Pj−1 ||�(Λ−1)− pj−1(ΛH)||, respectively. Then

min
pj−1∈Pj−1

∣∣∣∣pj−1(H)−N−1
∣∣∣∣ ≤ ∣∣∣∣pr(H) + ipi(H)−N−1

∣∣∣∣ .
Whenever N is Hermitian, then (2.10) reduces to the standard ideal GMRES

problem for N . In other words, the minimization problem (2.10) is a continuous
extension of the ideal GMRES problem for Hermitian matrices to the set of normal
matrices. This extension is clearly not the same as (2.7).

A given normal matrix can be nongeneric in the sense that it is not a polynomial
in its Hermitian part. This is the case if N is skew-Hermitian, because then the
Hermitian part equals zero. Or more generally, if the matrix has more than one
eigenvalue located on a vertical line, then the Lagrange interpolation polynomial of
Theorem 2.2 is not computable. There is a simple trick to overcome this problem.
Namely, instead of N , consider its rotation eiθN with θ ∈ [0, 2π). It is obvious that
a rotation of a normal matrix remains normal.

Theorem 2.7 (see [18]). Assume N ∈ N . Then, for θ belonging to an open
dense subset of [0, 2π), there holds

eiθN = Hθ + ipθ(Hθ)

with Hθ = 1
2 (eiθN + e−iθN∗) and for a polynomial pθ with real coefficients.

By the same reasoning as before, we have, for an invertible N ∈ N and for θ
belonging to an open dense subset of [0, 2π), a representation

N−1 = pθ(Hθ)(2.11)

for the inverse with a polynomial pθ. It is readily seen that the claim of Theorem 2.5
holds as well; i.e., the degree of pθ in (2.11) is at most deg(N)− 1. However, it is not
obvious how to pick a rotation θ yielding an optimal decay in the corresponding min-
imization problem (2.10). Still, since these rotations are important for our purposes,
we introduce the following definition.

Definition 2.8. For N ∈ C
n×n and θ ∈ [0, 2π) let Hθ and Kθ denote the Her-

mitian and skew-Hermitian part of eiθN , respectively. Then N = e−iθHθ + ie−iθKθ

is the rotated Toeplitz decomposition of N by the angle θ.
In this decomposition the parts are typically not Hermitian matrices. This is

obviously irrelevant as all the computational aspects are analogous for Hθ and e−iθHθ.
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3. A Hermitian Lanczos method for normal matrices. Assume N ∈ C
n×n

is normal and invertible and consider iteratively solving the linear system

Nx = b(3.1)

for b ∈ C
n. As described in the introduction, to achieve this with an optimal k-term

recurrence there are two well-known alternatives. One is to consider the CGN method
[11], that is, (3.1) is multiplied with N∗ from the left. Another is to perform matrix
vector multiplications with N only. In the latter case the length of the recurrence is
determined by the theorem of Faber and Manteuffel [7]. See also [32]. Their result is
extremely negative in the sense that the value of k is typically not only unacceptably
large but also very unstable in the following sense.

Example 1. AssumeH ∈ C
n×n is Hermitian and invertible and consider iteratively

solving the linear system Hx = b with b ∈ C
n. This can be done by using, for

example, MINRES [11]. However, if H is perturbed slightly in a very simple manner,
for instance, by setting N = H + iαH2, where α > 0 is a small parameter, then N
is not quite Hermitian anymore. Furthermore, the spectrum of N does not lie on a
straight line but is slightly concave up. As a result, the 3-term recurrence of MINRES
is no longer optimal.

In what follows we will derive a new optimal 3-term recurrence for solving (3.1).
The arising method does not rely on using the normal equations and thereby does not
lead to a squared condition number. Also, since the length of recurrence is constant
for the elements of N , the unstable behavior of the optimal recurrence length of
Example 1 is not possible. To this end, in order to obtain an iterative method, we
replace (2.10) with a minimization problem involving the vector b. Thus, analogously
to the GMRES minimization problem, we consider

min
pj−1∈Pj−1

||Npj−1(H)b− b||(3.2)

with H = 1
2 (N + N∗). By the results of [12], the connection between this and the

problem (2.10) is well understood.
Since N commutes with H, (3.2) is equal to

min
pj−1∈Pj−1

||pj−1(H)Nb− b|| ,(3.3)

the value of which is readily obtained with Krylov subspace methods. More precisely,
finding (3.3) is equivalent to approximating b from the Krylov subspace

Kj(H;Nb) = span{Nb,HNb, . . . ,Hj−1Nb}.(3.4)

An inexpensive way to realize this is to execute the Hermitian Lanczos method with
H and the starting vector q̂0 = Nb

‖Nb‖ . The Hermitian Lanczos method is a classical

algorithm similarity transforming a Hermitian matrix to a tridiagonal matrix. This
is achieved by computing

Tj := Q̂∗
jHQ̂j =




α1 β1 0
β1 α2 β2

0 β2
. . .

. . .

. . . αj−1 βj−1

βj−1 αj



,(3.5)
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where Q̂j ∈ C
n×j has orthonormal columns spanning the Krylov subspace (3.4). The

elements of the matrix (3.5) can be computed with the 3-term recurrence

βk q̂k = Hq̂k−1 − (Hq̂k−1, q̂k−1)q̂k−1 − (Hq̂k−1, q̂k−2)q̂k−2,(3.6)

where βk equals the norm of the right-hand side of (3.6) and αk = (Hq̂k−1, q̂k−1). For
further details of the Hermitian Lanczos method, see, e.g., [25, 4].

To solve (3.3), we formally start the iteration with q̂0 = Nb
‖Nb‖ ∈ C

n since

||p(H)Nb− b|| = ||Nb||
∣∣∣∣
∣∣∣∣p(H)

Nb

‖Nb‖ −
b

‖Nb‖
∣∣∣∣
∣∣∣∣(3.7)

for every polynomial p. The Hermitian Lanczos iteration (3.6) would then proceed as

q̂1 =
1

β1

(
Hq̂0 − (Hq̂0, q̂0)q̂0

)
,(3.8)

q̂2 =
1

β2

(
Hq̂1 − (Hq̂1, q̂1)q̂1 − (Hq̂1, q̂0)q̂0

)
,(3.9)

...

so that at the jth step one computes

q̂j−1 =
1

βj−1

(
Hq̂j−2 − (Hq̂j−2, q̂j−2)q̂j−2 − (Hq̂j−2, q̂j−3)q̂j−3

)
,(3.10)

where the constants βk are chosen such that ‖q̂k‖ = 1 for 0 ≤ k ≤ j − 1. Then the
minimum (3.3) is realized with the polynomial pj−1 satisfying

pj−1(H)Nb =

j−1∑
k=0

(b, q̂k)q̂k(3.11)

as the vectors {q̂k}j−1
k=0 are orthonormal. The problem is that this scheme does not

yield a solution candidate xj−1 for solving the linear system (3.1). Instead, it yields
the minimum value (3.3) so that the vector (3.11) should be multiplied by N−1 to get
the approximation xj−1. To avoid the inversion, the trick is that, since

xj−1 =

j−1∑
k=0

(b, q̂k)N−1q̂k,(3.12)

we do not actually compute (3.8), (3.9), and (3.10). Instead, we set q0 = b
‖Nb‖ and

q1 := N−1q̂1 =
1

β1

(
Hq0 − (Hq̂0, q̂0)q0

)
,(3.13)

q2 := N−1q̂2 =
1

β2

(
Hq1 − (Hq̂1, q̂1)q1 − (Hq̂1, q̂0)q0

)
,(3.14)

...
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so that at the jth step we have

qj−1 := N−1q̂j−1 =
1

βj−1

(
Hqj−2 − (Hq̂j−2, q̂j−2)qj−2 − (Hq̂j−2, q̂j−3)qj−3

)
.(3.15)

At each step the inner products only formally involve q̂k as they can be computed by
using the relation Nqk = q̂k. Consequently, only vectors qk need to be stored and we
have a 3-term recurrence since (3.12) yields an updated approximation

xj−1 =

j−1∑
k=0

(b,Nqk)qk = xj−2 + (b,Nqj−1)qj−1(3.16)

at the jth step. Thus we have obtained the following basic algorithm.
Algorithm 1. “For solving the linear system Nx = b.”

For N = H + iK ∈ N and b ∈ C
n, set H = 1

2 (N + N∗), q−1 = 0, q0 = b
‖Nb‖ ,

x0 = (b,Nq0)q0, and r0 = b−Nx0.
for k = 1 to j − 1 compute

qk = Hqk−1 − (HNqk−1, Nqk−1)qk−1 − (HNqk−1, Nqk−2)qk−2

qk = qk
‖Nqk‖

αk = (rk−1, Nqk)
xk = xk−1 + αkqk
rk = rk−1 − αkNqk

end for
Remark 1. As opposed to the CGN method, we are solving the original linear

system and not at any point the normal equations. To illustrate this, assume N =
p(H) for a polynomial p. Then the residual generated with Algorithm 1 can be
bounded by considering the approximation problem

min
pj−1∈Pj−1

||Npj−1(H)b− b|| ≤ min
pj−1∈Pj−1

max
λ∈σ(H)

|p(λ)pj−1(λ)− 1| ||b||(3.17)

on the spectrum of H (and not on the spectrum of N∗N). In particular, if N was
Hermitian, i.e., N = H, then we would have the standard GMRES bound

min
pj−1∈Pj−1

||Hpj−1(H)b− b|| ≤ min
pj−1∈Pj−1

max
λ∈σ(H)

|λpj−1(λ)− 1| ||b|| .(3.18)

Remark 2. In addition to the complexity of the classical Hermitian Lanczos
iteration step (3.10), three additional matrix vector products Nqk−2, Nqk−1, and
Nqk are needed for computing qk with Algorithm 1. The actual complexity will
obviously depend on the way the algorithm is eventually implemented.

Remark 3. Due to the formal multiplication by the inverse of N , the vectors
{qk}j−1

k=0 computed are not orthonormal, whereas the vectors {q̂k}j−1
k=0 = {Nqk}j−1

k=0

are. Numerical stability properties for the so-called A∗A-variant of GMRES have
been considered in [27] by Rozložnik and Strakoš. This implementation of GMRES
corresponds to Algorithm 1 and their analysis can be repeated with the method
proposed. Of course, now one also needs to take into account the fact that Algorithm
1 relies on a 3-term recurrence.

For a Hermitian matrix, Algorithm 1 is thus equivalent to GMRES. The same is
true for a rotation and translation of a Hermitian matrix as long as two angles are
excluded.
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Proposition 3.1. Assume H ∈ C
n×n is Hermitian and b ∈ C

n. Then, for
θ ∈ [0, 2π)\{π2 , 3π

2 } and λ ∈ C, Algorithm 1 for solving Nx = b, with N = eiθH + λI,
is equivalent to GMRES.

Proof. With λ = x + iy the Hermitian part of eiθH + λI equals cos(θ)H + xI.
Therefore, if θ ∈ [0, 2π)\{π2 , 3π

2 }, then for the Krylov subspaces we have

Kj(cos(θ)H + xI; (eiθH + λI)b) = Kj(e
iθH + λI; (eiθH + λI)b)

for every j ≥ 1. Thus, the claim follows from (3.4).
It is straightforward to modify Algorithm 1 so that an initial guess x−1 can be

used instead. Then b is replaced with the residual r = b − Nx−1 and q0 = r
‖Nr‖

is the starting vector for the iteration. The corresponding approximate solution is
x−1 + xj−1 at the jth step.

Because of the generic representation (2.11), a rotated Toeplitz decomposition
of N can be employed by replacing H with Hθ in Algorithm 1. Combining this
with using initial guesses gives rise to a scheme in which the rotation parameter is
modified during the iteration. More precisely, the iteration is started by introducing
a parameter θ ∈ [0, 2π) and an initial guess x−1. Then Algorithm 1 is executed
with r = b − Nx−1 and Hθ in place of b and H, respectively. After, let us say, j
steps, Algorithm 1 has produced xj−1 so that an approximate solution x−1 + xj−1 is
obtained. Then another rotation parameter θ is chosen and Algorithm 1 is restarted
by using the vector x−1 + xj−1 as an initial guess. An algorithm for this purpose is
shown below.

Algorithm 2. “For solving the linear system Nx = b.”
For N = e−iθHθ + ie−iθKθ ∈ N and an initial guess x−1, set r = b−Nx−1, q−1 = 0,
q0 = r

‖Nr‖ , x0 = (r,Nq0)q0, and r0 = r −Nx0.

for k = 1 to j − 1 compute
qk = Hθqk−1 − (HθNqk−1, Nqk−1)qk−1 − (HθNqk−1, Nqk−2)qk−2

qk = qk
‖Nqk‖

αk = (rk−1, Nqk)
xk = xk−1 + αkqk
rk = rk−1 − αkNqk

end for
Replace x−1 with x−1 + xj−1

Restart with a new θ.
Remark 4. The nongeneric case, that is, N is not a polynomial in its Hermitian

part, can be dealt with by employing restarts and rotations as suggested. To this end
the norm of the updates αkqk can be monitored. If they remain under a threshold
for a number of steps and the approximate solution is not sufficiently accurate, then
a new rotation is introduced and the approximation computed so far is used as an
initial guess.

Remark 5. In a nearly nongeneric case the convergence can slow down unless ro-
tations and restarts are used. This is readily explained by the bound of Corollary 2.6.
Namely, then the Hermitian part of N has clustered eigenvalues and the polynomials
pr and pi of Corollary 2.6 may need to oscillate wildly over a short interval to approx-
imate �(Λ−1) and �(Λ−1) well. A potential remedy to this is to restart Algorithm
2 frequently by using random rotations. By frequent restarting we mean that j is
very small in Algorithm 2. According to our numerical experiments of section 5, this
seems to average out the angle dependence of the method resulting in a performance
comparable with GMRES. Recall that GMRES is a rotation invariant algorithm.
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4. Dealing with nonnormal problems. A purpose of this paper, combined
with the results of [18], is to demonstrate that the set of normal matrices is a homoge-
neous set in the sense that Hermitian matrices do not enjoy any particular algorithmic
advantages among N . Both solving linear systems and computing eigenvalue approx-
imations can be accomplished with a 3-term recurrence for any of the elements of N .
Still, as a stratified manifold the set of normal matrices is not significantly larger than
the set of Hermitian matrices H. The (real) dimensions of N ⊂ C

n×n and H ⊂ C
n×n

are n2 + n and n2, respectively [18]. Thus, the question arises as to whether the
extended 3-term recurrence relation can really be useful. To our mind N is larger
than H in a critical way so that it has potential to be.

The first property that needs to be emphasized is that every square matrix can be
represented as a product of two normal matrices. The most famous such factorization
is, of course, the polar decomposition. Thus, in principle, every linear system can be
solved via solving two consecutive linear systems involving normal matrices. We find
this quite remarkable since only matrices with a real determinant are representable
as a product of Hermitian matrices. Then the number of Hermitian matrices needed
for this purpose is four at most [26].

A further distinction between H and N arises when splitting matrices. More
precisely, assume one has a decomposition A = N + F of A ∈ C

n×n with a normal
N and a small rank matrix F . If this is achievable with a sufficiently small rank
F , then, by using inner-outer iterations, the system is solvable with modest storage
requirements [21, 20]. In [20] it was demonstrated that every A ∈ C

n×n possesses a
representation A = N+F with N ∈ N and F of rank at most �n2 �. If N is constrained
to be Hermitian instead, then F with rank less than n cannot be found in general.

These two above-mentioned properties can be exploited directly or indirectly in,
for instance, preconditioning. Using Hermitian matrices in preconditioning of non-
normal problems was initiated by Concus and Golub [3] and Widlund [34]. For more
recent references see also [10]. The approach starts from splitting (a non-Hermitian)
A ∈ C

n×n as A = H + iK, where H and K are the Hermitian and skew-Hermitian
parts of A, respectively, i.e., A is Toeplitz decomposed. The scheme proposed is then
based on the assumption that the associated Hermitian (or skew-Hermitian) linear
systems are readily solvable, i.e., not ill-conditioned. However, with an optimal 3-
term recurrence for linear systems involving normal matrices, this approach can be
generalized, as any normal matrix can then be used in preconditioning. Simple choices
are polynomials in the Hermitian part of a rotated Toeplitz decomposition of A. In
particular, there are sparse methods for computing these polynomials [18].

5. Numerical experiments. Next we consider numerical experiments for solv-
ing a linear system Nx = b with a normal coefficient matrix. Problems considered
are relatively small, as our main purpose is to illustrate how Algorithms 1 and 2 ex-
tend GMRES and how to use restarts with Algorithm 2. In particular, the examples
are constructed so that the spectra differ from one another and therefore the chosen
problems are somewhat artificial. However, clear variation in the spectra illustrates
best the convergence properties of the method. The computations are performed with
matlab [22] and we use its syntax to explain the numerical experiments. In all of the
examples N ∈ C

n×n is normal and, unless otherwise stated, b ∈ C
n is a random

complex vector, that is, b = rand(n, 1) + irand(n, 1).

Example 2. We start with a very well understood example illustrating how
Algorithm 1 extends GMRES for Hermitian matrices to normal matrices in a
continuous way. We compare the convergence for a Hermitian positive definite
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Fig. 1. The eigenvalues of the matrices N0, N1, N2, and N3 of Example 2 are denoted by x,
o, +, and ∗, respectively.

N0 = H = diag(8(6 + randn(600, 1))) ∈ C
600×600 and for “slightly” bent N0, that

is, for Nj = H + iαjH
2, with small positive values for αj . Besides α0 = 0, we set

α1 = 0.01, α2 = 0.1, and α3 = 1. Note that for N0 Algorithm 1 is MINRES. In
Figure 1 we have depicted the eigenvalues of N0, N1, N2, and N3. The convergence of
Algorithm 1 is nearly similar for these matrices even though they differ considerably

in norm; see Figure 2, where we have plotted the relative residuals ‖rk‖
‖r0‖ = ‖b−Nxk‖

‖b‖ .

For an illustration, we also compared Algorithm 1 with BiCGSTAB [33] and
QMR [9] for solving N3x = b using the implementations of matlab. The convergence
behavior is plotted in Figure 3.

Example 3. This example illustrates the effect of rotations combined with using
initial guesses as described in Remarks 4 and 5. We set N = diag([n1;n2;n3;n4]),
with n1 = 3(5+randn(100, 1)), n2 = 5(−7+randn(100, 1)), n3 = 4(6+randn(100, 1))i,
and n4 = 2(−10 + randn(100, 1))i. Thus, N ∈ C

400×400 and its spectrum lies on the
union of the real and imaginary axes like a “cross”; see Figure 4. In particular, N is
nongeneric as half of the eigenvalues are on a vertical line, that is, on the imaginary
axis. This is a difficult problem for GMRES since the origin is almost symmetrically in
the middle of the spectrum. We use the following strategies for choosing the rotations
with Algorithm 2:

• 20-20 is such that we assume we have a rough idea of the location of the
eigenvalues; that is, we know that the spectrum belongs to the union of the real and
imaginary axes. This information is used while choosing rotations as follows. We
take 20 steps with H and then rotate by π

2 and take 20 steps with Hπ
2
. This is then

repeated.

• 8-8 is such that we take 8 steps with H and then rotate by π
2 and take 8 steps

with Hπ
2
. This is then repeated.

• Random-5 is such that we assume knowing nothing about the spectrum so
that there is no reason to prefer any particular angle. We use Algorithm 2 by taking
a random rotation and then perform 5 steps. This is then repeated.
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Fig. 2. The convergence of the relative residuals on a log10-scale for Algorithm 1 for Example
2. The convergence is denoted by −x, −o, −+, and −∗ for N0, N1, N2, and N3, respectively.
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Fig. 3. The convergence of the relative residuals for Algorithm 1, BiCGSTAB, and QMR on
a log10-scale for solving N3x = b in Example 2. The convergence is denoted by −∗, −−, and the
solid line, respectively.

In Figure 5 we have plotted the relative residuals ‖rk‖
‖r0‖ = ‖b−Nxk‖

‖b‖ for GMRES

and each of the rotation strategies described.
Let us try to explain the dependence of the convergence on the rotations for 20-

20 and 8-8. Starting with θ0 = 0 means that H0 does not possess any information
regarding the eigenvalues on the imaginary axis. Thus, then the method behaves
almost like MINRES for the Hermitian matrix diag([n1;n2]) and decreases the residual
in the corresponding subspace of dimension 200. After a stagnation, the corresponding
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Fig. 4. The eigenvalues of the matrix N in Example 3.
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Fig. 5. The convergence of the relative residuals on a log10-scale for Example 3. The solid line
is GMRES and −·, −−, and −o are 20-20, 8-8, and Random-5, respectively.

projected problem onto that subspace is approximately solved. Performing a rotation
with θ = π

2 using the approximate solution generated as an initial guess, the method
behaves then almost like MINRES for the Hermitian matrix diag([n3/i;n4/i]) and
decreases the residual in the corresponding subspace of dimension 200.

Note that the strategies 20-20 and 8-8 win and only Random-5 decreases the
residual like GMRES.

Example 4. We let N ∈ C
500×500 be the notorious unitary shift and choose

b ∈ C
500 to be a standard unit basis vector. Thus, the origin is surrounded,
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Fig. 6. The convergence of the relative residuals on a log10-scale for Example 4. The solid line
is Random-1 and −− is Random-3.

uniformly on the unit circle, by the eigenvalues of N . Although being an easy prob-
lem for CGN [2, 23], this is a very difficult problem for GMRES (of course GMRES
would be a ridiculous choice for solving this problem as opposed to employing the
normal equations). More precisely, the convergence of GMRES for this problem is
catastrophic as no progress is made before the 500th step. Note that N is again
nongeneric so that we execute Algorithm 2. As there are no angles to prefer, we
use very frequent restarting with random rotations. That is, we use the Random-1
and Random-3 strategies explained in Example 3. The convergence of the relative

residuals ‖rk‖
‖r0‖ = ‖b−Nxk‖

‖b‖ is depicted in Figure 6. Very frequent restarting seems to

be a good choice for this problem.
Example 5. We set N = I + 0.1diag(randn(100, 1) + irandn(100, 1)) ∈ C

100×100.
As opposed to Example 4, this matrix is constructed to be particularly favorable
to GMRES since the spectrum of N is concentrated around 1. The spectrum is
otherwise very unstructured so that there are no angles to prefer. In particular,
the polynomial approximation problem on the right-hand side of the bound (3.17) is
difficult as relatively high degree polynomials are needed for a close approximation
so that Algorithm 1 actually performs poorly. Therefore we execute Algorithm 2
with frequent restarting by using again the Random-1 and Random-3 strategies as
explained in Example 3. For the behavior of the residuals, see Figure 7.

Remark 6. Although these experiments are rather preliminary, we find the fol-
lowing questions particularly interesting. For a given linear system, is there a strategy
for choosing the rotations such that Algorithm 2 would perform at least as well as
GMRES. And if so, is this achievable by using random rotations? What should be
the restarting frequency then?

6. Conclusions. We have derived a Hermitian Lanczos method for normal ma-
trices. The algorithm is realizable with an optimal 3-term recurrence without resorting
to the normal equations. The algorithm reduces to MINRES whenever N is Hermitian
while otherwise the speed of convergence is bounded by a polynomial approximation
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Fig. 7. The convergence of the relative residuals on a log10-scale for Example 5. The solid line
is GMRES, −− is Random-1, and −· is Random-3.

problem on the spectrum of the Hermitian part of N . Rotations and restarts can be
used to improve the convergence in case the approximation problem cannot be solved
sufficiently accurately with low degree polynomials. If there is information about
the spectrum, then rotations should be chosen so that various parts of the spectrum
are well approximated by low degree polynomials. In general we do not know how
to choose the rotations and restarting frequency optimally. However, very frequent
restarting combined with random rotations seems to be a good choice, averaging out
the effect of the rotation angles. This intuitive interpretation partly explains why the
method seems to perform at least as well as GMRES which is a rotation invariant
algorithm.
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Abstract. Let S be an irreducible stochastic matrix of order n with left stationary vector πT ,
and let S(i) denote the principal submatrix of S formed by deleting the ith row and column. We

prove that max1≤i≤n πi||(I − S(i))
−1||∞ ≤ min1≤j≤n ||(I − S(j))

−1||∞, thus answering a question

posed by Cho and Meyer. We provide an attainable lower bound on max1≤i≤n πi||(I − S(i))
−1||∞,

and discuss the case that equality holds in that bound.
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1. Introduction. Suppose that S is an irreducible n × n stochastic matrix, so
that it can be thought of as the transition matrix for a Markov chain. One of the
principal quantities of interest associated with the Markov chain is the stationary
vector for S, i.e., the entrywise positive vector πT such that πTS = πT and πT 1 = 1,
where 1 denotes the all-ones vector.

A number of papers consider stability problems of the following type: Perturb
S to produce another irreducible stochastic matrix S̃ ≡ S − E with corresponding
stationary vector π̃T , and find a condition number κ so that for some suitable norm,
||πT − π̃T || ≤ κ||E||. A recent paper by Cho and Meyer [5] surveys several of these
condition numbers and provides comparisons between them.

One of the key condition numbers discussed in [5] is given (adopting the notation
of [5]) by

κ3 ≡ 1

2
max

1≤i≤n
πi||(I − S(i))

−1||∞,

where S(i) denotes the principal submatrix of S formed by deleting its ith row and
column and where || • ||∞ is the maximum absolute row sum norm. Of the eight
condition numbers considered in [5], κ3 is shown to be the minimum among seven of
them, while no comparison is made between κ3 and the condition number

κ7 ≡ 1

2
min

1≤j≤n
||(I − S(j))

−1||∞.

Cho and Meyer then go on to pose the question of whether κ3 ≤ κ7 for each irreducible
stochastic S; in the case that S is rank 1, an affirmative answer is provided in [5].
In this paper, we prove that κ3 ≤ κ7 ≤ nκ3 for any irreducible stochastic matrix S
of order n. We also provide lower bounds on πi||(I − S(i))

−1||∞ for any i, and on
max1≤i≤n πi||(I− S(i))

−1||∞; finally, we discuss the cases of equality in both bounds.
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In establishing our results, we will assume basic knowledge of Markov chains and
the theory of nonnegative matrices. We refer the reader to [2], [8], and [9] for the
necessary background.

2. Main results. Throughout the rest of the paper, S will denote an irreducible
stochastic matrix of order n, and πT will denote its left stationary vector. We begin
with an expression for a single entry in πT .

Lemma 2.1. Suppose that we have an irreducible stochastic matrix S of order n,
partitioned as

S =

[
A y

xT 1− xT 1
]
,

with left stationary vector πT partitioned conformally as πT = [π̂T |πn]. Then we have
πn = 1/(1 + xT (I −A)−11 ).

Proof. Since π̂TA + πnx
T = π̂T , we find that π̂T = πnx

T (I − A)−1. The result
now follows from the observation that 1− πn = π̂T 1 = πnx

T (I −A)−11 .
The following result will allow us to derive an expression for ||(I − S(i))

−1||∞
for an irreducible stochastic matrix S. We note that the expression for (I − S(n))

−1

below can also be deduced from standard results on the Schur complement and on
the inverse of a rank 1 perturbation (see [6]).

Lemma 2.2. Suppose that we have an n × n irreducible stochastic matrix S,
partitioned as

S =


 T y1 y2
xT1 a1 b1
xT2 b2 a2


 .

Let γ1 = 1/(1− a1 − xT1 (I − T )−1y1). Then

(I − S(n))
−1 =

[
(I − T )−1 + γ1(I − T )−1y1x

T
1 (I − T )−1 γ1(I − T )−1y1

γ1x
T
1 (I − T )−1 γ1

]
.

In particular,

(I − S(n))
−11 =

[
(I − T )−11 + γ1(x

T
1 (I − T )−11 + 1)(I − T )−1y1

γ1(x
T
1 (I − T )−11 + 1)

]
.

Proof. We have

I − S(n) =

[
I − T −y1
−xT1 1− a1

]
,

and the results follow from direct computations.
Remark 2.3. Using the notation of Lemma 2.2, suppose that S has left stationary

vector πT , and let γ2 = 1/(1− a2 − xT2 (I − T )−1y2). By Lemma 2.1, we have

πn =
1

1 + [xT2 |b2](I − S(n))−11
.

Since T1 + y1 + y2 = 1 , we have (I − T )−1y2 = 1 − (I − T )−1y1. Using this fact and
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the fact that xT2 1 + b2 = 1− a2, we find from Lemma 2.2 that

πn =
1

γ1(xT1 (I − T )−11 + 1)(1− a2 − xT2 (I − T )−1y2) + xT2 (I − T )−11 + 1

=
γ2

γ1(xT1 (I − T )−11 + 1) + γ2(xT2 (I − T )−11 + 1)
.

Here is the key result.
Theorem 2.4. Suppose that S is an n × n irreducible stochastic matrix,

partitioned as in Lemma 2.2 and having left stationary vector πT . Then
πn||(I − S(n))

−1||∞ ≤ ||(I − S(n−1))
−1||∞. Further, equality holds if and only if

x2 = 0, ||(I − T )−1||∞ = 1/(1− a2), and (I − T )−1y2 ≤ 1 − (1− a2)(I − T )−11 .
Proof. Let ci = xTi (I − T )−11 + 1 for i = 1, 2, so that πn = γ2

γ1c1+γ2c2
. Note that

since I − T is a nonsingular M-matrix, (I − T )−1 is entrywise nonnegative, so that in
particular, c1, c2 ≥ 1. By Lemma 2.2, we have

(I − S(n))
−11 =

[
(I − T )−11 + γ1c1(I − T )−1y1

γ1c1

]

and

(I − S(n−1))
−11 =

[
(I − T )−11 + γ2c2(I − T )−1y2

γ2c2

]
.

If ||(I − S(n))
−1||∞ = γ1c1, then note that

πn||(I− S(n))
−1||∞ =

γ1γ2c1
γ1c1 + γ2c2

= γ2

(
γ1c1

γ1c1 + γ2c2

)
< γ2 ≤ γ2c2 ≤ ||(I−S(n−1))

−1||∞.

Henceforth, we will assume that ||(I − S(n))
−1||∞ > γ1c1, so that in fact

||(I − S(n))
−1||∞ = max

1≤i≤n−2
eTi ((I − T )−11 + γ1c1(I − T )−1y1).

Suppose first that ||(I − T )−1||∞ > γ2. Then necessarily we have

γ1γ2c1 + γ2||(I − T )−1||∞ < γ1c1||(I − T )−1||∞ + γ2c2||(I − T )−1||∞,
so that

γ2(||(I − T )−1||∞ + γ1c1)

γ1c1 + γ2c2
< ||(I − T )−1||∞.

Since (I − T )−1y1 + (I − T )−1y2 = 1 , we find that

πn||(I − S(n))
−1||∞ =

γ2
γ1c1 + γ2c2

max
1≤i≤n−2

eTi ((I − T )−11 + γ1c1(I − T )−1y1)

=
γ2

γ1c1 + γ2c2
max

1≤i≤n−2
eTi ((I − T )−11 + γ1c11 − γ1c1(I − T )−1y2)

≤ γ2
γ1c1 + γ2c2

(||(I − T )−1||∞ + γ1c1).
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Further, ||(I − T )−1||∞ ≤ ||(I − S(n−1))
−1||∞, so we find that

πn||(I − S(n))
−1||∞ ≤ γ2

γ1c1 + γ2c2
(||(I − T )−1||∞ + γ1c1) < ||(I − T )−1||∞

≤ ||(I − S(n−1))
−1||∞.

Now we suppose that ||(I − T )−1||∞ ≤ γ2. Then certainly we have (I − T )−11 ≤
γ21 . Since c2 ≥ 1, we thus find that

(I − T )−11 ≤ γ21 ≤ (γ1c1(c2 − 1) + γ2c
2
2)1 + γ1c1(I − T )−1y2,

which is equivalent to

(I − T )−11 + γ1c11 − γ1c1(I − T )−1y2 ≤ c2(γ1c1 + γ2c2)1 .

But this last yields

πn((I−T )−11+γ1c1(I−T )−1y1) = πn((I−T )−11+γ1c11−γ1c1(I−T )−1y2) ≤ γ2c21 ,
so that πn||(I − S(n))

−1||∞ ≤ γ2c2 ≤ ||(I − S(n−1))
−1||∞. Consequently, in all cases,

we find that πn||(I − S(n))
−1||∞ ≤ ||(I − S(n−1))

−1||∞.
Next we consider the case of equality. If πn||(I− S(n))

−1||∞ = ||(I− S(n−1))
−1||∞,

then we find from the argument above that necessarily

||(I − S(n))
−1||∞ = max

1≤i≤n−2
eTi ((I − T )−11 + γ1c1(I − T )−1 y1)

and ||(I − T )−1||∞ ≤ γ2. Note that if ||(I − T )−1||∞ < γ2, then as above,

(I − T )−11 < γ21 ≤ (γ1c1(c2 − 1) + γ2c
2
2)1 + γ1c1(I − T )−1y2;

similarly, if c2 > 1, then

(I − T )−11 ≤ γ21 < (γ1c1(c2 − 1) + γ2c
2
2)1 + γ1c1(I − T )−1y2.

In either case, we find that

(I − T )−11 + γ1c11 − γ1c1(I − T )−1y2 < c2(γ1c1 + γ2c2)1 ,

so that

πn((I−T )−11+γ1c1(I−T )−1y1) = πn((I−T )−11+γ1c11−γ1c1(I−T )−1y2) < γ2c21 .

But then πn||(I − S(n))
−1||∞ < γ2c2 ≤ ||(I − S(n−1))

−1||∞.
Consequently, if πn||(I − S(n))

−1||∞ = ||(I − S(n−1))
−1||∞, we must have

||(I − T )−1||∞ = γ2, c2 = 1, and ||(I − S(n−1))
−1||∞ = γ2. The condition c2 = 1

is equivalent to x2 = 0, from which it follows that γ2 = 1/(1− a2). Since x2 = 0, we
have

(I − S(n−1))
−1 =

[
(I − T )−1 γ2(I − T )−1y2

0T 1/(1− a2)
]
,

so that the condition ||(I − T )−1||∞ = 1/(1 − a2) implies that (I − T )−1y2 ≤
1 − (1 − a2)(I − T )−11 .
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Finally, suppose that x2 = 0, ||(I − T )−1||∞ = 1/(1 − a2), and (I − T )−1y2 ≤
1 − (1− a2)(I − T )−11 . Then from Lemma 2.2 it follows that ||(I − S(n−1))

−1||∞ =
γ2 = 1/(1 − a2). Further, since (I − T )−1y2 ≤ 1 − (1 − a2)(I − T )−11 , we see that
for each entry of (I − T )−11 of maximum size (i.e., 1/(1 − a2)), the corresponding
entry of (I − T )−1y2 must be 0. Consequently, the maximum entry of (I − T )−11 +
γ1c1[1 − (I − T )−1y2] is at least γ2 + γ1c1, so that ||(I − S(n))

−1||∞ ≥ γ2 + γ1c1. It
now follows readily that πn||(I − S(n))

−1||∞ ≥ γ2 = ||(I − S(n−1))
−1||∞ and hence

that πn||(I − S(n))
−1||∞ = ||(I − S(n−1))

−1||∞.
Remark 2.5. We note that if equality is to hold in Theorem 2.4, then in the case

that T is irreducible, we must have y2 = 0, otherwise (I − T )−1y2 > 0. A similar
argument applies if T is reducible, in which case we find that if eTi (I − T )−11 =
1/(1 − a2), and if indices i and j are in the same irreducible component of T , then
the jth entry of y2 must be 0.

Applying Theorem 2.4, we now answer the question posed in [5].
Corollary 2.6. Suppose that S is an n × n irreducible stochastic matrix with

left stationary vector πT . Then

max
1≤i≤n

πi||(I − S(i))
−1||∞ ≤ min

1≤j≤n
||(I − S(j))

−1||∞.

In particular, κ3 ≤ κ7.
Proof. Evidently we have πi||(I − S(i))

−1||∞ < ||(I − S(i))
−1||∞ for 1 ≤ i ≤ n.

Suppose we have indices i, j with 1 ≤ i �= j ≤ n, and if necessary, apply a permutation
similarity to S which sends i to n and j to n − 1. From Theorem 2.4 we find that
πi||(I − S(i))

−1||∞ ≤ ||(I − S(j))
−1||∞, and the result follows.

The following example shows that equality can hold in Corollary 2.6.
Example 2.7. Let x be a positive vector such that xT 1 = 1, and let

S =

[
0 1

xT 0

]
.

Then πT = [(1/2)xT |1/2] and ||(I − S(n))
−1||∞ = 1. For each 1 ≤ i ≤ n− 1, we have

(I − S(i))
−1 =

[
I + 1

xi
1 x̂T 1

xi
1

1
xi
x̂T 1

xi

]
,

where x̂ is formed from x by deleting the ith entry. It follows that ||(I −S(i))
−1||∞ =

2/xi, so that for each 1 ≤ i ≤ n− 1,

πi||(I − S(i))
−1||∞ =

xi
2

2

xi
= 1 = ||(I − S(n))

−1||∞.

Having shown that κ3 ≤ κ7, the next result discusses how far apart these quan-
tities can be.

Theorem 2.8. Suppose that S is an n× n irreducible stochastic matrix with left
stationary vector πT . Then

n max
1≤i≤n

πi||(I − S(i))
−1||∞ ≥ min

1≤j≤n
||(I − S(j))

−1||∞.

In particular, nκ3 ≥ κ7. Equality holds if and only if S is a doubly stochastic matrix
such that ||(I − S(i))

−1||∞ = ||(I − S(j))
−1||∞ for i, j = 1, . . . , n.
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Proof. We have

max
1≤i≤n

πi||(I − S(i))
−1||∞ ≥ max

1≤i≤n

{
πi

(
min

1≤j≤n
||(I − S(j))

−1||∞
)}

=

(
max

1≤i≤n
πi

)(
min

1≤j≤n
||(I − S(j))

−1||∞
)
≥ 1

n

(
min

1≤j≤n
||(I − S(j))

−1||∞
)
,

yielding the desired inequality. Note that if equality holds, then necessarily max1≤i≤n πi
= 1

n , from which it follows that each πj is 1
n , so that S is doubly stochastic. It is

now readily deduced that if equality is to hold, we must also have ||(I− S(i))
−1||∞ =

||(I − S(j))
−1||∞ for i, j = 1, . . . , n. Conversely, if S is doubly stochastic

and ||(I − S(i))
−1||∞ = ||(I − S(j))

−1||∞ for i, j = 1, . . . , n, then certainly
nκ3 = κ7.

Remark 2.9. Theorem 2.8 shows that κ7 can be significantly larger than κ3. For
example, if S is an n × n circulant matrix, then it is readily seen that κ7 = nκ3, so
that for large n, κ3 is a much tighter bound. For a general transition matrix S, the
derivation of the inequality in Theorem 2.8 indicates that if the entries of the station-
ary vector do not vary too much, and if the quantities ||(I − S(i))

−1||∞, i = 1, . . . , n,
are reasonably close together, then for large values of n, κ7 will be significantly larger
than κ3.

Next, we give a lower bound on πj ||(I − S(j))
−1||∞.

Theorem 2.10. Let S be an n × n stochastic matrix with left stationary vector
πT . For each j = 1, . . . , n we have πj ||(I−S(j))

−1||∞ ≥ 1/2. Equality holds for some
j0 if and only if S is permutationally similar to

R =

[
0 1

xT 0

]

(where the index j0 corresponds to n in R), for some positive vector x such that
xT 1 = 1.

Proof. By applying a permutation similarity if necessary, we assume that j = n.
From Lemma 2.1, we have

πn||(I − S(n))
−1||∞ =

||(I − S(n))
−1||∞

1 + xT (I − S(n))−11
,

where xT is the vector consisting of the first n− 1 entries of the last row of S. Now
xT 1 ≤ 1, so we see that ||(I − S(n))

−1||∞ ≥ xT (I − S(n))
−11 , so that

||(I − S(n))
−1||∞

1 + xT (I − S(n))−11
≥ ||(I − S(n))

−1||∞
1 + ||(I − S(n))−1||∞ .

Since ||(I − S(n))
−1||∞ ≥ 1, we see that

||(I − S(n))
−1||∞

1 + ||(I − S(n))−1||∞ ≥
1

2
,

yielding the desired inequality.
From the argument above, we see that πn||(I − S(n))

−1||∞ = 1/2 if and only

if xT 1 = 1 and ||(I − S(n))
−1||∞ = 1; since (I − S(n))

−1 =
∑

k≥0 S
k
(n), the latter

condition is easily seen to be equivalent to S(n) = 0.
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We remark that max1≤j≤n πj ||(I − S(j))
−1||∞ is unbounded as S ranges over the

class of irreducible n× n stochastic matrices; to see this, note that for

S =

[
(1− ε)I ε1

(ε/(n− 1))1T 1− ε
]
,

we have πn||(I−S(n))
−1||∞ = 1/(2ε), which is unbounded as ε→ 0+. In contrast, the

next result provides an attainable lower bound on max1≤j≤n πj ||(I − S(j))
−1||∞.

Theorem 2.11. Let S be an n × n stochastic matrix with left stationary vector
πT . Then

max
1≤j≤n

πj ||(I − S(j))
−1||∞ ≥ (n− 1)/n.(1)

Equality holds if and only if
(i) S is a doubly stochastic matrix with zero diagonal;
(ii) ||(I − S(j))

−1||∞ = n− 1 for each j = 1, . . . , n; and
(iii) if i and j are indices such that sj,i > 0, then the entry of (I − S(j))

−11
corresponding to index i is equal to n− 1.

Proof. For each j = 1, . . . , n, let rTj denote the vector formed from the jth row of

S by deleting the jth entry. By Lemma 2.1, we have πj = 1
1+rT

j
(I−S(j))−11

. Thus we

have

1 =

n∑
j=1

πj =

n∑
j=1

1

1 + rTj (I − S(j))−11

≥
n∑

j=1

1

1 + ||(I − S(j))−1||∞ ≥
n

1 + max1≤j≤n ||(I − S(j))−1||∞ .

Consequently, we find that max1≤j≤n ||(I − S(j))
−1||∞ ≥ n− 1. Hence, applying the

fact that the function t/(t+ 1) is increasing for t > 0, we find that

max
1≤j≤n

πj ||(I − S(j))
−1||∞ ≥ max

1≤j≤n

||(I − S(j))
−1||∞

1 + ||(I − S(j))−1||∞

=
max1≤j≤n ||(I − S(j))

−1||∞
1 + max1≤j≤n ||(I − S(j))−1||∞ ≥

n− 1

n
,

yielding the desired inequality.
Note that if (i), (ii), and (iii) hold, then for each j = 1, . . . , n, πj ||(I− S(j))

−1||∞ =
(n− 1) / n so that equality holds in (1). Now suppose that max1≤j≤n πj ||(I− S(j))

−1||∞
= ( n − 1)/n. From the argument above, we see that this implies that for each
j = 1, . . . , n, we have ||(I − S(j))

−1||∞ = n − 1, rTj (I − S(j))
−11 = n − 1, and

πj = 1/n. In particular, since each rTj (I − S(j))
−11 = n − 1 = ||(I − S(j))

−1||∞, we

have rTj 1 = 1, so that S has zero diagonal. Further, it must also be the case that rj
has positive entries only in positions corresponding to rows of (I − S(j))

−1 attaining
the maximum sum of n− 1. Conditions (i), (ii), and (iii) now follow readily.

Remark 2.12. It is well known (see [8]) that the mean first passage time from state
i to state j in the Markov chain corresponding to S is given bymi,j = eTi (I−S(j))

−11 .
Thus condition (iii) in Theorem 2.11 can be rephrased in terms of the chain as follows:
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If distinct states i and j have the property that state i can be reached from state j
in one step, then mi,j = n− 1.

Remark 2.13. We note that if S satisfies conditions (i), (ii), and (iii) above, then
by Theorem 2.8 we also have κ7 = nκ3. Thus each n× n stochastic matrix for which
κ3 is a minimum also has the property that κ7/κ3 is a maximum.

Motivated in part by Remark 2.13, the last part of this paper pursues the case of
equality in (1). Our next two examples illustrate that situation.

Example 2.14. Let S = 1
n−1 (J − I), where J denotes the n× n all-ones matrix.

For each j = 1, . . . , n, we have (I − S(j))1 = 1
n−11 , so that (I − S(j))

−11 = (n− 1)1 .
Evidently S is doubly stochastic with zero diagonal, and it follows that conditions (i),
(ii), and (iii) of Theorem 2.11 are satisfied, so that equality holds in (1).

Example 2.15. Consider a transition matrix whose directed graph is an n-cycle,
say

S =




0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

. . .
...

0 0 0 · · · 0 1
1 0 0 · · · 0 0


 .

Then (I−S(n))
−1 is the upper triangular matrix with ones on and above the diagonal,

so that

(I − S(n))
−11 =




n− 1
n− 2

...
2
1


 .

Evidently ||(I − S(n))
−1||∞ = n − 1 and sn,i > 0 only for i = 1, in which case,

eTi (I − S(n))
−11 = n− 1. Since all states in the Markov chain corresponding to S are

isomorphic, it follows that conditions (i), (ii), and (iii) of Theorem 2.11 are satisfied,
so that equality holds in (1).

Based on the preceding examples, we formulate the following.
Conjecture 1. The only irreducible stochastic matrices of order n satisfying (i),

(ii), and (iii) of Theorem 2.11 are the permutation matrices corresponding to n-cycles,
and 1

n−1 (J − I).
Next, we confirm Conjecture 1 in a special case.
Proposition 2.16. Suppose that S is an irreducible stochastic matrix of order

n satisfying (i), (ii), and (iii) of Theorem 2.11. If S has no off-diagonal zero entries,
then S = 1

n−1 (J − I).
Proof. Since sj,i > 0 whenever i �= j, we see from (ii) that for each j,

(I−S(j))
−11 = (n−1)1 , or equivalently, S(j)1 = n−2

n−11 . But since S1 = 1 , it follows
that each off-diagonal entry in the jth column of S is 1/(n − 1). The result now
follows.

We close with a verification of Conjecture 1 for matrices of low order.
Proposition 2.17. Conjecture 1 holds for n = 2, 3, 4.
Proof. The only 2× 2 matrix satisfying (i), (ii), and (iii) of Theorem 2.11 is [0 1

1 0 ],
which evidently has the form described in Conjecture 1. Each 3× 3 doubly stochastic
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matrix with zero diagonal has the form


 0 a 1− a

1− a 0 a
a 1− a 0




for some 0 ≤ a ≤ 1. If a is either 0 or 1, then we have a permutation matrix for
a 3-cycle. If 0 < a < 1, then by Proposition 2.16, a must be 1/2. This confirms
Conjecture 1 when n = 3.

Now suppose that S is a 4×4 matrix satisfying (i), (ii), and (iii) of Theorem 2.11.
If S has no off-diagonal zeros, then S = (1/3)(J − I) by Proposition 2.16. So suppose
that S has an off-diagonal zero; by applying a permutation similarity if necessary, we
take s1,4 = 0. By Birkhoff’s theorem (see [3], for example), S is a convex combination
of permutation matrices. Since S has zero diagonal and we are taking s1,4 to be 0, it
follows that S is a convex combination of the following six matrices:

P1 =




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


 ; P2 =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 ; P3 =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


 ;

P4 =




0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0


 ; P5 =




0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0


 ; P6 =




0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0


 .

Thus we have S =
∑6

i=1 aiPi for some a1, . . . , a6 ≥ 0 such that
∑6

i=1 ai = 1.
For 1 ≤ i ≤ 6, let δi be 0 if ai = 0, and let δi be 1 if ai > 0. Let M be the mean

first passage matrix for the Markov chain corresponding to S (see [4]). Recall that
the diagonal entries of M are the reciprocals of the corresponding entries in the left
stationary vector, and that M = SM − Sdiag(M) + J, where diag(M) denotes the
diagonal matrix arising from the diagonal entries of M . Since S is a 4 × 4 doubly
stochastic matrix, each diagonal entry of M is 4 so that M = SM − 4S + J. From
Remark 2.12 we find that if si,j > 0, then mj,i = 3. Consequently, it follows that

M ≥ 3
∑6

i=1 δiP
T
i . Thus we find that

M = SM − 4S + J ≥ 3

(
6∑

i=1

aiPi

)(
6∑

i=1

δiP
T
i

)
− 4S + J

= 3

6∑
i=1

aiδiPiP
T
i + 3


 ∑

1≤i,j≤6,i �=j

aiajδiδjPiP
T
j


− 4S + J.

Since
∑6

i=1 aiδi = 1, we find that

M ≥ 3I + J − 4S + 3


 ∑

1≤i,j≤6,i �=j

aiajδiδjPiP
T
j


 .
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In particular, if ai, aj > 0 for some i �= j, then necessarily the diagonal entries of
PiP

T
j must be 0, otherwise we find that some diagonal entry ofM exceeds 4. We thus

conclude that if ai, aj > 0 for some i �= j, then there is no position such that both Pi
and Pj have 1’s in that position.

Applying that restriction to our list of admissible permutation matrices, we find
that for some 0 ≤ a ≤ 1, S is one of the following matrices: T (a) ≡ aP1 + (1 −
a)P3, U(a) ≡ aP2 +(1−a)P3, V (a) ≡ aP4 +(1−a)P6, and W (a) = aP5 +(1−a)P2. If
a is either 0 or 1, then each of T,U, V,W either is a permutation matrix corresponding
to a 4-cycle or is reducible, confirming the conjecture. Thus it remains only to consider
the case that 0 < a < 1.

First we deal with T (a). Computing the first row of (I−(T (a))(4))
−1 by cofactors

yields

1

a(a2 − 2a+ 2)
[1 a (a2 + 1− a)],

which sums to (2+a2)/(a(a2−2a+2)); it is readily seen that this expression is greater
than 3, so that T does not satisfy (ii). Noting that W (a) is permutationally similar
to T (a), we find that W does not satisfy (ii).

Next, we consider U(a). A direct computation shows that

(I − (U(a))(4))
−1 =




1
2a(1−a)

1
2(1−a)

1
2a

1
2(1−a) 1 + a

2(1−a)
1
2

1
2a

1
2 1 + 1−a

2a


 .

As a result,

(I − (U(a))(4))
−11 =




1
a(1−a)

2−a
1−a
a+1
a


 .

It is now straightforward to show that ||(I − (U(a))(4))
−1||∞ > 3, so that U does not

satisfy (ii).
Finally, we consider V (a). A computation reveals that

(I − (V (a))(4))
−1 =

1

a2 + (1− a)2


 1 a 1− a

1− a 1− a+ a2 (1− a)2
a a2 1− a+ a2


 .

If V satisfies (iii), then from the fact that v4,2, v4,3 > 0, it follows that the last two
rows of (I− (V (a))(4))

−1 sum to 3. We find that a = 1/2, which implies that the first
row of (I − (V (a))(4))

−1 sums to 4, so that V does not satisfy (ii).
Consequently, if 0 < a < 1, then none of T,U, V , and W satisfies (i)–(iii). Thus

we find that Conjecture 1 holds for n = 4.

3. Related remarks. It is natural to consider some of the issues surrounding
the implementation of the bounds κ3 and κ7 and in this section we do so.

We begin by discussing the number of operations necessary to compute κ3. As is
observed in [5], for an irreducible stochastic n×n matrix S with left stationary vector
πT ,

max
1≤j≤n

πj ||(I − S(j))
−1||∞ = max

1≤j≤n

(
q#jj − min

1≤i≤n
q#ij

)
,
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where Q ≡ I − S and where Q# denotes the group generalized inverse of Q (see [4]
for background on this generalized inverse). According to the results in [1], applying
the so-called shuffle algorithm to Q yields Q# in roughly 3n3 arithmetic operations
(of the multiply-and-add type); once Q# has been found, κ3 can then be computed
at negligible additional expense.

The computation of κ7 turns out to be fairly expensive, as is noted in [7]. For
example, using Gaussian elimination to compute (I−S(i))

−11 , from which we can find
||(I−S(i))

−1||∞, requires roughly n3/3 arithmetic operations. With this approach, we
see that κ7 will incur a cost of about n4/3 arithmetic operations, which is significantly
worse than the shuffle algorithm approach to κ3 described above.

In order to save on the number of operations involved in finding κ7, one might
want to simply provide an upper estimate on that quantity. One approach would be
to find ||(I − S(i))

−1||∞ for some i. As noted above this is already an order n3 task,
as is the computation of κ3. Moreover, it is conceivable that an unlucky choice of i
could lead to a poor estimate. For instance, consider the matrix of Example 2.7, with
x equal to 1

n−11 . Then for each i = 1, . . . , n− 1, we have ||(I −S(i))
−1||∞ = 2(n− 1),

while ||(I − S(n))
−1||∞ = 1. Thus in that example, for large values of n there is

exactly one choice of i (namely i = n) for which ||(I − S(i))
−1||∞ is of the right

order of magnitude. Another strategy might be to use the easily computed quantity
1/(1 − ||S(i)||∞) = 1/(minj �=i sji) as a further upper bound on ||(I − S(i))

−1||∞.
Evidently, this is feasible only in the case that the ith column of S has no off-diagonal
zeros. In particular, if S has an off-diagonal zero in each column, then this approach
is not helpful.

Given that κ3 is a tighter bound than κ7, that κ7 can be greater than κ3 by a
factor of n, and that κ7 may be difficult to estimate efficiently, it seems that κ3 offers
some advantage over κ7 as a condition number. However, as the discussion of κ7 in
[7] makes clear, it provides valuable qualitative information concerning the nature of
a Markov chain.

Acknowledgment. The author is grateful to the referees, whose comments re-
sulted in improvements to this paper.
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1. Introduction. As is well known, many estimation and control problems rely
on solving regularized least-squares problems of the form

min
x

[
xTQx+ (Ax− b)TW (Ax− b)] ,(1.1)

where xTQx is a regularization term, Q > 0 and W ≥ 0 are Hermitian weighting
matrices, x is an unknown n-dimensional column vector, A is a known N × n data
matrix, and b is a known N × 1 measurement vector. The solution of (1.1) is

x̂ =
[
Q+ATWA

]−1
ATWb,(1.2)

where the invertibility of (Q + ATWA) is guaranteed by the positive-definiteness of
Q.

When the nominal data {A, b} are subject to disturbances and/or uncertainties,
the performance of the optimal estimator (1.1) can degrade appreciably. For example,
if the actual data matrix were (A+ δA) for some unknown perturbation δA, then the
estimator (1.1) that is designed based on A alone, and without accounting for the
existence of δA, can perform poorly. This fact has motivated numerous works in the
literature that attempt to make the solution of least-squares designs robust in the
presence of data uncertainties. Some notable methods are the total-least-squares and
the H∞ formalisms (see, e.g., [1, 2] and the many references therein). These methods
are known to lead to solutions that perform data deregularization and which, at times,
may be conservative.

In this work, we propose a robust alternative to the regularized and weighted least-
squares problem (1.1), which is shown to lead to a regularized solution, as opposed to a
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deregularized solution. This property is useful, especially for on-line implementations,
since the regularized solution does not require existence conditions. The special case of
Q = 0 and W = I (which corresponds to unweighted least-squares problems without
regularization) was studied in [3, 4] by different methods; one relies on linear matrix
inequality (LMI) techniques while the other relies on SVD techniques. It turns out
that nontrivial choices for {Q,W} require special care, and a technique is developed
here that leads to the following contributions. First, the technique can handle general
choices for {Q,W}. Second, the problem formulation applies to a large class of data
uncertainties, as will be explained below. And third, we show how to replace a vector
optimization problem by a scalar minimization problem of a cost function that is
provably unimodal. This step leads to significant simplifications in complexity, and a
justification for its validity is provided in the appendices at the end of the paper.

Applications of the proposed methodology to recursive estimation, control, and
data fusion problems appear in [5, 6, 7, 8]; we refer the reader to these articles for
motivation, examples, simulations, and comparisons with other related techniques.
As a brief motivation, one application in the context of state-space estimation is
succinctly described in section 2.3, with full details provided in [6]. In most of the
paper, however, we opt to focus on studying the properties and technical aspects of
the robust least-squares problem that is formulated below in (2.1).

As mentioned above, the formulation in this article is useful for at least two
reasons. First, it leads to a robust solution that involves regularization rather than
deregularization. In this way, existence conditions do not arise, which could be a
burden for on-line solutions (see, e.g., [6, 7]). Second, the framework incorporates
both regularization and weighting into the cost function. Such extensions are needed
in order to handle, for example, quadratic control and estimation problems where
regularization and weighting are prevalent (see, e.g., [5, 6, 7, 10]).

2. Problem formulation. A generalization of the cost function in (1.1) that
accounts for uncertainties in the data {A, b} can be obtained as follows. Introduce
the two-variable cost function

J(x, y)
∆
= xTQx+R(x, y),

where R(x, y) is a modified residual term that is defined by

R(x, y)
∆
=

(
Ax− b+Hy

)T

W

(
Ax− b+Hy

)
.

Here, H is an N ×m known matrix, and y denotes an m× 1 unknown perturbation
vector. When H = 0, J(x, y) reduces to the standard regularized cost function in
(1.1). The presence of H and y in the expression for R(x, y) allows us to account for
uncertainties in the data, as will become more evident from the discussions in what
follows.

To guarantee optimal performance in a worst-case scenario, we consider a min-
max optimization problem of the form

x̂ = arg min
x

max
‖y‖≤φ(x)

J(x, y),(2.1)

where the notation ‖ · ‖ stands for the Euclidean norm of its vector argument or the
maximum singular value of its matrix argument. The nonnegative function φ(x) is
assumed to be a known bound on the perturbation y and is a function of x only.
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Problem (2.1) can be interpreted as a constrained two-player game problem, with
the designer trying to pick an x̂ that minimizes the cost, while the opponent {y} tries
to maximize the cost (e.g., [9]). The game problem is constrained since it imposes a
limit (through φ(x)) on how large (or how damaging) the opponent {y} can be. We
assume in what follows that H and φ(x) are not identically zero, i.e.,

H 	= 0 and φ(x) 	≡ 0,

since if either is zero, the game problem (2.1) trivializes to the standard regularized
least-squares problem (1.1). The choice of H allows us to handle situations in which
the uncertainties are known to be restricted to a certain subspace.

An initial study of problem (2.1) appears in [10] without the details and some of
the properties that are offered in this article and, in particular, without the arguments
and proofs for general functions φ(x) that appear in the appendices of this paper.

Two useful special cases of the formulation (2.1) are described below. They
correspond to special choices of the function φ(x). These examples are meant to show
how the freedom in selecting φ(x) allows us to handle different uncertainty models.

2.1. A special case: Bounded uncertainties. Consider uncertainties {δA, δb}
that are only known to lie within certain balls of radii {η, ηb}, i.e., they are known to
be bounded and satisfy

‖δA‖ ≤ η, ‖δb‖ ≤ ηb.
Now consider an optimization problem of the form

min
x

max
‖δA‖ ≤ η
‖δb‖ ≤ ηb

[
xTQx +

(
(A + δA)x− (b + δb)

)T

W

(
(A + δA)x− (b + δb)

)]
.(2.2)

It can be verified that this problem is a special case of (2.1) since it can be shown to
be equivalent to a problem of the form

min
x

max
‖y‖≤η‖x‖+ηb

[
xTQx+

(
Ax− b+ y

)T

W

(
Ax− b+ y

)]
,(2.3)

which corresponds to the special choices H = I and φ(x) = η‖x‖+ ηb.
To verify that problems (2.1) and (2.3) are indeed equivalent, we proceed as in

[5] and show that the two variables {δA, δb} in (2.1) can be replaced by a single
variable y, which would therefore allow us to replace the maximization in (2.1) over
two constrained variables by a maximization over a single constrained variable as in
(2.3).

Indeed, for any fixed value of x, let Zx denote the set of all vectors z that are
generated as follows:

Zx = {z : z = δAx− δb, ‖δA‖ ≤ η, ‖δb‖ ≤ ηb}
for all possible {δA, δb} within the prescribed bounds. Also let Yx denote the set of
all vectors y that are generated as follows:

Yx = {y : ‖y‖ ≤ η‖x‖+ ηb}.
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Then Zx = Yx. That is, if z ∈ Zx, then z ∈ Yx. (This direction is immediate and
follows from the triangle inequality of norms.) Conversely, if y ∈ Yx, then y ∈ Zx. To
establish the result for x 	= 0, define for a given y the perturbations

δA(y) =
η

η‖x‖+ ηb

yxT

‖x‖ , δb(y) = − ηby

η‖x‖+ ηb
.(2.4)

Then {δA(y), δb(y)} are valid perturbations and y = δA(y)x− δb(y) so that y ∈ Zx,
which justifies our claim. (When x = 0, we select δb = −y and δA arbitrary.)

As mentioned before, the special case Q = 0 and W = I was treated in [3, 4] by
different methods; one uses SVD techniques while the other uses LMI techniques. For
this special case, a geometric framework that is similar in nature to the geometry of
least-square problems was also developed in [11, 12].

2.2. A special case: Uncertainties in factored form. Consider now a prob-
lem of the form

min
x

max
δA,δb

[
xTQx+

(
(A+ δA)x− (b+ δb)

)T

W

(
(A+ δA)x− (b+ δb)

)]
,(2.5)

where the perturbations {δA, δb} are assumed to satisfy a model of the form

[
δA δb

]
= HS

[
Ea Eb

]
,(2.6)

where S is an arbitrary contraction, ‖S‖ ≤ 1, and {H,Ea, Eb} are known quantities
of appropriate dimensions. Perturbation models of this form are common in robust
filtering and control and can arise from tolerance specifications on physical parameters
(see [13]). The quantity H allows the designer to restrict the range of allowable
uncertainties {δA, δb} to a certain column span. Assume, for example, that one
wishes to model only uncertainties in the (0, 0) entry of A. Then one could choose

H = col{1, 0, . . . , 0}, Ea =
[

1 0 . . . 0
]
, Eb = 0,

and S would denote in this case an arbitrary scalar that is less than unity in mag-
nitude. Other choices for {H,Ea, Eb} would correspond to different assumptions on
the uncertainties.

In order to see how (2.5) is related to (2.1), we rewrite the cost in (2.5) as

[
xTQx+

(
Ax− b+ (δAx− δb)

)T

W
(
Ax− b+ (δAx− δb)

)]

so that with y defined as y = S(Eax− Eb) and Hy defined as

Hy
∆
= δAx− δb = HS(Eax− Eb)

problem (2.5) can be verified to be equivalent to the following problem:

min
x

max
‖y‖≤‖Eax−Eb‖

[
xTQx+

(
Ax− b+Hy

)T

W
(
Ax− b+Hy

)]
,

which is again a special case of (2.1) for the particular choice φ(x) = ‖Eax− Eb‖.
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2.3. An application: State estimation. Before proceeding to a discussion of
the solution and properties of the general problem (2.1), we motivate this optimization
problem by considering an application in the context of state-space estimation.

Thus consider a state-space model of the form

xi+1 = Fixi +Giui, i ≥ 0,(2.7)

yi = Hixi + vi,(2.8)

where {x0, ui, vi} are uncorrelated zero-mean random variables with variances

E





 x0

ui
vi





 x0

uj
vj




T

 =


 Π0 0 0

0 Qiδij 0
0 0 Riδij


(2.9)

that satisfy Π0 > 0, Ri > 0, and Qi > 0. Here, δij is the Kronecker delta function that
is equal to unity when i = j and zero otherwise. The well-known Kalman filter [14]
provides the optimal linear least-mean-squares (l.l.m.s., for short) estimate of the state
variable given prior observations. It admits the following deterministic interpretation
[15].

Fix a time instant i and assume that a so-called filtered estimate x̂i|i of xi has
already been computed with the corresponding error variance matrix Pi|i. Given
a new measurement yi+1, one can seek to improve the estimate of xi, along with
estimating ui, by solving

min
xi,ui

[
‖xi − x̂i|i‖2P−1

i|i
+ ‖ui‖2Q−1

i
+ ‖yi+1 −Hi+1xi+1‖2R−1

i+1

]
.(2.10)

Substituting xi+1 by the state-equation xi+1 = Fixi +Giui, the above cost function
becomes one of the regularized and weighted least-squares form (1.1), and its solution
leads to the Kalman filter recursions.

Now, assume that the state-space model includes parametric uncertainties, say of
the form

xi+1 = (Fi + δFi)xi + (Gi + δGi)ui, i ≥ 0,(2.11)

yi = Hixi + vi,(2.12)

where the uncertainties {δFi, δGi} lie in a certain domain, say of the form[
δFi δGi

]
= MiS

[
Ef,i Eg,i

]
for some known matrices {Mi, Ef,i, Eg,i} and an arbitrary contraction S. We can
then consider replacing (2.10) by

min
{xi,ui}

max
δFi,δGi

[
‖xi − x̂i|i‖2P−1

i|i
+ ‖ui‖2Q−1

i
+ ‖yi+1 −Hi+1xi+1‖2R−1

i+1

]
.(2.13)

If we substitute xi+1 by its state-equation xi+1 = (Fi + δFi)xi + (Gi + δGi)ui, the
above min-max problem becomes again a special case of the robust cost function (2.1),
actually one of the form (2.5)–(2.6); see [6] for the details, including numerical exam-
ples and comparison with several other classes of state-space estimation algorithms
such as Kalman filters, H∞ filters, guaranteed-cost filters, and set-valued estimation
filters.
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3. Solution of the optimization problem. We now proceed to the solution of
problem (2.1). In particular, we shall show that the solution has a regularized form,
albeit one that operates on corrected data; i.e., it replaces {Q,W} by corrections

{Q̂, Ŵ}. In addition, and significantly, we shall show that the corrected parameters
are determined in terms of the unique minimizing scalar argument, λo, of a unimodal
cost function. In this way, we end up with a technique that enforces robustness via
regularization, rather than deregularization as is common in many robust procedures
in the literature, and whose optimal solution involves determining the minimizing
argument of a scalar unimodal function, a step that simplifies the complexity of the
solution to great extent.

3.1. Uniqueness of solution. We start by noting that the condition Q > 0
implies that (2.1) has a unique, finite solution. Indeed, for any given y, the residual
cost R(x, y) is convex in x. Therefore, the maximum

C(x)
∆
= max

‖y‖≤φ(x)
R(x, y)(3.1)

is a convex function in x. In addition, the first term in J(x, y), xTQx, is strictly
convex in x and radially unbounded (i.e., |xTQx| goes to infinity as ‖x‖ → ∞) when
Q > 0. We conclude that xTQx + C(x) is also strictly convex in x and radially
unbounded, which implies that problem (2.1) has a unique global minimum x̂. To
determine x̂, we proceed in steps.

3.2. The maximization problem. We first solve (3.1) for any fixed x. Note
that for fixed x, both the cost R(x, y) and the constraint ‖y‖ ≤ φ(x) are convex in y,
so that the maximum

max
‖y‖≤φ(x)

R(x, y)

is achieved at the boundary, ‖y‖ = φ(x). We can therefore replace the inequality
constraint in (3.1) by an equality. Introducing a Lagrange multiplier λ, the solution
to (3.1) can then be found from the unconstrained problem

max
y,λ

[(
Ax− b+Hy

)T
W

(
Ax− b+Hy

)− λ(‖y‖2 − φ2(x)
)]
.(3.2)

Differentiating (3.2) with respect to y and λ, and denoting the optimal solutions by
{yo, λo}, we obtain the equations

(λoI −HTWH)yo = HTW (Ax− b), ‖yo‖ = φ(x).(3.3)

It turns out that the solution λo should satisfy λo ≥ ‖HTWH‖. This is because the
Hessian of the cost in (3.2) with respect to y, which is equal to

HTWH − λI,
must be nonpositive-definite at λ = λo [16].1 We should further stress that the solu-
tions {yo, λo} depend on x, and we shall therefore sometimes denote this dependence
explicitly by writing {yo(x), λo(x)}.2

1We refer to the case λo = ‖HTWH‖ as the singular case, while λo > ‖HTWH‖ is called
the regular case. Both cases are handled simultaneously in our framework through the use of the
pseudo-inverse notation.

2In fact, we show in Appendix A that the solution λo(x) is always a continuous function of x,
while there might exist several yo when λo(x) = ‖HTWH‖.
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At this stage, we do not need to solve the equations (3.3) for {yo, λo}. It is enough
to know that the optimal {yo, λo} satisfy (3.3). Using this fact, we can verify that
the maximum cost in (3.2) is equal to

C(x) = (Ax− b)T
[
W +WH

(
λo(x)I −HTWH

)†
HTW

]
(Ax− b)(3.4)

+ λo(x)φ2(x),

where the notation X† denotes the pseudo-inverse of X.

3.3. The minimization problem. The original problem (2.1) is therefore equiv-
alent to

min
x

[
xTQx + C(x)

]
.(3.5)

However, rather than minimizing the above cost over n variables, which are the entries
of the vector x, we can instead reduce the problem to one of minimizing a certain cost
function over a single scalar variable (see (3.9) further ahead). For this purpose, we
introduce the following function of two independent variables x and λ,

C(x, λ) = (Ax− b)T
[
W +WH

(
λI −HTWH

)†
HTW

]
(Ax− b) + λφ2(x),

where λ is an independent variable. Then it can be verified, by direct differentiation
with respect to λ and by using the expression for λo(x) from (3.3), that

λo(x) = arg min
λ≥‖HTWH‖

C(x, λ) .(3.6)

In other words, the optimal λo(x) from (3.3) coincides with the argument that mini-
mizes C(x, λ) over λ (with λ restricted to the interval

[ ‖HTWH‖,∞)
).

In this way, problem (2.1) becomes equivalent to

min
x

min
λ≥‖HTWH‖

[
xTQx + C(x, λ)

]
= min

λ≥‖HTWH‖
min
x

[
xTQx + C(x, λ)

]
.(3.7)

The cost function in the above expression, viz., J(x, λ) = xTQx + C(x, λ), is now a
function of two independent variables {x, λ}. This should be contrasted with the cost
function in (3.5). Now, for compactness of notation, we introduce the quantities

W (λ)
∆
= W +WH

(
λI −HTWH

)†
HTW,

M(λ)
∆
= Q+ATW (λ)A,

D(λ)
∆
= ATW (λ)b.

To solve problem (3.7), we first search for the minimum over x for every fixed value
of λ, which can be done (if φ2(x) is differentiable) by setting the derivative of J(x, λ)
with respect to x equal to zero. This shows that any minimum x must satisfy the
equation

M(λ)x+
1

2
λ∇φ2(x) = D(λ),(3.8)

where∇φ2(x) is the gradient of φ2(x) with respect to x. Any x satisfying this equation
will of course be a function of λ, and we shall denote it by xo(λ). Now let G(λ) denote
the minimum value of the cost over x, i.e.,

G(λ)
∆
= min

x
[xTQx+ C(x, λ)] = xoT (λ)Qxo(λ) + C(xo(λ), λ).
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Then problem (3.7) becomes equivalent to

min
λ≥‖HTWH‖

G(λ).

Thus we see that the solution of (2.1) simply requires that we determine an optimal
scalar parameter λo. The scalar minimization problem that defines λo is well behaved
since (as we show in Theorem 3.1 below) G(λ) is unimodal (i.e., there is a unique
global minimum λo and no other local minima).

3.4. Statement of solution in the general case. Whenever φ(x) is a convex
function, the cost J(x, λ) will be strictly convex in x, and the minimization over x on
the right-hand side of (3.7) will have a unique solution xo(λ) (as was the case with
the above two special cases). We thus have a procedure that allows us to determine
the minimizing xo for every λ. This in turn allows us to re-express the resulting
cost J(xo(λ), λ) as a function of λ alone, say G(λ) = J(xo(λ), λ). In this way, we
concluded above that the solution xo of the original optimization problem (2.1) can
be solved by determining the λo that solves

min
λ≥‖HTWH‖

G(λ)(3.9)

and by taking the corresponding xo(λo) as xo. We summarize the solution in the
following statement.

Theorem 3.1 (solution). Consider a regularized and weighted robust least-
squares problem of the form

x̂ = arg min
x

max
‖y‖≤φ(x)

[
xTQx+

(
Ax− b+Hy

)T

W

(
Ax− b+Hy

)]
,(3.10)

where {A, b,H} are known quantities of appropriate dimensions, W ≥ 0 and Q > 0
are known weighting matrices, and φ(x) is a given convex function. It is further
assumed that H and φ(x) are not identically zero. Then problem (3.10) has a unique
global minimum x̂ that can be determined as follows:

1. Introduce the modified matrices

W (λ)
∆
= W +WH

(
λI −HTWH

)†
HTW,

M(λ)
∆
= Q+ATW (λ)A,

D(λ)
∆
= ATW (λ)b.

2. Let xo(λ) denote the unique solution of the minimization problem

min
x

[
xTQx + (Ax− b)TW (λ)(Ax− b) + λφ2(x)

]
.

When φ2(x) is differentiable, xo(λ) can also be found as the unique solution
of the equation

M(λ)x+
1

2
λ∇φ2(x) = D(λ),

where the notation ∇φ2(x) denotes the gradient of φ2(x) with respect to x.
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3. Introduce the cost function

G(λ) = xoT (λ)Qxo(λ) + C[xo(λ), λ].

4. Let λo denote the solution of the scalar-valued minimization problem

λo = arg min
λ≥‖HTWH‖

G(λ).

5. Then the optimum solution of (3.10) is x̂ = xo(λo). In addition, it holds that
the cost function G(λ) is unimodal, i.e., it has a unique global minimum and
no local minima.

Proof. The only point not yet proven is the fact that G(λ) is unimodal. This
follows from Lemma C.2 in Appendix C and from the continuity of λo(x) in (3.6),
which is established in Appendix A.2.

We now illustrate the solution method by reconsidering the two special cases we
introduced before. In both examples, φ(x) is convex, so the minimization problem
over x in (3.7) has a unique solution and is easily computable. In one of the examples,
φ2(x) is not differentiable at x = 0.

3.5. Uncertainties in factored form. Consider first the special case of sec-
tion 2.2 with

φ(x) = ‖Eax− Eb‖.
For this choice of φ(x), we obtain

∇φ2(x) = 2ET
a (Eax− Eb)

so that the solution of (3.8), which is dependent on λ, becomes

xo(λ) =

[
M(λ) + λET

a Ea

]−1 (
D(λ) + λET

a Eb

)
.(3.11)

Using this expression for xo(λ) we find that the corresponding function G(λ) is given
by

G(λ) = λET
b Eb + bTW (λ)b−BT (λ)E−1(λ)B(λ),

where W (λ) is as before, and the functions {B(λ), E(λ)} are given by

B(λ) = ATW (λ)b+ λET
a Eb,

E(λ) = Q+ λET
a Ea +ATW (λ)A.

We are thus led to the following statement.
Theorem 3.2 (uncertainties in factored form). Consider a regularized and

weighted robust least-squares problem of the form

min
x

max
δA,δb

[
xTQx+

(
(A+ δA)x− (b+ δb)

)T

W

(
(A+ δA)x− (b+ δb)

)]
,(3.12)

where {A, b} are known quantities of appropriate dimensions, W ≥ 0 and Q > 0 are
known weighting matrices, and the perturbations {δA, δb} are assumed to satisfy a
model of the form [

δA δb
]

= HS
[
Ea Eb

]
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for some known quantities {H,Ea, Eb} and where S denotes an arbitrary contraction.
Then problem (3.12) has a unique global minimum x̂ that is given by (compare with
(1.2))

x̂ =
[
Q̂+AT ŴA

]−1 [
AT Ŵ b+ λoET

a Eb

]
,(3.13)

where the modified weighting matrices {Q̂, Ŵ} are obtained from {Q,W} via

Q̂
∆
= Q+ λoET

a Ea,

Ŵ
∆
= W +WH(λoI −HTWH)†HTW,

and the nonnegative scalar parameter λo is determined from the scalar-valued opti-
mization

λo = arg min
λ≥‖HTWH‖

G(λ),

where the function G(λ) is defined as

G(λ) = ‖xo(λ)‖2Q + λ‖Eax
o(λ)− Eb‖2 + ‖Axo(λ)− b‖2W (λ).

Here

W (λ)
∆
= W +WH

(
λI −HTWH

)†
HTW,

Q(λ)
∆
= Q+ λET

a Ea,

and

xo(λ)
∆
=

[
Q(λ) +ATW (λ)A

]−1 [
ATW (λ)b+ λET

a Eb

]
.

We thus see that the solution of (3.12) requires that we first determine an optimal
nonnegative scalar parameter, λo, which corresponds to the minimizing argument of
the function G(λ) over the semiopen interval [‖HTWH‖,∞). Compared with the
solution (1.2) of the standard regularized least-squares problem (1.1), the expression
for x̂ in (3.13) is distinct in two important ways:

(a) First, the weighting matrices {Q,W} need to be replaced by corrected ver-

sions {Q̂, Ŵ}. These corrections are defined in terms of the optimal parameter
λo and are also dependent on the uncertainty model.

(b) Second, the right-hand side of (3.13) contains an additional term that is equal
to λoET

a Eb. This means that, with λo given, the x̂ in (3.13) can be interpreted
as the solution to a regularized least-squares problem of the form

min

x

([
1 xT

] [
λ̂‖Eb‖2 −λ̂ET

b Ea

−λ̂ET
a Eb Q̂

] [
1
x

]

+ (Ax− b)T Ŵ (Ax− b)
)

with a cross-coupling term between x and unity.
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The complexity of the solution in the factored uncertainty case is therefore com-
parable to that of a standard regularized least-squares problem with the additional
task of determining the optimal scalar parameter λo by minimizing the cost func-
tion G(λ) over the open interval [‖HTWH‖,∞). As is clear from the statement of
Theorem 3.1 in the general case, this function is unimodal and has a unique global
minimum over the interval of interest. Therefore, the determination of λo can be
pursued by employing standard search procedures without worries about convergence
to undesired local minima.

3.6. Bounded uncertainties. Consider next the special case of section 2.1 with

φ(x) = η‖x‖+ ηb.

In this case, solving for xo is not so immediate since (3.8) now becomes, for any
nonzero x,

x =

[
M(λ) + λη

(
η +

ηb
‖x‖I

)]−1

D(λ) .(3.14)

Note that x appears on both sides of the equality (except when ηb = 0, in which case
the expression for x is complete in terms of {M(λ), λ, η,D(λ)}). To solve for x in
the general case we let α = ‖x‖ and square the above equation to obtain the scalar
equation in α:

α2 −DT (λ)
[
M(λ) + λη

(
η +

ηb
α

)
I
]−2

D(λ) = 0 .(3.15)

It is shown in Appendix B that a unique solution αo(λ) > 0 exists for this equation if
and only if ληηb < ‖D(λ)‖. Otherwise, αo(λ) = 0. In the former case, the expression
for xo, which is a function of λ, becomes

xo(λ) =

[
M(λ) + λη

(
η +

ηb
αo(λ)

)
I

]−1

D(λ) .(3.16)

In the latter case we clearly have xo(λ) = 0.
Substituting the expression for xo(λ) into (3.16) we get

G(λ) = xo(λ)TQxo(λ) +
(
Axo(λ)− b)TW (λ)

(
Axo(λ)− b) + λφ2

(
xo(λ)

)
.

We are thus led to the following statement.
Theorem 3.3 (bounded uncertainties). Consider a regularized and weighted

robust least-squares problem of the form

min
x

max
‖δA‖ ≤ η
‖δb‖ ≤ ηb

[
xTQx +

(
(A + δA)x− (b + δb)

)T

W

(
(A + δA)x− (b + δb)

)]
,(3.17)

where {A, b} are known quantities of appropriate dimensions, W ≥ 0 and Q > 0 are
known weighting matrices, and the perturbations {δA, δb} are assumed to be bounded
by {η, ηb}. Then problem (3.3) has a unique global minimum x̂ that can be determined
as follows:
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1. Introduce the modified matrices

W (λ)
∆
= W +W

(
λI −W )†

W,

M(λ)
∆
= Q+ATW (λ)A,

D(λ)
∆
= ATW (λ)b.

2. For every λ, define

xo(λ) =

{
0 if ληηb < ‖D(λ)‖,[
M(λ) + λη

(
η + ηb

αo(λ)

)
I
]−1

D(λ) otherwise,

where in the second case, αo(λ) is the unique positive solution of the equation

α2 −DT (λ)
[
M(λ) + λη

(
η +

ηb
α

)
I
]−2

D(λ) = 0.

3. Introduce the cost function

G(λ) = xo(λ)TQxo(λ) +
(
Axo(λ)− b)TW (λ)

(
Axo(λ)− b) + λφ2

(
xo(λ)

)
,

where φ(x) = η‖x‖+ ηb.
4. Let λo denote the solution of the scalar-valued minimization problem

λo = arg min
λ≥‖W‖

G(λ).

5. Then the optimum solution of (3.3) is

x̂ =

{
0 if λoηηb < ‖D(λo)‖,
xo(λo) otherwise,

where in the second case, the solution x̂ admits the form

x̂ =
[
Q̂+AT ŴA

]−1

AT Ŵ b,

where the modified weighting matrices {Q̂, Ŵ} are obtained from {Q,W} via

Q̂
∆
= Q+ λoη

(
η +

ηb
αo(λo)

)
I, Ŵ

∆
= W +W (λoI −W )†W.

Here again we find that the solution requires that we first determine an optimal
nonnegative scalar parameter, λo, which corresponds to the minimizing argument of
the corresponding function G(λ) over the semiopen interval [‖W‖,∞). In the special
case ηb = 0, we do not need to worry about determining αo(·) anymore since the
expression for the solution x̂ simplifies to

x̂ =
[
Q̂+AT ŴA

]−1

AT Ŵ b

with

Q̂ = Q+ λoη2I, Ŵ = W +W (λoI −W )†W,

and G(λ) is now defined in terms of

xo(λ) =
[
M(λ) + λη2I

]−1
D(λ).
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4. Concluding remarks. In this paper we formulated and solved a robust opti-
mization problem that involves a least-squares criterion with both regularization and
weighting. The solution turns out to be in regularized form, albeit one that involves
corrected weighting matrices. Compared with other robust solutions, the technique
does not perform deregularization and, consequently, does not require existence con-
ditions. This fact is useful for applications that involve real-time operations. In such
applications, existence conditions can be a burden, since when they fail, the solution
breaks down. Applications of the proposed methodology to recursive Kalman estima-
tion, quadratic control, and data fusion problems in wireless communications appear
in [5, 6, 7, 8].

Appendix A. Properties of λo(x). In this appendix, we prove that a solution
λo of (3.3) exists and is unique for every x ∈ R

n. We also prove that the function
λo(x) is continuous, a fact that was used in section 3.4.

Before we proceed, however, we remark that the arguments are made simpler if
we assume that HTWH is a diagonal matrix. This can be done without any loss of
generality by a change of variables in y. Indeed, define

ȳ = Uy, H̄ = HUT ,

where U is an orthogonal matrix (UTU = I) such that U(HTWH)UT = Ω =
diag(ωi); and note that the two sets below are equal:

{ȳ : ‖ȳ‖ ≤ φ(x)} = {y : ‖y‖ ≤ φ(x)},
since ‖ȳ‖ = ‖Uy‖ = ‖y‖ by the orthogonality of U . In addition, H̄ȳ = Hy and
H̄TWH̄ = Ω. In the following appendices we shall therefore assume that HTWH =
diag(ωi).

A.1. Solution of (3.3). The entries of the diagonal matrix (see above)HTWH =
diag(ωi) can be ordered such that

‖HTWH‖ = ω1 = ω2 = · · · = ωp > ωp+1 ≥ · · · ≥ ωm ≥ 0,(A.1)

where p is the multiplicity of the largest eigenvalue of HTWH, ω1 = ‖HTWH‖.
Partition HTWH as follows:

HTWH = Ω =

[
ω1Ip 0

0 Ω2

]
,

where Ω2 = diag(ωp+1, . . . , ωm). Define also the vector

z(x) =

[
z1(x)
z2(x)

]
= HTW (Ax− b),

where z1(x) ∈ R
p and z2(x) ∈ R

m−p. For every λ > ω1, the matrix (λI −HTWH) is
invertible, and we can define

y(λ, x) =

[
y1(λ, x)
y2(λ, x)

]
=

[
1

λ−ω1
z1(x)

(λIm−p − Ω2)−1z2(x)

]
= (λI −HTWH)−1z(x)

with y1 ∈ R
p and y2 ∈ R

m−p. We found previously that the worst-case disturbance
yo and the Lagrange multiplier λo must satisfy (3.3), repeated below:

(λoI −HTWH)yo = HTW (Ax− b), ‖yo‖2 = φ2(x).
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φ(x)

λ

‖y(λ, x)‖

ω1 λo(x)

Fig. A.1. Solution of (3.3).

If {yo, λo} are such that λo > ω1, these conditions reduce to

‖y(λo, x)‖ = φ(x).(A.2)

We now study the behavior of ‖y(λ, x)‖2 to find when there is a λo > ω1 satisfying
the above condition. Note that, for fixed x, ‖y(λ, x)‖2 is a differentiable function of
λ, with

d‖y(λ, x)‖2
dλ

= z(x)T


 d

dλ




1
(λ−ω1)2

. . . 0

. . .

0 . . . 1
(λ−ωm)2





 z(x)

= z(x)T
[− 2

(λ−ω1)3
Ip 0

0 −2(λIm−p − Ω2)−3

]
z(x).

The derivative is therefore negative for z(x) 	= 0, since the above matrix is negative-
definite when λ > ω1. Note that when z(x) = 0, y(λ, x) = 0 for all λ > ω1. We later
show that in this case the solution will be λo = ω1.

Fact 1. We conclude that for λ > ω1, ‖y(λ, x)‖2 is a strictly decreasing, con-
tinuous function of λ (except when z(x) = 0). Therefore, the solution to (A.2), if it
exists, is unique (see Figure A.1).

Consider now the following cases:
1. z1(x) 	= 0 (in this case, limλ↓ω1 ‖y(λ, x)‖ =∞);
2. z1(x) = 0, but ‖y2(ω1, x)‖ > φ(x) (in this case, limλ↓ω1 ‖y(λ, x)‖ > φ(x));
3. z1(x) = 0 and ‖y2(ω1, x)‖ ≤ φ(x).
Fact 2. In all cases, the limit of ‖y(λ, x)‖ as λ goes to infinity is zero. This

observation and Fact 1 imply that (A.2) will have a solution λo > ω1 if and only if

lim
λ↓ω1

‖y(λ, x)‖ > φ(x),

which is the situation in cases 1 and 2. We refer to a point x ∈ R
n for which

λo(x) > ω1 as a regular point. A point x satisfying the conditions in case 3 will be
called a singular point.
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We argue now that if x is a singular point (i.e., if case 3 happens), the corre-
sponding Lagrange multiplier must be λo(x) = ω1. In case 3, ‖y2(ω1, x)‖ ≤ φ(x),
and condition (A.2) will not be satisfied even in the limit as λ → ω1. The original
condition (3.3) can still be satisfied, however, as we show next.

Assume that the conditions in case 3 hold, and choose λ = ω1. Then condition
(3.3) reads[

0 0
0 ω1Im−p − Ω2

] [
y1
y2

]
=

[
0

z2(x)

]
, ‖y‖2 = ‖y1‖2 + ‖y2‖2 = φ2(x).

The first condition is satisfied for

y2 = (ω1Im−p − Ω2)
−1
z2(x),

where the inverse exists since by definition ω1 > ωp+1 = ‖Ω2‖. The second condition
in case 3 is ‖y2‖ ≤ φ(x). Therefore, to satisfy the norm condition in (3.3), we just
choose any y1 ∈ R

p whose norm satisfies

‖y1‖2 = φ2(x)−
∥∥∥(ω1Im−p − Ω2)

−1
z2(x)

∥∥∥2

.

Lemma A.1 (solution to the maximization problem). If a point x ∈ R
n is regular,

viz.,

z1(x) 	= 0 and lim
λ↓ω1

‖y(λ, x)‖ > φ(x),(A.3)

then the Lagrange multiplier at the maximum λo(x) > ω1 is the unique solution to
(A.2). (Although the first condition implies the second, we want to state it explicitly
here for further reference.) In this case, the worst-case disturbance

yo = y(λo, x) = (λoI −HTWH)−1HTW (Ax− b), ‖yo‖ = φ(x)

is also unique.
On the other hand, if x is singular, viz.,

z1(x) = 0 and lim
λ↓ω1

‖y(λ, x)‖ ≤ φ(x),(A.4)

then the Lagrange multiplier will be λo(x) = ω1. Now the worst-case disturbance is
no longer unique—any disturbance of the form below will achieve the maximum:

yo =

[
yo1
yo2

]
,

with yo1 ∈ R
p, and

yo2 = (ω1Im−p − Ω2)−1z2(x), ‖yo1‖2 = φ2(x)− ‖yo2‖2.
In addition, using the pseudo-inverse notation, we can write

yo = (ω1I −HTWH)†HTW (Ax− b) +

[
yo1
0

]
,

where

‖yo1‖2 = φ2(x)− ∥∥(ω1I −HTWH)†HTW (Ax− b)∥∥2
.
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A.2. Continuity of λo(x). This property of λo(x) was invoked in section 3.4 to
argue that G(λ) is unimodal (see Theorem 3.1). We again treat regular and singular
points separately.

Regular points. By definition, at a regular point x̃, λo(x̃) > ω1 and

f(λo, x̃)
∆
= φ2(x̃)− (Ax̃− b)TWH(λo(x̃)I −HTWH)−2HTW (Ax̃− b) = 0.

Now from the implicit function theorem [17], the function λo(x) defined by the above
condition is continuous at a given point x if the gradient ∇λf(λ, x) is nonzero at
λ = λo. To check this condition, compute the partial derivative

∂f(λ, x)

∂λ
= 2(Ax− b)TWH(λI −HTWH)−3HTW (Ax− b).

At a regular point x̃, recall that we must have either z1(x̃) 	= 0 or ‖y2(ω1, x)‖ >
φ(x̃) (see (A.3)). Both these conditions would be violated if Ax̃ − b = 0, so our
assumption that x̃ is regular implies that Ax̃− b 	= 0. With this fact, and noting that
(λo(x̃)I −HTWH)−3 > 0 (from the regularity of x̃), we conclude that

∂f(λo(x), x)

∂λ
> 0,

satisfying the condition of the implicit function theorem. We have thus proved that
λo(x) is continuous at any regular point x̃.

Singular points. Now let x̄ ∈ R
n be a singular point. We prove the continuity

of λo(·) at x = x̄ from the definition. Given an ε > 0, we shall find δ(ε) > 0 such that
(λo(x̄) = ω1)

‖x− x̄‖ < δ ⇒ |λo(x)− ω1| < ε.

To find such a δ, we shall need some properties of singular points and of φ2(x) and
z(x)—if x̄ is a singular point, then from the previous sections we have the following:

1. φ(x̄) ≥ ‖(ω1I −HTWH)†HTW (Ax̄− b)‖;
2. z1(x̄) = 0;
3. ‖y2(λ, x)‖2 is continuous in (λ, x) on (ω1,∞)×R

n, and continuous and strictly
decreasing in λ > ω1 for fixed x.

Recalling that z(x) = HTW (Ax− b), we also have the following:
4. ‖z1(x)‖2 and ‖z2(x)‖2 are continuous functions for all x ∈ R

n.
Finally, we must make an assumption on the uncertainty bound, namely, we assume
that

5. φ2(x) is continuous for all x ∈ R
n (in fact, this follows from our assumption

in Theorem 3.1 that φ2(x) is convex).
Two situations may occur:

A. There exists a neighborhood N(x̄) whose points are all singular, i.e., x ∈
N(x̄)⇒ λo(x) = ω1. In this situation, the continuity of λo(·) at x̄ is trivial.

B. Every neighborhood of x̄ contains a regular point x∗.
Let us consider the second case. We now find a ball Bδ(x̄) = {x : ‖x − x̄‖ < δ} for
which

sup
x∈Bδ(x̄)

λo(x) < λo(x̄) + ε = ω1 + ε.
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The above properties and assumptions imply that for any K1, K2, and K3, it is
possible to find δ1, δ2, and δ3 > 0 such that

‖x− x̄‖ < δ1 ⇒
∣∣∣∣∣∣‖z1(x)‖2 − ‖z1(x̄)‖2︸ ︷︷ ︸

=0

∣∣∣∣∣∣ <
ε

K1
,

‖x− x̄‖ < δ2 ⇒ ‖z2(x)− z2(x̄)‖2 < ε

K2
,

‖x− x̄‖ < δ3 ⇒
∣∣φ2(x)− φ2(x̄)

∣∣ < ε

K3
.

(A.5)

Choose the Ki such that

K1 =
K̄1

ε2
,

1

K̄1
+

1

(ω1 − ωp+1)2K2
+

1

K3
<
‖y2(ω1, x̄)‖2
2(ω1 − ωp+1)

(A.6)

and let δ = min{δ1, δ2, δ3}. Remark that the Ki cannot be chosen to satisfy (A.6)
only if y2(ω1, x̄) = 0. We shall assume for now that y2(ω1, x̄) 	= 0 and treat the other
case later.

Since we are studying case B, let x∗ be a regular point in Bδ(x̄). As a regular
point, x∗ satisfies λo(x∗) > ω1 and

‖y(λo(x∗), x∗)‖ = φ(x∗) and lim
λ↓ω1

‖y(λ, x∗)‖ > φ(x∗)

(the limit may be infinity).
We now show that for λ∗ = ω1 + ε, it necessarily holds that

‖y(λ∗, x∗)‖ < φ(x∗),

which means that ω1 < λo(x∗) < ω1 + ε, which is our desired result. Let us then
evaluate ‖y(λ, x∗)‖2:

‖y(λ, x∗)‖2 =

∥∥∥∥(λI −HTWH)−1

[
z1(x∗)
z2(x∗)

]∥∥∥∥
2

= (λ− ω1)−2‖z1(x∗)‖2 +

∥∥∥∥∥∥∥∥



λ− ωp+1 . . . 0

. . .

0 . . . λ− ωm



−1

z2(x∗)

∥∥∥∥∥∥∥∥

2

.

We use (A.5) to bound these norms,

‖y(λ, x∗)‖2 < ε

(λ− ω1)2K1
+ ‖y2(λ, x̄)‖2 +

ε

(λ− ωp+1)2K2
,(A.7)

where we used ‖diag
(
(λ − ωj)

−1
)‖ = (λ − ωp+1)−1 and z2(x∗) = z2(x̄) +

(
z2(x∗) −

z2(x̄)
)
.
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To bound the second term, we write

y2(λ, x̄) =




ω1−ωp+1

λ−ωp+1

. . .
ω1−ωm

λ−ωp+1






ω1 − ωp+1

. . .

ω1 − ωm



−1

z2(x̄)

=




ω1−ωp+1

λ−ωp+1

. . .
ω1−ωm

λ−ωp+1


 y2(ω1, x̄)

∆
= P (λ)y2(ω1, x̄).

Let λ = ω1 + ε; then the largest element of P (λ) will be (if ε is small enough)

ω1 − ωp+1

ω1 + ε− ωp+1
= 1− ε

ω1 − ωp+1
+

ε2

(ω1 − ωp+1)2
−

(
ε3

(ω1 − ωp+1)3
+ · · ·

)
︸ ︷︷ ︸
≥0 if ε/(ω1−ωp+1)<1/2

< 1− ε

ω1 − ωp+1
+

ε2

(ω1 − ωp+1)2
< 1− ε

2(ω1 − ωp+1)

and thus,

‖y2(λ, x̄)‖2 <
(

1− ε

2(ω1 − ωp+1)

)
‖y2(ω1, x̄)‖2

< φ2(x̄)− ε

2(ω1 − ωp+1)
‖y2(ω1, x̄)‖2

< φ2(x∗) +
ε

K3
− ε

2(ω1 − ωp+1)
‖y2(ω1, x̄)‖2.

Using this bound in (A.7), we obtain

‖y(ω1 + ε, x∗)‖2 < ε

ε2K1
+

ε

(ω1 + ε− ωp+1)2K2
+ φ2(x∗)

+
ε

K3
− ε

2(ω1 − ωp+1)
‖y2(ω1, x̄)‖2 < φ2(x∗),

where the last inequality follows from our choice of the Ki in (A.6). The inequality
shows that λo(x∗) < ω1 + ε. Since the above argument holds for any regular point in
Bδ(x̄), we have

x ∈ Bδ(x̄)⇒ ω1 ≤ λo(x) < ω1 + ε,

which proves the continuity of λo(·) at singular points x̄ for which y2(ω1, x̄) 	= 0.
Finally we consider singular points x̄ for which y2(ω1, x̄) is zero. In this case,

Ax̄− b is necessarily zero (since z1(x̄) = 0 for singular points). Again, two situations
may happen:

(i) φ(x̄) = 0. In this situation, the solution of the maximization problem is
trivial, as the uncertainty will be identically zero.

(ii) φ(x̄) > 0. Now, from the continuity of ‖y2(λ, x̄)‖2 and of φ2(x), there exists
a ball Bδ4(x̄) such that

x ∈ Bδ4(x̄)⇒ ‖y2(ω1, x)‖2 < φ2(x̄)

2
.
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With this inequality, if we choose K1 and K3 such that

K1 =
K̄1

ε2
,

1

K̄1
+

1

2K3
<
φ2(x̄)

2
− 1

2K3
,

then if δ = min{δ1, δ3, δ4}, for all regular points x∗ ∈ Bδ(x̄), we can replace
(A.7) by the simpler expression

‖y(λ, x∗)‖2 < ε

(λ− ω1)2K1
+ ‖y2(λ, x∗)‖2 < ε

(λ− ω1)2K1
+
φ2(x̄)

2
,

where we used the fact that ‖y2(λ, x∗)‖2 is decreasing with λ. With our choice
of K1, for λ = ω1 + ε we obtain

‖y(ω1 + ε, x∗)‖2 < ε

K̄1
+
φ2(x̄)

2
<

ε

K̄1
+

ε

2K3
+
φ2(x∗)

2

<
φ2(x̄)

2
− ε

2K3
+
φ2(x∗)

2
< φ2(x∗),

which implies that λo(x∗) < ω1 + ε.

Appendix B. Computation of xo(λ) in the bounded uncertainty case.
With φ(x) = η‖x‖ + ηb, the vector x that achieves the minimum on the right-hand
side of (3.7) is the solution to the equation

x
∆
= xo(λ) =

(
Q+ATW (λ)A+ λη2I +

ληηb
‖x‖ I

)−1

ATW (λ)b.(B.1)

The value of x is clearly a function of λ. Observe, however, that this equation defines
x implicitly since x appears on both sides of the equality. To proceed, we consider
two cases.

Case 1: ηb = 0. In this case, the expression for xo(λ) collapses to

xo(λ) =

[
Q+ λη2I +ATW (λ)A

]−1

ATW (λ)b.

That is, the term ‖x‖ disappears from the right-hand side of (B.1). Consequently,
this expression defines xo(λ) explicitly.

Case 2: ηb 	= 0. In this case, the term ‖x‖ does not disappear from the right-hand
side of (B.1). In order to solve for x we proceed as follows. First, we introduce the
scalar α = ‖x‖ and square both sides of (B.1). This leads to the following nonlinear
equation in α:

α2 −DT (λ)
[
M(λ) + λη

(
η +

ηb
α

)
I
]−2

D(λ) = 0,(B.2)

where

M(λ) = Q+ATW (λ)A, D(λ) = ATW (λ)b.

The value of α is again dependent on λ. The following result indicates that the solution
to the above nonlinear equation for α is either at α = 0 or at a unique positive value.

Lemma B.1. Let xo(λ) minimize the inner cost on the right-hand side of (3.7). If
and only if ληηb < ‖D(λ)‖, the norm ‖xo(λ)‖ is equal to the unique positive solution
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of equation (B.2), αo(λ). Otherwise, the solution to the minimization problem is
xo(λ) = 0, i.e., αo(λ) = 0.

Proof. We shall first find the solutions of (B.2) when ληηb < ‖D(λ)‖; afterwards
we relate these conditions to the solutions of the inner minimization problem on the
right-hand side of (3.7).

Introduce the SVD of the symmetric positive-definite matrix M(λ), say M(λ) =
UΣUT , where {U,Σ} are also dependent on λ. We denote the entries of Σ by {σi}.
Substituting this decomposition into the left side of (B.2), it reduces to the function

f(α)
∆
= α2 −

n∑
i=1

d̄2
i

[σi + λη(η + ηb

α )]2
,

where {d̄i} denotes the entries of the transformed vector UTD(λ). We are seeking
the roots of f(α).

Note that α = 0 is always a solution if ηb > 0. Let us search for a solution α > 0.
Assuming α > 0, we can write

f(α) = α2

[
1−

n∑
i=1

d̄2
i

(σiα+ λη2α+ ληηb)2

]
∆
= α2g(α),

where we introduced the function g(α). Taking the limits as α → 0 and α → ∞ we
find that

lim
α→0

g(α) = 1−
n∑

i=1

d̄2
i

(ληηb)2
,

lim
α→∞ g(α) = 1 > 0.

Therefore, g(α) will have a zero for α > 0 if and only if the first limit above is negative,
i.e., if {λ, η, ηb} satisfy

ληηb < ‖D(λ)‖.
In addition, since the derivative of g(α) with respect to α is

dg(α)

dα
= 2

n∑
i=1

d̄2
i (λη2 + σi)

[ασi + λη(αη + ηb)]3
> 0,

we conclude that the root is necessarily unique.
Let us verify now that this root really corresponds to the solution of our mini-

mization problem. The point that may cause trouble is x = 0, where the cost function
is not differentiable. The cost at this point is

C(0, λ) = bTW (λ)b+ λη2
b .

If we move a little away from x = 0, say to x = δx, then the cost becomes

C(δx, λ) = (Aδx− b)TW (λ)(Aδx− b) + λ(η‖δx‖+ ηb)
2

= bTW (λ)b− 2δxTATW (λ)b+ δxTATW (λ)Aδx+ λη2‖δx‖2
+ 2ληηb‖δx‖+ λη2

b
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and thus, for small δx,

C(δx, λ) = C(0, λ)− 2δxTD(λ) + 2ληηb‖δx‖+O(‖δx‖2)

≥ C(0, λ)− 2‖δx‖
(
‖D(λ)‖ − 2ληηb

)
+O(‖δx‖2).

We conclude that, for small δx, C(δx, λ) is smaller than C(0, λ) if and only if
ληηb < ‖D(λ)‖. In this situation, x = 0 cannot be a minimum of C(x, λ), and the
optimum xo(λ) must be such that its norm solves (B.2) with αo(λ) > 0.

On the other hand, if ληηb ≥ ‖D(λ)‖, the cost for small δx satisfies C(δx, λ) >
C(0, λ). (We can include the case when equality holds, since the terms in O(‖δx‖2)
above are all positive.) The point x = 0 must thus be a local minimum to C(x, λ).
Since we know that this cost is strictly convex in x for fixed λ, x = 0 must be the
global minimum.

Appendix C. A result on convex optimization problems. In this appendix
we establish a result that was used to show that G(λ) is unimodal. Let f(x, y) be a
real function of variables x ∈ X, y ∈ Y . We shall study the problem

min
x∈X,y∈Y

f(x, y).

Define the functions

g : X → R,

g(x) = min
y∈Y

f(x, y)

and

h : Y → R,

h(y) = min
x∈X

f(x, y).

We denote by (xop, yop) one of the (possibly many) global minimum points of f(x, y)
in X × Y , by xg one of the global minima of g(x) in X, and by yh one of the global
minima of h(y) in Y . With these definitions, we prove the following results.

Lemma C.1. If any of the minima below is attainable, then it holds that

min
(x,y)∈X×Y

f(x, y) = min
x∈X

g(x) = min
y∈Y

h(y) and (xop, yop) = (xg, yxg ) = (xyh
, yh).

Proof. This is a classic result. To prove it, simply notice that all points (x, y)
are compared in the minimization of all three functions above. If the minima are not
attainable, the result is still true if we substitute the min by inf.

Lemma C.2. Let X,Y be subsets of a metric space and assume that the functions

f(x̄, y) : Y → R for all x̄ ∈ X fixed,

f(x, ȳ) : X → R for all ȳ ∈ Y fixed,

g(x) : X → R

have unique global minima and are unimodal in their respective domains; i.e., assume
that each function does not admit local minima different than their global minima.
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We now define the functions

ym : X → Y,

ym(x) = arg min
y∈Y

f(x, y)

and

xm : Y → X,

xm(y) = arg min
x∈X

f(x, y).

Under these conditions, if ym(x) is continuous in X, then h(y) is also unimodal.
Proof. ym(x) is a function, since, by hypothesis, f(x̄, y), x̄ fixed, is unimodal in Y .

A similar argument implies that xm(y) is a function. Now assume (by contradiction)
that h(y) is not unimodal, i.e., it has a local minimum at yl 	= yop. This means that
there is an open ball Bδ(yl) ∈ Y such that yl is the global minimum of h(y) inside
the ball.

From the previous lemma, we find that

min
(x,y)∈X×Bδ(yl)

f(x, y) = min
y∈Bδ(yl)

h(y)

and (xl, yl) = (xm(yl), yl). This implies that (xl, yl) is a local minimum of f(x, y) in
X × Y different from the global minimum (xop, yop). In particular, this means that,
fixing xl, f(xl, y) has a (local) minimum at y = yl.

Since we assumed that f(xl, y) is unimodal, it must hold that ym(xl) = yl. Func-
tion ym(·) is continuous on X by hypothesis, thus there exists a ball Bγ(xl) whose
points satisfy

x ∈ Bγ(xl)⇒ ym(x) ∈ Bδ(yl).

Since (xl, yl) is the global minimum of f in X×Bδ(yl), xl must be the global minimum
of g(x) = f(x, ym(x)) in Bγ(xl), that is, xl is a local minimum of g(x).

Finally, note that we assumed that yl 	= yop. Since ym(xl) = yl and ym(xop) = yop,
we must have xl 	= xop—that is, we found a local minimum of g(x) different than xop,
contradicting our initial assumption that g(x) is unimodal.
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Abstract. This is the first of two papers on the row by row decoupling problem and the
triangular decoupling problem. In this paper we study the row by row decoupling problem with
stability in control theory. We first prove a nice reduction property for the row by row decoupling
problem with stability and then develop a numerically reliable method for solving it. The basis of our
main results is some condensed forms under orthogonal transformations, which can be implemented
in numerically stable ways. Hence our results lead to numerically reliable methods for solving the
studied problem using existing numerical linear algebra software such as MATLAB.

In the sequel [SIAM J. Matrix Anal. Appl., 23 (2002), pp. 1171–1182], we will consider a related
problem—the triangular decoupling problem—and parameterize all solutions for it.

Key words. row by row decoupling, stability, orthogonal transformation, reliable computing

AMS subject classifications. 93B05, 93B40, 93B52, 65F35

PII. S0895479801362546

1. Introduction. In this paper we study the numerical computation of the row
by row decoupling problem with stability for a system of the form

Eẋ = Ax+Bu, y = Cx,(1.1)

where E,A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, E is nonsingular, x ∈ Rn is the state,
u ∈ Rm is the control input, and y ∈ Rm is the output. Unless otherwise stated, we
shall denote the ith row of C by ci. We shall also assume, without loss of generality,
that (E−1A,E−1B) is controllable, i.e.,

rank
[

sE −A B
]
= rank

[
sI − E−1A E−1B

]
= n ∀s ∈ C.

If this is not the case, then we can always take only its controllable part, which
can be obtained by numerically stable algorithms, for example, the “controllability
algorithm” in [15], since the noncontrollable part does not contribute to the transfer
matrix of the closed-loop system (1.4) below for any feedback u = Fx+Hv. Hence,
if the noncontrollable part is not stable (the system is not stabilizable), the row by
row decoupling problem and the triangular decoupling problem with stability, defined
below, are both unsolvable; otherwise, there is no necessity to consider it.

Theoretically, (1.1) is equivalent to

ẋ = E−1Ax+ E−1Bu, y = Cx,(1.2)

because E is nonsingular. However, E may be highly ill-conditioned and the explicit
computation of E−1 may be numerically unstable, which is well known [11]. Thus,
from a numerical computation point of view, the transformation from system (1.1)
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to system (1.2) should be avoided [11] and we would have to work directly with the
system (1.1).

In this paper we will focus our attention on systems of the form (1.1) with E
nonsingular. The reasons are that (i) if E = I, then system (1.1) is the standard
one studied in most of the existing literature; (ii) we have shown in [4] that the
row by row decoupling problem for descriptor systems can be reduced by orthogonal
transformations into the same one for a lower-dimensional system of the form (1.1)
with E nonsingular.

If we apply the state feedback of the form

u = Fx+Hv(1.3)

to (1.1), then the closed-loop system becomes

Eẋ = (A+BF )x+BHv, y = Cx.(1.4)

The transfer matrix from output y to input v in (1.4) is C(sE−A−BF )−1BH. Hence,
the row by row decoupling problem with stability can be formulated mathematically
as follows.

Definition 1.1. Given a system of the form (1.1), the row by row decoupling
problem with stability (RRDPS) for system (1.1) is solvable if there exist matrices
F ∈ Rm×n and H ∈ Rm×m with H nonsingular such that

C(sE −A−BF )−1BH is nonsingular and diagonal ,(1.5)

and E−1(A + BF ) is stable; i.e., all eigenvalues of E−1(A + BF ) are in the open
left-half complex plane.

The row by row decoupling problem plays a central role in classical as well as
modern control theory. It has been investigated extensively in the last three decades by
the geometric approach and the structural approach (see [1, 2, 7, 10, 12, 13, 14, 20, 21]).
The geometric solutions and structural solutions given in these papers are expressed
in terms of some invariant subspaces and the structure at infinity of system (1.1),
respectively.

In the following we shall introduce some existing results for the RRDPS to moti-
vate as well as provide the necessary background for the present paper.

Let C− and σ(M) denote the open left-half complex plane and the spectrum
of the square matrix M , respectively. Given matrices A ∈ Rn×n, B ∈ Rn×m, a
subspace V ⊂ Rn is said to be (A,B)-invariant if there exists an F ∈ Rm×n such
that (A + BF )V ⊂ V. If V is an (A,B)-invariant subspace, F(A,B,V) denotes the
class of all F ∈ Rm×n satisfying (A + BF )V ⊂ V. In that case, A + BF |V denotes
the double restriction of A + BF to V. An (A,B)-invariant subspace Vg is said
to be an (A,B)-stabilizable subspace if there exists an F ∈ F(A,B,Vg) such that
σ(A + BF |Vg) ⊂ C−. An (A,B)-invariant subspace R of dimension ρ is said to
be an (A,B)-controllability subspace if for any conjugate set of ρ complex numbers,
say Λ, there exists an F ∈ F(A,B,R) such that σ(A + BF |R) = Λ. Let V, Vg,

and R be the sets of all (A,B)-invariant subspaces, (A,B)-stabilizable subspaces,
and (A,B)-controllability subspaces, respectively. It is well known that V, Vg, and
R are all closed under subspace addition, and thus there are supremal subspaces of
all elements of V, Vg, and R contained in any given subspace L ⊂ Rn, respectively.

These three supremal subspaces will be denoted by V�(A,B,L), V�
stab(A,B,L), and

R�(A,B,L), respectively.
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The structure at infinity of the matrix triplet (A,B,C) with appropriate dimen-
sions is described by the multiplicity of the zeros at infinity of the rational function
matrix C(sI −A)−1B. The content at infinity of (A,B,C), denoted as C∞(A,B,C),
is the total sum of the orders (counting multiplicities) of the zeros of C(sI−A)−1B at
infinity. The unstable invariant content of (A,B,C), denoted as C+(A,B,C), is the
total sum of the multiplicity orders of the unstable invariant zeros of C(sI −A)−1B.

The geometric and structural solutions of the RRDPS are stated in the next two
theorems.

Theorem 1.2 (geometric solution [13]). Given system (1.1) with E = I, assume
that (A,B) is controllable. Then the following statements are equivalent:

(i) The RRDPS is solvable.
(ii) V�(A,B,Ker(C)) =

⋂m
i=1 V�(A,B,Ker(ci)),

V�
stab(A,B,Ker(C)) ⊃ ⋂m

i=1 R�(A,B,Ker(ci)).
(iii) V�(A,B,Ker(C)) =

⋂m
i=1 V�(A,B,Ker(ci)),

V�
stab(A,B,Ker(C)) =

⋂m
i=1 V�

stab(A,B,Ker(ci)).

Theorem 1.3 (structural solution [7, 13]). Given system (1.1) with E = I,
assume that (A,B) is controllable. Then the RRDPS is solvable if and only if

C∞(A,B,C) =

m∑
i=1

C∞(A,B, ci), C+(A,B,C) =

m∑
i=1

C+(A,B, ci).(1.6)

In principle, all invariant subspaces needed in Theorem 1.2 can be computed
by the computer routines found in [1], and we can verify the solvability of the
RRDPS using Theorem 1.2 and Theorem 1.3 by computing either 2m+ 4 subspaces
V�(A,B,Ker(C)), V�

stab(A,B,Ker(C)), V�(A,B,Ker(ci)), and R�(A,B,Ker(ci)) (or
V�
stab(A,B,Ker(ci))), i = 1, . . . ,m,

⋂m
i=1 V�(A,B,Ker(ci)) and

⋂m
i=1 R�(A,B,Ker(ci))

(or
⋂m

i=1 V�
stab(A,B,Ker(ci))), or the structures at infinity and the unstable invariant

zero structures of m+ 1 matrix triplets (A,B,C), (A,B, ci), i = 1, . . . ,m. However,
Theorems 1.2 and 1.3 do not provide numerically reliable procedures for the construc-
tion of the desired feedback matrices F and H. To our knowledge, there are at present
no numerically implementable and reliable methods developed for solving the RRDPS
based on Theorems 1.2 and 1.3.

If the stability requirement is not imposed, then an explicit solution for the row
by row decoupling problem can be found in [3, 10].

Theorem 1.4 (see [3, 10]). Given system (1.1) with E nonsingular, denote ci to
be the ith row of C if ci(E

−1A)j(E−1B) �= 0 for some nonnegative integer j, then set

li = min{j ≥ 0 : j is integer satisfying ci(E
−1A)j(E−1B) �= 0};

otherwise, set li = n− 1. Define

L =




c1(E
−1A)l1

c2(E
−1A)l2

...
cm(E−1A)lm


 (E−1B).

Then there exist matrices F ∈ Rm×n and H ∈ Rn×n with H nonsingular such that
(1.5) holds if and only if the matrix L is nonsingular. In this case, the desired matrices
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F and H can be chosen to be

F = −L−1




c1(E
−1A)l1+1

c2(E
−1A)l2+1

...
cm(E−1A)lm+1




and H = L−1.
Theorem 1.4 provides a numerical procedure for solving the row by row decou-

pling problem without stability requirement. However, this procedure is numerically
unreliable, because if E is ill-conditioned, then the explicit computation of E−1 will
lead to a numerically unstable procedure [11]. Furthermore, even in the case E = I,
it is very dangerous to compute the powers of matrix A. This can be illustrated by
the following example.

Example 1 (see [17]). Let the third power of

A =


 −20.8571 −9.06467 12.9955

−43.1924 −18.7528 26.8994
−63.5860 −27.6219 39.6100




be obtained from Ā2 = fl(A×A) and Ā3 = fl(Ā2 ×A) using floating-point arithmetic
with accuracy 2−15. The final result is

Ā3 =


 −0.057004 −0.024739 0.035445

−0.785385 −0.341064 0.489075
−0.154087 −0.067112 0.096242


 ,

while the exact answer (up to six significant digits) is

A3 =


 0.0090618 0.0039361 −0.0056432

0.0187545 0.0081469 −0.0011680
0.0276109 0.0119938 −0.0171949


 .

Here, we see that even the signs of the elements of the computed result are wrong.
This implies that Theorem 1.4 cannot be used to solve the row by row decoupling

problem even without stability requirement. Up to now, Theorem 1.4 has not been
generalized to the RRDPS, and therefore there does not yet exist a similar explicit
solution for the RRDPS. Hence, Theorem 1.4 cannot lead to a numerically reliable
algorithm for the RRDPS.

Finally, we note that in [1] the row by row decoupling problem with stability by
measurement feedback is studied, and necessary and sufficient conditions are presented
with a constructive proof. But the idea in this constructive proof does not work for
the RRDPS. Moreover, in the diskette provided with [1] there are no routines available
for computing the desired feedback matrices of the RRDPS.

Based on the above, our observation is that there is still a lack of effective numer-
ical methods for solving the RRDPS. The stability of the closed-loop system (1.4) is
one of most important properties and one of the fundamental requirements in systems
design. Hence, it is necessary to develop numerically reliable methods for solving the
RRDPS. This motivates us to consider the numerical computation of the RRDPS.
We will develop a numerically reliable algorithm for the RRDPS using Theorem 1.2
and the numerical linear algebra technique.
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The basis of our main results is some condensed forms under orthogonal trans-
formations, which can be implemented in numerically stable ways. Hence, our results
lead to numerically reliable methods for solving the RRDPS using standardized nu-
merical linear algebra software such as MATLAB.

Throughout this paper, rankg[·](s) denotes the generic rank of a rational ma-
trix [·](s). For convenience we do not distinguish between a matrix with orthogonal
columns and the space spanned by its columns.

2. Preliminary. In this section we will provide three condensed forms, which
will then be used in the next section to establish a nice reduction property for
the RRDPS. The first condensed form is presented in Theorem 2.1 to reveal the
(E−1A,E−1B)-stabilizable subspace V�

stab(E
−1A,E−1B,Ker(C)).

Theorem 2.1. Given a system of the form (1.1) with E,A ∈ Rn×n, B ∈ Rn×m,
C ∈ Rm×n, assume that (E−1A,E−1B) is controllable. There exist orthogonal ma-
trices P,Q ∈ Rn×n such that

P (sE−A)Q =




n1 n2

n1 sE11 −A11 sE12 −A12

ñ2 −A21 sE22 −A22

ñ3 0 sE32 −A32


, PB =


n1 B1

ñ2 B2

ñ3 0


, CQ =

[n1 n2

0 C2

]
,

(2.1)
where n1 + n2 = n1 + ñ2 + ñ3 = n, E11 is nonsingular, B2 is of full row rank, and

rank

[
sE11 −A11 B1

−A21 B2

]
= n1 + ñ2 ∀s ∈ C/C−,(2.2)

rank

[
sE32 −A32

C2

]
= n2 ∀s ∈ C−.(2.3)

Consequently,

V�
stab(E

−1A,E−1B,Ker(C)) = Q

[
In1

0

]
.(2.4)

Proof. The condensed form (2.1) is constructed by Algorithm 2 in the appendix,
and (2.4) is proved in the necessity part of Theorem 3.2 (see (3.31)).

After deflating the subspace V�
stab(E

−1A,E−1B,Ker(C)) by the condensed form

(2.1), we get a reduced matrix quadruplet ([E22

E32
], [A22

A32
], [B2

0 ], C2). Related to this
reduced matrix quadruplet is the following theorem.

Theorem 2.2. Given a system of the form (1.1) with E,A ∈ Rn×n, B ∈ Rn×m,
C ∈ Rm×n, assume that the condensed form (2.1) has been determined.

(i) There exist orthogonal matrices U , V , and W such that

U

[
sE22 −A22

sE32 −A32

]
V =




µ1 µ2

µ1 sΘ11 − Φ11 sΘ12 − Φ12

µ̃2 −Φ21 sΘ22 − Φ22

µ̃3 0 sΘ32 − Φ32


,

U

[
B2

0

]
W =



m− µ̃2 µ̃2

µ1 Ψ11 Ψ12

µ̃2 0 Ψ22

µ̃3 0 0


, C2V =

[ µ1 µ2

m− 1 Ξ11 Ξ12

1 0 ξ22

]
,(2.5)
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where Θ11 and Ψ22 are nonsingular, µ1 + µ2 = µ1 + µ̃2 + µ̃3 = n2, and

rank

[
sΘ11 − Φ11 Ψ11 Ψ12

−Φ21 0 Ψ22

]
= µ1 + µ̃2 ∀s ∈ C,(2.6)

rankg

[
sΘ32 − Φ32

ξ22

]
= µ2.(2.7)

(ii) There exist orthogonal matrices U and V such that

UU

[
sE22 −A22

sE32 −A32

]
V V =




ν1 ν2

ν1 sE11 −A11 sE12 −A12

ν̃2 −A21 sE22 −A22

ν̃3 0 sE32 −A32


,

UU

[
B2

0

]
W =



m− µ̃2 µ̃2

ν1 B11 B12

ν̃2 B21 B22

ν̃3 0 0


, C2V V =

[ ν1 ν2

m− 1 0 C12

1 C21 C22

]
,(2.8)

where E11 is nonsingular,
[ B21 B22

]
is of full row rank, ν1+ν2 = ν1+ ν̃2+ ν̃3 = n2,

and

rank

[
sE11 −A11 B11 B12

−A21 B21 B22

]
= ν1 + ν̃2 ∀s ∈ C,(2.9)

rankg

[
sE32 −A32

C12

]
= ν2.(2.10)

Proof. The condensed form (2.5) is constructed by Algorithm 3 in the appendix.
The condensed form (2.8) can be constructed similarly.

The following four lemmas will be used frequently in the next two sections.
Lemma 2.3 (see [5]). Given E , A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈

Rp×m with E nonsingular, then C(sE − A)−1B + D = 0 if and only if D = 0 and
rankg[

sE−A
C

B
0 ] = n.

Proof. Since E is nonsingular, the proof of Lemma 2.3 follows directly from the
fact that

n+rank(D) ≤ n+rankg(C(sE−A)−1B+D) = rankg

[
sE − A B

C −D
]
.(2.11)

Lemma 2.4. Given E ,A ∈ Rn×n,B ∈ Rn×m, C ∈ Rp×n,D ∈ Rp×m with E
nonsingular, and (E ,A;B) is controllable, then

rankg

[
sE − A B

C −D
]
= n(2.12)

if and only if C = 0 and D = 0.
Proof. We only need to prove the “necessity.” That D = 0 follows directly from

(2.11) and (2.12). Now we should only show that C = 0. In fact, if C �= 0, then there
exist nonsingular matrices X and Y [20] such that

X (sE −A)Y =

[ n1 n2

n1 sE11 −A11 0
n2 sE21 −A21 sE22 −A22

]
, XB =

[
n1 B1

n2 B2

]
, CY =

[n1 n2

C1 0
]
,
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where C1 �= 0 and (ET
11,AT

11; CT
1 ) is controllable. The controllability of (E ,A;B) implies

that (E11,A11;B1) is controllable. Hence, C(sE − A)−1B = C1(sE11 − A11)
−1B1 �= 0,

which, along with D = 0, gives

rankg

[
sE − A B

C D
]
= n+ rankg(C1(sE11 −A11)

−1B1) > n.

This contradicts condition (2.12). Therefore, we must have C1 = 0, i.e., C = 0.
In general, for matrices Aij(i, j = 1, 2) of appropriate dimensions, if A11 is non-

singular but very ill-conditioned, the computation of A22 − A21A−1
11 A12 will not be

numerically stable. Fortunately, we have Lemma 2.5, as follows.
Lemma 2.5. Given matrices A11 ∈ Rn1×n1 , A12 ∈ Rn1×n2 , A21 ∈ Rñ2×n1 ,

A22 ∈ Rñ2×n2 with A11 nonsingular, let orthogonal matrix P satisfy

P
[ A11

A21

]
=

[
n1 Ã11

ñ2 0

]
, P =

[ n1 ñ2

n1 P11 P12

ñ2 P21 P22

]
.(2.13)

Denote

P
[ A12

A22

]
=

[
n1 Ã12

ñ2 Ã22

]
.

Then P11 and P22 are nonsingular,[
I 0

P21 P22

] [ A11

A21

]
=

[ A11

0

]
,

[
I 0

P21 P22

] [ A12

A22

]
=

[ A12

Ã22

]
,(2.14)

and, furthermore,

A22 −A21A−1
11 A12 = P−1

22 Ã22.(2.15)

Proof. Equation (2.14) is obvious. Since

A11 = PT
11Ã11,

then P11 and Ã11 are nonsingular. Note that P is orthogonal, so P22 is also nonsin-
gular. Moreover,

P21PT
11 + P22PT

12 = 0, P21PT
21 + P22PT

22 = I,

which, along with the nonsingularity of P11 and P22, gives

PT
22−PT

12P−T
11 PT

21 = P−1
22 (P22PT

22−P22PT
12P−T

11 PT
21) = P−1

22 (P22PT
22+P21PT

21) = P−1
22 .

On the other hand,

A21 = PT
12Ã11, A22 = PT

12Ã12 + PT
22Ã22, A12 = PT

11Ã12 + PT
21Ã22.

Hence, we have

A22 −A21A−1
11 A12 = (PT

22 − PT
12P−T

11 PT
21)Ã22 = P−1

22 Ã22.

Lemma 2.5 implies that we can cancel “the instability factor” of A22−A21A−1
11 A12

by multiplying P22. Now, although [ I
P21

0
P22

] is not orthogonal, (2.14) is computed
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by only orthogonal transformations which are numerically stable. This feature will
play an important role in the next two sections.

The following result is well known in control theory.
Lemma 2.6 (see [20]). Given E,A ∈ Rn×n, B ∈ Rn×m with E nonsingular, there

exists a matrix F ∈ Rm×n such that E−1(A+BF ) is stable, i.e.,

rank(sE −A−BF ) = n ∀s ∈ C/C−

if and only if

rank
[

sE −A B
]
= n ∀s ∈ C/C−.

The numerically reliable methods for the construction of F in Lemma 2.6 can be
found in [15, 19].

3. Reduction property. The purpose of this section is to derive a reduction
property for the RRDPS based on the condensed forms (2.1), (2.5), and (2.8). This
reduction property will be the basis of the numerically reliable algorithm for solving
the RRDPS in section 4.

First we consider the row by row decoupling problem without stability require-
ment for the reduced matrix quadruplet ([E22

E32
], [A22

A32
], [B2

0 ], C2) in the condensed
form (2.1).

Theorem 3.1. Given system (1.1), assume that the condensed forms (2.1), (2.5),
and (2.8) have been determined. Then there exist matrices F2 ∈ Rm×n2 and H ∈
Rm×m with H nonsingular such that

C2

[
sE22 −A22 −B2F2

sE32 −A32

]−1 [
B2

0

]
H is nonsingular and diagonal(3.1)

if and only if

µ̃2 = 1, ν̃2 = m− 1,(3.2)

and, furthermore, there exist matrices F ∈ R(m−1)×ν2 and H ∈ R(m−1)×(m−1) with
H nonsingular such that

C12

[
sE22 −A22 − B21F

sE32 −A32

]−1 [ B21

0

]
H is nonsingular and diagonal .(3.3)

Moreover, in the case that conditions (3.2) and (3.3) hold, we have that B21 and [E22

E32
]

are nonsingular, and the desired feedback matrices F2 and H can be parameterized by

H = W

[ H −B−1
21 B22H22

0 H22

]
, F2 = W

[ F11 F − B−1
21 B22F22

F21 F22

]
VTV T ,(3.4)

where H22 ∈ R, H22 �= 0, (F ,H) satisfy (3.3),

[ F21 F22

]
=
[ −Φ21/Ψ22 X

]V, X ∈ R1×µ2 is arbitrary ,(3.5)

F11 = −B−1
21 (A21 + B22F21).(3.6)

Proof. First we prove the “necessity” and then the “sufficiency.”
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Necessity. Assume that matrices F2 ∈ Rm×n2 and H ∈ Rm×m with H nonsingu-
lar satisfy (3.1). Partition F2, H into

WTH =

[m− 1 1

m− µ̃2 H H12

µ̃2 H21 H22

]
, WTF2V V =

[ ν1 ν2

m− µ̃2 F11 F̃
µ̃2 F21 F22

]
,

(3.7)

WTF2V =

[ µ1 µ2

m− µ̃2 F11 F12

µ̃2 F21 X

]
.

Since (3.1) holds, using the condensed form (2.5) we get

[
0 ξ22

][ sΘ11 − Φ11 −Ψ11F11 −Ψ12F21 sΘ12 − Φ12 −Ψ11F12 −Ψ12X
−Φ21 −Ψ22F21 sΘ22 − Φ22 −Ψ22X

0 sΘ32 − Φ32

]−1[
Ψ11H+Ψ12H21

Ψ22H21

0

]

=
[
0 1

]
C2

[
sE22 −A22 −B2F2

sE32 −A32

]−1 [
B2

0

]
H

[
Im−1

0

]
= 0.

Thus, Lemma 2.3 gives that

rankg


 sΘ11 − Φ11 −Ψ11F11 −Ψ12F21 sΘ12 − Φ12 −Ψ11F12 −Ψ12X Ψ11H+Ψ12H21

−Φ21 −Ψ22F21 sΘ22 − Φ22 −Ψ22X Ψ22H21

0 sΘ32 − Φ32 0
0 ξ22 0




= n2 = µ1 + µ2,(3.8)

which, along with property (2.7), yields that

µ1 = rankg

[
sΘ11 − Φ11 −Ψ11F11 −Ψ12F21 Ψ11H+Ψ12H21

−Φ21 −Ψ22F21 Ψ22H21

]
.(3.9)

However, Θ11 ∈ Rµ1×µ1 is nonsingular, and thus

rankg

[
sΘ11 − Φ11 −Ψ11F11 −Ψ12F21 Ψ11H+Ψ12H21

−Φ21 −Ψ22F21 Ψ22H21

]
≥ µ1 + rank(Ψ22H21),

which implies that Ψ22H21 = 0. Note that Ψ22 is nonsingular. Thus, we obtain

H21 = 0.(3.10)

Consequently, (3.1) and the condensed form (2.5) yield

n2 + 1 = rankg

[
sE22 −A22 −B2F2

sE32 −A32

]

+ rankg

([
0 1

]
C2

[
sE22 −A22 −B2F2

sE32 −A32

]−1 [
B2

0

]
H

)

= rankg


 sE22 −A22 −B2F2 B2H

sE32 −A32 0[
0 1

]
C2 0


 = rankg


 sE22 −A22 B2

sE32 −A32 0[
0 1

]
C2 0




(since H is nonsingular)

= µ2 + µ1 + µ̃2 = n2 + µ̃2.
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Therefore, µ̃2 = 1, i.e., the first equality in condition (3.2) holds.
Since H is nonsingular, as a direct consequence of condition (3.2) and the equality

(3.10), we know that

H and H22 are nonsingular.(3.11)

Now, µ̃2 = 1, and using property (2.9), equations (3.9), (3.10), (3.11), and Lemma
2.4 we have

Φ21 +Ψ22F21 = 0, i.e., F21 = −Ψ−1
22 Φ21 = −Φ21/Ψ22,(3.12)

which also implies (3.5).
By (3.1) and the condensed form (2.8), we also have

[
0 C12

][sE11 −A11 − B11F11 − B12F21 sE12 −A12 − B11F̃ − B12F22

−A21 − B21F11 − B22F21 sE22 −A22 − B21F̃ − B22F22

0 sE32 −A32

]−1[B11H12 + B12H22

B21H12 + B22H22

0

]

=
[

Im−1 0
]
C2

[
sE22 −A22 −B2F2

sE32 −A32

]−1 [
B2

0

]
H

[
0
1

]
= 0.

By Lemma 2.3 we get

rankg


 sE11 −A11 − B11F11 − B12F21 sE12 −A12 − B11F̃ − B12F22 B11H12 + B12H22

−A21 − B21F11 − B22F21 sE22 −A22 − B21F̃ − B22F22 B21H12 + B22H22

0 sE32 −A32 0
0 C12 0




= n2 = ν1 + ν2.

Using (2.10) we have

ν1 = rankg

[
sE11 −A11 − B11F11 − B12F21 B11H12 + B12H22

−A21 − B21F11 − B22F21 B21H12 + B22H22

]
.(3.13)

Note that E11 and H22 are nonsingular, and thus

B21H12 + B22H22 = 0, i.e., B22 = −B21H12H−1
22 .(3.14)

Hence, rank
[ B21 B22

]
= rank(B21). Following that

[ B21 B22

]
is of full row

rank, we know that B21 is also of full row rank, i.e.,

rank(B21) = ν̃2.(3.15)

Since H is nonsingular, (3.1), (3.2), and (3.10) give

rankg

([
0 C12

][ sE11 −A11 − B11F11 − B12F21 sE12 −A12 − B11F̃ − B12F22

−A21 − B21F11 − B22F21 sE22 −A22 − B21F̃ − B22F22

0 sE32 −A32

]−1 [ B11
B21
0

])

= rankg

([
Im−1 0

]
C2

[
sE22 −A22 −B2F

sE32 −A32

]−1 [
B2

0

]
H

[
Im−1

0

])
= m− 1,

so property (2.9) and the fact that B21 is of full row rank imply that

ν1 + ν2 +m− 1 = rankg


 sE11 −A11 − B11F11 − B12F21 sE12 −A12 − B12F̃ − B12F22 B11

−A21 − B21F11 − B22F21 sE22 −A22 − B21F̃ − B22F22 B21
0 sE32 −A32 0
0 C12 0




= ν2 + rankg

[
sE11 −A11 − B11F11 − B12F21 B11

−A21 − B21F11 − B22F21 B21
]
= ν2 + (ν1 + ν̃2).
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Obviously, we get the second equality in condition (3.2), i.e., ν̃2 = m − 1, and fur-
thermore (3.15) yields that B21 is nonsingular. Consequently, we have from (3.14)
that

H12 = −B−1
21 B22H22,

which, along with (3.10) and (3.11), yields that H is of the form in (3.4).
Now property (2.9) is equivalent to

rank
[

sE11 −A11 + B11B−1
21 A21 B12 − B11B−1

21 B22

]
= ν1 ∀s ∈ C.(3.16)

Returning to (3.13) and using (3.14), (3.11), and H12 = −B−1
21 B22H22 we get

ν1 = rankg

[
sE11 −A11 − B11F11 − B12F21 B11H12 + B12H22

−A21 − B21F11 − B22F21 0

]

= rankg

[
sE11 −A11 − B11F11 − B12F21 (B12 − B11B−1

21 B22)H22

−A21 − B21F11 − B22F21 0

]

= rankg

[
sE11 −A11 + B11B−1

21 A21 − (B12 − B11B−1
21 B22)F21 (B12 − B11B−1

21 B22)H22

−A21 − B21F11 − B22F21 0

]

= rankg

[
sE11 −A11 + B11B−1

21 A21 B12 − B11B−1
21 B22

−A21 − B21F11 − B22F21 0

]
,

(3.17)

which, along with (3.16) and Lemma 2.4, leads to the fact that

A21 + B21F11 + B22F21 = 0,(3.18)

i.e., (3.6) is true.
From (3.1), (3.10), and (3.18) we know that

C12

[
sE22 −A22 − B21F̃ − B22F22

sE32 −A32

]
B21H is nonsingular and diagonal.(3.19)

Now, taking

F = F̃ + B−1
21 B22F22,(3.20)

we have the condition (3.3).
Sufficiency. We prove “sufficiency” constructively. Since [E22

E32
] is nonsingular, we

know [E22

E32
] is nonsingular. Similarly, because of condition (3.3), [B21

0 ] must be of full
column rank, but condition (3.2) holds, so B21 is nonsingular. Motivated by (3.10),
(3.14), (3.12), (3.18), and (3.20), define F2 and H by (3.4), (3.5), and (3.6). We have
the following:

(a) Since WTF2V is of the form

WTF2V =

[
F11 F12

−Φ21/Ψ22 X

]
,

by the condensed form (2.5) we obtain

[
0 1

]
C2

[
sE22 −A22 −B2F2

sE32 −A32

]−1 [
B2

0

]
H

[
Im−1

0

]

=
[
0 ξ22

] sΘ11−Φ11−Ψ11F11+Ψ12Φ21/Ψ22 sΘ12−Φ12−Ψ11F12−Ψ12X

0 sΘ22−Φ22−Ψ22X

0 sΘ32−Φ32



−1
 Ψ11H

0
0


= 0.

(3.21)



1154 DELIN CHU AND ROGER C. E. TAN

Furthermore,

rankg

([
0 1

]
C2

[
sE22 −A22 −B2F2

sE32 −A32

]−1 [
B2

0

]
H

[
0
1

])

= rankg


sΘ11−Φ11−Ψ11F11+Ψ12Ψ

−1
22

Φ21 sΘ12−Φ12−Ψ11F12−Ψ12X −Ψ11B−1
21

B22H22+Ψ12H22

0 sΘ22−Φ22−Ψ22X Ψ22H22

0 sΘ32−Φ32 0
0 ξ22 0


− n2

= µ1 + µ2 + 1− n2 = n2 + 1− n2 = 1,

so

[
0 1

]
C2

[
sE22 −A22 −B2F2

sE32 −A32

]−1 [
B2

0

]
H

[
0
1

]
�= 0.(3.22)

(b) By the condensed form (2.8) we have

[
Im−1 0

]
C2

[
sE22 −A22 −B2F2

sE32 −A32

]−1 [
B2

0

]
H

=
[
0 C12

] sE11 − Ã11 sE12 − Ã12

0 sE22 −A22 − B21F
0 sE32 −A32


[ B11H B̃12H22

B21H 0

]
=
[

T (s) 0
]
,

(3.23)

where

T (s) = C12

[
sE22 −A22 − B21F

sE32 −A32

] [ B21

0

]
H,

Ã11 = A11 + B11F11 + B12F21,

Ã12 = A12 + B11F + B12F22 − B11B−1
21 B22F22,

B̃12 = B12 − B11B−1
21 B22.

Hence, (3.1) follows directly from (3.21)–(3.23) and condition (3.3).
Remark 1. Condition (3.2) is equivalent to saying that the row by row decoupling

problem without stability requirement for the following linear time-invariant system:[ E22

E32

]
˙̃x =

[ A22

A32

]
x̃+

[ B21

0

]
ũ, ỹ = C12x̃

is solvable.
Partition V in the condensed form (2.8) as

V =

[ ν1 ν2

µ1 V11 V12

µ2 V21 V22

]
.(3.24)

For any F2 defined by (3.4)–(3.6), a simple calculation yields that

UU

[
sE22 −A22 −B2F2

sE32 −A32

]
V V(3.25)

=

[
sE11−(A11−B11B−1

21
A21−(B12−B11B−1

21
B22)Φ21V11/Ψ22)−(B12−B11B−1

21
B22)XV21 �

0 sE22−A22−B21F
0 sE32−A32

]
,
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where % denotes some block matrix which we are not interested in. If V21 is not of
full column rank, then the choice of X such that

rank(sE11−A11+B11B−1
21 A21+(B12−B11B−1

21 B22)Φ21V11/Ψ22−(B12−B11B−1
21 B22)XV21)

(3.26)
= ν1 ∀s ∈ C/C−

is a stabilization problem by output feedback, which is still an open question in control
theory [20]. Fortunately, just because the quadruplet ([E22

E32
], [A22

A32
], [B2

0 ], C2) is from the

condensed form (2.1), we can show in the next theorem that if the RRDPS for system
(1.1) is solvable, then V21 is of full column rank, and hence the above stabilization
problem is equivalent to one by state feedback, which has been investigated extensively
(see [16, 19]).

We are now ready to present our main result in this subsection.
Theorem 3.2 (reduction property for the RRDPS). Given system (1.1) with

(E−1A,E−1B) being controllable, assume that the condensed forms (2.1), (2.5), and
(2.8) have been determined and partition V as (3.24). Then the RRDPS is solvable if
and only if V21 is of full column rank, condition (3.2) is true, and, furthermore, there
exist matrices F ∈ R(m−1)×ν2 and H ∈ R(m−1)×(m−1) with H nonsingular such that

[ E22

E32

]−1 [ A22 + B21F
A32

]
is stable(3.27)

and (3.3) holds. Moreover, in the case that the RRDPS is solvable, ([E22

E32
]−1[A22

A32
],

[E22

E32
]−1[B21

0 ]) is controllable, B21 is nonsingular, and the desired feedback matrices F
and H can be chosen to be

H = W

[ H −B−1
21 B22H22

0 H22

]
, F =

[ n1 n2

F1 F2

]
QT ,(3.28)

where H22 ∈ R, H22 �= 0, F1 satisfies

B2F1 = −A21, E−1
11 (A11 +B1F1) is stable,(3.29)

and F2 is determined by (3.4)–(3.6) with X, (F ,H) satisfying (3.26), and (3.27) and
(3.3), respectively.

Proof. We prove the “necessity” first and then the “sufficiency.”
Necessity. Define

sΘ− Φ =

[
sE22 −A22

sE32 −A32

]
, Ψ =

[
B2

0

]
,

and denote the ith rows of C2 in (2.1) and C as ci and c̃i, respectively. It is easy to
see from the condensed form (2.1) that

Q−1 =


 E11 E12

0 E22

0 E32



−1

PE =

[
E11 E12

0 Θ

]−1

PE.

Because B2 is of full row rank and (2.2) holds, then by Lemma 2.6 there exists F1

such that B2F1 +A21 = 0 and
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Q−1(sI − E−1A− E−1B
[

F1 0
]
QT )Q

=

[ n1 n2

n1 sI − E−1
11 A11 − E−1

11 B1F1 −Ã12

n2 0 sI −Θ−1Φ

]
,

Q−1E−1B =

[
n1 B̃1

n2 Θ−1Ψ

]
, CQ =

[n1 n2

0 C2

]
,

where E−1
11 A11 + E−1

11 B1F1 is stable, and B̃1 and Ã12 are two constant matrices.
Consequently, we have

V�(E−1A,E−1B,Ker(C)) = Q

[
In1 0
0 V�(Θ−1Φ,Θ−1Ψ,Ker(C2))

]
,

V�(E−1A,E−1B,Ker(ci)) = Q

[
In1 0
0 V�(Θ−1Φ,Θ−1Ψ,Ker(c̃i))

]
, i = 1, . . . ,m,

V�
stab(E

−1A,E−1B,Ker(ci)) = Q

[
In1

0
0 V�

stab(Θ
−1Φ,Θ−1Ψ,Ker(c̃i))

]
, i = 1, . . . ,m.

(3.30)

Moreover, we also have from (2.3) that

rank

[
sI −Θ−1Φ−Θ−1ΨF2

C2

]
= n2 ∀F2 ∈ Rm×n2 and ∀s ∈ C−.

So

V�
stab(E

−1A,E−1B,Ker(C)) = Q

[
In1

0

]
, V�

stab(Θ
−1Φ,Θ−1Ψ,Ker(C2)) = {0}.

(3.31)

Similarly, by the condensed forms (2.5) and (2.8), we get

V −1 =


 Θ11 Θ12

0 Θ22

0 Θ32



−1

UΘ, (V V)−1 =


 E11 E12

0 E22

0 E32



−1

UUΘ.

Since Ψ22 and
[ B21 B22

]
are of full row rank and properties (2.6), (2.7), (2.9),

and (2.10) hold, then for any conjugate set Λ̃ = {λ̃1, . . . , λ̃µ1} and Λ̂ = {λ̂1, . . . , λ̂ν1},
there exist matrices F̃2 and F̂2 such that

V −1(sI −Θ−1Φ−Θ−1ΨF̃2)V =

[ µ1 µ2

µ1 sI − Φ̃11 −Φ̃12

µ2 0 sI − Φ2

]
,

V −1Θ−1Ψ =

[
µ1 Ψ̃1

µ2 Ψ̃2

]
, c̃mV =

[µ1 µ2

0 ξ22
]
,

(V V)−1(sI −Θ−1Φ−Θ−1ΨF̂2)(V V) =
[ ν1 ν2

ν1 sI − Â11 −Â12

ν2 0 sI −A2

]
,

(V V)−1Θ−1Ψ =

[
ν1 B̂1

ν2 B̂2

]
,
[

Im−1 0
]
C2V V =

[ ν1 ν2

0 C12

]
,
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where

σ(Φ̃11) = Λ̃, Φ2 =

[
Θ22

Θ32

]−1 [
Φ22

Φ32

]
, Ψ̃2 =

[
Θ22

Θ32

]−1 [
0 Ψ22

0 0

]
WT ,

σ(Â11) = Λ̂, A2 =

[ E22

E32

]−1 [ A22

A32

]
, B̂2 =

[ E22

E32

]−1 [ B21 B22

0 0

]
WT ,

and

rankg

[ T T
∞(Ψ̃2)(sI − Φ2)

ξ22

]
= rank

[
sΘ32 − Φ32

ξ22

]
= µ2,

rankg

[ T T
∞(B̂2)(sI −A2)

C12

]
= rank

[
sE32 −A32

C12

]
= ν2.

In the above, T∞(M) denotes the null space of matrix MT . Thus, we have

R�(Θ−1Φ,Θ−1Ψ,Ker(c̃m)) = V

[
Iµ1

0

]
,

(3.32)

R�(Θ−1Φ,Θ−1Ψ,Ker(
[

Im−1 0
]
C2)) = V V

[
Iν1

0

]
.

Assume that the RRDPS is solvable. Then Theorem 1.2(iii) holds, i.e.,

V�(E−1A,E−1B,Ker(C)) =

m⋂
i=1

V�(E−1A,E−1B,Ker(ci)),

V�
stab(E

−1A,E−1B,Ker(C)) =

m⋂
i=1

V�
stab(E

−1A,E−1B,Ker(ci)),

which, along with (3.30) and (3.31), gives

m⋂
i=1

V�(Θ−1Φ,Θ−1Ψ,Ker(c̃i)) = V�(Θ−1Φ,Θ−1Ψ,Ker(C2)),

m⋂
i=1

V�
stab(Θ

−1Φ,Θ−1Ψ,Ker(c̃i)) = {0} = V�
stab(Θ

−1Φ,Θ−1Ψ,Ker(C2)).(3.33)

Note that B2 is of full row rank and the controllability of (E−1A,E−1B) yields that
rank(sE32 −A32) = ñ3 for all s ∈ C, so

rank

[
sE22 −A22 B2

sE32 −A32 0

]
= ñ2 + ñ3 = n2 ∀s ∈ C.(3.34)

Hence, Theorem 1.2(iii) implies that there exist matrices F2 andH withH nonsingular
such that

C2

[
sE22 −A22 −B2F2

sE32 −A32

]−1 [
B2

0

]
H = C2(sI −Θ−1Φ−Θ−1ΨF2)

−1(Θ−1Ψ)H

is nonsingular and diagonal,(3.35)
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and [
E22

E32

]−1 [
A22 +B2F2

A32

]
= Θ−1Φ+Θ−1ΨF2 is stable.(3.36)

Therefore, from Theorem 3.1, we get conditions (3.2) and (3.3). Moreover, B21 is
nonsingular and F2 and H satisfy (3.4); thus (3.25) is also true, which, along with
(3.36), gives us condition (3.27).

In the following we show that V21 is of full column rank. In fact, we have from
(3.35), (3.36), and Theorem 1.2(ii) that

m⋂
i=1

R�(Θ−1Φ,Θ−1Ψ,Ker(c̃i)) ⊂ V�
stab(Θ

−1Φ,Θ−1Ψ,Ker(C2)) = {0}.(3.37)

However,

R�(Θ−1Φ,Θ−1Ψ,Ker(
[

Im−1 0
]
C2)) ⊂

m−1⋂
i=1

R�(Θ−1Φ,Θ−1Ψ,Ker(c̃i)).

So we get

R�(Θ−1Φ,Θ−1Ψ,Ker(c̃m))
⋂

R�(Θ−1Φ,Θ−1Ψ,Ker(
[

Im−1 0
]
C2)) = {0}.

(3.38)

From (3.38) and (3.32) we have

{0} = Range

([
Iµ1

0

])⋂
Range

(
V
[

Iν1

0

])

= Range

([
Iµ1

0

])⋂
Range

([ V11

V21

])
,

which is equivalent to saying that V21 is of full column rank because [V11

V21
] is of full

column rank.
Sufficiency. We have shown (3.34) because (E−1A,E−1B) is controllable and B2

is of full row rank. By the condensed form (2.8), we get

rank(sE32 −A32) = ν̃3 ∀s ∈ C.

Because B21 is nonsingular, thus

rank

[
sE22 −A22 B21

sE32 −A32 0

]
= ν̃2 + ν̃3 = ν2 ∀s ∈ C,

i.e., ([E22

E32
]−1[A22

A32
], [E22

E32
]−1[B21

0 ]) is controllable.

Since B2 is of full row rank and (2.2) holds, Lemma 2.6 yields that there exists
F1 that satisfies (3.29). Moreover, V21 is of full column rank, which means that the
choice of X satisfying (3.26) is equivalent to a stabilization problem by state feedback.
Because (2.9) is true, by Lemma 2.6, the X in (3.26) is also well-defined. Thus, F in
(3.28) is well-defined. For any F in (3.28), (3.25) is true and

P (sE −A−BF )Q =


 sE11 −A11 −B1F1 sE12 −A12 −B1F2

0 sE22 −A22 −B2F2

0 sE32 −A32


 ,(3.39)
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where the orthogonal matrices P,Q are determined in Theorem 2.1. Hence, the sta-
bility of E−1(A+BF ) follows directly from (3.29), (3.27), and (3.26).

On the other hand, using (3.39), the condensed form (2.1), and Theorem 3.1, we
have that for any pair (F,H) in (3.28), C(sE − A − BF )−1BH is nonsingular and
diagonal.

Remark 2. When m = 2, then the condition (3.3) becomes B21 �= 0. In this
case,

rankg


 sE22 −A22 − B21F B21

sE32 −A32 0
C12 0


 = µ2 + 1, C12

[
sE22 −A22 − B21F

sE32 −A32

]−1 [ B21

0

]

�= 0 ∀F ∈ R1×ν2 ;

i.e., (3.3) is true for any F ∈ R1×ν2 and H ∈ R with H �= 0 in (3.4). Hence, we can
take H = 1 and choose any F satisfying (3.27) when we construct the desired feedback
matrices F and H using Theorem 3.2.

Remark 3. Theorem 3.1 cannot be proved based on the geometric approach.
It is a result of using appropriate numerical linear algebra technique. Consequently,
Theorem 3.2 cannot be proved only by using the geometric approach; its successful
proof involves a combination of the geometric approach and numerical linear algebra
technique.

4. A complete numerical algorithm. Obviously, Theorem 3.2 can lead di-
rectly to a numerically reliable algorithm using only orthogonal transformations to
verify the solvability of the RRDPS for system (1.1). In the following we consider the
numerical computation of the desired feedback matrices F and H.

Let the QR factorization of
[ B21 B22

]
in the condensed form (2.8) be

[ B21 B22

]Z =
[m− 1 1

B̃21 0
]
, Z =

[m− 1 1

m− 1 Z11 Z12

1 Z21 Z22

]
,(4.1)

where B̃21 is nonsingular. Then, [ Im−1

B21

0
B22

]Z = [ Z11

B̃21

Z12

0 ]. From the transposed

version of Lemma 2.5 we have that Z22 �= 0 and

B−1
21 B22 = −Z12/Z22.(4.2)

Thus, let H22 = Z22; then the formula in (3.28) for matrix H is replaced by

H = W

[ H Z12

0 Z22

]
.(4.3)

Since Z12,Z22 are obtained by orthogonal transformations, we can construct the ma-
trix H using orthogonal transformations completely, which can be implemented in
numerically stable ways.

We continue to consider the computation of matrix F in (3.28). From (3.4), a
simple calculation yields that

F2 = W

([
0 F
0 0

]
+D2

)
VTV T ,(4.4)
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where

D2 =

[ −B21

1

]−1 [
I B22

0 1

] [ A21 0
XV21 − Φ21V11/Ψ22 XV22 − Φ21V12/Ψ22

]
.

(4.5)
This implies that

F =
[

F1 F2

]
QT = W

(
D +

[
0 F
0 0

])(
Q

[
I

V V
])T

,(4.6)

where

D =
[

WTF1 D2

]
.(4.7)

Note that in the condensed form (2.1), B2 is of full row rank, so we can get
orthogonal matrix Q̃ by the QR factorization of BT

2 such that

[
B1

B2

]
Q̃ =

[ ñ2 m− ñ2

n1 B11 B12

ñ2 B21 0

]
,(4.8)

where B21 is lower triangular and nonsingular. Now we compute an orthogonal matrix
P̃ such that

P̃

[
B11

B21

]
=

[
n1 0
ñ2 B̃21

]
, P̃ =

[ n1 ñ2

n1 P̃11 P̃12

ñ2 P̃21 P̃22

]
,(4.9)

where B̃21 is nonsingular. Denote

P̃

[
E11 A11 B12

0 A21 0

]
=

[ n1 n1 m− ñ2

n1 Ẽ11 Ã11 B̃12

ñ2 Ẽ21 Ã21 B̃22

]
,(4.10)

and

Q̃TF1 =

[
F11

F21

]
, F11 ∈ Rñ2×n1 , F21 ∈ R(m−ñ2)×n1 .(4.11)

As an application of Lemma 2.5, we have that P̃22 is nonsingular and

E11 = P̃−1
11 Ẽ11, A11 −B11B

−1
21 A21 = P̃−1

11 Ã11, B12 = P̃−1
11 B̃12.

Furthermore, we have that B2F1 = −A21 and

E−1
11 (A11 +B1F1) is stable

is equivalent to

B21F11 = −A21(4.12)

and

rank(sẼ11 − Ã11 − B̃12F21) = n1 ∀s ∈ C/C−.(4.13)
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This means that F11 can be obtained by solving (4.12), and F21 can be computed by
the numerically reliable methods in [15, 19]. Consequently, F1 can be computed in a
numerically reliable manner.

In order to compute D2, assume that the QR factorization of [B11

B21
] in the con-

densed form (2.8) is given by

Y
[ B21

B21

]
=

[
ν1 0
ν̃2 B̃21

]
, Y =

[ ν1 ν̃2

ν1 Y11 Y12

ν̃2 Y21 Y22

]
.(4.14)

Since B21 is nonsingular, B̃21 is also nonsingular. Denote

Y
[ E11 A11 B12

0 A21 B22

]
=

[ ν1 ν1 1

ν1 Ẽ11 Ã11 B̃12

ν̃2 Ẽ21 Ã21 B̃22

]
.(4.15)

By Lemma 2.5 we have that Y11 and Ẽ11 are nonsingular and

E11 = Y−1
11 Ẽ11, A11 − B11B−1

21 A21 = Y−1
11 Ã11, B12 − B11B−1

21 B22 = Y−1
11 B̃12.

Hence, (3.26) is equivalent to

Ẽ−1
11 (Ã11 − B̃12Φ21V11/Ψ22 + B̃12XV21) is stable.

Thus, we only need to compute Y by the numerically reliable methods in [19, 15]
such that

rank(sẼ11 − (Ã11 − B̃12Φ21V11/Ψ22)− B̃12Y ) = ν1 ∀s ∈ C/C−(4.16)

and then get X by solving the equation

XV21 = Y.(4.17)

Obviously, the term

[
I B22

1

] [ A21 0
XV21 − Φ21V11/Ψ22 XV22 − Φ21V12/Ψ22

]

can be computed via a numerically reliable way and D2 can be obtained by solving
the equation

[ −B21

1

]
D2 =

[
Im−1 B22

0 1

] [ A21 0
XV21 − Φ21V11/Ψ22 XV22 − Φ21V12/Ψ22

]
.

(4.18)

The discussion above shows that D can be computed in a numerically reliable
way. Furthermore, the rounding errors in computing the term D have no influence
on the computation of F . Therefore, F can be computed via a numerically reliable
method.

We are now ready to present our numerical algorithm for the RRDPS in which
Remark 2 is taken into account.
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Algorithm 1.

Input: E,A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rm×n.

Output: Matrices F ∈ Rm×n and H ∈ Rm×m solving the RRDPS.

Step 0. Set

F0 ∈ Rm×n, H0 ∈ Rm×m, F0 := 0, H0 := 0, W0 = Im, Q0 = In.

Step 1. Compute the condensed forms (2.1) and (2.5). If µ̃2 �= 1, then print “The
RRDPS is unsolvable” and stop. Otherwise, compute the condensed form (2.8).

Step 2. Compute the QR factorizations of B21 and V21. If B21 is singular or V21 is
not of full column rank, then print “The RRDPS is unsolvable” and stop. Otherwise,
perform (4.1), (4.8)–(4.10), (4.14), and (4.15).

Step 3. Compute F21 and Y using the methods in [19, 15] such that (4.13) and (4.16)
hold, respectively.

Step 4. Solve (4.12) and (4.17) by QR factorization to get F11 and X. Furthermore,
compute D2 by solving (4.18) using the QR factorization of B21, and get F1 by (4.11).
Then compute D by (4.7).

Step 5. Set

W0 := W0

[
W

I

]
, Q̂0 = Q

[
I

V V
]
, Q0 := Q0

[
I

Q̂0

]
,

F0 :=

[
W

I

]T
F0

[
I

Q̂0

]
+

[
0 D
0 0

]
,

H0 :=

[
W

I

]T
H0 +



m− 1 1

0 Z12 0
0 Z22 0
0 0 0


.

If m = 2, go to Step 6. Otherwise, if m > 2, set

sE −A :=

[
sE22 −A22

sE32 −A32

]
, B :=

[ B21

0

]
, C := C12, n := ν2, m := m− 1,

and go to Step 1.

Step 6. If B21 = 0, then print “The RRDPS is unsolvable” and stop. Otherwise,
compute F using the methods in [19, 15] such that (3.27) holds. Then compute F and
H by

F := W0

(
F0 +

[
0 F
0 0

])
QT

0 , H := W0

(
H0 +

[
1 0
0 0

])
.

Output F and H.

In the following we present a numerical example using Algorithm 1. In this ex-
ample, the original data matrices E, A, B, and C were generated using the MATLAB
command randn and all subsequent calculations were carried out using MATLAB 5.3
on an HP 712/80 workstation with IEEE standard, i.e., the machine accuracy is about
ε ∼= 10−16. Due to the length limitation of this paper, we give only the final result.
The details of all intermediate computations can be obtained from the authors.
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Example 2. Suppose there is a system of the form (1.1) with

E =


1.3894941016041 2.8773508670257 0.2254236217237 −0.1924005899501 −5.2172271998520 1.1979322072823
0.4561230628610 0.8529343697912 −0.1203480101854 0.6219233511796 −1.8532903681842 0.8187885350812
−0.0583279014123 −0.1451475204220 −0.0891807358259 0.1020733874504 −0.0315731413154 0.0106538391242
−0.5160868552020 −1.0743534709506 −0.0651803246756 0.3078528106434 1.6646937680349 −0.0962126616017
−1.0388915782354 −3.2013267952723 −0.8511366013008 1.4981997899661 5.6599971844308 −1.7967594859402
−0.3408357784176 −0.6642282085079 −0.5843332003168 0.2574681041184 1.9048019648284 −0.8776049968164


 ,

A =


3.7618688503302 1.4534396306785 −2.5928123960916 4.0507325536819 −6.1976217923044 −2.5488686731466
0.7439564521050 0.1275500731638 −0.9710266379526 1.4505878792942 −0.8750848524142 −0.6461986468818
1.1582190944175 1.5535353319471 −0.3959391178398 −0.3693076185632 −3.6897842316839 −0.4961305538884
−1.3442823973504 0.2997769470154 1.3705594260599 −2.1313731454811 1.3823906057240 1.5909923699461
−3.2286388077973 −1.3335790375774 1.7665042794420 −2.6646848942675 5.0827326482614 2.1847489726994
−1.4621882316854 −4.7908980622290 −2.0774176289798 2.7166042000452 7.1727103453469 −2.773993179975


 ,

B =




2.12055770435426 1.00661557403426 1.95683404123065
0.88892004016864 0.33241927378497 0.74071011016848
0.31163435340972 0.37071970874182 0.45009376598337
−0.87363963677912 −0.49683601091227 −0.81737747267883
−1.32613521275035 −0.78528412691089 −1.33784251083343
0.62329434673124 0.61139637181498 0.51224198001395



,

C =[ −0.0092738121968 −0.0158138239954 −0.0062525703881 0.0206707842160 0.0023945971994 0.0188773963767
−0.4722469002929 −1.1665817063750 −0.4527399982410 0.5968064514640 2.0109513620752 −0.5336352249465
0.1412527284128 0.4070293405785 −0.2195263818174 −0.0564929866156 −0.1932345015239 −0.1775481769430

]
.

Now we perform Algorithm 1 and get the desired F and H for solving the RRDPS,
as follows:

H =


 0.54803522302892 −0.20199465930860 −0.70998878873329

0.14814298152094 −0.65998549562213 −0.24482058326485
−0.82323207623715 0.72361405678664 0.66028690876232


 ,

F =[
1.9687489604506 1.0905360571177 2.5519292168400 −1.4564243641146 −16.1322181168766 1.4110078104903
4.8457993652431 0.5913364485116 −1.1629494431679 5.0189870624541 −5.1724262490250 −2.6898922595821
−6.9774481790293 −0.0300578156656 1.7181386312414 −6.0839168311771 19.9810453051219 4.7575592152078

]
.

We verify that the (F,H) above solves the RRDPS.
If we only choose the first 4 decimal digits by rounding off the other decimal digits

in the matrices E, A, B, and C in Example 2, then we get system

Ẽẋ = Ãx+ B̃u, y = C̃x(4.19)

with matrices

Ẽ =




1.3895 2.8774 0.2254 −0.1924 −5.2172 1.1979
0.4561 0.8529 −0.1203 0.6219 −1.8533 0.8188
−0.0583 −0.1451 −0.0892 0.1021 −0.0316 0.0107
−0.5161 −1.0744 −0.0652 0.3079 1.6647 −0.0962
−1.0389 −3.2013 −0.8511 1.4982 5.6600 −1.7968
−0.3408 −0.6642 −0.5843 0.2575 1.9048 −0.8776


 ,
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Ã =




3.7619 1.4534 −2.5928 4.0507 −6.1976 −2.5489
0.7440 0.1276 −0.9710 1.4506 −0.8751 −0.6462
1.1582 1.5535 −0.3959 −0.3693 −3.6898 −0.4961
−1.3443 0.2998 1.3706 −2.1314 1.3824 1.5910
−3.2286 −1.3336 1.7665 −2.6647 5.0827 2.1847
−1.4622 −4.7909 −2.0774 2.7166 7.1727 −2.7740


 ,

B̃ =




2.1206 1.0066 1.9568
0.8889 0.3324 0.7407
0.3116 0.3707 0.4501
−0.8736 −0.4968 −0.8174
−1.3261 −0.7853 −1.3378
0.6233 0.6114 0.5122


 ,

C̃ =

[ −0.0093 −0.0158 −0.0063 0.0207 0.0024 0.0189
−0.4722 −1.1666 −0.4527 0.5968 2.0110 −0.5336
0.1413 0.4070 −0.2195 −0.0565 −0.1932 −0.1775

]
.

However, in this case the RRDPS for system (4.19) is unsolvable because V21 in the
case n = 6,m = 3 is not of full column rank.1 The poles and invariant zeros of system
(1.1) are

Λ =




5.41814291005592− 3.23024976667490i
5.41814291005593 + 3.23024976667490i

−1.87864288202711
1.56316607778768

0.36477560252640− 0.32084261817080i
0.36477560252640 + 0.32084261817080i



, O =


 −1.88406066392001

1.97486631764478
1.97486631764458


 ,

respectively, while the poles and invariant zeros of system (4.19) are

Λ̃ =




5.42133770871955− 3.23587512736390i
5.42133770871955 + 3.23587512736390i

−1.88035964076856
1.56137864611542

0.36362154553414− 0.32258108140166i
0.36362154553414 + 0.32258108140166i



, Õ =


 −1.91123137997939

1.96608208697235
2.02959696122931


 ,

respectively. Since

‖Λ− Λ̃‖2/‖Λ‖2 = 1.0703× 10−3, ‖O − Õ‖2/‖O‖2 = 1.8324× 10−2,

therefore the structures of systems (1.1) and (4.19) are totally different. Note that

‖E − Ẽ‖2/‖E‖2 = 1.0866× 10−5, ‖A− Ã‖2/‖A‖2 = 7.0301× 10−6,

‖B − B̃‖2/‖B‖2 = 2.0461× 10−5, ‖C − C̃‖2/‖C‖2 = 4.8808× 10−5,

so the above truncation errors are large enough to change the structure of system
(1.1); equivalently, we cannot regard system (4.19) as an appropriate approximation
of system (1.1). Consequently, such truncation errors are large enough to perturb
the decouplable system (1.1) with stability to a nondecouplable system (4.19) with
stability! This result highlights some important points worth noting for the RRDPS:

1This interesting observation is due to Prof. M. Malabre!
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• In general, engineers may like to truncate the data obtained from experi-
ments and work with these truncated data. However, when we deal with the
RRDPS, we must avoid any truncation of the data, and the input data should
be as accurate as possible, otherwise, the results may be in error!

• The various row by row decoupling problems, including the RRDPS, are
rather sensitive to the input data. This is an inherent property of the row by
row decoupling problems, which does not depend on the numerical methods
used ! Therefore, it is interesting to study the distance between a given de-
couplable system (with or without stability) and the set of all nondecouplable
systems (with or without stability). There are no results available for this
topic yet.

• Because the RRDPS is a rather sensitive problem, it requires reliable numer-
ical methods. Generally, the error during the numerical computation may be
interpreted into the perturbation in the input data, so if the used numeri-
cal methods are not reliable, the errors produced during the computations
may increase to a certain level such that the perturbed system becomes a
nondecouplable one.

• Algorithm 1 is implemented using orthogonal transformations, and hence it
is reliable. This point has been verified through a step response analysis.
For the result in Example 2, it has been found that the response to steps or
sinusoidal inputs applied on each separate control channel effectively gives
terms on the off-diagonal parts which are about 10−15—almost the same as
the machine accuracy.2

5. Concluding remarks. We have studied the RRDPS for system (1.1). We
first proved a reduction property for the RRDPS based on the condensed forms (2.1),
(2.5), and (2.8) using Theorems 1.2 and 3.1 and then developed the numerically
reliable Algorithm 1.

The condensed forms (2.1), (2.5), and (2.8) are all based on orthogonal transfor-
mations, and the main ingredients of their constructions are the generalized upper
triangular forms of matrix pencils (see Lemma A.1 in the appendix) and QR factor-
ization with pivoting. Therefore, our results lead to numerically reliable methods for
solving the RRDPS using existing numerical algebra software such as MATLAB.

We should mention that row by row decoupling is not always possible, and thus
one can resort to triangular decoupling, as follows, because it requires less restrictive
conditions.

Problem 5.1. Given a system of the form (1.1), find matrices F ∈ Rm×n and
H ∈ Rm×m such that E−1(A+BF ) is stable and T (s) := C(sE −A−BF )−1BH is
lower triangular and nonsingular.

In the sequel [6], we will study the triangular decoupling problem. We will show
that the numerical linear algebra technique used in the present paper can be extended
not only to derive explicit solvability conditions but also to parameterize all solutions
for the triangular decoupling problem, although we cannot expect that similar pa-
rameterization of all solutions can be obtained for the RRDPS.

Appendix. Before we construct the condensed forms (2.1) and (2.5), we recall
the generalized upper triangular form of matrix pencils and QR factorization with
column pivoting.

2This verification was done by Dr. Jean-Francois Camalt in IRCCyN of Ecole Centrale De Nantes.
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It is well known that any matrix pencil sE − A can be transformed into its
generalized upper triangular (GUPTRI) form under orthogonal transformations. This
GUPTRI is well studied in [8, 9, 18], and numerically stable algorithms are available
via www.netlib.org/linalg/guptri. There also exists a MATLAB MEX-interface for
the GUPTRI software.

Lemma A.1 (see [8, 9, 18]). Given a matrix pencil (E,A), E,A ∈ Rl×n there
exist orthogonal matrices P ∈ Rl×l, Q ∈ Rn×n such that (PEQ,PAQ) are in the
following GUPTRI:

P (sE −A)Q =




n1 n2 n3 n4

l1 sE11 −A11 sE12 −A12 sE13 −A13 sE14 −A14

n2 0 sE22 −A22 sE23 −A23 sE24 −A24

n3 0 0 sE33 −A33 sE34 −A34

l4 0 0 0 sE44 −A44


,(A.1)

where

rank(E11) = l1, rank(E22) = n2, rank(E44) = n4,

rank(sE11 −A11) = l1, rank(sE33 −A33) = n3, rank(sE44 −A44) = n4 ∀s ∈ C.

It is also well known that any matrix A ∈ Rm×n can be factorized as

UA =

[
R1 R2

0 0

]
Π,(A.2)

where U and Π are orthogonal and permutation matrices, respectively, and R1 is non-
singular and upper triangular. The factorization (A.2) is called the QR factorization
of A with column pivoting. Furthermore, if we denote R =

[
R1 R2

]
Π, then R

is of full row rank and UA = [R0 ]. Moreover, if we perform QR factorization of AT

with column pivoting, we can get the orthogonal matrix V such that V TAT = [R
T

0 ]
with RT being of full row rank. Hence, V satisfies AV =

[ R 0
]
, where R is of

full column rank.
In this appendix, for any matrix M , S∞(M) denotes a full column rank matrix

whose columns span the null space of M and T∞(M) = S∞(MT ).
Now we give the numerical constructions of the condensed forms (2.1) and (2.5).
The construction of the condensed form (2.1). We construct the condensed

form (2.1) by the following algorithm.
Algorithm 2.

Input: E,A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rm×n with E nonsingular.
Output: Orthogonal matrices P,Q ∈ Rn×n and the condensed form (2.1).
Step 1. Perform the row compression of B and the column compression of C, and
then perform the GUPTRI form of the pencil (T T

∞(B)ES∞(C), T T
∞(B)AS∞(C)) to

get orthogonal matrices P1 and Q1 such that

P1(sE −A)Q1 =:




n
(1)
1 n

(1)
2 n

(1)
3 n

(1)
4

ñ
(1)
1 sE

(1)
11 −A

(1)
11 sE

(1)
12 −A

(1)
12 sE

(1)
13 −A

(1)
13 sE

(1)
14 −A

(1)
14

ñ
(1)
2 sE

(1)
21 −A

(1)
21 sE

(1)
22 −A

(1)
22 sE

(1)
23 −A

(1)
23 sE

(1)
24 −A

(1)
24

n
(1)
2 0 sE

(1)
32 −A

(1)
32 sE

(1)
33 −A

(1)
33 sE

(1)
34 −A

(1)
34

ñ
(1)
4 0 0 sE

(1)
43 −A

(1)
43 sE

(1)
44 −A

(1)
44


,
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P1B =:




ñ
(1)
1 B

(1)
1

ñ
(1)
2 0

n
(1)
2 0

ñ
(1)
4 0


, CQ1 =:

[n(1)
1 n

(1)
2 n

(1)
3 n

(1)
4

0 0 0 C
(1)
4

]
,

where

rank(B
(1)
1 ) = ñ

(1)
1 , rank(E

(1)
21 ) = ñ

(1)
2 , rank(C

(1)
4 ) = n

(1)
4 , rank(E

(1)
32 ) = n

(1)
2 ,

(A.3)

rank(sE
(1)
21 −A

(1)
21 ) = ñ

(1)
2 , rank(sE

(1)
43 −A

(1)
43 ) = n

(1)
3 ∀s ∈ C.(A.4)

Step 2. Perform the QZ method [11] to get orthogonal matrices P2 and Q2 such that

P2(sE
(1)
32 −A

(1)
32 )Q2 =:

[ n
(2)
2 n

(1)
2 − n

(2)
2

n
(2)
2 sE

(2)
32 −A

(2)
32 sE

(2)
33 −A

(2)
33

n
(1)
2 − n

(2)
2 0 sE

(2)
43 −A

(2)
43

]
,

where all eigenvalues of (E
(2)
32 )−1A

(2)
32 and (E

(2)
43 )−1A

(2)
43 are in C− and C/C−, respec-

tively, i.e.,

rank(sE
(2)
32 −A

(2)
32 ) = n

(2)
2 ∀s ∈ C/C−,(A.5)

rank(sE
(2)
43 −A

(2)
43 ) = n

(1)
2 − n

(2)
2 ∀s ∈ C−.(A.6)

Set

P2

[
sE

(1)
33 −A

(1)
33 sE

(1)
34 −A

(1)
34

]
=:

[ n
(1)
3 n

(1)
4

n
(2)
2 sE

(2)
34 −A

(2)
34 sE

(2)
35 −A

(2)
35

n
(1)
2 − n

(2)
2 sE

(2)
44 −A

(2)
44 sE

(2)
45 −A

(2)
45

]
,

[
sE

(1)
12 −A

(1)
12

sE
(1)
22 −A

(1)
22

]
Q2 =:

[ n
(1)
2 n

(1)
2 − n

(2)
2

ñ
(1)
1 sE

(2)
12 −A

(2)
12 sE

(2)
13 −A

(2)
13

ñ
(1)
2 sE

(2)
22 −A

(2)
22 sE

(2)
23 −A

(2)
23

]
.

Step 3. Note that E is nonsingular, so


E
(1)
11 E

(2)
12

E
(1)
21 E

(2)
22

0 E
(2)
32




is of full column rank. Hence, we can perform a QR factorization of


E
(1)
11 E

(2)
12

E
(1)
21 E

(2)
22

0 E
(2)
32




to get the orthogonal matrix P3 such that

P3




sE
(1)
11 −A

(1)
11 sE

(2)
12 −A

(2)
12

sE
(1)
21 −A

(1)
21 sE

(2)
22 −A

(2)
22

0 sE
(2)
32 −A

(2)
32


 =:

[ n1

n1 sE11 −A11

ñ2 −A21

]
,
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where

n1 = n
(1)
1 + n

(2)
2 , ñ2 = ñ

(1)
1 + ñ

(1)
2 + n

(2)
2 − n1, rank(E11) = n1.(A.7)

Set

P3




sE
(2)
13 −A

(2)
13 sE

(1)
13 −A

(1)
13 sE

(1)
14 −A

(1)
14

sE
(2)
23 −A

(2)
23 sE

(1)
23 −A

(1)
23 sE

(1)
24 −A

(1)
24

sE
(2)
33 −A

(2)
33 sE

(1)
33 −A

(1)
33 sE

(1)
34 −A

(1)
34


 =:

[ n2

n1 sE12 −A12

ñ2 sE22 −A22

]
,

P3


 B

(1)
1

0
0


 =:

[
n1 B1

ñ2 B2

]
,

[
sE

(2)
43 −A

(2)
43 sE

(2)
44 −A

(2)
44 sE

(2)
45 −A

(2)
45

0 sE
(1)
43 −A

(1)
43 sE

(1)
44 −A

(1)
44

]
=: sE32 −A32,

[
0 0 C

(1)
4

]
=: C2,

n2 := n− n1, ñ3 := n− n1 − ñ2.

By (A.3) and (A.7) we have

rank(B2) = rank

[
E11 B1

0 B2

]
− n1 = rank




E
(1)
11 E

(2
12) B

(1)
1

E
(1)
21 E

(2)
22 0

0 E
(2)
32 0


− n1

= ñ
(1)
1 + ñ

(1)
2 + n

(2)
2 − n1 = n2;

equivalently, B2 is of full row rank. Furthermore, by (A.3), (A.4), (A.5), and (A.6)
we get

rank

[
sE11 −A11 B1

−A21 B2

]
= rank




sE
(1)
11 −A

(1)
11 sE

(2)
12 −A

(2)
12 B

(1)
1

sE
(1)
21 −A

(1)
21 sE

(2)
22 −A

(2)
22 0

0 sE
(2)
32 −A

(2)
32 0




= ñ
(1)
1 + ñ

(1)
2 + n

(2)
2 = n1 + n2 ∀s ∈ C/C−

and

rank

[
sE32 −A32

C2

]
= rank




sE
(2)
43 −A

(2)
43 sE

(2)
44 −A

(2)
44 sE

(2)
45 −A

(2)
45

0 sE
(1)
43 −A

(1)
43 sE

(1)
44 −A

(1)
44

0 0 C
(1)
4




= (n
(1)
2 − n

(2)
2 ) + n

(1)
3 + n

(1)
4 = n2 ∀s ∈ C−;

i.e., the properties (2.2) and (2.3) hold.
Step 4. Set

P =

[
P3

Iñ3

]
I
ñ

(1)
1 +ñ

(1)
2

P2

I
ñ

(1)
4


P1, Q = Q1




I
n

(1)
1

Q2

I
n

(1)
3 +n

(1)
4


 .

Then (P (sE −A)Q,PB,CQ) are in the condensed form (2.1).
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The construction of the condensed form (2.5). We construct the condensed
form (2.5) by the following algorithm.

Algorithm 3.
Input: [E22

E32
], [A22

A32
], [B2

0 ], and C2 in the condensed form (2.5).

Output: Orthogonal matrices U , V , W , and the condensed form (2.5).
Step 1. Perform QR factorizations of [B2

0 ] and (
[
0 1

]
C2)

T with column pivoting,

respectively, and then perform the GUPTRI of TT
∞([B2

0 ])[ sE22−A22

sE32−A32
]S∞(

[
0 1

]
C2)

to get the orthogonal matrices U1 and V such that

U1

[
B2

0

]
=:


µ̃

(1)
1 Ψ

(1)
1

µ̃
(1)
2 0

µ̃3 0


, [

0 1
]
C2V =:

[µ1 µ
(1)
2 µ

(1)
3

0 0 ξ
(1)
23

]
,

U1

[
sE22 −A22

sE32 −A32

]
V :=




µ1 µ
(1)
2 µ

(1)
3

µ̃
(1)
1 sΘ

(1)
11 − Φ

(1)
11 sΘ

(1)
12 − Φ

(1)
12 sΘ

(1)
13 − Φ

(1)
13

µ̃
(1)
2 sΘ

(1)
21 − Φ

(1)
21 sΘ

(1)
22 − Φ

(1)
22 sΘ

(1)
23 − Φ

(1)
23

µ̃3 0 sΘ
(1)
32 − Φ

(1)
32 sΘ

(1)
33 − Φ

(1)
33


,

where

rank(Ψ
(1)
1 ) = µ̃

(1)
1 , rank(ξ

(1)
23 ) = µ

(1)
3 , rank(Θ

(1)
21 ) = µ̃

(1)
2 ,

rankg(sΘ
(1)
32 − Φ

(1)
32 ) = µ

(1)
2 , rank(sΘ

(1)
21 − Φ

(1)
21 ) = µ̃

(1)
2 ∀s ∈ C.

Step 2. E is nonsingular from the form (2.1), and [E22

E32
] is also nonsingular; therefore[Θ

(1)
11

Θ
(1)
21

]
is of full column rank. Hence, perform the QR factorization of

[Θ
(1)
11

Θ
(1)
21

]
with

column pivoting to get the orthogonal matrix U2 such that

U2

[
sΘ

(1)
11 − Φ

(1)
11

sΘ
(1)
21 − Φ

(1)
21

]
=:

[
µ1 sΘ11 − Φ11

µ̃2 −Φ21

]

with Θ11 nonsingular. Set

U2

[
sΘ

(1)
12 − Φ

(1)
12 sΘ

(1)
13 − Φ

(1)
13

sΘ
(1)
22 − Φ

(1)
22 sΘ

(1)
23 − Φ

(1)
23

]
=:

[ µ2

µ1 sΘ12 − Φ12

µ̃2 sΘ22 − Φ22

]
, U2

[
Ψ

(1)
1

0

]
=:

[
µ1 Ψ

(2)
1

µ̃2 Ψ
(2)
2

]
,

[
sΘ

(1)
32 − Φ

(1)
32 sΘ

(1)
33 − Φ

(1)
33

]
=: sΘ32 − Φ32,

[
0 ξ

(1)
23

]
=: ξ22.

Step 3. Note that
[Θ

(1)
11

Θ
(1)
21

Ψ
(1)
1

0

]
is of full row rank, so Ψ

(2)
2 is also of full row rank.

Therefore, by performing the QR factorization of (Ψ
(2)
2 )T with column pivoting, we

can get the orthogonal matrix W such that

[
Ψ

(2)
1

Ψ
(2)
2

]
W =:

[m− µ̃2 µ̃2

µ1 Ψ11 Ψ12

µ̃2 0 Ψ22

]

with Ψ22 nonsingular.
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Step 4. Set

U :=

[
U2

I

]
U1,

[
In2−1 0

]
C2V =:

[ µ1 µ2

Ξ11 Ξ12

]
.

Then (U [ sE22−A22

sE32−A32
]V,U [B2

0 ]W,C2V ) is in the condensed form (2.5).
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Abstract. This is the sequel to [D. Chu and R. C. E. Tan, SIAM J. Matrix Anal. Appl., 23
(2002), pp. 1143-1170]. In that paper we studied the row by row decoupling problem with stability
in control theory and developed a numerically reliable method for solving it. In this paper we study
a related problem—the triangular decoupling problem. We not only give new and explicit solvability
conditions but also parameterize all the solutions. The basis of our result is a condensed form which
is computed using only orthogonal transformations. Hence, our new solvability conditions can be
verified and all solutions can be parameterized in a numerically stable manner.

Key words. triangular decoupling, condensed form, orthogonal transformation
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1. Introduction. Consider the linear time-invariant system

Eẋ = Ax+Bu,

y = Cx,(1.1)

where E,A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, E is nonsingular, x ∈ Rn is the state,
u ∈ Rm is the control input, and y ∈ Rm is the output. If a state feedback of the
form

u = Fx+Hv(1.2)

is applied to system (1.1), then the closed-loop system becomes

Eẋ = (A+BF )x+BHv, y = Cx.(1.3)

The triangular decoupling problem with or without stability can be formulated as
follows.

Definition 1.1. Suppose there is a system of the form (1.1).
(i) Triangular decoupling problem (TDP): Find matrices F ∈ Rm×n and H ∈

Rm×m such that the transfer matrix T (s) from output y to the input v in
(1.3) is lower triangular and nonsingular, i.e.,

T (s) := C(sE −A−BF )−1BH is lower triangular and nonsingular.(1.4)

(ii) Triangular decoupling problem with stability (TDPS): Find matrices F ∈
Rm×n and H ∈ Rm×m such that (1.4) is true and E−1(A+BF ) is stable.

In [8] we studied the row by row decoupling problem with stability in control the-
ory. However, in general row by row decoupling is not always possible. In such cases,
one can resort to triangular decoupling because it requires less restrictive conditions.
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The TDP has been treated in the existing literature by many researchers using
various approaches (see [1, 2, 3, 4, 5, 6, 7]). However, these studies are all incomplete,
since
(a) all solutions for the TDP and TDPS have not been parameterized explicitly;
(b) no numerically stable algorithms are available to verify the existing solvability

conditions and compute a desired solution and parameterize all solutions for
TDP and TDPS.

In this paper we will study the TDP and TDPS. Using a condensed form, we give
new and explicit solvability conditions and parameterize all solutions for the TDP
and TDPS. This condensed form is computed using only orthogonal transformations.
Hence, our new solvability conditions can be easily verified and all solutions can be
parameterized in a numerically stable manner using standard numerical linear algebra
software such as MATLAB.

In this paper we denote the generic rank of a rational matrix function by rankg[·].
2. The main result. First, we need to obtain a condensed form for the system

(1.1) and then from it develop our main result in this section.
Lemma 2.1. Let E ,A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n with E nonsingular. There

exist orthogonal matrices U , V, and W such that

U(sE − A)V =




µ1 µ2

ν1 sE11 −A11 0
ν2 sE21 −A21 −A22

µ2 sE31 −A31 sE32 −A32


, UBW =




ν2 m− ν2

ν1 0 0
ν2 B21 0
µ2 B31 B32


,

(2.1)

CV =

[ µ1 µ2

1 C11 0
m− 1 C21 C22

]
,

where E32 and B21 are nonsingular, µ1 = ν1 + ν2, ν2 = 0 or ν2 = 1, and

rank

[ −A22 B21 0
sE32 −A32 B31 B32

]
= ν2 + µ2 ∀s ∈ C,(2.2)

rankg

[
sE11 −A11

C11
]
= µ1.(2.3)

Proof. The condensed form (2.1) is the transposed version of the form (2.5) in
[8]. Since property (2.3) and the nonsingularity of E32 and B21 give

n+ 1 ≥ rankg

[
sE − A B[
1 0

] C 0

]
= µ1 + ν2 + µ2 = n+ ν2,(2.4)

thus, ν2 ≤ 1, i.e., ν2 = 0 or ν2 = 1.
Remark 1. From (2.4), we know that

ν2 = rankg

[
sE − A B[
1 0

] C 0

]
− n,

so ν2 is independent of orthogonal matrices U , V, andW in the condensed form (2.1).
Obviously, in (2.1) if ν2 = 0, then the second row blocks in U(sE −A)V and UBW

and the first column block in UBW disappear, and (2.1) is reduced to

U(sE − A)V =

[ µ1 µ2

ν1 sE11 −A11 0
µ2 sE31 −A31 sE32 −A32

]
, UBW =

[ m

ν1 0
µ2 B32

]
,
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CV =

[ µ1 µ2

1 C11 0
m− 1 C21 C22

]
,

where ν1 = µ1, E11 is nonsingular, (2.3) holds, and

rank
[
sE32 −A32 B32

]
= µ2 ∀s ∈ C.

The following simple example shows that ν2 in (2.1) may attain the value zero
for some (E ,A,B, C). Let

E = I4, A =




1 1 0 0
1 1 0 0
0 0 0 0
0 0 1 1


 , B =




0 0
0 0
1 0
0 1


 , C =

[
1 0 0 0
1 1 1 1

]
.

Obviously, (E ,A,B, C) is in the condensed form (2.1) with

U = V = I4, W = I2, ν1 = µ1 = µ2 = 2, ν2 = 0.

By applying the transposed version of Lemma 2.5 in [8] to the condensed form
(2.1), we immediately get the following corollary.

Corollary 2.2. Let E ,A ∈ Rn×n,B ∈ Rn×m, and C ∈ Rm×n with E nonsingu-
lar. Assume that orthogonal matrices U , V, and W have been determined such that
(U(sE − A)V,UBW, CV) is in the condensed form (2.1). Let the QR factorization of
[B21

B31
] with column pivoting be

P
[ B21

B31

]
=

[
ν2 B̃21

µ2 0

]
, P =

[ ν2 µ2

ν2 P22 P23

µ2 P32 P33

]
,

where P is orthogonal. Denote

P
[

sE21 −A21 −A22 0
sE31 −A31 sE32 −A32 B32

]
=

[ µ1 µ2 m− ν2

ν2 ∗ ∗ ∗
µ2 sẼ31 − Ã31 sẼ32 − Ã32 B̃32

]
,

Y =


 I 0 0

0 I 0
0 P32 P33


U .

Then Y is nonsingular and

Y(sE − A)V =


 sE11 −A11 0

sE21 −A21 −A22

sẼ31 − Ã31 sẼ32 − Ã32


 , YBW =


 0 0
B21 0

0 B̃32


 ,

where Ẽ32 is nonsingular and
rank

[
sẼ32 − Ã32 B̃32

]
= µ2 ∀s ∈ C.(2.5)

As a direct consequence of Lemma 2.1 and Corollary 2.2, we have the following
important theorem.
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Theorem 2.3. Given E,A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rm×n, there exist
an integer 0 ≤ k ≤ m, a nonsingular matrix X ∈ Rn×n, and orthogonal matrices
V ∈ Rn×n and W ∈ Rm×m such that

X(sE −A)V =




n1 n2 n3 · · · nk nk+1

ñ1 sE11 − A11 0 0 · · · 0 0
ñ2 sE21 − A21 −A22 −A23 · · · −A2k −A2(k+1)
ñ3 sE31 − A31 sE32 − A32 0 · · · 0 0
ñ4 sE41 − A41 sE42 − A42 −A43 · · · −A4k −A4(k+1)

.

.

.

.

.

.

.

.

.

.

.

. · · ·
.
.
.

.

.

.
ñ2i−1 sE(2i−1)1 − A(2i−1)1 sE(2i−1)2 − A(2i−1)2 sE(2i−1)3 − A(2i−1)3 · · · 0 0

ñ2i sE(2i)1 − A(2i)1 sE(2i)2 − A(2i)2 sE(2i)3 − A(2i)3 · · · −A(2i)k −A(2i)(k+1)

.

.

.

.

.

.

.

.

.

.

.

. · · ·
.
.
.

.

.

.
ñ2k−1 sE(2k−1)1 − A(2k−1)1 sE(2k−1)2 − A(2k−1)2 sE(2k−1)3 − A(2k−1)3 · · · sE(2k−1)k − A(2k−1)k 0

ñ2k sE(2k)1 − A(2k)1 sE(2k)2 − A(2k)2 sE(2k)3 − A(2k)3 · · · sE(2k)k − A(2k)k −A(2k)(k+1)
nk+1 sE(2k+1)1 − A(2k+1)1 sE(2k+1)2 − A(2k+1)2 sE(2k+1)3 − A(2k+1)3 · · · sE(2k+1)k − A(2k+1)k D(s)



,

XBW =




ñ2 ñ4 · · · ñ2i · · · ñ2k m−∑k
j=1 ñ2j

ñ1 0 0 · · · 0 · · · 0 0
ñ2 B21 0 · · · 0 · · · 0 0
ñ3 0 0 · · · 0 · · · 0 0
ñ4 0 B42 · · · 0 · · · 0 0
...

...
... · · · ... · · · ...

...
ñ2i−1 0 0 · · · 0 · · · 0 0
ñ2i 0 0 · · · B(2i)i · · · 0 0
...

...
... · · · ... · · · ...

...
ñ2k−1 0 0 · · · 0 · · · 0 0
ñ2k 0 0 · · · 0 · · · B(2k)k 0
nk+1 0 0 · · · 0 · · · 0 B(2k+1)(k+1)




,(2.6)

CV =




n1 n2 n3 · · · nk nk+1

1 C11 0 0 · · · 0 0
1 C21 C22 0 · · · 0 0
1 C31 C32 C33 · · · 0 0
...

...
...

...
. . .

...
...

1 Ck1 Ck2 Ck3 · · · Ckk 0
m− k C(k+1)1 C(k+1)2 C(k+1)3 · · · C(k+1)k 0



,

where D(s) = sE(2k+1)(k+1) − A(2k+1)(k+1), E(2k+1)(k+1), B(2i)i, and [E(2i−1)i

E(2i)i
], i =

1, . . . , k, are nonsingular, and

ñ2i−1 + ñ2i = ni, ñ2i = 0 or ñ2i = 1, i = 1, . . . , k,(2.7)

rank(sE(2i−1)i −A(2i−1)i) = ñ2i−1, i = 2, . . . , k ∀s ∈ C,(2.8)

rank
[
D(s) B(2k+1)(k+1)

]
= nk+1 ∀s ∈ C,(2.9)

rankg

[
sE(2i−1)i −A(2i−1)i

Cii

]
= ni, i = 1, . . . , k.(2.10)

Moreover, although X is not orthogonal, it and the condensed form (2.6) are computed
using only orthogonal transformations, which can be implemented in a numerically
stable way.



TRIANGULAR DECOUPLING 1175

Proof. See the appendix.
We are now ready to present our main result.
Theorem 2.4. Given a system of the form (1.1), assume that the integer k,

nonsingular matrix X, and orthogonal matrices V and W have been determined such
that (X(sE −A)V,XBW,CV ) is in the condensed form (2.6).

(i) The TDP is solvable if and only if

k = m, ñ2i = 1, i = 1, 2, . . . ,m.(2.11)

All matrices F and H in (1.2) solving the TDP are given by

F = W




F11 −A22

B21
−A23

B21
· · · −A2(m−1)

B21
−A2m

B21

F21 F22 −A43

B42
· · · −A4(m−1)

B42
−A4m

B42

...
...

. . .
. . .

...
...

F(m−1)1 F(m−1)2 F(m−1)3

. . . F(m−1)(m−1) − A(2(m−1))m

B(2(m−1))(m−1)

Fm1 Fm2 Fm3 · · · Fm(m−1) Fmm



V T ,

(2.12)

H = W




h11 0 · · · 0
h21 h22 · · · 0
...

...
. . .

...
hm1 hm2 · · · hmm


 ,(2.13)

where Fij ∈ R1×nj , hij ∈ R, i = 1, . . . ,m, j = 1, . . . , i, are arbitrary, hii, i = 1, . . . ,m,
are nonzero.

(ii) The TDPS is solvable if and only if condition (2.11) is true and furthermore

rank(sE11 −A11) = ñ1 ∀s ∈ C/C−.(2.14)

Moreover, all matrices F and H in (1.2) solving the TDPS are those in (2.12) and
(2.13) with [

E(2i−1)i

E(2i)i

]−1([
A(2i−1)i

A(2i)i

]
+

[
0

B(2i)i

]
Fii

)

being stable, i.e.,

rank

[
sE(2i−1)i −A(2i−1)i

sE(2i)i −A(2i)i −B(2i)iFii

]
= ni, i = 1, . . . ,m ∀s ∈ C/C−.(2.15)

Proof. We first prove the “necessity” and then the “sufficiency.”
(i) Necessity. Let F ∈ Rm×n and H ∈ Rm×m be such that (1.4) holds true. Then

H is nonsingular and we have

rankg

[
X(sE −A)V XBW

CV 0

]
= rankg

[
sE −A−BF BH

C 0

]

= n+ rankg(C(sE −A−BF )−1BH) = n+m.(2.16)

However, using the condensed form (2.6), we know that

rankg

[
X(sE −A)V XBW

CV 0

]
=

k∑
i=1

ni +

k∑
i=1

ñ2i + nk+1 = n+

k∑
i=1

ñ2i.(2.17)
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Note that k ≤ m and ñ2i ≤ 1, i = 1, . . . , k. Thus, condition (2.11) follows directly
from (2.16) and (2.17). Furthermore, B(2k+1)(k+1) vanishes, so property (2.9) and the
nonsingularity of E(2k+1)(k+1) yield nk+1 = 0.

In the following we show that F and H are of the forms (2.12) and (2.13), respec-
tively. Let

WTFV =




n1 · · · nm

1 F11 · · · F1m
...

... · · · ...
1 Fm1 · · · Fmm


, WTH =




1 · · · 1

1 h11 · · · h1m
...

... · · · ...
1 hm1 · · · hmm


.

Now, in the condensed form (2.6), for i = 1, . . . ,m, denote

sEi −Ai

=




sE(2i−1)i −A(2i−1)i 0 · · · 0
sE(2i)i −A(2i)i −A(2i)(i+1) · · · −A(2i)m

...
... · · ·

...
sE(2m−1)i −A(2m−1)i sE(2m−1)(i+1) −A(2m−1)(i+1) · · · sE(2m−1)m −A(2m−1)m

sE(2m)i −A(2m)i sE(2m)(i+1) −A(2m)(i+1) · · · sE(2m)m −A(2m)m


 ,

Bi =




0 · · · 0
B(2i)i · · · 0
... · · · ...
0 · · · 0
0 · · · B(2m)m


 , Ci =




Cii

...
. . .

Cmi · · · Cmm


 .(2.18)

Then property (2.7) implies that

Ei, i = 1, . . . ,m, are nonsingular.(2.19)

At the same time, property (2.8) and the nonsingularity of B(2i)i yield

rank
[
sEi −Ai Bi

]
=

2m∑
j=2i−1

ñj =

m∑
j=i

nj ∀s ∈ C.(2.20)

Set

Fi =




Fii · · · Fim

... · · · ...
Fmi · · · Fmm


 , Hi =




hii · · · him

... · · · ...
hmi · · · hmm


 .

From (1.4) and using (2.11) we have C1 = CV ,

C1(sE1−A1−B1F1)
−1B1H1 = C(sI−A−BF )−1BH is lower triangular and nonsingular,

(2.21)
and H1 is nonsingular. Hence, for i = 1, . . . ,m− 1, we have the following:

(a) Since

[
1 0

] Ci(sEi −Ai − BiFi)
−1BiHi

[
0

I∑m

j=i
nj−1

]
= 0,
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by Lemma 2.3 in [8] and property (2.10) we get

m∑
j=i

nj = rankg


 sEi −Ai − BiFi BiHi

[
0

I∑m

j=i
nj−1

]
[
1 0

] Ci 0




= rankg




sE(2i−1)i −A(2i−1)i 0 0
sE(2i)i −A(2i)i −B(2i)iFii −Xi Yi

Zi sEi+1 −Ai+1 − Bi+1Fi+1 Bi+1Hi+1

Cii 0 0




= ni + rankg

[ −Xi Yi

sEi+1 −Ai+1 − Bi+1Fi+1 Bi+1Hi+1

]
,

i.e.,

m∑
j=i+1

nj = rankg

[ −Xi Yi

sEi+1 −Ai+1 − Bi+1Fi+1 Bi+1Hi+1

]
,(2.22)

where

Xi =
[
A(2i)(i+1) · · · A(2i)k

]
+B(2i)i

[
Fi(i+1) · · · Fik

]
,

Zi =




sE(2i+1)i −A(2i+1)i

...
sE(2k)i −A(2k)i


− Bi+1




F(i+1)i

...
Fki


 ,

Yi = B(2i)i

[
hi(i+1) · · · him

]
.

However, Ei+1 is nonsingular (see (2.19)), i.e., rank(Ei+1) =
∑m

j=i+1 nj ; thus, it follows
directly from (2.22) and Lemma 2.3 in [8] that

Yi = 0.(2.23)

However, B(2i)i is nonsingular, so

hij = 0, j = i+ 1, . . . ,m.(2.24)

Consequently, since Hi is nonsingular,

hii �= 0, Hi+1 is nonsingular.(2.25)

We also have from (2.20) that

rank
[
sEi+1 −Ai+1 − Bi+1Fi+1 Bi+1Hi+1

]
= rank

[
sEi+1 −Ai+1 Bi+1

]
=

m∑
j=i+1

nj ∀s ∈ C.

Therefore, it follows from Lemma 2.4 in [8] and the equalities (2.23) and (2.22) that
Xi = 0; equivalently,[

Fi(i+1) · · · Fim

]
= −B−1

(2i)i

[
A(2i)(i+1) · · · A(2i)m

]
= − [ A(2i)(i+1) · · · A(2i)m

]
/B(2i)i.(2.26)



1178 DELIN CHU AND ROGER C. E. TAN

(b) Furthermore, a simple calculation using (2.26) and (2.24) gives

Ci(sEi−Ai−BiFi)
−1BiHi =

[
dii 0
 Ci+1(sEi+1 −Ai+1 − Bi+1Fi+1)

−1Bi+1Hi+1

]
(2.27)
with

dii = Cii

[
sE(2i−1)i −A(2i−1)i

sE(2i)i −A(2i)i −B(2i)iFii

]−1 [
0

B(2i)i

]
hii.

Since Ci(sEi−Ai−BiFi)
−1BiHi is lower triangular and nonsingular, hence Ci+1(sEi+1−

Ai+1 − Bi+1Fi+1)
−1Bi+1Hi+1 is also lower triangular and nonsingular.

Finally, from (2.26) and (2.24) we know that F and H are of the form (2.12) and
(2.13), respectively.

(ii) Necessity. Let F ∈ Rm×n and H ∈ Rm×m be such that (1.4) holds true
and E−1(A + BF ) is stable. Then condition (2.11) follows directly from part (i).
Furthermore, nk+1 = 0 and

rank
[
sE −A B

]
= rank

[
X(sE −A−BF ) XB

]
= n ∀s ∈ C/C−,

which, along with the condensed form (2.6), give condition (2.14) immediately. Note
that in the necessity proof of part (i), we have shown that F and H must be of the
form (2.12) and (2.13), respectively. Hence,

X(sE −A−BF )V

=




sE11 −A11 0 · · · 0
sE21 −A21 −B21F11 0 · · · 0

� sE32 −A32 · · · 0
� sE42 −A42 −B42F22 · · · 0
...

...
...

...
� � · · · sE(2m−1)m −A(2m−1)m

� � · · · sE(2m)m −A(2m)m −B(2m)mFmm




,

(2.28)

i.e., X(sE − A − BF )V is a block lower triangular matrix with diagonal blocks

[ sE(2i−1)i−A(2i−1)i

sE(2i)i−A(2i)i−B(2i)iFii
]. Hence, (2.15) holds.

Sufficiency in (i) and (ii). Since condition (2.11) holds true, the F in (2.12) and
H in (2.13) are well-defined. Moreover, B(2k+1)(k+1) vanishes, and thus property (2.9)
and the nonsingularity of E(2k+1)(k+1) yield nk+1 = 0. For any F in (2.12) and H in
(2.13), X(sE − A − BF )V is of the form (2.28). Hence, a simple calculation yields
that C(sE−A−BF )−1BH is lower triangular. Furthermore, using condition (2.11),
the condensed form (2.6) and the nonsingularity of H, we have

rankg(C(sE −A−BF )−1BH)

= rankg(C(sE −A−BF )−1B) = rankg

[
sE −B −BF B

C 0

]
− n

= rankg

[
X(sE −A)V XBW

CV 0

]
− n =

(
m∑
i=1

ñ2i +

m∑
i=1

ni

)
− n = (m+ n)− n = m.

So, C(sE −A−BF )−1BH is nonsingular. This completes the sufficiency in (i).
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In addition, if condition (2.14) holds, then this and property (2.15) imply that
for i = 1, . . . ,m,

rank

[
sE(2i−1)i −A(2i−1)i 0

sE(2i)i −A(2i)i B(2i)i

]
= ñ2i−1 + ñ2i = ni ∀s ∈ C/C−.

Hence, the matrices F in (2.12) satisfying (2.15) are well-defined. For such matrices
F , from (2.28) and (2.14) directly, we have that E−(A+BF ) is stable.

In the following we present a numerical example to illustrate Theorem 2.4. In
this example, E = I, the matrices A, B, and C were generalized using the MATLAB
command randn, and all calculations were carried out in MATLAB version 5.3 on an
HP 712/80 workstation with IEEE standard.

Example 1. Consider a linear system of the form (1.1) with E = I6 and

A =


2.283129391333 −0.130522011520 0.630405883785 −0.303950548401 −0.566033905599 −0.067245268998
−0.933627536796 0.282685786981 −0.346639989395 −0.190398640676 0.443759807696 0.272460381754
0.322264058481 0.506376716138 −0.116692390185 −0.342638135001 −0.433525158152 −0.059952105006
0.376346092436 −0.373763124448 −0.032644121361 0.287240739246 0.003781864195 0.185700287271
0.788496794340 −0.318850761740 −0.214568292491 −0.204082647281 0.160466695221 −0.171958221696

−0.486066607654 −0.062860458751 −0.326559142051 −0.132193719163 0.083112560686 −0.708225624792


,

C =[ −0.611474009782 −0.139351387817 −0.108822413255 −0.271835728453 0.549162999423 −0.119043605507
−0.884529647289 0.276792028460 −0.002460107216 −0.233329865913 −0.331123636929 0.497195966565

]
,

B =




0.81174572654609 −0.47427470270648
−0.18840562963458 0.37121415857186
−0.15125144403907 0.12361535544134
0.46660377223427 −0.10777472484658
0.74731545307112 −0.42985039663091
−0.05574426645597 0.34130956398515



, n = 6, m = 2.

By performing Algorithm 1 in the appendix, we have that both the TDP and the
TDPS are solvable. Moreover, all solutions (F,H) for the TDP are given by

F = W

[
f11 f12 f13 −1.28062115170497 −0.22193226560205 0.95260605649937
f21 f22 f23 f24 f25 f26

]
V T ,

H = W

[
h11 0
h21 h22

]
(2.29)

with f1i, f2j , i = 1, 2, 3, j = 1, . . . , 6, and h11, h21, h22 being arbitrary, and h11 �= 0,
h22 �= 0. Furthermore, all solutions (F,H) for the TDPS are the solutions of the
TDP with

[
0.9501292851472 0.4564676651683 −0.0000000000000
0.2311385135743 0.0185036432482 0.7382072458107

0.6068425835418 + 0.304617366869f11 0.8214071642953 + 0.304617366869f12 0.1762661444946 + 0.304617366869f13

]

and

[ −0.10273688201010 0.37198279155256 0.53127157025587
−0.13708943833174 0.91051717539050 −0.15724825069291
0.53190307087149 0.15005295135054 −0.68206629178869

]−1

×[
0.0110878551004 −0.0235197788574 0.0944294923097
0.4403669435638 −0.2327460410701 −0.5125399306208

0.232437276865 − 0.479839406517f24 0.087827156236 − 0.479839406517f25 −0.096974113324 − 0.479839406517f26

]
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being stable. Here, V and W are

V =


−0.509190448771 −0.4649700530129 −0.3649627226701 0.5580681216908 0.2333258084520 0.1595280113520
−0.369014659501 −0.2353526949515 0.1683609035794 −0.3725764697591 −0.5301780983677 0.600158191139
−0.348229242975 0.3747797475288 −0.5510010824179 −0.0326781540433 −0.5253749672967 −0.396973077601
0.693529633294 −0.2277272385532 −0.4578500695054 0.2169642378212 −0.3652180418808 0.277619465833

−0.044743431581 0.6833703203034 0.1688057406093 0.5246333477518 −0.0506989338864 0.4740222791450
−0.017445210383 0.2628638616699 −0.5447316405100 −0.4757785765628 0.5024905917994 0.393705024005


,

W =

[ −0.99060382389925 −0.13676280223870
−0.13676280223870 0.99060382389925

]
.

3. Conclusions. We have studied the triangular decoupling problem with or
without stability based on matrix pencil theory. We have not only given new verifiable
solvability conditions but also parameterized all the solutions. The basis of our result
is a condensed form which is computed using only orthogonal transformations. Hence,
our solvability conditions can be verified and all solutions can be characterized in a
numerically stable manner.

Appendix. The proof of Theorem 2.3. We prove Theorem 2.3 constructively
by the following algorithm.

Algorithm 1.
Input: E, A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rm×n with E nonsingular.
Output: Nonsingular matrix X ∈ Rn×n, orthogonal matrices V ∈ Rn×n and W ∈
Rm×m, and the condensed form (2.6).
Step 0. Set

E1 := E, A1 := A, B1 := B, C1 := C, X := In, V := In, W := Im, k := 1.

Step 1. Compute the transposed version of the condensed form (2.5) in [8] for
(Ek, Ak, Bk, Ck) to get orthogonal matrices Uk, Vk,Wk such that

Uk(sEk −Ak)Vk =:




nk n−∑k
i=1 ni

ñ2k−1 sE(2k−1)k −A(2k−1)k 0

ñ2k sE(2k)k −A(2k)k −A(k)
(2k)(k+1)

n−∑k
i=1 ni sE(k)

(2k+1)k −A(k)
(2k+1)k sE(k)

(2k+1)(k+1) −A(k)
(2k+1)(k+1)


,

UkBkWk =:




ñ2k m−∑k
i=1 ñ2i

ñ2k−1 0 0
ñ2k B(2k)k 0

n−∑k
i=1 ni B(k)

(2k+1)k B(k)
(2k+1)(k+1)


,

CkVk =:

[ nk n−∑k
i=1 ni

1 Ckk 0
m− k C

(k)
(k+1)k Ck+1

]
,

where E(k)
(2k+1)(k+1) and B(2k)k are nonsingular, nk = ñ2k−1 + ñ2k, ñ2k = 0 or 1, and

rank

[
−A(k)

(2k)(k+1) B(2k)k 0sE(k)
(2k+1)(k+1) −A(k)

(2k+1)(k+1)

B(k)
(2k+1)k B(k)

(2k+1)(k+1)

]

= ñ2k +

(
n−

k∑
i=1

ni

)
∀s ∈ C,(A.1)
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rankg

[
sE(2k−1)k −A(2k−1)k

Ckk

]
= nk.(A.2)

Denote

−A(k−1)
(2i)k Vk =:

[ nk n−∑k
j=1 nj

ñ2i −A(2i)k −A(k)
(2i)(k+1)

]
, i = 1, . . . , k − 1,

Uk(sE
(k−1)
(2k−1)j −A

(k−1)
(2k−1)j) =:




nj

ñ2k−1 sE(2k−1)j −A(2k−1)j

ñ2k sE(2k)j −A(2k)j

n−∑k
i=1 ni sE(k)

(2k+1)j −A(k)
(2k+1)j


, j = 1, . . . , k − 1,

C
(k−1)
kj =:

[ nj

1 Ckj

m− k C
(k)
(k+1)j

]
, j = 1, . . . , k − 1,

and

X :=

[
I∑k−1

i=1
ni

0

0 Uk

]
X, V := V

[
I∑k−1

i=1
ni

0

0 Vk

]
, W := W

[
I∑k−1

i=1
ñ2i

0

0 Wk

]
.

Step 2. Perform the QR factorization of [
B(2k)k

B(k)

(2k+1)k

] with column pivoting to get an

orthogonal matrix Pk such that

Pk

[
B(2k)k

B(k)
(2k+1)k

]
=:

[
ñ2k B̃(2k)k

n−∑k
i=1 ni 0

]
, Pk =

[ ñ2k n−∑k
i=1 ni

ñ2k P(k)
11 P(k)

12

n−∑k
i=1 ni P(k)

21 P(k)
22

]
.

Denote

[
P(k)

21 P(k)
22

] [ sE(2k)j −A(2k)j

sE(k)
(2k+1)j −A(k)

(2k+1)j

]
=: sE

(k)
(2k+1)j −A

(k)
(2k+1)j , j = 1, . . . , k,

[
P(k)

21 P(k)
22

] [ −A(2k)(k+1)

sE(k)
(2k+1)(k+1) −A(k)

(2k+1)(k+1)

]
=: sEk+1 −Ak+1,

[
P(k)

21 P(k)
22

] [ 0

B(k)
(2k+1)(k+1)

]
=: Bk+1,




I∑k−1

i=1
ni

0 0

0 Ink
0

0 P(k)
21 P(k)

22


X =: X.

Since E(k)
(2k+1)(k+1) and B(2k)k are nonsingular, by Corollary 2.2 we know that Ek+1

and X are nonsingular, and

rank
[
sEk+1 −Ak+1 Bk+1

]
= n−

k∑
i=1

ni ∀s ∈ C.(A.3)

Note that if k < m, then m−∑k
i=1 ñ2i > 0, so if k < m and Ck+1 �= 0, set k := k+1
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and return to Step 1. Otherwise, set

sE(2k+1)(k+1) −A(2k+1)(k+1) := sEk+1 −Ak+1,

B(2k+1)(k+1) := Bk+1,

nk+1 := n−
k∑

i=1

ni,

A(2i)(k+1) := A
(k)
(2i)(k+1),

sE(2k+1)i −A(2k+1)i := sE
(k)
(2k+1)i −A

(k)
(2k+1)i,

C(k+1)i := C
(k)
(k+1)i, i = 1, . . . , k,

and stop.
Now, properties (2.10) and (A.2) are the same, properties (2.9) and (A.3) are the

same, and property (2.8) follows directly from (A.1) and the nonsingularity of B(2i)i,
i = 1, . . . , k. Hence, a simple calculation using Corollary 2.2 yields that (X(sE −
A)V,XBW,CV ) is in the condensed form (2.6).
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Abstract. In this paper, we present some new perturbation bounds for (generalized) polar
decompositions under the Frobenius norm for both complex and real matrices. For subunitary polar
factors, we show that our bounds always improve the existing bounds. Based on some interesting
properties of the matrix equation W +W ∗ = W ∗W , some new bounds involving both the Frobenius
norm and the spectral norm of the perturbation are given. The optimality of bounds is discussed.
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1. Introduction. Let C
m×n ( R

m×n) be the set ofm×n complex (real) matrices
and let C

m×n
r ⊂ C

m×n (Rm×n
r ⊂ R

m×n) be the set of m× n complex (real) matrices
having rank r. Here we always assume that m ≥ n. Q is called a unitary matrix
if Q∗Q = I and a subunitary matrix if ‖Qx‖F = ||x||F for any x ∈ R(Q∗) (e.g.,
see [13]), where the superscript * denotes conjugate transpose, ‖ · ‖F denotes the
Frobenius norm, and R(A) denotes a subspace spanned by columns of A. For a
complex m×n matrix A ∈ C

m×n
r , there are a symmetric positive semidefinite matrix

H and a subunitary matrix Q such that

A = QH.(1.1)

This decomposition is called the generalized polar decomposition of A, and Q is called
the subunitary polar factor of this decomposition. Usually, when

r = rank(A) = n(1.2)

(1.1) is called the polar decomposition and Q is the unitary polar factor. The decom-
position (1.1) can be calculated from the singular value decomposition (SVD)

A = U

(
Σ1 0
0 0

)
V ∗

by

H = V1Σ1V
∗
1 , Q = U1V

∗
1 ,(1.3)

where U = (U1, U2) ∈ C
m×m and V = (V1, V2) ∈ C

n×n are unitary, U1 ∈ C
m×r,

V1 ∈ C
n×r, Σ1 = diag(σ1, . . . , σr), and σi, i = 1, 2, . . . , r, define the singular values of
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A with σ1 ≥ σ2 ≥ · · · ≥ σr > 0. For any matrix A ∈ C
m×n
n , there exists a unique

polar decomposition. But it is not true in general for A ∈ C
m×n
r with r < n. It has

been proved that the generalized polar decomposition (1.1) satisfying

R(Q∗) = R(H)(1.4)

is unique (e.g., see [13]).
A variety of applications of the polar decomposition and generalized polar decom-

position can be found in [6, 8], and some numerical methods for the polar decompo-
sition were given in [6, 13]. In this paper we are concerned with perturbation bounds
of the unitary polar factor Q. The details for perturbation bounds of eigenvalues and
singular values can be found in [2, 12]. The perturbation problem arising in the polar
decomposition has been studied by many authors. It should be noted that perturba-
tion bounds of (sub)unitary polar factors depend heavily upon the number field, the
rank, and the dimension of A.

Let A ∈ C
m×n
r and Ã ∈ C

m×n
r with

A = QH, Ã = Q̃H̃,

and E = A − Ã. A simple perturbation bound of subunitary polar factors in the
generalized polar decomposition was given by Sun and Chen [13]:

‖Q− Q̃‖F ≤ 2

max{σ̃r, σr}‖E‖F ,(1.5)

where σ̃i, i = 1, 2, . . . , r, denote the singular values of Ã with 0 < σ̃r ≤ σ̃r−1 ≤ · · · ≤
σ̃1. A different bound obtained by Li [9] is

‖Q− Q̃‖F ≤ 1

min{σ̃r, σr}‖E‖F .(1.6)

The above inequality improves the bound (1.5) by a factor of 2 when the perturbation
E is small enough. However, for some large scale problems, min{σ̃r, σr} may be
smaller.

Perturbation bounds for unitary polar factors, i.e., r = n, have been studied by
Barrlund [1], Bhatia [3], Bhatia and Mukherjea [4], Chatelin and Gratton [5], Mathias
[11], and Li [10]. In the special case m = n = r and ‖E‖2 < σn, Mathias [11] proved
that for complex matrices and a general unitarily invariant norm ‖ · ‖,

‖Q̃−Q‖ ≤ − ‖E‖‖E‖2 × log

(
1− ‖E‖2

σn

)
,(1.7)

where || · ||2 defines the spectral norm. A further bound given by Li [10] for complex
matrices is

‖Q− Q̃‖ ≤ 2

σ̃n + σn
‖E‖ .(1.8)

The above bound is always sharper than Mathias’s bound in (1.7). However, it should
be noted that the bound in (1.8) was obtained only in the special case r = m = n.
When r = n < m, the best bound obtained in [10] is

‖Q− Q̃‖F ≤
√(

2

σn + σ̃n

)2

+

(
1

max{σn, σ̃n}
)2

‖E‖F .(1.9)
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The organization of this paper is as follows. In section 2, we prove that for
complex matrices, the bound in (1.8) holds for generalized polar decompositions,
i.e., for any r and m ≥ n. The bound obtained here is sharper than both (1.5)
and (1.6) for generalized polar decompositions and (1.9) for full rank matrices. In
section 3, we present some interesting features of the solutions of the matrix equation
W +W ∗ = W ∗W = WW ∗ and the perturbation of unitary polar factors. It is easy
to see from these features why perturbation bounds in real and complex cases have
different forms. Some new perturbation bounds for n×n real and complex nonsingular
matrices are obtained. The optimality of bounds in both complex and real fields is
discussed and more counterexamples are given in section 4.

2. Subunitary polar factors. Let Ip be the p× p identity matrix and

I(p)
m,n ≡

(
Ip 0
0 0

)
.

For simplicity we write I(p) for I
(p)
m,n. Let

S =

(
S11 S12

S21 S22

)
∈ C

m×m and T =

(
T11 T12

T21 T22

)
∈ C

n×n

be two unitary matrices, where both S11 and T11 are r × r. Let
M = 2I − S∗

11T11 − T ∗
11S11, M̃ = 2I − T11S

∗
11 − S11T

∗
11

and mij and m̃ij denote the (i, j) entry of M and M̃ , respectively. Some basic

properties for M and M̃ are given below.
Lemma 2.1. Both M and M̃ are Hermitian positive semidefinite and tr(M) =

tr(M̃).
Proof. Since S and T are unitary, ‖S11‖2 ≤ 1 and ‖T11‖2 ≤ 1. Then the magni-

tude of each eigenvalue of S∗
11T11 + T ∗

11S11 is less than or equal to 2. M is Hermitian

positive semidefinite and so is M̃ . The second part of this lemma follows from the
definition and by using the relation tr(AB) = tr(BA).

The following lemma can be easily obtained.
Lemma 2.2. Let A and B be n × n Hermitian matrices and A − B be positive

semidefinite. Then tr(A) ≥ tr(B).
Lemma 2.3. Let S ∈ C

m×m and T ∈ C
n×n be two unitary matrices, and

Σ =

(
Σ1 0
0 0

)
∈ C

m×n
r , Σ̃ =

(
Σ̃1 0
0 0

)
∈ C

m×n
r ,

where Σ1 = diag(σ1, . . . , σr) and Σ̃1 = diag(σ̃1, . . . , σ̃r) are two r×r diagonal matrices
with 0 < σr ≤ · · · ≤ σ1 and 0 < σ̃r ≤ · · · ≤ σ̃1. Let Γ = Σ− σI(r) and Γ̃ = Σ̃− σI(r),
σ > 0. Then

2Re tr[(SI(r) − I(r)T )(SΓ− Γ̃T )∗](2.1)

≥ (σr−1 + σ̃r−1 − 2σ)tr(M)− (σr−1 − σr)mrr − (σ̃r−1 − σ̃r)m̃rr ,

where Re denotes the real part of a complex number.
Proof. We only prove the inequality (2.1) in the case m = n. When m > n,

the result can be proved similarly by considering the square matrices S = S, T =(
T
0

0
Im−n

)
, Ω = [Σ, 0], and Ω̃ = [Σ̃, 0].
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From the proof of Lemma 1 of [9] we obtain

2Re tr[(SI(r) − I(r)T )(SΓ− Γ̃T )∗](2.2)

= tr[(2I(r) − S∗I(r)T − T ∗I(r)S)Γ] + tr[(2I(r) − TI(r)S∗ − SI(r)T ∗)Γ̃].

It follows that

2Re tr[(SI(r) − I(r)T )(SΓ− Γ̃T )∗](2.3)

= tr[(2I − S∗
11T11 − T ∗

11S11)Γ1] + tr[(2I − T11S
∗
11 − S11T

∗
11)Γ̃1]

= tr(MΓ1) + tr(M̃ Γ̃1),

where Γ1 = diag(σ1 − σ, . . . , σr − σ) and Γ̃1 = diag(σ̃1 − σ, . . . , σ̃r − σ). By Lemma

2.1 both M and M̃ are Hermitian positive semidefinite. Hence M and M̃ have the
unique Hermitian positive semidefinite square roots M

1
2 and M̃

1
2 . Clearly,

tr(MΓ1) = tr(M
1
2Γ1M

1
2 )(2.4)

and M
1
2Γ1M

1
2 =M

1
2 (σr −σ)M 1

2 +M
1
2 diag(σ1−σr, . . . , σr−1−σr, 0)M 1

2 . It follows
from Lemma 2.2 and the fact tr(BC) = tr(CB) that

tr(M
1
2Γ1M

1
2 )

= tr(M
1
2 (σr − σ)M 1

2 ) + tr(M
1
2 diag(σ1 − σr, . . . , σr−1 − σr, 0)M 1

2 )(2.5)

≥ (σr − σ)tr(M) + (σr−1 − σr)tr(MI(r−1)).

It is easy to see that tr(MI(r−1)) = tr(Mr−1), where Mr−1 is the (r − 1) × (r − 1)
leading principal submatrix of M . Hence tr(M) = tr(Mr−1) +mrr. From (2.5),

tr(M
1
2Γ1M

1
2 ) ≥ (σr − σ)tr(M) + (σr−1 − σr)(tr(M)−mrr)(2.6)

= (σr−1 − σ)tr(M)− (σr−1 − σr)mrr .

Similarly we have

tr(M̃
1
2 Γ̃1M̃

1
2 ) ≥ (σ̃r−1 − σ)tr(M̃)− (σ̃r−1 − σ̃r)m̃rr .(2.7)

By Lemma 2.1 and (2.3)–(2.7) one may deduce that

2Re tr[(SI(r) − I(r)T )(SΓ− Γ̃T )∗]

≥ (σr−1 − σ)tr(M)− (σr−1 − σr)mrr + (σ̃r−1 − σ)tr(M̃)− (σ̃r−1 − σ̃r)m̃rr

= (σr−1 + σ̃r−1 − 2σ)tr(M)− (σr−1 − σr)mrr − (σ̃r−1 − σ̃r)m̃rr,

which proves the lemma.
A new perturbation bound for subunitary polar factors is given in the following

theorem.
Theorem 2.4. Let A, Ã ∈ C

m×n
r and

A = QH and Ã = Q̃H̃

be the generalized polar decomposition of A and Ã, respectively, and satisfy (1.4).
Then

‖Q− Q̃‖F ≤ 2

σ̃r + σr
‖E‖F .(2.8)
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Proof. Let

A = UΣV ∗ and Ã = Ũ Σ̃Ṽ ∗(2.9)

be SVDs of A and Ã, respectively. Let S = Ũ∗U , T = Ṽ ∗V, and σ = σr+σ̃r

2 . It is
easy to see that

‖SΣ− Σ̃T‖2F = σ2||SI(r) − I(r)T ||2F + ‖SΓ− Γ̃T‖2F
+ 2σRe tr[(SI(r) − I(r)T )(SΓ− Γ̃T )∗].(2.10)

By Lemma 2.3, we have 2Re tr[(SI(r) − I(r)T )(SΓ− Γ̃T )∗] ≥ 0, which together with
(2.10) gives

‖SΣ− ΣT‖F ≥ σr + σ̃r
2
‖SI(r) − I(r)T‖F .

Hence we have

‖A− Ã‖F = ‖UΣV ∗ − Ũ Σ̃Ṽ ∗‖F
= ‖Ũ∗UΣ− Σ̃Ṽ ∗V ‖F
≥ σr+σ̃r

2 ‖UI(r)V ∗ − ŨI(r)Ṽ ∗‖F
= σr+σ̃r

2 ‖Q− Q̃‖F ,
which proves the theorem.

Remark 1. It is noted that our result in Theorem 2.4 always improves the bounds
in (1.5), (1.6), and (1.9). The following example shows that the inequality

‖Q− Q̃‖F ≤ 1

max{σ̃r , σr}‖E‖F

does not hold even for r = n = m. More examples will be given in section 4 to show
that the bound in (2.8) is optimal in some sense.

Example 1. Let

A = I and Ã = −2I
be n× n matrices. Then 2

√
n = ‖Q− Q̃‖F > 1

max{σ̃n, σn}‖E‖F = 3
2

√
n.

3. Normal matrix and perturbation bounds of unitary polar factors. In
this section we consider only n×n matrices. First we present some interesting features
for some special normal matrices, which will be used to provide new perturbation
bounds of unitary polar factors.

Lemma 3.1. Let W be an n× n matrix satisfying
W +W ∗ =W ∗W =WW ∗ .(3.1)

(i) If W ∈ C
n×n, then there exists a unitary matrix P such that

P ∗WP = diag(d1, d2, . . . , dn),(3.2)

where

dj = aj ± i
√
2aj − a2

j , 0 ≤ aj ≤ 2.(3.3)
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(ii) If W ∈ R
n×n, there exists a real orthonormal matrix P such that

PTWP = diag(W1,W2, . . . ,Wk),(3.4)

where each Wj is either a real 1× 1 matrix, in this case Wj = 0 or 2, or a real 2× 2
matrix of the form

Wj =


 aj ±

√
2aj − a2

j

∓
√
2aj − a2

j aj


 , 0 < aj < 2.(3.5)

Proof. By (3.1)W is a normal matrix. By some basic matrix theory (e.g., see [7]),
there exists a unitary (real orthonormal matrix) P such that (3.2) (equation (3.4))
holds. Then by using the unitary (orthonormal) transformation, (3.1) becomes

Ŵ + Ŵ ∗ = Ŵ ∗Ŵ = ŴŴ ∗,

where Ŵ = P ∗WP .
In the complex case,

2Re (di) = |di|2 .
Solving the above equation gives (3.3).

In the real case, each Wj is either a real 1× 1 matrix or a real 2× 2 matrix of the
form (e.g., see [7, Theorem 2.5.8])

Wj =

(
wj1 wj2

−wj2 wj1

)
,

where wj1 and wj2 are real. Equation (3.5) can be obtained by solving

Wj +WT
j =WT

j Wj =WjW
T
j .(3.6)

Lemma 3.1 describes the structure of matrices satisfying (3.1). For those Wj in
(3.5),

||Wj ||2F = 2||Wj ||22 = 4aj .

More general discussion for the solution of (3.1) can be found in [14]. By noting these
features in Lemma 3.1, we can obtain some new perturbation bounds.

Let A and Ã be n×n nonsingular matrices having the SVDs in (2.9). Let S = Ũ∗U
and T = Ṽ ∗V. Then S and T are unitary and

‖S − T‖ = ‖Ũ∗(UV ∗ − Ũ Ṽ ∗)V ‖ = ‖Q− Q̃‖
for any unitarily invariant norm ‖ · ‖. Since m = n = r, by the definition of M and

M̃ in section 2 we have

M = 2I − S∗T − T ∗S and M̃ = 2I − TS∗ − ST ∗ .

Let

W = I − S∗T and W̃ = I − TS∗ .
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Then W = U∗(Q− Q̃)V , W̃ = Ṽ ∗(Q̃∗ −Q∗)Ũ , and

‖W‖ = ‖W̃‖ = ‖Q− Q̃‖(3.7)

by noting Q = UV ∗ and Q̃ = Ũ Ṽ ∗. Since S and T are unitary, we have

M = (I − S∗T )(I − S∗T )∗ =WW ∗ =W ∗W,
M̃ = (I − TS∗)(I − TS∗)∗ = W̃W̃ ∗ = W̃ ∗W̃ .

(3.8)

By (3.8) and the definition of M and M̃ , it is easy to see that W and W̃ satisfy (3.1).

Lemma 3.2. Let Γ = diag(σ1 − σ, . . . , σn − σ) and Γ̃ = diag(σ̃1 − σ, . . . , σ̃n − σ)
be two n × n diagonal matrices, where 0 < σn ≤ · · · ≤ σ1 and 0 < σ̃n ≤ · · · ≤ σ̃1.
Then

2Re tr[(S − T )(SΓ− Γ̃T )T ](3.9)

≥ (σ̃n−1 + σn−1 − 2σ)||Q− Q̃||2F − (σn−1 + σ̃n−1 − σn − σ̃n)||Q− Q̃||22.
Proof. By (3.7) and (3.8),

tr(M) = ||W ||2F = ||Q− Q̃||2F(3.10)

and

mnn =Wn∗W ∗
n∗ = ||Wn∗||2F ,(3.11)

where Bi∗ denotes the ith row of the matrix B. Since W = U∗(Q − Q̃)V , we have

Wn∗ = U∗
n∗(Q− Q̃)V . Then

‖Wn∗‖F = ‖U∗
n∗(Q− Q̃)‖F ≤ ‖Q− Q̃‖2,(3.12)

and therefore

mnn ≤ ||Q− Q̃||2 .
Similarly,

m̃nn ≤ ||Q− Q̃||2 .
Equation (3.9) is obtained by using Lemma 2.3 and noting r = n = m.

Using Lemma 3.2 and noting the proof of Theorem 2.4 leads to

σ(σ̃n−1 + σn−1 − σ)‖Q− Q̃‖2F − σ(σn−1 + σ̃n−1 − σn − σ̃n)‖Q− Q̃‖22 ≤ ‖E‖2F
(3.13)

for any σ > 0.
The following theorem gives a perturbation bound involving both the Frobenius

norm and the spectral norm.
Theorem 3.3. Let A and Ã be two n×n nonsingular matrices with SVDs given

in (2.9), and let σ1 ≥ · · · ≥ σn > 0 and σ̃1 ≥ · · · ≥ σ̃n > 0 be the singular values of A

and Ã, respectively. Then[
(1− α)

(
σn−1 + σ̃n−1

2

)
+ α

(
σn + σ̃n

2

)]
||Q− Q̃||F ≤ ‖E‖F ,(3.14)
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where α =
||Q−Q̃||22
||Q−Q̃||2F

.

Proof. Equation (3.14) can be obtained by maximizing the left side of (3.13) over
σ.

Remark 2. For the Frobenius norm, we can obtain Li’s bound (1.8) by noting the
fact that α ≤ 1. When α < 1, we can obtain some better bounds. Particularly, if

α =
‖Q− Q̃‖22
‖Q− Q̃‖2F

≤ 1

2
(3.15)

or

‖E‖F
‖E‖2 ≥

√
2 +

σn−1 + σ̃n−1

σn + σ̃n
,

we have

‖Q− Q̃‖F ≤ 4

σ̃n−1 + σ̃n + σn−1 + σn
‖E‖F(3.16)

by using (1.8) and (3.13) with σ = σ̃n−1+σ̃n+σn−1+σn

4 . Condition (3.15) is not always
satisfied; some examples will be given in section 4. However, it is always true for real
matrices with the small perturbation E.

Theorem 3.4. Let A , Ã ∈ R
n×n
n and ||E||2 < σn + σ̃n. Then the inequality

(3.16) holds.
Proof. By the assumption of the theorem and (1.8) we have

‖Q̃−Q‖2 ≤ 2

σn + σ̃n
‖E‖2 < 2

σn + σ̃n
(σn + σ̃n) = 2 .

By (3.7) and Lemma 3.1(ii),

max
j
‖Wj‖2 = ‖W‖2 = ‖Q̃−Q‖2 < 2 .

Let ‖Wp‖2 = maxj ‖Wj‖2. Then by (3.5) and (3.7),

‖Q̃−Q‖F = ‖W‖F ≥ ‖Wp‖F =
√
2‖Wp‖2 =

√
2‖Q̃−Q‖2 .

Equation (3.16) follows immediately from Remark 2.
Remark 3. For real matrices, perturbation bounds of unitary polar factors have

been studied by Barrlund [1] and Mathias [11], respectively. Mathias’s bounds (The-
orems 2.3 and 2.4 of [11]) when restricted to the Frobenius norm are as follows: (i) If
σ1(E) < σn(A),

‖Q− Q̃‖F ≤ −2‖E‖F
‖E‖2 log

(
1− ‖E‖2

σn + σn−1

)
,(3.17)

and (ii) if A+ tE is nonsingular for all t ∈ [0, 1],

‖Q− Q̃‖F ≤ max
0≤t≤1

{
2

σn(A+ tE) + σn−1(A+ tE)

}
‖E‖F .(3.18)

Neither of these two bounds is uniformly better than the other. Our bound in (3.16)
is slightly better than the second one. The conditions are different. The following
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example shows that for any real matrices, the condition ‖E‖2 < σn + σ̃n is also
necessary for our bound.

Example 2. For any A ∈ R
2×2 with the SVD A = UΣV T , let

Ã = UΣ((I +D)V )T

be the SVD of Ã, where

Σ =

(
σ1 0
0 σ2

)
, D =

(
0 0
0 −2

)

with σ1 > σ2. Clearly, ‖E‖F = ‖E‖2 = 2σ2 = σ2 + σ̃2. On the other hand, we have

‖Q− Q̃‖2F = 4. Then

2 = ‖Q− Q̃‖F >
4

σ2 + σ̃2 + σ1 + σ̃1
‖E‖F =

4σ2

σ2 + σ1
.

4. Optimal bounds and more examples. It has been noted by many people
and also can be seen from those previous bounds [1, 9, 10, 11, 13] and bounds obtained
in this paper that there is some difference between the bounds in real and complex
cases.

• For complex matrices, perturbation bounds of unitary polar factors are pro-
portional to the reciprocal of the smallest singular values of A and Ã.
• For real matrices, perturbation bounds are proportional to the reciprocal of
the sum of the two smallest singular values of A and Ã under two conditions:
(i) r = m = n and (ii) ||E||2 < σn + σ̃n.

For real matrices, Li [10] gave an example to show that it is not true even in the case
m > n = r. The following example shows that without the condition ||E||2 < σn+ σ̃n,
it is also not true even in the case r = n = m.

Example 3. Let A and Ã be defined in Example 2 with

D =

(
a

√−2a− a2√−2a− a2 −2− a
)
, −2 ≤ a ≤ 0.

We have ‖E‖2F = ‖E‖22 = 2|a|(σ2
1 − σ2

2) + 4σ2
2 and ‖Q̃−Q‖2F = 4. Then

‖Q− Q̃‖2F =
4

2|a|(σ2
1 − σ2

2) + 4σ2
2

‖E‖2F .(4.1)

The bound in (4.1) mainly depends upon σ2 when |a| is very small.

Without any restriction on ||E||, ‖Q−Q̃‖ in both real and complex cases should be
proportional to the reciprocal of the smallest singular value. In fact, the perturbation
matrix W (||W ||F = ||Q − Q̃||F ) in complex cases is always similar to a diagonal
matrix, and in real cases it is similar to a block diagonal matrix with 1× 1 block or
2× 2 block in (3.5). In the first case the perturbation may be in rank-1 matrix space,
and the second case means that the perturbation belongs to the matrix space of at
least rank 2 except the trivial case Q = Q̃. When the condition ‖E‖2 < σn + σ̃n is
imposed, the rank of the perturbation is either zero or larger than or equal to 2, where
‖Q− Q̃‖2F ≥ 2‖Q− Q̃‖22. This feature has been used in the proof of Theorem 3.4.

To confirm the sharpness of a perturbation bound, one often gives specific A and
Ã, such as unitary matrices, such that the bounds can be achieved. One question
arising here is whether a perturbation bound is achieved for any matrix A and some
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E. For complex matrices, the following example shows that our bound in (2.8) for any
r and m ≥ n with or without the restriction of ‖E‖ being small enough is optimal in
this sense.

Example 4. Let A be a 2 × 2 matrix and let A = UΣV ∗ be its SVD. Let
Ã = UΣ(V (I +D))∗, i.e., Ũ = U , Σ̃ = Σ, and Ṽ = V (I +D), where

D =

(
0 0

0 −a+ i
√
2a− a2

)
, 0 < a < 2.

A straightforward calculation gives

‖Q− Q̃‖F = ‖UD∗V ∗‖F = ‖D∗‖F =
√
2a

and

‖A− Ã‖F = ‖UΣDV ∗‖F = ‖ΣD‖F =
√
2aσ2 .

Thus the bound in (2.8) is achieved. It is easy to extend this example to the m × n
case.

It is more complicated in the real case. The optimal bound without the restriction
‖E‖2 < σn + σ̃n is the same as in (2.8), which has been confirmed by Example 3.
However, the optimal bound with the above restriction is not clear. Mathias claimed
the following bound in the abstract of [11]:

‖Q̃−Q‖F ≤ 2

σn + σn−1
‖E‖F(4.2)

with the restriction ‖E‖2 < σn. There could be some typographical error since in the
text of [11] he proved only the bounds (3.17) and (3.18) for unitarily invariant norm.
Although the bound in (4.2) looks very close to our bound in (3.16), the following
example shows that (4.2) is not true.

Example 5. Let A, Ã ∈ R
2×2 with the SVDs A = UΣV T and Ã = U Σ̃(V (I+D))T ,

where

D =

( −a √
2a− a2

−√2a− a2 −a
)
.

Let σ̃1 = σ̃2 = 1, σ1 = σ2 = 6, and a = 0.7. Then ‖E‖2 = 5.7793 < σ2 = 6. However,

1.8556 =

(
2

σ1 + σ2

)2

‖E‖2F < ‖Q− Q̃‖2F = 2.8 .

Acknowledgment. The authors would like to thank the anonymous referees for
their valuable comments which led to the improvement of Theorem 3.3.
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Abstract. In this article we derive, using standard methods of Toeplitz theory, an asymp-
totic formula for certain large minors of Toeplitz matrices. Bump and Diaconis obtained the same
asymptotics using representation theory, with an answer having a different form.
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Our Toeplitz-like matrices are of the form

M = (cpi−qj ), i, j = 0, 1, . . . ,

where {pi} and {qi} are sequences of integers satisfying pi = qi = i for i sufficiently
large, say for i ≥ m. These are a particular class of finite-rank perturbations of
Toeplitz matrices. If the pi and the qi are all different, then after rearranging the first
m rows and columns, these become minors of the Toeplitz matrix (ci−j) obtained by
removing finitely many rows and columns.

Recently Bump and Diaconis [1], using the representation theory of the symmetric
group, obtained an asymptotic formula for the determinants of large sections of these
minors. Here we use “Toeplitz” methods to obtain the asymptotics in quite a different
form, although the answers must be the same.

We assume that {ci} is the sequence of Fourier coefficients of a bounded function
ϕ, so that (ci−j) = T (ϕ) in the usual notation. We assume also that T (ϕ) is invertible
on the space �2(Z+), and that is almost all. (We shall explain this below.)

For convenience in notation we consider the (m+ n)× (m+ n) sections of M ,

Mm+n = (cpi−qj ), i, j = 0, 1, . . . , m+ n− 1,

and denote by Tn(ϕ) the n× n Toeplitz matrix (ci−j)i,j=0, 1,...,n−1.
If T (ϕ) is invertible, then ϕ has a factorization ϕ = ϕ− ϕ+ where the functions

(ϕ+)±1 and (ϕ−)±1 belong to H2 and H2, respectively.1 This is the “Wiener–Hopf
factorization” of ϕ. In terms of these factors (and with subscripts denoting Fourier
coefficients) our limit formula is

lim
n→∞

detMm+n

detTn(ϕ)
= det

( ∞∑
k=1

(ϕ−)pi+k−m (ϕ+)−qj−k+m

)
i, j=0,...,m−1

.(1)
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1Recall that H2 consists of the L2 functions whose Fourier coefficients with negative index all

vanish. The sequences of Fourier coefficients with nonnegative indices of ϕ+ and ϕ− are, up to
constant factors, T (ϕ)−1δ, respectively, T (ϕ)−1δ, where δ is the sequence {1, 0, 0, . . .}.
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(The sum in the determinant on the right side of (1) has only finitely many nonzero
terms since the Fourier coefficient (ϕ−)k vanishes for k > 0 and (ϕ+)k vanishes for
k < 0.)

Under some additional hypotheses the strong Szegö limit theorem gives the asymp-
totics of the Toeplitz determinant:

detTn(ϕ) ∼ G(ϕ)nE(ϕ),

where

G(ϕ) = exp

{
1

2π

∫
logϕ(θ) dθ

}
, E(ϕ) = exp

{ ∞∑
k=1

k(logϕ)k (logϕ)−k

}
.

Our result holds without these extra hypotheses. What we do need, which is a
little stronger than the invertibility of T (ϕ), is the uniform invertibility of the Tn(ϕ).
That is, we require that the Tn(ϕ) be invertible for sufficiently large n and that the
norms of the inverse matrices Tn(ϕ)−1 be bounded as n → ∞. This holds in all
“normal” cases where T (ϕ) is invertible. The known counterexamples are not simple.
(For a discussion of these points, see [2], especially Chapter 2.) If ϕ has a continuous
logarithm, for example, then the Tn(ϕ) are uniformly invertible.2

Theorem. If the Tn(ϕ) are uniformly invertible, then (1) holds.
Proof. We use the fact from linear algebra that if we have a matrix

M =


 A B

C D




with A and D square and if D is invertible, then

detM = detD det(A−BD−1C).

In our case M = Mm+n, A = (cpi−qj )i,j=0,...,m−1 and D is the Toeplitz matrix Tn(ϕ).
If the indices for B and C start at 0, then their entries are given by

Bi,k = cpi−m−k, Ck,j = cm+k−qj (0 ≤ i, j ≤ m− 1, 0 ≤ k ≤ n− 1),(2)

and we are interested in the limit as n → ∞ of the i, j entry of the m ×m matrix
BTn(ϕ)−1C.

Now we use the fact that if the Tn(ϕ) are uniformly invertible, then Tn(ϕ)−1

converges strongly to the infinite Toeplitz matrix T (ϕ)−1. (See [2, Proposition 2.2].)
It follows that each entry of BTn(ϕ)−1C converges to the corresponding entry of
BT (ϕ)−1C, where now B and C are the m ×∞ and ∞×m matrices, respectively,
with entries given by (2) but now with k ∈ Z+. What remains is to show that the i, j
entry of A−BT (ϕ)−1C is given by the summand on the right side of (1).

It is convenient to extend the range of the row or column indices of our Toeplitz
matrices so that one or the other can run over Z rather than Z+. So we introduce
the notations T (r)(ϕ) and T (c)(ϕ) for the matrices in which the row, respectively, the
column, index runs over Z. With this notation, we see that

Bi,k = T (r)(ϕ)pi−m, k , Ck,j = T (c)(ϕ)k, qj−m.

2For such a ϕ the Wiener–Hopf factors ϕ− and ϕ+ are, up to constant factors, the exponentials
of the portions of the Fourier series of logϕ corresponding to negative, respectively, positive, indices.
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Thus

(BT (ϕ)−1C)i,j = (T (r)(ϕ)T (ϕ)−1 T (c))pi−m, qj−m.

Now it is well known and easy to check (see [2, Proposition 1.13]) that

T (ϕ) = T (ϕ−)T (ϕ+), T (ϕ)−1 = T (ϕ+)−1 T (ϕ−)−1

and just as easy to check that

T (r)(ϕ) = T (r)(ϕ−)T (ϕ+), T (c)(ϕ) = T (ϕ−)T (c)(ϕ+).

It follows that

T (r)(ϕ)T (ϕ)−1 T (c)(ϕ) = T (r)(ϕ−)T (c)(ϕ+).

Hence

(BT (ϕ)−1C)i,j =

∞∑
k=0

(ϕ−)pi−m−k (ϕ+)m+k−qj

=

∞∑
k=−∞

(ϕ−)pi−m−k (ϕ+)k−qj+m −
−1∑

k=−∞
(ϕ−)pi−m−k (ϕ+)k−qj+m

= ϕpi−qj −
∞∑
k=1

(ϕ−)pi−m+k (ϕ+)−k−qj+m.

The first term on the right is Ai,j , and so the theorem is established.
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